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Visual complexity is often defined as “the level of detail or intricacy contained within an 

image” (Forsythe, 2009, p. 158; Snodgrass & Vanderwart, 1980, p. 183). It affects 

many areas of everyday life, including those that rely on the interaction with technol-

ogy. For example, effects of visual complexity have been demonstrated in road traffic 

(Edquist, Rudin-Brown, & Lenné, 2012; Mace & Pollack, 1983) or for the interaction 

with software (Alemerien & Magel, 2014) or websites (Deng & Poole, 2010; Tuch et 

al., 2011). Although research on visual complexity has already had its beginning with 

the Gestalt psychologists, who incorporated the meaning of simplicity and complexity 

in the perception process for example with the Gestalt principle of Prägnanz (Koffka, 

1935; Wertheimer, 1923), neither the influencing factors of visual complexity nor the 

connections with eye movements or mental workload have yet been conclusively in-

vestigated. The present study addresses these points by means of four empirical stud-

ies.  

Study 1 examines the significance of the construct in human-machine interaction on 

the basis of the complexity of videos in control rooms as well as their effects on sub-

jective, physiological and performance measures of mental workload. Study 2 takes a 

closer look at the dimensional structure and the significance of influencing variables 

and factors of visual complexity, using different types of stimuli. Study 3 applies an 

experimental approach in order to investigate the effects of visual complexity on sub-

jective ratings and a selection of ocular parameters with simple black and white shape 

patterns serving as stimuli. In addition, various computational and ocular parameters 

are used to predict complexity ratings. In study 4, this approach is transferred to 

screenshots of websites in order to investigate the validity of the conclusions within a 

field of application. 

Findings from the studies extend the existing body of research. Associations with men-

tal workload particularly suggest that visual complexity is a relevant construct within 

human-machine interaction. Quantitative and structural, but potentially also other as-

pects have an influence on the perception of visual complexity as well as the observer’s 

viewing behavior. The acquired results also allow for conclusions about the associa-

tions with computational measures, which in combination with ocular parameters are 

well suited for predicting complexity ratings. 
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The insights provided by the studies are finally discussed in the context of previous 

research, whereby an integrative research model of visual complexity in human-ma-

chine interaction is derived. 
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Visuelle Komplexität wird oft als der Grad an Detail oder Verworrenheit in einem Bild 

definiert (Snodgrass & Vanderwart, 1980). Diese hat Einfluss auf viele Bereiche des 

menschlichen Lebens, darunter auch solche, die die Interaktion mit Technologie invol-

vieren. So wurden Effekte visueller Komplexität etwa im Straßenverkehr (Edquist et 

al., 2012; Mace & Pollack, 1983) oder bei der Interaktion mit Software (Alemerien 

& Magel, 2014) oder Webseiten (Deng & Poole, 2010; Tuch et al., 2011) nachgewie-

sen. Obwohl die Erforschung visueller Komplexität bereits bis auf die Gestaltpsycho-

logen zurückgeht, welche etwa mit dem Gestaltprinzip der Prägnanz die Bedeutung 

von Simplizität und Komplexität im Wahrnehmungsprozess verankerten (Koffka, 1935; 

Wertheimer, 1923), sind weder die Einflussfaktoren visueller Komplexität, noch die Zu-

sammenhänge mit Blickbewegungen oder mentaler Beanspruchung bisher abschlie-

ßend erforscht. Diese Punkte adressiert die vorliegende Arbeit mithilfe von vier empi-

rischen Forschungsarbeiten. 

In Studie 1 wird anhand der Komplexität von Videos in Leitwarten sowie der Effekte 

auf subjektive, physiologische und Leistungsparameter mentaler Beanspruchung die 

Bedeutung des Konstruktes im Bereich der Mensch-Maschine Interaktion untersucht. 

Studie 2 betrachtet die dimensionale Struktur und die Bedeutung verschiedener Ein-

flussfaktoren visueller Komplexität genauer, wobei unterschiedliches Stimulusmaterial 

genutzt wird. In Studie 3 werden mithilfe eines experimentellen Ansatzes die Auswir-

kungen von Einflussfaktoren visueller Komplexität auf subjektive Bewertungen sowie 

eine Auswahl okularer Parameter untersucht. Als Stimuli dienen dabei einfache, 

schwarz-weiße Formenmuster. Zudem werden verschiedene computationale und oku-

lare Parameter genutzt, um anhand dieser Komplexitätsbewertungen vorherzusagen. 

Dieser Ansatz wird in Studie 4 auf Screenshots von Webseiten übertragen, um die 

Aussagekraft in einem anwendungsnahen Bereich zu untersuchen.  

Neben vorangegangenen Forschungsarbeiten legen insbesondere die gefundenen 

Zusammenhänge mit mentaler Beanspruchung nahe, dass visuelle Komplexität ein 

relevantes Konstrukt im Bereich der Mensch-Maschine Interaktion darstellt. Dabei ha-

ben insbesondere quantitative und strukturelle, aber potentiell auch weitere Aspekte 

Einfluss auf die Bewertung visueller Komplexität sowie auf das Blickverhalten der Be-

trachter. Die gewonnenen Ergebnisse erlauben darüber hinaus Rückschlüsse auf die 
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Zusammenhänge mit computationalen Maßen, welche in Kombination mit okularen 

Parametern gut für die Vorhersage von Komplexitätsbewertungen geeignet sind. 

Die Erkenntnisse aus den durchgeführten Studien werden im Kontext vorheriger For-

schungsarbeiten diskutiert. Daraus wird ein integratives Forschungsmodell visueller 

Komplexität in der Mensch-Maschine-Interaktion abgeleitet. 
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Visual complexity can play an important role within various everyday activities. This 

can be illustrated by the following example of a trip to work, as it is common for many 

people: first of all, when leaving our home by car, we will find ourselves confronted with 

traffic scenarios. Meanwhile, the visual complexity of the road environment may 

strongly interfere with the driving task, since the complexity of road environments re-

vealed to be positively associated with the driver’s mental workload (Edquist et al., 

2012). Additionally, Mace and Pollack (1983) found that the visual complexity of the 

road surrounding strongly affected the ability of drivers to detect and recognize traffic 

signs. In the inside of the car, we rely on using an instrument cluster for adapting our 

speed. Here, the visual complexity of this display interferes with visual search perfor-

mance (Yoon, Lim & Yi, 2015). Finally, when we have arrived at the office, we probably 

spend most of the time working with a computer, thereby interacting with particular 

software interfaces (Alemerien & Magel, 2014) or browsing web pages (Deng & Poole, 

2010; Tuch et al., 2011) of different visual complexity. As could be shown in previous 

research, the design of user interfaces and websites in terms of visual complexity can 

not only have an impact on the cognitive load of the user (Harper, Michailidou, & Ste-

vens, 2009) but also affect the physiological responses (Tuch, Bargas-Avila, Opwis, & 

Wilhelm, 2009) as well as aesthetical appraisal (Tuch, Presslaber, Stöcklin, Opwis, & 

Bargas-Avila, 2012). 

As could be seen in the previous example, visual complexity has an impact on persons 

within different contexts and affects them in multiple ways. One field where visual com-

plexity is of special relevance is human-machine interaction. Incorporating the visual 

complexity of human-machine interfaces within this discipline may contribute to the 

creation of user-friendly products and systems that are designed for high situation-

awareness (Endsley, 2016), optimized workload (Harper et al., 2009) and positive af-

fect (Deng & Poole, 2010). This can be achieved by evaluating and subsequently 

adapting the design of a product or system with regard to the assessed visual com-

plexity during the development process. As such, considering visual complexity within 

the user-centered design (UCD) process may have positive and direct consequences. 

This may not only affect the user as in the aforementioned scenarios, but in the middle 
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and long term also reflect in the economic benefit of the manufacturer (Aquino Shluzas 

& Leifer, 2014). 

Within the scope of this dissertation, I will investigate the effects of visual complexity 

within human information processing. Not only will I take a closer look at the theoretical 

background regarding theories and models of visual complexity as well as its influenc-

ing variables and factors. I will also focus the effects of visual complexity, for example 

with regard to mental workload and eye movements. Moreover, this work will also look 

at how computational as well as ocular measures can be helpful as indicators of and 

predictors for visual complexity. The gathered results of the four conducted studies will 

be integrated with previous findings within a research model of visual complexity. 

Thereby, this thesis will provide insights into the meaning and potential benefit of con-

sidering visual complexity within the context of human-machine interaction. 
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Within the following paragraphs, I will provide the theoretical foundations for the em-

pirical studies conducted within the range of this thesis. In order to introduce the reader 

to the topic, I will firstly begin with a rather short general perspective on complexity and 

simplicity before focussing on the key concept of this work, visual complexity, in more 

detail. Consequently, the relevance of visual complexity within human machine is ex-

amined more closely, before taking a look at relations with both computational 

measures as well as visual attention and eye tracking parameters. Finally, the theoret-

ical background will conclude with the research agenda of this work.  

 

 

The definition of complexity is not trivial (Johnson, 2009), even though it plays an im-

portant role in many different domains of human life. Originating from the Latin word 

complexus, as past participle form of com- (“together”) and plectere (“to weave, braid”), 

complecti can mean “to entwine, encircle, compass, infold” (“complex - Wiktionary,” 

2019). Collins Dictionary (2019a) suggests a definition of “the state of having many 

different parts connected or related to each other in a complicated way.”, which also 

agrees with the definitions by (Johnson, 2009) and the Cambridge Dictionary (2019). 

Thus, it may be summarized that on a semantic level, complexity relates both to a 

quantitative aspect of the existence of multiple different parts as well the aspect of the 

relation between these. This facet is also stressed by Standish (2008), who sees both 

the quantitative as well as the qualitative aspect as relevant for the definition of com-

plexity. However, neither of both are necessary nor sufficient conditions for complexity. 

On the one hand, it is easy to understand that quantity, or being more specific, the 

number of parts or objects can be a valid measure for complexity, since for example a 

car would probably be seen as more complex than a bicycle, since it consists of many 

more parts (Standish, 2008). On the other hand, a higher number of sand grains in-

crease the complexity of a pile of sand very little, if at all. However, the definition of 

complexity as a number of distinct parts partially avoid this issue, but raises other ques-

tions. Standish (2008) argues that in this case, a shopping list would have the same 

level of complexity as a Shakespearian play, since both consist of the same distinct 
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letters. Moreover, when seen as related to a quality, complexity describes the amount 

of information that is needed to specify a system (Standish, 2008). Within regard to 

quality, the concept of emergence can also play an important role. According to 

Standish (2008, p. 117), it describes the “patterns arising out of the interactions of the 

components in a system” and therefore might be interpreted similar to the saying ‘The 

whole is greater than the sum of its parts’. 

Despite the ambiguity of the concept, complexity is a concept of interest for various 

different research disciplines such as physics (e.g. Bennett, 1990), information theory 

(e.g. Traub, 2003), anthropology (e.g. Kersten, 2013), computer science (e.g. Davis, 

Sigal, & Weyuker, 1994), sociology (e.g. Eve, Horsfall, & Lee, 2003), and economics 

(e.g. Durlauf, 2005). 

Within the field of human-machine interaction, various kinds of complexity can have an 

impact (Endsley & Jones, 2012). Among these are especially the system complexity, 

which encompasses the overall complexity of a system that the user is dealing with. 

Coming back to the previous example, a car would be a more complex system than a 

bicycle. However, this does not necessarily cause a higher complexity for the user. For 

example, despite its high system complexity, a modern car is relatively easy to use. 

Thus, the operational complexity (Endsley & Jones, 2012) for the driver would be ra-

ther low. Referring specifically to the differentiation between system complexity and 

operational or observer complexity, authors have stressed that the latter is only mean-

ingful when considered in relation to a certain observer (Casti, 1979; Edmonds, 1999). 

Another concept, termed apparent complexity on the other hand is related to the user’s 

representation of the system. As such, it depends on the cognitive, display and task 

complexity (Endsley & Jones, 2012). While cognitive complexity (see also Rauterberg, 

1996) refers to how a system works or the complexity of the logic used by the system, 

display complexity focusses on the aspects of how its information is presented to the 

user (Endsley & Jones, 2012). Aspects such as the overall and local density of items 

that are presented as well as their grouping and the layout complexity according to 

Tullis (1983) are the determinants of the display complexity. An overview of the differ-

ent types of complexity and their effect on the user’s mental model is depicted in Figure 

1.  
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Figure 1. Layers of complexity from Endsley and Jones (2012) 

 

Schlick, Winkelholz, Motz, Duckwitz, and Grandt (2010) for example proposed a meas-

ure for the assessment of complexity in human-computer interaction, which relies on 

interaction events generated by the user or computer. 

Visual complexity, which this thesis will primarily focus on, has connecting points es-

pecially to the aforementioned aspects of apparent and especially display complexity. 

However, since not focussing on aspects of the interaction, the scope of visual com-

plexity as a concept is also not restricted to the interaction with systems or products 

but can refer to any visual material, such as art for example (Leder, Belke, Oeberst, & 

Augustin, 2004). At the same time, it is still highly relevant within the context of human-

machine interaction. Yet, in contrast to system or operational complexity, it does not 

include the perspective on the whole task, but takes into account only the visual 

presentation. Definitions and all further theoretical backgrounds of visual complexity 

will be addressed in the following paragraphs.  

In summary, it is not possible to give a simple definition of what complexity is and which 

precisely describes what makes some objects or systems more complex than others. 

Instead, many different approaches have been taken towards complexity from various 

disciplines, making a comprehensive understanding of the concept a rather complex 

task itself. The last paragraph however provided a starting point for the further analysis 

and examination of complexity and subtypes of complexity such as visual complexity. 

The provided framework of different types of complexity pointed out their associations 
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and should help to differentiate between these in order to facilitate a better understand-

ing of the key concept of this work: visual complexity. 

 

 

In the following, visual complexity will be focused in more detail. Firstly, the concept is 

introduced by comparing different definitions, before taking a closer look at foundations 

of visual complexity research. Subsequently, I will address the typical dimensions 

found in literature as well as the theories and models of the construct. Finally, relations 

and effects between visual complexity and other variables are discussed. 

 

 

Commonly, visual complexity is defined as “the level of detail or intricacy contained 

within an image” (Forsythe, 2009, p. 158; Snodgrass & Vanderwart, 1980, p. 183). 

Other authors consider it from a different perspective and provide a definition of visual 

complexity originating from research on textures which describes it as „the degree of 

difficulty in providing a verbal description of an image” (Heaps & Handel, 1999, p. 301; 

Rao & Lohse, 1993). In some cases, additional aspect are focused such as the ab-

sence of a pattern, which especially stresses the randomness within a picture (Feld-

man, 2004), or the abstractness (versus concreteness) of a stimulus (García, Badre, 

& Stasko, 1994). Madan, Bayer, Gamer, Lonsdorf, and Sommer (2017, p. 1) moreover 

describe visual complexity as follows: “a picture of a few objects, colors, or structures 

would be less complex than a very colorful picture of many objects that is composed 

of several components”. Some authors even chose a very different approach by not 

defining visual complexity semantically but using a rather methodological approach 

instead, such as Tuch et al. (2009). They operationalized it as the JPEG file size due 

to the high correlations with subjective ratings of visual complexity, which of course 

allows for only minor insights regarding the semantic background of the construct. 

Both Snodgrass and Vanderwart's (1980) definition as well as the one by Rao and 

Lohse (1993) were adopted by several researchers. While both seem to adopt quite 

different perspectives, they may also share some communalities. For instance, it 

seems likely that an image with a higher level of detail is also more difficult to describe, 
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since very detailed features also require a longer description. The enduring differences 

between definitions of visual complexity have not led to a commonly accepted solution 

yet. However, this issue is far from insignificant. A disparity within definitions may go 

along with a different understanding of the concept and thus eventually affect manipu-

lations and measurements, which in turn result in different findings (Nadal, Munar, 

Marty, & Cela-Conde, 2010).  

Since the definitions of visual complexity refer to the visual properties of the stimulus, 

this might be interpreted as if the perception of visual complexity directly emerged from 

these and could therefore be assessed completely objectively. This is however not the 

case, since perception is a constructive process that is also guided by top-down pro-

cesses, which can influence the appearance of scenes (Machado et al., 2015). This 

has already been stressed by Berlyne (1974), who wrote that the perception of collative 

variables such as complexity depends both on properties of the stimulus as well as 

processes within the observer and can therefor differ between persons. At the same 

time, he suggested that the subjective ratings of complexity within many experiments 

has shown to vary according to the objective features of the stimulus. 

Now that an overview of the definitions of visual complexity has been given, the sub-

sequent paragraphs will present deeper insights into the foundations and more recent 

research findings of visual complexity. This should add more clarity regarding the the-

oretical background of the construct.  

 

 

Visual complexity has a long history in psychology, although it has not always been 

explicitly been labelled as such. The roots for the investigation are often seen in Gestalt 

psychology, which focussed on perceptual mechanisms in general and thereby also 

provided the foundations for visual complexity research. Gestalt psychologists were 

dedicated to defining a connection between sensory input on the one and perceptual 

simplicity or complexity on the other hand (Donderi, 2006b). Within this regard, they 

defined the ability to perceive order and structure within visual stimuli as a key aspect 

of human perception (Koffka, 1935; Köhler, 1947). Building on this notion, Gestalt prin-

ciples were postulated, which were assumed to describe processes associated with 

perceptual organization. One key aspect of perceptual organization is the idea of per-

ceptual grouping. This means that “observers perceive some elements of the visual 
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field as ‘going together’ more strongly than others” (Wagemans, Elder et al., 2012, 

p. 1181) and encompasses factors or principles that influence the grouping of percep-

tions (Wertheimer, 1923). Among these are for example the factors proximity or simi-

larity (Wertheimer, 1923), which are described in more detail below. 

A very essential one of these is the simplicity or minimum principle, which is also called 

the law of Prägnanz (Koffka, 1935; Wertheimer, 1923). This holds that perceptions 

tend towards simplicity and are structured into the simplest possible organization (Hat-

field & Epstein, 1985; Wagemans, Feldman et al., 2012). In this regard, Koffka (1935) 

stated that “psychological organization will always be as ‘good’ as the prevailing con-

ditions allow.” (p. 110). Similarly, Chater (1997) and Chater and Vitányi (2003) argued 

that many cognitive processes are designed to structure sensory input and find pat-

terns within the data in order to find a most simple explanation for the data. From the 

various references, it can be seen that the notion of simplicity versus complexity and 

particularly the simplicity principle has been in the focus of research for a while, espe-

cially in the context of visual perception. This may be due to the appeal of perceptual 

economy. The visual system is often confronted with innumerable pieces of information 

with which it usually copes well. In this context, simple representations may also re-

quire fewer cognitive resources for processing (Hatfield & Epstein, 1985). Direct em-

pirical testing of the simplicity principle is however confronted with some challenges, 

for example since it is still far from clear how exactly perceptual stimuli are mentally 

represented (Chater & Vitányi, 2003). Thus, even though evidence remains partly am-

biguous, there are multiple lines of support (see Chater & Vitányi, 2003). For example, 

simple items are typically more easily detected in noise (Hochberg & McAlister, 1953; 

van der Helm & Leeuwenberg, 1996) and learned faster (Feldman, 2000). 

The simplicity principle or law of Prägnanz may be also play a role within visual com-

plexity. According to the aforementioned endeavour of finding patterns and structure 

within visual sensory input, a larger amount of perceived visual complexity may be 

attributed to a larger difficulty of finding patterns.  

Other Gestalt factors or principles that were assumed to influence the perception of 

grouping of discrete elements include for example proximity, similarity and common 

fate, which encompasses that elements moving in the same direction tend to be 

grouped together (Wagemans, Elder et al., 2012; Wertheimer, 1923). Other factors 
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that are of relevance especially in more complex elements include symmetry, parallel-

ism and continuity or good continuation. The latter describes that smooth edges more 

likely seen as continuous than edges with sharp angles (Wertheimer, 1923). In addi-

tion, more recent Gestalt principles including synchrony, common region, element con-

nectedness and uniform connectedness are discussed by Wagemans, Elder et al. 

(2012) in more detail. Gestalt principles are still influential today and taken into account 

for the design of user interfaces (Chang, Dooley, & Tuovinen, 2002) for example. 

Building on information-theoretical approaches such as Shannon's (1948, 1951) en-

tropy, which was established as a way of quantifying the information amount in a vari-

able and strongly refers to Gestalt principles, Attneave (1954) investigated visual per-

ception from a new perspective. He considered perception as an information-handling 

process and emphasized the concept of redundancy within visual perception. In order 

to describe perceptions economically, he stated that a central function of the percep-

tual system was to diminish the redundancy within a stimulus. Therefore, several prin-

ciples were postulated, which he assumed would reduce the necessary amount of in-

formation. For example, areas of homogeneous colour or texture could be more eco-

nomically described by specifying the colour or the parameters of the texture as well 

as the boundaries of the area according to him. Another important role is attributed to 

corners and contours, which are supposed to contain a large amount of information. 

Accordingly, results from a later study (Attneave, 1957) showed that complexity ratings 

of shapes strongly depended on the number of turns (or corners) within these shapes. 

This is depicted in exemplary images within Figure 2. 

 

 

 

 

Figure 2. Shape of low (left) and high (right) complexity, from Attneave (1957) 

 

Referring to the Gestalt principles, Attneave (1954) was convinced that many of these 

actually referred to information distribution and accordingly, a “good gestalt is a figure 

with some high degree of internal redundancy” (Attneave, 1954, p. 186). A similar idea 
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had already been represented by Musatti (1930), who suggested the principle of ho-

mogeneity, for example of colour or patterns, which could therefore be seen as a su-

perordinate principle for example for Wertheimer's (1923) gestalt principles. 

A foundation for the experimental investigation of visual complexity focussing particu-

larly on objects was later provided by Snodgrass and Vanderwart (1980), who estab-

lished a picture set with black-and-white line drawings and ratings of visual complexity 

(see for example Figure 3).  

 

Figure 3. Example from Snodgrass and Vanderwart's (1980) picture set 

 

Further researchers were also dedicated to work on stimuli for the investigation of vis-

ual perception, such as Rossion and Pourtois (2004), who added both a grey-level and 

a coloured version to Snodgrass and Vanderwart's (1980) original set. Within more 

recent research, authors often used photos of single objects (Brodeur, Guérard, & 

Bouras, 2014; Moreno-Martínez & Montoro, 2012; Paré & Cree, 2009) or scenes 

(Bradley, Hamby, Löw, & Lang, 2007; Bradley, Houbova, Miccoli, Costa, & Lang, 

2011). Eventually, controlled picture sets with standardized ratings are essential for 

the investigation of visual complexity. These play a central role within research on the 

construct, since variations within the stimuli may also have a large impact on the find-

ings (Nadal et al., 2010). After focussing on the rather historical foundations of visual 

complexity research, within the next paragraph, findings regarding the dimensional 

structure of the construct visual complexity will be discussed in detail. 

 

As described by Standish (2008) (see also paragraph 2.1), two major aspects are seen 

as relevant for general complexity, both a quantitative as well as a qualitative aspect. 
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Similarly, researchers with a focus on visual complexity support the view that this con-

struct is not a unidimensional one either. Instead, it is assumed to consist of both a 

quantitative dimension, which is related to the amount of elements and a qualitative or 

structural dimension, which is determined by the structural organisation of an image 

(e.g. Gartus & Leder, 2017). In the context of visual complexity, this goes back to Chip-

man (1977), who studied the determinants of complexity ratings for visual patterns and 

found that these could be grouped into the two types of features. From various exper-

iments, she drew the conclusion that quantitative aspects such as the number of turns 

or corners set an upper bound on visual complexity while structural features such as 

symmetry subsequently reduces the perceived complexity. This notion was further 

supported by Ichikawa (1985), who argued that two separate cognitive processes are 

involved in complexity perception. According to him, a fast process is responsible for 

the evaluation of quantitative aspects in a stimulus, while another rather slow process 

is responsible for the detection of structure. These findings are based on experiments 

with dot patterns presented with different durations and further support the idea of see-

ing visual complexity as a two-dimensional construct. In the following, the dimensions 

and findings on the associated influencing factors are subsequently described in detail. 

 

Quantitative Dimension 

The quantitative dimension is often seen as the most influential dimension of visual 

complexity (e.g. Nadal et al., 2010). Many researchers have described quantitative 

aspects as relevant for visual complexity, going back to Attneave (1954). His assump-

tion was that information within an image was largely concentrated at points of contour 

change. Thereby, drawings with a number of dots, which should indicate the outline of 

an object, were used in order to study perception. Building on this idea, the number of 

turns (or “points”, “angles”, “sides”, p. 222) were then identified as an important deter-

minant of the perceived complexity of shapes (Attneave, 1957). Similarly referring to 

the complexity of forms, Arnoult (1960) showed that the number of independent sides 

of random polygon forms was a good predictor for the rating of visual complexity. More-

over, Thomas (1968) suggested, according to his findings, the number of angles within 

a polygon as the most important determinant of visual complexity. 

Using visual patterns as stimuli, Berlyne, Ogilvie, and Parham (1968) identified infor-

mation content as an important aspect of visual complexity, comprising for example 
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the amount of elements within a picture. This aspect appears also in more recent liter-

ature, such as a work by Nadal et al. (2010), using various stimuli such as artworks or 

in Oliva, Mack, Shrestha, and Peeper (2004), who found that the quantity of objects 

was often mentioned as a criterion for the judgement of visual complexity within a hi-

erarchical grouping task that subjects performed with pictures of indoor scenes.  

Research focussing on user interfaces and websites revealed similar results regarding 

the influence of quantitative aspects on perceived complexity. As one of the earlier 

researchers within this area, Tullis (1983) identified overall density, denoting the “num-

ber of characters displayed, often expressed as a percentage of the total character 

spaces available” (p.662) as a central aspect of displays. Within more recent research, 

specifically visual complexity has been further related to quantitative aspects such as 

the number of graphics, links, and the home page size (Geissler, Zinkhan, & Watson, 

2006), the amount and density of elements such as text, links and images (Harper et 

al., 2009; Michailidou, Harper, & Bechhofer, 2008) or, more generally, the amount of 

information (Miniukovich & Angeli, 2014; Miniukovich, Sulpizio, & Angeli, 2018). Simi-

larly, Deng and Poole (2010) suggested visual richness or the “detail of information in 

a website, such as amount of text, number of graphics, links and layout” as one of the 

two main dimensions of website complexity. 

In conclusion, various previous research works based on findings with stimuli such as 

basic patterns, polygons or displays and websites underline the relevance of quantita-

tive aspects for the perception of visual complexity. 

 

Qualitative / Structural Dimension 

In addition to the quantitative dimension, many authors suggest structural or qualitative 

aspects as further central features of visual complexity. Organization or disorganization 

(Miniukovich et al., 2018; Miniukovich & Angeli, 2014; Oliva et al., 2004) and especially 

symmetry (Chipman, 1977; Day, 1968; Gartus & Leder, 2017; Nadal et al., 2010; Oliva 

et al., 2004; Riglis, 1998) are often mentioned as key aspects for the structural dimen-

sion within different kinds of pictorial stimuli. This can also be found for user interfaces 

and websites, where symmetry likewise plays an important role regarding the percep-

tion of visual complexity (Miniukovich et al., 2018; Miniukovich & Angeli, 2014; Tuch, 

Bargas-Avila, & Opwis, 2010). The special role of symmetry might not be very surpris-

ing since various findings indicate that the human visual system is extremely efficient 
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in extracting symmetry in visual stimuli (Treder, 2010), even preattentively within very 

short presentation durations of 150 milliseconds and less (e.g. Wagemans, 1995). 

Thereby, mirror symmetry is usually more salient than other forms of symmetry such 

as translational or rotational symmetry (Wagemans, 1995). Within mirror symmetries, 

a vertical symmetry axis is particularly easy to detect compared to horizontal or diago-

nal symmetries with elements closer to the symmetry axis generally being more im-

portant than distant ones (Gartus & Leder, 2017). These findings are also considered 

in Bauerly and Liu's (2008) formula for calculating a measure of symmetry for example. 

Furthermore, symmetry effects can identified within neural correlates, for example us-

ing event-related potentials or functional magnetic resonance imaging (fMRI) on visual 

areas (Bertamini & Makin, 2014). 

Another relevant structural aspect might be visual perceptual balance (Hübner & Fill-

inger, 2016; Lok, Feiner, & Ngai, 2004), which to the best of my knowledge has not 

been considered within the context of visual complexity yet. This designates “how well 

the elements in a picture are arranged” (Hübner & Fillinger, 2016, p. 1) and is popular 

within visual arts as well as research on aesthetic appraisal. Measures for perceptual 

balance such as the assessment of preference for balance (APB, Wilson & Chatterjee, 

2005) or the deviation of centre of mass (DCM, Hübner & Fillinger, 2016) usually as-

sume that the “mass” of dark (e.g. black) pixels in an image is higher than for bright 

(for example white) ones. Although it has been shown that these measures correlate 

with aesthetical preference (Hübner & Fillinger, 2016), the influence of perceptual bal-

ance on the perceived visual complexity has not yet been investigated. Based on the 

effects on aesthetics and the Gestalt principle of Prägnanz (Koffka, 1935; Wertheimer, 

1923), it could however be hypothesized that perceptual balance might also affect vis-

ual complexity. Similar to symmetry, it could facilitate perceptual grouping and thus 

reduce the demand for cognitive resources since the identification of patterns may be 

easier. 

In sum, the research findings suggest that structural or qualitative aspects such as 

organisation and especially symmetry are negatively associated with the perception of 

visual complexity. 

Other dimensions 

Next to quantity and structure, further aspects have been found to affect the perception 

of visual complexity. In particular, the variety or diversity of elements in an image or 
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interface (Deng & Poole, 2010; Harper et al., 2009; Heylighen, 1997; Miniukovich et 

al., 2018; Miniukovich & Angeli, 2014; Nadal et al., 2010) or their similarity (Riglis, 

1998) appear to be of special relevance. The influence yet seems to be rather small 

compared to the quantitative and qualitative dimension (Nadal et al., 2010). However, 

in many scenarios the variety or similarity of elements can be related to the number of 

objects, where a larger number of elements likely goes along with a larger variety (as 

for example in Oliva et al., 2004).  

Additionally, colour is often mentioned in the context of visual complexity within litera-

ture. In particular, the number or variety of colours was found to be related to visual 

complexity (Nadal et al., 2010; Oliva et al., 2004), however in some findings the influ-

ence of colours was rather small (Nadal et al., 2010) or did not represent an important 

aspect of visual complexity (Hall, 1969). These findings are in line with those of Ros-

sion and Pourtois (2004). In their stimulus set containing object drawings in black and 

white, grey levels and colour, no significant difference in visual complexity ratings was 

found between the three categories. Similarly, Ciocca, Corchs, Gasparini, Bricolo, and 

Tebano (2015) could not show an influence of colour on complexity ratings either. Re-

garding websites however, Reinecke et al. (2013) demonstrated an influence of col-

ourfulness on perceived visual complexity. 

Further aspects related to visual complexity encompass for example the unintelligibility 

of the elements, which means the difficulty to identify the elements in the image, three-

dimensional appearance (Nadal et al., 2010), the clutter and open space within an 

image (Oliva et al., 2004) as well as the familiarity with a visual stimulus (Riglis, 1998). 

Effects of these factors were however only examined within individual studies, which 

does not yet allow robust general conclusions to be drawn.  

In summary, the findings regarding the influence of other possible variables such as 

variety and colour on visual complexity are rather unambiguous. 

Concluding the previous findings on influencing factors of visual complexity, it can be 

stated that findings from various domains stress the relevance of both a quantitative 

and a qualitative or structural dimension. With regard to other aspects such as variety 

of elements or colour, findings are less clear. In general, very few of these studies 

relied on experimental methodology in order to directly investigate the effect of certain 

factors on visual complexity ratings but instead are based on correlational analyses. 

Therefore, many of the findings might be confounded by other features of the stimulus 
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material. All in all, the dimensional structure of the construct visual complexity has not 

been consistently validated yet. While the findings of Ichikawa (1985) and Chipman 

(1977) strongly suggest a two-dimensional construct, Nadal et al. (2010) identified 

three factors with disorganization and symmetry loading on different factors. A different 

structure with three or four dimensions was proposed by Miniukovich and Angeli (2014) 

and Miniukovich et al. (2018) for graphical user interfaces. Thus, a conclusive investi-

gation regarding the structure of visual complexity still remains to be realized. In sum, 

the existing research literature provides a solid theoretical ground regarding the dimen-

sions of visual complexity while many issues still remain unresolved.  

 

 

To this date, there is no comprehensive model of visual complexity that integrates the 

majority of relevant findings from current research. In particular, this holds true when 

focusing on aspects of human-machine interaction. However, some theories and mod-

els from different domains have integrated visual complexity within frameworks of in-

formation processing. This can still be of great interest for an overview of the various 

cognitive processes which visual complexity is intertwined with. One model, which 

deals with this aspect respecting the perception of art is the information-processing 

model by Leder et al. (2004), which is depicted in Figure 4. The authors stress the role 

of visual complexity for the processing of art within the first step, which they call per-

ceptual analysis. Within the first stage, visual complexity is assumed to be processed 

next to other, rather basic perceptual variables such as order or symmetry (which are 

often also seen as influencing variables of visual complexity as described within the 

previous paragraph). The second step encompasses the implicit memory integration 

of the input from the perceptual analysis with the previous experience for example 

concerning familiarity and prototypicality. Further steps finally contribute to formation 

of an aesthetic judgement and the aesthetic emotion that the artwork elicits in the ob-

server according to the model. In conclusion, according to Leder et al.'s (2004) Infor-

mation-processing model, visual complexity is analyzed within a very early stage, be-

fore the integration with memory or evaluation processes occur.  
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Figure 4. Information-processing model, taken from Leder et al. (2004) 

 

Other models address the role of visual complexity within the domain of webpages. 

Deng and Poole (2010) proposed a research model in order to illuminate the relation-

ship between visual complexity and design features of a webpage with regard to emo-

tional responses and finally the approach-avoidance behaviour of users towards a 

website. Their model, which is depicted in Figure 5, builds on the framework of the 

environmental psychology model by Mehrabian and Russell (1974), the M-R model. 

This states that emotions mediate the effects of environmental stimuli on behaviour. In 

order to apply the model to the interaction with webpages, it is extended by considering 

findings from human-computer interaction, emotion and further relevant research dis-

ciplines in order to account for the approach-avoidance behaviour of users towards 

webpages. Within this model, visual complexity, which is considered separately from 

order, was shown to positively affect arousal and pleasantness, although the direction 

of the latter was partly different than expected by the authors. The metamotivational 

state of the user (goal-oriented vs. enjoyment-seeking) was shown to modulate the 

influence of visual complexity on pleasantness. Both emotional responses, arousal and 

pleasantness, were then shown to affect the approach-avoidance behaviour towards 

a webpage. All in all, empirical data support the research model as well as the sug-

gested effects of visual complexity.  
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Figure 5. Research model of website visual complexity taken from Deng and Poole 

(2010) 

 

Beyond the model of Deng and Poole (2010), Nadkarni and Gupta (2007) proposed a 

theoretical model of perceived website complexity (see Figure 6). Although visual com-

plexity is not explicitly mentioned, this model is interesting primarily because it allows 

insights into the interplay between objective and perceived website complexity and 

user satisfaction. The authors define objective website complexity as “the number and 

configuration of information cues in the stimulus itself” (Nadkarni & Gupta, 2007, 

p. 503), thus it may be seen as related to the concept of visual complexity, although it 

is not necessarily restricted to a single page of a website. Results of their studies sug-

gest that the positive relationship between objective complexity and perceived website 

complexity is moderated by user familiarity. This means that users with high familiarity 

experienced lower perceived complexity for a website of a certain objective complexity 

than users with low familiarity. This finding may also be transferred to other applied 

contexts, for example when users are already used to a certain software interface. 

Moreover, the authors found that perceived website complexity was related to user 

satisfaction and the shape of this relation depended on the user’s online task goals.  
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Figure 6. Theoretical model of perceived website complexity from Nadkarni and Gupta 

(2007) 

 

In conclusion, the three models that were presented provide a better understanding of 

the relations and the interplay between (visual) complexity and other constructs. Fur-

thermore, they reveal insights into the role of visual complexity in perception and infor-

mation processing within different domains.  

Next to the rather cognitive approaches described before, visual complexity was how-

ever also considered from an information-theoretical perspective. In this regard, Don-

deri (2006a) for example suggested that Shannon's (1948) information theory can also 

be applied to visual images. This means that images can be treated as messages 

whose complexity, which according to him is equivalent to their information content, 

can be measured by their compressed file sizes. This is consistent with the findings 

that compressed file sizes are correlated with ratings of visual complexity (e.g. Donderi 

& McFadden, 2005; Tuch et al., 2009). Next to the information-theoretical base by 

Shannon (1948), this can also be explained by the ideas of Kolmogorov complexity (Li 

& Vitányi, 2008) within the algorithmic information theory (AIT) (Chaitin, 1977). These 

incorporate probability and information theoretical ideas as well as philosophical no-

tions of randomness. The basic idea of Kolmogorov complexity as a part of AIT is that 

the length of the shortest description of an object is a measure of this object’s com-

plexity. If there is a very short description of this object, it is less complex than an 

object, which requires very long descriptions (Li & Vitányi, 2008). This also implies that 

the description may consist of a computer program or script that produces the object, 
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thus the Kolmogorov complexity is a measure of the computational resources neces-

sary for the description. Within this context, compression is an important aspect. Some 

scripts can be strongly compressed, when there is enough regularity within the object 

they describe. Others however can hardly be compressed. This is where another im-

portant aspect of AIT and Kolmogorov complexity comes in: randomness. According 

to AIT, an absolutely random sequence is most complex, since it cannot be com-

pressed. Therefore, its description would be very long. By contrast, a sequence with 

little randomness and high regularity can easily be compressed and would thus be 

simpler (Li & Vitányi, 2008). Using a similar approach as Kolmogorov complexity, 

Leeuwenberg (1968, 1969) introduced a measure for their complexity where each pat-

tern could be described by a code, which he called structural information. The code’s 

length, which relates to the number and regularity of certain operations, could be used 

as a measure for pattern complexity (see for example Figure 7). Within psychology, 

the according structural information theory (SIT) developed independently but in par-

allel with AIT, focussing specifically on human visual perception (Machado et al., 

2015). While both AIT and SIT share the basic idea of using description length as an 

indicator of complexity, there are differences which are mostly related to the perceptual 

focus of SIT. For example, SIT differentiates between metrical and structural infor-

mation which AIT does not. Moreover, SIT focusses only on perceptually relevant reg-

ularities while AIT incorporates any possible regularity (Machado et al., 2015). 
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Figure 7. Examples for measure of structural information from Leeuwenberg (1968) 

 

The basics of AIT and SIT are of special relevance with regard to the visual complexity 

of pictures. They laid the foundations for investigating the construct by using compu-

tational measures, such as compression methods like JPEG or GIF, in order to draw 

conclusions about the visual complexity of pictures. In paragraph 2.4, I will give a more 

detailed overview about the different methods that were developed on this basis. 

 

 

Why is it worth to take a closer look at visual complexity? The construct is of relevance 

for various different domains. In the following paragraph, I will focus on the relations 

between visual complexity and other constructs, which can play a role within and be-

yond human-machine interaction, such as aesthetical preference, familiarity, interest 

and physiological responses. Since mental workload is especially relevant within the 

context of human-machine interaction, this important aspect and its association with 

visual complexity is considered closely among aspects of human-machine interaction 

within paragraph 2.3.1. 
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Complexity perception is often associated with arousal, which may encompass both 

subjective ratings, for example by means of the self-assessment manikin (SAM; Brad-

ley & Lang, 1994) or be detected by physiological measures such as electrocardiogram 

(ECG) or electrodermal activity (EDA). One of the first researchers who took a closer 

look at the relation between complexity and arousal was Berlyne. According to his find-

ings, complexity or specifically irregularity of patterns next to novelty and other stimulus 

properties affected arousal, manifesting for example in larger galvanic skin responses 

(GSRs) (Berlyne, Craw, Salapatek, & Lewis, 1963). This effect was later described as 

the arousal potential or the “‘psychological strength’ of a stimulus pattern, the degree 

to which it can take over control of behaviour and overcome the claims of competing 

stimuli” (Berlyne, 1971, p. 70). According to this notion, more complex stimuli are less 

easily recognized and associated with a response through learning. Therefore, they 

possess a higher arousal potential, so they are more likely to raise arousal. According 

to Berlyne (1971), further variables such as the smoothness of curves or the contrasts 

in brightness can also contribute to the arousal potential of a stimulus. 

These findings have been supported several times. For example, Marin and Leder 

(2013) demonstrated strong positive correlations between perceived visual complexity 

and ratings of arousal within different kinds of stimuli such as environmental scenes 

and representational paintings. However, these associations appeared to become 

smaller when controlling for the influence of familiarity. In the context of user interfaces 

and websites, there is additional support for these findings. For example, Tuch et al. 

(2011) similarly showed significant correlations between the perceived visual complex-

ity of websites and arousal ratings. Moreover, Tuch et al. (2009) and Tuch et al. (2011) 

identified effects using multiple physiological measurement methods such as ECG, 

electromyography and electrooculography. Tuch et al. (2009) for example found a sig-

nificant correlation between visual complexity and change of the electrocardial inter-

beat interval as well as facial muscle tension. Additionally, Tuch et al. (2011) found a 

significantly larger heart rate decrease after stimulus onset for more complex 

webpages compared to less complex sites. Although the direction of the findings may 

appear surprising, they are in line with earlier findings with more basic stimuli (e.g. 

Fredrikson & Ohman, 1979), who similarly found a larger decrease of heart rate for 
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more complex stimuli. This may be due to an orienting response, which is more pro-

nounced for complex stimuli that contain a larger amount of information.  

Madan et al. (2017) furthermore revealed a strong relation between ratings of visual 

complexity and arousal, which the authors referred to as an arousal-complexity bias. 

They however argue that arousal (for example induced by emotionally arousing pic-

tures) may also affect the perception of visual complexity. This could be due to effects 

of arousal on visual processing, which could thus influence complexity ratings.  

In sum, an interrelation between visual complexity and arousal has been shown in 

several studies. Following Berlyne’s approach (e.g. 1963) and supported by other re-

searchers, it seems very likely that larger visual complexity in stimuli induces a higher 

level of arousal. On the other hand, according to Madan et al. (2017), arousing stimuli 

may also be rated as more complex, although a broader literature base exists for the 

former direction of the relation. 

 

 

Next to and partly associated with arousal, aesthetical preference is one construct that 

is often considered in the context of visual complexity. Many researchers have already 

investigated the relation between the two constructs as well as its shape. 

Again, Berlyne (1971, 1974) was one of the first researchers who focussed on this 

issue in his psychobiological theory. Within this, he refers to the Wundt curve depicted 

in Figure 8, which has a long history in psychology, going back to Wundt (1874). As 

suggested by Berlyne (1971), it is based on a summation of activations of the aversion 

and the reward system, which goes along with a certain arousal potential. Above the 

threshold where stimuli are noticed, stimuli according to this approach are perceived 

as increasingly pleasant with larger arousal potential, until reaching a peak at a me-

dium level. Beyond this peak, when arousal is further increased, hedonic value will 

decrease. Thus, it suggests that a medium level of arousal is preferred as can be seen 

by the inverted u-shape of the curve. According to Berlyne's (1970) findings, complexity 

next to novelty and other variables affects arousal (as also described in the previous 

paragraph), which again influences the hedonic value. 



2. Theoretical background 

 

41 

 

Figure 8. The Wundt curve (from Berlyne, 1971) 

 

These findings and theory have subsequently been supported by a number of re-

searchers (e.g. Farley & Weinstock, 1980; Imamoglu, 2000; Saklofske, 1975; Vitz, 

1966). Within the field of human-computer interaction, the inverted U-shape was also 

partly underlined (Chassy, Lindell, Jones, & Paramei, 2015; Geissler et al., 2006; 

Güçlütürk, Jacobs, & van Lier, 2016). Other findings were however not in line with this 

shape of the relation. These instead suggested either a negative linear relation be-

tween complexity and preference (e.g. Marin & Leder, 2013), which could also be 

found using websites as stimuli (Michailidou et al., 2008; Reinecke et al., 2013; Tuch 

et al., 2009; Tuch et al., 2011; Tuch et al., 2012). Moreover, a generally positive linear 

relation with aesthetical appraisal was suggested (Nadal et al., 2010) particularly when 

visual complexity was operationalized by the number or variety of elements while other 

studies found no relation at all (Pandir & Knight, 2006). The difference in results may 

be explained by differences in the stimuli that were used or the fact that only a part of 

the whole complexity range could be depicted with these. For example, it might be that 

stimuli represented only the lower or the upper part, thus a positive respectively nega-

tive linear relation was found instead of the inverted U-shape, which could have been 

depicted if the whole variation of complexity had been included within the stimuli, as 

also argued by Tuch et al. (2012). Another option is of course, that the inverted U-

shape is not applicable to all types of stimuli but that linear relations instead describe 

the relation between visual complexity and aesthetical appraisal or pleasure better. 
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Familiarity 

The familiarity of stimuli can also significantly influence the perception of visual com-

plexity. Snodgrass and Vanderwart (1980) define familiarity as „the degree to which 

you come in contact with or think about the concept“ (p. 183). Within their study, sub-

jects were thus instructed to rate how usual or unusual something is within their life. 

They found a significant negative correlation of -.466 between visual complexity and 

familiarity. According to the authors, this may either be due to the style of drawing, so 

that complex drawing may appear more novel than simple drawings. Another explana-

tion may be tied to the complexity of the object. More familiar objects, which are more 

present within the everyday life, may thus be perceived as less visually complex (Snod-

grass & Vanderwart, 1980). Similar relations between familiarity and complexity were 

also shown by other authors (Alario & Ferrand, 1999; McDougall, Curry, & Bruijn, 

1999). In this context, Forsythe, Mulhern, and Sawey (2008) point out that norms and 

results focussing on visual complexity may be biased by familiarity due to the high 

negative correlations such as for example found in Snodgrass and Vanderwart's (1980) 

picture set, which they call a familiarity interference effect. Within a controlled study, 

Forsythe et al. (2008) investigated the influence of learning and familiarity on complex-

ity ratings and discovered that participants who were trained with a number of images 

perceived these as less complex than untrained participants. Additionally, both training 

and familiarity influenced the rating of visual complexity for nonsense shapes within a 

significant interaction. 

 

Prototypicality 

Next to familiarity, prototypicality was shown to affect different aspects of visual per-

ception (e.g. Kayaert, Beeck, & Wagemans, 2011) and may thus also have an impact 

on the perception of visual complexity. Prototypicality is often defined as “the amount 

to which an object is representative of a class of objects’’ (Leder et al., 2004, p. 496). 

With regard to websites for example, Roth, Schmutz, Pauwels, Bargas-Avila, and Op-

wis (2010) investigated the mental models of users and found that these determined 

to a large degree where they expected certain objects for a specific type of website. 

For example, most users expected the navigation area on the left side for company, 

news and shopping sites. If these elements are not found at the expected locations, 
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this may contradict the mental model of the user. Thus, it might be assumed that the 

page is perceived as more visually complex. Moreover, Tuch et al. (2012) found effects 

of prototypicality on aesthetical judgements about websites. While to the best of my 

knowledge no direct investigations exist on the association between prototypicality and 

visual complexity to this date, it could thus be hypothesized that the prototypicality of 

the arrangement of elements may also affect visual complexity. This might particularly 

apply to types of stimuli that users are familiar with and thus have a mental model for. 

This will be investigated more closely within study 4.  

 

Interestingness 

Interestingness is another construct that may relate to the perception of visual com-

plexity. Within earlier investigations, Berlyne and Boudewijns (1971) showed a positive 

relation with a levelling off at high complexity levels. The shape of this relation thus 

differs from the one found for pleasingness and liking, which showed a decline for 

higher complexity ratings. Findings from their work are depicted in Figure 9. 

 

 

Figure 9. Findings by Berlyne and Boudewijns (1971) on the relation between com-

plexity and interestingness 

 

Similar results were also revealed by Aitken (1974) and Day (1968), who found that 

interestingness for random polygons used as stimuli increased with visual complexity 
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until peaking at high complexity levels. In sum, these findings suggest a positive rela-

tion between visual complexity and interestingness.  

All in all, within this paragraph it could be shown that a number of constructs are asso-

ciated with visual complexity. This overview is far from complete, since depending on 

the domain, many further concepts may also play a role. However, it provides an idea 

of the relevance of the construct visual complexity as well as the interrelatedness of 

different constructs within the processing of visual information. 

 

 

According to the German Federal Institute for Occupational Safety and Health, for 80 

percent of all office workers, a visual display unit (VDU) such as a desktop PC, laptop 

or mobile device is the most important work equipment (BAuA, 2019). The visual inter-

action with software and user interfaces is thus a key aspect of work for many persons. 

Work may consist of many different tasks and differ with regard to the organisational 

and environmental circumstances, which may lead to different demands towards the 

user. Tasks can be for example encompass monitoring or surveillance tasks with 

CCTV systems, which are common in control rooms (Pikaar, Lenior, Schreibers, & 

Bruijn, 2015) but also consist in the use of specific software or standard programs as 

well as the interaction with websites.  

However, since a big part of the interactions described above relies on graphical infor-

mation displays, visual perception processes are of great relevance. Therefore, partic-

ularly visual complexity can have an impact for many persons within different scenarios 

of work and human-machine interaction. Within the next paragraphs, the relevance of 

visual complexity in this context will be considered in detail. A special focus will be on 

the key concept of mental workload as well as the implications for user interface de-

sign. 

 

 

Mental workload can play an important role within work in general and particularly 

within human-machine interaction. For the user-centered design of human-machine 

systems and their optimization with regard to demands towards the user, particularly 

within the context of increasing automation, the consideration of the concept is central 
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(Manzey, 1998). Mental workload refers to the processing of information, making of 

decisions and the demands imposed on mental resources by these tasks (Moray, 

2013), while it is mainly characterised by an intensity aspect (Kahneman, 1973). It can 

thus be seen as “difference between the capacities of the information processing sys-

tem that are required for task performance to satisfy performance expectations and the 

capacity available at any given time” (Gopher & Donchin, 1986, p. 41). It differs from 

physical and muscular workload by its focus on cognitive processes, however it is not 

always easy to distinguish from emotional load (Manzey, 1998). It is important to dif-

ferentiate between strains on the one and stresses on the other hand. While the former 

describe external factors that act upon a person such as work tasks and environmental 

aspects, the latter also depend on individual properties and abilities of a person 

(Rohmert, 1984). Consequently, effects of external stresses can produce a different 

amount of mental workload for different persons. 

There are several arguments for hypothesizing that there is a link between the two 

constructs visual complexity and mental workload, even though the actual body of re-

search is still far from sufficient for a final conclusion. First of all, based on the inter-

pretation of their results, Harper et al. (2009) suggest in the context of websites that 

visual complexity is implicitly linked to the perception of cognitive complexity. Conse-

quently, they propose that visual complexity might serve as an implicit measure of cog-

nitive load, although this has not yet been backed by empirical results. This notion 

might also reflect in the concept of visual load or the related perceptual load (Lavie, 

1995; Lavie & Tsal, 1994). While not explicitly defined, the authors describe it as re-

lated to the processing demands of a stimulus. This already indicates the relation be-

tween perceptual stimulus features and cognitive processes and demands, which can 

also affect the selection in visual attention (Lavie & Tsal, 1994). While the terms visual 

or perceptual load have not been widely adopted in human-machine interaction, Per-

rott, Sadralodabai, Saberi, and Strybel (1991) for example referred to the former in 

order to describe that within a visual search task the number of distractors positively 

affected search latencies. Pierno, Caria, Glover, and Castiello (2005) moreover used 

a secondary visual task in order to induce and increase visual load within a virtual 

environment, which increased the time that was necessary to locate a visual target. 

These findings may partly relate to more basic aspects of information processing. Al-

varez and Cavanagh (2004) in this regard for example showed that the capacity of the 
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visual short-term memory varies both according to the number of objects presented as 

well as their visual information load, with an upper limit of four to five objects. This limit 

of processing capacity for example also appears in Miller's (1956) magical number 

seven. He found that the short-term memory of most people can only hold up to 7 ± 2 

information chunks. This of course implies that by grouping or ‘chunking’ of information 

into units, it is possible to remember more information. The finding of a limited capacity 

of the visual working memory has also been supported by more recent findings 

(Rouder et al., 2008), where the participant’s task was to remember squares of differ-

ent colours. A summary of multiple contemporary studies however suggests that the 

capacity limit may rather consist of three to five instead of seven chunks (Cowan, 

2001). With regard to visual complexity, it can hence be hypothesized that more visu-

ally complex stimuli also demand more of the limited capacities within the visual work-

ing memory, for example because these contain more elements or information chunks, 

which can then contribute to an increased mental workload. 

This relation between (limited) information processing capacities and workload is also 

addressed in more detail from a human factors perspective within Wickens' (1984, 

2008) multiple resource theory (MRT). As the aforementioned theories, it suggests that 

the processing capacities are limited, however it states that there are multiple pools of 

resources for modalities, stages of processing and responses (see Figure 10).  

 

 

Figure 10. Multiple resource theory, taken from Wickens (2008) 
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If tasks performed by an individual produce high demand for resources within the same 

regions or pools, this may cause an increase in workload and finally produce errors or 

a decrease of performance (Wickens, 2002). With regard to visual complexity, it could 

be argued in line with MRT that visually complex stimuli use up more resources within 

the visual modality than simple stimuli. Since these resources are not available any-

more, this can contribute to an increased mental workload, particularly in the case of 

multiple tasks with additional visual demands.  

Several findings from applied human-machine contexts are in line with the assumption 

of a relation between visual complexity and mental workload. Primarily, findings from 

a small number of driving studies have addressed this question, focussing especially 

on the visual complexity of the road environment. For example, Edquist et al. (2012) 

revealed by means of a driving simulator study that within less visually complex road 

environments, participants’ speed was closer to the limit and less variable than in more 

complex environments. Moreover, they found that mental workload was rated higher 

for visually complex environments. Visual complexity was operationalised by the road-

side environment as well as the amount of on-street parking. Similarly, Horberry, An-

derson, Regan, Triggs, and Brown (2006) found that especially old drivers drove more 

slowly within complex road environments with a high number of billboards, advertise-

ments, buildings and oncoming vehicles while perceived workload rating was not af-

fected. Engström, Johansson, and Östlund (2005) on the other hand more specifically 

investigated the effects of visual and cognitive load within a driving simulation study. 

They found that a visually demanding secondary task negatively affected speed and 

lane keeping in contrast to a cognitive load condition, operationalized by an auditory 

task. This effect is assumed to be related to the sharing of resources between the 

driving and the secondary task and can thus be related to workload.  

Referring to Wickens' (1984, 2008) multiple resource theory, Verwey (2000) similarly 

assumed that both the number and complexity of visual information sources is associ-

ated with visual workload. Moreover, he states that visual workload in driving is usually 

high, which may relate to the fact that drivers can rarely take their eyes off the road. 

Consequently, he found that road situation, which may be of different complexity, is an 

important determinant of both visual and also mental workload of drivers as measured 

by secondary task performance. 
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Next to the driving context, some indicators for a relation between visual complexity 

and mental workload also come from the area of aviation. This can encompass both 

the viewpoint of pilots but also be relevant for the ground crew, for example within the 

air traffic control (ATC). Within the former, Svensson et al. (1997) for example showed 

that information complexity on the tactical situation display (TSD) of a flight simulator 

affected both pilots’ mental workload as well as their flight performance, for example 

regarding the correct altitude, as depicted in Figure 11. Moreover, complexity, which 

was operationalised by the number of objects presented in the TSD, had an effect on 

information handling as well as physiological measures such as heartrate. 

 

 

 

Similarly, complexity is an essential construct within ATC (Athènes, Averty, Puech-

morel, Delahaye, & Collet, 2002; Djokic, Lorenz, & Fricke, 2010; Mogford, Guttman, 

Morrow, & Kopardekar, 1995; Xing, 2007). For example, Djokic et al. (2010) could 

identify 24 ATC complexity factors, for example the number of aircrafts. After conduct-

ing a principle components analysis (PCA), it was found that all resulting components 

were significantly related to subjective workload ratings. Although ATC complexity is 

not the same as visual complexity, important aspects such as the number of aircrafts 

Figure 11. Complexity (operationalised by number of objects) and deviation of pre-

scribed altitude of 200m, taken from Svensson, Angelborg-Thanderz, Sjoberg, and 

Olsson (1997) 
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are likely to depict an overlap between both concepts. Furthermore, Xing and Manning 

(2005) stated the importance of ATC complexity with regard to controller workload. 

Consequently, Xing (2007) more closely investigated the information complexity of 

ATC displays within a literature review. By trying to combine the reviewed definitions 

and measures, he found that quantity and variety of elements as well as the relation 

between elements were the three factors that all references converged to. Accordingly, 

the concept of information complexity might be seen as strongly related to visual com-

plexity (see 2.2.3). A graphical illustration of the quantity factor within ATCs can be 

found in Figure 12. Xing (2007) argued that the search time for a specific target in-

creases with the number of visual elements within a display due to the serial processing 

of visual details, which should also affect the number of fixations.  

 

 

Figure 12. Quantity factor within ATC depictions (taken from Xing, 2007) 

 

Beyond ATCs, the importance of visual complexity with regard to mental workload may 

also be extended to other types of control rooms. Within the context of nuclear power 

plants for example, Hugo and Gertman (2013) developed a method for the estimation 

of display complexity. Within nuclear power control rooms, human errors can have fatal 

consequences, while complexity is a key factor for human error as well as reliability in 

these (Cummings, Sasangohar, Thornburg, Xing, & D’Agostino, 2010). Other authors 

similarly suggested effects of information complexity on the operators’ mental workload 

within this context, with information amount as a central aspect (e.g. Jones, Ma, 

Starkey, & Ma, 2007). 

Moreover, the monitoring of closed-circuit television (CCTV) is used not only in security 

and surveillance control rooms but also within traffic supervision, tunnel safety and 

remote process control (Pikaar et al., 2015). The authors conclude that with regard to 
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the human factors design of CCTV systems, both task complexity and image complex-

ity can be highly relevant, although particularly experimental evidence is largely miss-

ing. Due to the mostly visual demands within CCTV monitoring and surveillance, visual 

complexity may be a highly relevant concept within this context and potentially also 

affect operator workload next to for example the number of screens per operator 

(Pikaar et al., 2015). The potential relevance of visual complexity on performance dur-

ing CCTV monitoring is additionally stressed by Howard, Troscianko, Gilchrist, Behera, 

and Hogg (2009). 

Next to mental workload, complexity can also affect situation awareness (Endsley, 

2016). For the sake of brevity, this will not be discussed in more detail. 

Within this paragraph, the association between visual complexity and mental workload 

was firstly reasoned at a theoretical level, before underlining it with findings from pre-

vious research in human factors. In particular, visual complexity can have an impact 

on the user’s mental workload for user interfaces such as websites, as suggested for 

example by Buettner (2017). Therefore, the context of user interface design will be 

addressed in detail within the next paragraph. 

 

 

User interfaces (UIs) describe “the software and input devices by means of which a 

computer and its user communicate” (Collins Dictionary, 2019b). Consequently, a UI 

can be almost anything that allows the use of or interaction with a technical device. 

One of the most common types of interfaces is the graphical user interface (GUI), 

which allows the interaction by means of a graphical display. 

As general criteria for the design of graphical user interfaces in (alphanumeric) dis-

plays, overall density, local density, grouping and layout complexity were proposed in 

an older research paper by Tullis (1983), based on a literature search. For the first 

three, empirical evidence pointed towards effects of these on human performance 

while for layout complexity no direct empirical support was found by the author. Despite 

the age of the research, Tullis' (1983) findings may be seen as foundations for research 

on visual complexity of graphical user interfaces and as such still be significant today, 

although the author did not explicitly refer to the concept of visual complexity. 
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With the aim of providing a structure of the construct, Miniukovich and Angeli (2014) 

classified a number of visual complexity determinants of graphical user interfaces into 

three main determinants. These are amount, organisation and discriminability of infor-

mation (see Figure 13). This structure however goes back to a literature search on 

findings for visual complexity determinants and is not further supported by empirical 

findings. 

 

Figure 13. Classification of visual complexity determinants according to Miniukovich 

and Angeli (2014) 

 

However, in a more recent work, Miniukovich et al. (2018) suggested that this catego-

rization misses the diversity of visual appearance. Hence, the authors complemented 

the earlier structure, resulting in four visual complexity facets. These are quantity of 

information, variety of visual form, spatial organization and perceivability of detail. Ac-

cording to the authors, there are nine visual aspects, which describe the four facets 

(see Table 1). 
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Table 1. 

Facets of visual complexity and GUI aspects representing them according to Miniuko-

vich et al. (2018) 

 

Facet Visual aspect 

Quantity of information  Number of distinct units of information 

Number of groups of units of information 

Variety of visual form Variety of colours 

Variety of sizes 

Spatial organization Vertical symmetry 

Content alignment point 

Perceivability of detail Congestion 

Figure-ground contrast 

Amount of white space 

 

For example, quantity of information represents the number of elements and was de-

scribed both by the number of individual and grouped units of information according to 

the authors. This structure, too, was not examined for the validity of dimensionality for 

example using factor-analytical methods. In the context of in-vehicle instrument clus-

ters, Yoon, Lim, and Ji (2015) for example showed that the perception of visual com-

plexity was related to the two dimensions quantity and structure. Thus, no final judge-

ment of the dimensional structure of the construct visual complexity in the context of 

human machine interaction is possible.  

Instead of considering graphical user interfaces in general, other researchers more 

closely focussed on the visual complexity of websites, depicting one type of graphical 

user interfaces in particular. In this context, Nadkarni and Gupta (2007) adopt Wood's 

(1986) definition of task complexity as a combination of the three dimensions compo-
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nent, coordinative and dynamic complexity in order to define perceived website com-

plexity. Component complexity thereby refers to the density and dissimilarity of ele-

ments in a stimulus and might therefore relate to visual complexity (see Miniukovich et 

al., 2018). Deng and Poole (2010) focussed more specifically on the dimensions of 

visual complexity in webpages and proposed a structure consisting of two dimensions. 

The first of their proposed dimension is visual diversity, which refers to the different 

types of elements, such as graphics, links and text that appear in a webpage. Their 

second dimension is visual richness. This covers the amount of information or ele-

ments such as graphics, links and text. Similarly, Michailidou et al. (2008) propose 

density and diversity of the presented elements within a website as main influencing 

variables. Within their empirical work, the authors could show a positive relation be-

tween the number of images, links, words and sections of a page and visual complex-

ity.  

With regard to the possible impact of the visual complexity of user interfaces, there are 

multiple aspects worth considering. First of all, relations between visual complexity and 

aesthetical preference have been investigated within previous research as discussed 

within paragraph 2.2.5.2. Focussing on user interfaces, findings are rather inconsistent 

with some results pointing towards a negative relation (Reinecke et al., 2013; Tuch et 

al., 2009; Tuch et al., 2011; Tuch et al., 2012) while others supported the assumption 

of an inverted U-shape (Geissler et al., 2006) or found no relation (Pandir & Knight, 

2006). 

Importantly within the context of human-machine interaction, the visual complexity of 

user interfaces also affected different performance measures. Lee, Kim, and Ji (2019) 

for example found that the visual complexity of an in-vehicle information display nega-

tively affected the performance within a visual search task as well as the driving per-

formance of older drivers. With regard to websites, visual complexity was positively 

related to reaction times in a visual search task and negatively affected memory, with 

a higher recognition rate for less complex websites (Tuch et al., 2009). Similarly, Wang, 

Q., Yang, S., Liu, M., Cao, Z., and Ma, Q. (2014) revealed that task completion times 

in an online shopping task were higher for websites of high or medium complexity com-

pared to those of low complexity. Next to performance, visual complexity was also 

shown to affect physiological measures such as cardiovascular or muscular activity 

(Tuch et al., 2009; Tuch et al., 2011). Finally, Harper et al. (2009) proposed that visual 
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complexity of websites can serve as an implicit measure of cognitive load. According 

to them, especially visually impaired users could benefit from the consideration of vis-

ual complexity within the design process, for example by simplifying parts of a 

webpage. 

In conclusion, visual complexity of graphical user interfaces such as webpages can 

affect users’ cognition and emotion in many regards. However, the dimensional struc-

ture of the construct is still not consistently agreed on with many findings based on 

literature research and correlational studies rather than experiments. Particularly, this 

holds true within applied domains such as human-machine interaction. In sum, consid-

ering and investigating visual complexity using experimental approaches can allow for 

more reliable insights and a better understanding, which can benefit both researchers 

as well as designers. In this context however, next to a better theoretical understand-

ing, the use of computational measures of visual complexity may be of utility. These 

could, among others, allow to predict or anticipate users’ responses to the design of 

an interface, which could facilitate the improvement of a design solution by saving time 

and costs compared to testing and using surveys (Machado et al., 2015). Within the 

next paragraph, these will be described in more detail.  

 

 

Computational measures in general offer the advantage of relative objectivity com-

pared to ratings, which may be confounded by the rater’s interest (Aitken, 1974; Day, 

1967), familiarity (Forsythe et al., 2008) and novelty (Berlyne, 1970). Counting the 

numbers of elements within a stimulus such as the number of turns or corners (Att-

neave, 1957) or the number of lines and letters (García et al., 1994; McDougall et al., 

1999) were used among the first approaches to quantify the visual complexity of icons 

or figures. These showed a correlation with visual complexity ratings, however their 

calculation was rather time consuming and their use therefore restricted to relatively 

simple stimuli such as symbols or icons (Machado et al., 2015). 

Subsequently, a large number of computational measures were established, which 

might serve as indicators of visual complexity. Many of these are based on algorithmic 

information theory (AIT), Kolmogorov complexity or structural information theory (SIT), 

which were discussed in paragraph 2.2.4. In short, they state that the minimum length 
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of a script describing a visual stimulus can be used as a measure for its complexity 

(e.g. Chaitin, 1977; Leeuwenberg, 1968; Li & Vitányi, 2008). Within the following, var-

ious computational measures are pictured, which were used for the prediction of mean 

and single complexity ratings within studies 3 and 4. For the reported measures, also 

subcomponents from their calculation, which might reveal as informative with regard 

to visual complexity, standard deviations and mean values and their product as well as 

combinations between types of measures, such as edge and compression measures, 

were included within the explorative investigations.  

 

 

Based on the notions of AIT and Kolmogorov complexity, a group of very common 

computational measures of visual complexity is based on compression algorithms. 

These analyse the visual information of an image, as described by a bit string, in order 

to create a reproduction of it that is as true to the original as possible. Since simple 

images contain more redundant information than complex images, these can be de-

scribed by a shorter bit string. Consequently, simple images can be compressed to a 

larger degree than complex images which results in a smaller file size (Donderi, 2006b; 

Madan et al., 2017; Marin & Leder, 2013). JPEG (Joint Photographic Expert Group) or 

ZIP compressed files were used within several studies with file sizes revealing to be a 

good indicator of visual complexity with correlations between file size and subjective 

visual complexity ratings of up to .80 (e.g. Tuch et al., 2009). File sizes were also 

shown to predict errors and search time within chart diagrams (Donderi & McFadden, 

2005). Other image formats such as GIF (Graphics Interchange Format), PNG (Porta-

ble Network Graphics) or TIFF (Tagged Image File Format) similarly revealed solid 

correlations with ratings (e.g. Gartus & Leder, 2017). Compressed file sizes have al-

ready been used in a variety of domains with findings based for example on artistic 

paintings (Forsythe, Nadal, Sheehy, Cela-Conde, & Sawey, 2011; Marin & Leder, 

2013), environmental scenes (Cavalcante et al., 2014; Marin & Leder, 2013), icons 

(Forsythe, Sheehy, & Sawey, 2003) and technical displays (Donderi, 2006a; Donderi 

& McFadden, 2005). 
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Figure 14. Examples for website screenshots with a smaller JPEG filesize on the left 

(312kb) and a larger filesize on the right (800kb), from Tuch et al. (2009) 

 

 

Next to compression, edge detection methods represent another popular group of 

computational measures. These detect intensity changes at edges within an image. 

Typically, the edge intensity values can be both visualized as an image (see for exam-

ple Figure 15) but also quantified as a single value. For example, the proportion and 

intensity of edge pixels within the full image represent the edge density (Madan et al., 

2017). A larger percentage of edges can point towards a higher level of visual com-

plexity (Forsythe et al., 2003). Among the methods used for edge detection are Canny 

and Sobel filters (Forsythe et al., 2008; Machado et al., 2015; Rosenholtz, Li, & 

Nakano, 2007) as well as Perimeter detection (Forsythe et al., 2011; Marin & Leder, 

2013). Another approach for the detection of edges is the root mean square (RMS) 

contrast, which is calculated as the standard deviation of pixel intensities. This method 

also revealed significant correlations with ratings of visual complexity (Cavalcante et 

al., 2014; Marin & Leder, 2013). Finally, phase congruency is another method for de-

tecting image features (Kovesi, 2000), which can be useful within the context of visual 

complexity. For example, Marin and Leder (2013) as well as Gartus and Leder (2017) 

could find a positive relation between phase congruency and visual complexity. Exam-

ples for edge images of a website are visualized in Figure 15. 
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Figure 15. Original website screenshot of Airgas (2020) and examples for Canny, So-

bel, Perimeter, RMS and Phase Congruency images (from top left to bottom right)  

 

 

Another group of computational measures can be summarised as decomposition 

methods. These include quadtree decomposition (Forsythe et al., 2003; Zheng, 

Chakraborty, Lin, & Rauschenberger, 2009) as well as space-based decomposition 

(Reinecke et al., 2013). The notion of these decomposition methods consists in divid-

ing an image into multiple quadrants, based on the homogeneity or equal amount of 

information within the areas. Each quadrant is then further divided into smaller ones 
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until a certain criterion of homogeneity is achieved. An image that is divided into a small 

number of relatively large blocks is thus more homogenous than one that is divided 

into a large number of small quadrants (Forsythe et al., 2003). Accordingly, a correla-

tion between the number of quadrants and visual complexity was found, although this 

was rather weak (Reinecke et al., 2013). Since space-based decomposition is a rather 

specific measure tailored towards websites, this was not further considered within the 

studies of this dissertation. An example for quadtree decomposition can be found in 

Figure 16. 

 

Figure 16. Example for quadtree decomposition from MathWorks (2020)  

 

 

Next to the three groups of measures described, other computational parameters 

mainly represent aspects of the structural configuration of elements within an image. 

Not all of these have yet been considered within the context of visual complexity, since 

they were developed for different purposes such as aesthetics. However, based on 

findings about the dimensional structure of visual complexity, considering these within 

the context of visual complexity may allow for additional insights especially regarding 

structural facets of images. These computational measures of image structure can 

mainly be grouped into symmetry and balance parameters. 

An accepted measure for the symmetry, which is appropriate especially for rather sim-

ple black and white images, is Bauerly and Liu's (2008) measure for symmetry. This is 

calculated according to a formula, which compares pixel values on both sides of one 
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or multiple axes of reflection. Among those used in the subsequent studies are the 

vertical and horizontal image axes as well as both diagonal axes (for quadratic pic-

tures). In addition, the average of symmetries for all two respectively four axes was 

calculated. Within empirical investigations, some findings point towards good relations 

with subjective ratings of symmetry (Bauerly & Liu, 2008) while others showed rather 

small correlations (Hübner & Fillinger, 2016). Regarding the prediction of visual com-

plexity, Gartus and Leder (2017) revealed significant relations with the average sym-

metry. 

Another symmetry measure that is also suitable for more naturalistic stimuli was intro-

duced by Elawady, Ducottet, Alata, Barat, and Colantoni (2017). As opposed to the 

previous measure, their methodology is also convenient for naturalistic images. The 

authors evaluated the performance of the method with regard to symmetry, while within 

research on visual complexity, this has yet only been used by Gartus and Leder (2018) 

to the best of my knowledge. An example image with the top five detected symmetries 

is depicted in Figure 17. 

 

 

Figure 17. Example image with the top five detected symmetries (in the following or-

der: red, yellow, green, blue, and magenta) from Elawady et al. (2017) 

 

Another relevant aspect of organizational structure of an image structure is perceptual 

or visual balance. This describes, “how well the elements in a picture are arranged” 

(Hübner & Fillinger, 2016, p. 1). As suggested by Arnheim (1954), there is a center of 

perceptual “mass” within each image. This depends on the perceptual weight of its 

elements, which is again affected by multiple factors such as their size, colour, regu-

larity or distance from the center of “mass”. For example, black elements are usually 

assumed to have a larger perceptual weight than white pixels. Several measures for 
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the quantification of visual balance exist. Among these are the Assessment of Prefer-

ence for Balance (APB) (Wilson & Chatterjee, 2005), the Deviation of the Center of 

Mass (DCM) and Homogeneity (Hübner & Fillinger, 2016). The APB measure primarily 

relies on symmetry, so that measures are calculated both for the vertical, horizontal 

and diagonal image axes. Next to that, it takes into account the relations between inner 

and outer areas within an image. The DCM score however focusses on the distance 

of the center of “mass”, which is determined as a position of both the x- and y-axis, 

from the geometrical center of a picture. Moreover, homogeneity may also relate to the 

visual balance within an image. This quantifies how scattered the elements in a picture 

are with less scattering suggesting lower homogeneity and thus lower visual balance 

according to Hübner and Fillinger (2016). Homogeneity goes back to Shannon's (1948) 

information entropy. Although not yet investigated within the context of visual complex-

ity, it may be hypothesized that the described measures of visual balance are related 

to the structural dimension as argued within paragraph 2.2.3. 

 

 

Further computational measures can help to identify the semantic content of an image 

more specifically, such as the number of elements for example. For this purpose, es-

pecially image segmentation methods can be useful (for a review see Pal & Pal, 1993). 

Image segmentation is “the process of partitioning an image into meaningful regions 

or objects” (Vala & Baxi, 2013, p. 387). This can for example be used in order to auto-

matically count the number of objects within the image, which can be achieved by using 

Matlab’s Image Processing Toolbox (The Mathworks, Inc, 2018), as suggested in 

MathWorks (2019) for example. 

Another approach to the segmentation of images for determining the number of fea-

tures is the mean shift segmentation as described for example by Desnoyer and Wet-

tergreen (2010) and Cheng (1995). This method can be used to segment images ac-

cording to similarity in colour or intensity by iteratively calculating the mean for moving 

windows (Kaftan, Bell, & Aach, 2008). Similarly, k-means clustering can also be used 

for image segmentation (Ray & Turi, 1999). 
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Spatial frequency is relatively popular within vision research, since it has been shown 

that neurons within the visual cortex are sensitive to certain frequencies of spatial pe-

riodical stimuli or gratings (Campbell, Cooper, & Enroth-Cugell, 1969; Maffei & Fioren-

tini, 1973; Pollen & Ronner, 1983), in particular “the number of grating bars (light or 

dark bars) per unit of visual angle” (Maffei & Fiorentini, 1973, p. 1255). However, spa-

tial frequencies can also be interesting within the context of visual complexity (e.g. 

Cavalcante et al., 2014; Corchs, Ciocca, Bricolo, & Gasparini, 2016). Authors of these 

two references proposed complexity measures that rely on spatial frequency. Moreo-

ver, Forsythe et al. (2003) found that icons were judged as more simple if they con-

tained more low spatial frequency information in relation to high spatial frequency in-

formation. 

An interesting approach to spatial frequency was also applied by Bradley et al. (2007), 

who determined the frequency of the median fast Fourier transform (FFT) power for 

each row and column and then averaged it, so that one value represented the whole 

image. Moreover, Chikhman, Bondarko, Danilova, Goluzina, and Shelepin (2012) 

found that the product of the squared spatial-frequency median and image area corre-

lated highly with complexity ratings of hieroglyphs. Since the image area was controlled 

within the subsequent experiments, the squared spatial-frequency median was used.  

Also building on spatial frequency, Näsänen, Kukkonen, and Rovamo (1993) intro-

duced a measure for image complexity consisting of the product of median spatial fre-

quency of the Fourier spectrum and the image area comprising 95% of the total con-

trast energy of the stimulus. 

 

 

Furthermore, automated measures for analysing the colourfulness of an image reveal 

additional information in relation to visual complexity. Although conclusions about the 

influence of colourfulness on the perception of visual complexity are still not consistent 

(see paragraph 2.2.3 for a discussion), the incorporation of measures for colourfulness 

may still reveal valuable insights. Two typical methods for computational assessment 

of colourfulness were established by Yendrikhovskij, Ridder, Fedorovskaya, and Blom-

maert (1997) as well as by Hasler and Suesstrunk (2003). The former authors used 
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the average colour saturation value of pixels within an image as well as their standard 

deviation within the CIELUV colour space. They could show a very high correlation 

between their colourfulness measure and subjective ratings. Hasler and Suesstrunk 

(2003) however used a more perceptually based approach within the sRGB colour 

space by calculating colourfulness as the difference against grey.  

Next to these measures of colourfulness, colour and intensity entropy was calculated 

as suggested by Zheng et al. (2009).  

Moreover, measures of contrast and brightness were applied as according to Bradley 

et al. (2011). They defined the measure of brightness as the mean RGB (red, green, 

blue) pixel value average across all pixels, while their standard deviation was consid-

ered as a measure of contrast. Additionally, measures for contrast and hue quality as 

well as hue count were proposed by Ke, Tang, and Jing (2006), these can give a clue 

about the simplicity of a picture with regard to the colours. 

Moreover, the entropy of the greyscale intensity histogram for a picture can serve as 

an indicator of visual complexity (Marin & Leder, 2013). This gives a measure of ran-

domness within the image, since entropy increases with a larger variation of pixel in-

tensities. If all pixels have the same intensity, entropy is zero.  

 

 

Rosenholtz et al. (2007) investigated visual clutter, which was defined as a “state, in 

which excess items, or their representation or organization, lead to a degradation of 

performance at some task” (p. 3). From this definition, a certain similarity to visual 

complexity is inherent, although visual clutter focusses more on task performance as 

in visual search or recognition. For a quantification of this concept, the authors pro-

posed two measures: feature congestion and subband entropy. For the former, the 

three features colour, orientation and luminance contrast were incorporated, since it is 

assumed that these determine the degree to which an added new item would draw 

attention due to a higher level of clutter. The latter, subband entropy, however refers 

to the similarity in luminance, which is presumed to reflect the amount of visual infor-

mation in a display. 

Next to the single measures, various of these can of course be combined, as for ex-

ample also done by Gartus and Leder (2017). For example, compressed file sizes for 



2. Theoretical background 

 

63 

the different formats such as JPEG or GIF can also be assessed for the edge images 

generated by Canny, Sobel, Perimeter and RMS method. 

In conclusion, a big variety of computational measures have been proposed in previous 

research. While not all of the reported measures have yet been directly associated with 

visual complexity, these may still provide interesting information in this context as 

stated before. Within previous research, computational measures explained consider-

able proportions of the variance within mean complexity ratings could be explained by 

these (e.g. Gartus & Leder, 2017; Marin & Leder, 2013). This emphasizes their suita-

bility for the prediction of visual complexity ratings, for example for unknown pictures. 

However, next to the objective image data, individual ratings can be affected by a num-

ber of other factors. Among these can be for example familiarity, interest, liking and 

aesthetical preference (see paragraph 2.2.5), which can however hardly be captured 

using computational measures. In order to consider these factors as well as interindi-

vidual differences within the cognitive processing of visual complexity, an integration 

of eye tracking methodology may reveal interesting insights. Theoretical foundations 

as well as resulting measures are discussed within the next paragraph. 

 

 

In order to investigate the attentional processes and also consider interindividual dif-

ferences within the perception of visual complexity, ocular parameters can be promis-

ing. In order to allow for a better understanding of eye movements and the underlying 

cognitive processes, I will firstly describe some relevant foundations of visual percep-

tion and attention before focussing on the ocular parameters which can reflect these 

processes. 

 

 

The Gestalt psychologists investigated the principles of perceptual grouping and object 

perception in general as one of the first ones (as described in 2.2.2) and contributed 

to the research foundations on visual perception. Subsequently, a large number of re-

searchers focussed on visual perception and attention (see e.g. Bruce, Green, & 

Georgeson, 2006). Due to the large scope of this field of research, I will point out only 

theories and principles that appear especially relevant as background for this work. For 
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the sake of brevity, I will not go into details with regard to the neurophysiological foun-

dations for visual perception.  

One relevant theory for perception in general is Broadbent's (1958) filter theory, which 

particularly stresses the selectivity of human perception processes. He differentiated 

between two stages of processing, a preattentive stage, which encodes simple physi-

cal properties and a second, serial attentive state, which encodes more abstract prop-

erties. This notion is still quite influential today (Driver, 2001). Broadbent (1958) as-

sumed that the second stage has only limited capacity of attention available and thus 

information needs to pass a selective filter, which takes action at the early first stage 

of processing and only lets relevant information pass. The theory could however not 

explain important findings such as the cocktail-party effect and therefore misses im-

portant points, why it is not considered as valid today (Eysenck & Keane, 2000). Due 

to these findings, which were opposed to early selection, two consequent approaches 

were taken. While the theories of late selection (e.g. Deutsch & Deutsch, 1963) stated 

that even unattended stimuli are fully processed and selection only happens before 

entry into memory, Treisman (1964) instead proposed within her attenuation model 

that in contrast to Broadbent's (1958) model, unattended stimuli were “attenuated” but 

not filtered out completely. Within their later feature integration theory, Treisman and 

Gelade (1980) however also differentiated between two stages of processing. Within 

the first preattentive stage, an object is broken down into features such as orientation, 

location and colour. Within the second focussed attention stage, these features are 

recombined so that the whole object can be perceived instead of individual features 

(Goldstein, 2010; Quinlan, 2003). The theory also incorporates neurophysiological 

findings of the “what” and “where” pathways, which are related to findings that visual 

cortical areas are organized into one pathway for object vision and one for spatial vi-

sion (Ungerleider, 1994). Another approach for explaining the perception of objects is 

Biederman's (1987) recognition-by-components theory. Within this, the author pro-

poses that we perceive objects by separating them into basic units of objects, which 

he called ‘geons’. These can be 3-dimensional shapes such as cones or cylinders, 

which can be assembled to an unlimited number of objects (see for example Figure 

18). This theory can however hardly explain mechanisms for the perception of complex 

natural scenes. 
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Figure 18. Examples of Geons proposed by Biederman (1987) 

 

Similar to earlier approaches, Marr (1980) thought of the perception process as con-

sisting of different stages. Within his influential theory, he proposed that visual percep-

tion acts as an information-processing system which transforms the visual input on the 

retina into an alternative description of the structures of the image. On the base of the 

retinal image, a primal sketch is constructed as a representation for elementary global 

features of an image such as edges, corners, curves and boundaries. Within the next 

stage, orientation as well as the rough depth and motion are incorporated, resulting in 

the 2½D sketch, which already gives a first spatial description of the world. Finally, the 

3D model representation integrates information from both retinal images in order to 

construct a stable three-dimensional representation of the world which is independent 

of the observer’s position but centred on the object. With regard to visual complexity, 

especially the construction of the primal sketch may play an important role, with more 

complex images eventually making the construction harder (Riglis, 1998).  

Since more than 25 years, an extensive debate emerged between two approaches to 

processing and selection of stimuli that still affects research today (see e.g. Theeuwes, 

2010). This concerns the role of top-down processing, which depends on voluntary 

control, and bottom-up processing, which is related to features of the stimulus, for vis-

ual attention. 

Among the early representatives of top-down processing are Helmholtz (1867) and 

Gregory (1970). While Helmholtz (1867) stated within his likelihood principle that per-

ceptions of visual forms or patterns reflect the most likely object or form, Gregory 

(1970) argued that perception is based on a cognitive hypothesis. According to him, 

knowledge and information that is stored from previous experiences interacts with sen-

sory events in order to make inferences about what we perceive. According to Gordon 

(2004), this theory is particularly influential because it can explain various phenomena 

such as the extraction of objects from background clutter or the perception of ambigu-

ous objects, which relies on previous knowledge. The importance of top-down influ-

ences could be shown for example within Posner's (1980) cueing paradigm and within 
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a row of experiments by Folk, Remington, and Johnston (1992). These revealed that 

attentional capture is affected by attentional control, which had been induced by task 

demands. These findings are further supported by neurophysiological correlates 

(Bressler, Tang, Sylvester, Shulman, & Corbetta, 2008; Giesbrecht, Woldorff, Song, & 

Mangun, 2003). All in all, results from visual cueing studies show that observers can 

volitionally direct their attention towards a particular location in space or a certain fea-

ture, which underlines the role of top-down control. 

Representatives of bottom-up processing however stress that stimulus features also 

play an important role in the processing of stimuli. Gibson (1966) for example, as one 

of the first ones, followed the bottom-up approach, arguing that perception is direct and 

follows only one direction, from sensory input to higher-level processing. Treisman and 

Gelade's (1980) Feature Integration Theory similarly is an early example for bottom-

up theories, since it proposes that processing at the early stage is only related to stim-

ulus features such as colour, orientation and location. Moreover, saliency is tradition-

ally considered as one of the most important aspects of bottom-up processing (Theeu-

wes, 2010). According to Itti and Koch (2001), saliency is independent of a specific 

task, computed pre-attentively and can lead to the pop-out of certain elements from a 

visual scene. From computational analysis of visual attributes of an image, saliency 

maps can be produced. These represent the degree of saliency of locations within an 

image. Several researchers found that they can predict human gaze (e.g. Itti & Koch, 

2001; Schauerte & Stiefelhagen, 2012) while others argue that saliency does not nec-

essarily predict fixation location during visual search and observed correlations cannot 

be unambiguously attributed to image attributes (Henderson, Brockmole, Castelhano, 

& Mack, 2007). They suggest that cognitive factors play an important role in gaze con-

trol. Obviously, bottom-up processes cannot explain all aspects of visual attention 

alone, since voluntary control also plays an important role (Duchowski, 2017; Pinto, 

van der Leij, Sligte, Lamme, & Scholte, 2013; Theeuwes, 2010).  

In general, it is well recognized that both bottom-up and top-down processes affect 

processing and attention within different stages (Pinto et al., 2013; Theeuwes, 2010). 

However, there is still a debate on how both processes work together. While Theeuwes 

(2010) for example suggests that stimulus-driven properties play a role at the early 

stage and volitional top-down control later in time, Pinto et al. (2013) argue for two 
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independently operating systems. Other authors more generally criticise the dichoto-

mous differentiation between bottom-up and top-down attentional control, because 

both do not account for findings of selection biases, which cannot be explained by 

saliency or volitional aspects either (Awh, Belopolsky, & Theeuwes, 2012). Instead, 

they propose to integrate selection history as a third dimension next to goals and phys-

ical salience (Awh et al., 2012).  

In conclusion, the last paragraph revealed that attentional aspects play an important 

role within visual perception. This of course also affects the processing of visual com-

plexity. First of all, stimulus features can affect the attention and selection within the 

bottom-up processes. Furthermore, previous experience and knowledge can influence 

the top-down processing. In order to consider and utilize visual attention within the 

investigation of visual complexity, eye movements can allow for considerable addi-

tional insights. Within the following, I will thus take a closer look at the investigation of 

eye movements for the study of visual attention in order to lay the foundations for a 

better understanding of the subsequent discussion of parameters for visual complexity. 

 

 

Although the first eye tracking investigations date back until the 19th century (for an 

overview see for example van Gompel, 2007), Buswell (1935) was the first to apply a 

systematic approach for the exploration of eye movements and fixations when viewing 

complex pictures instead of text or simple patterns (van Gompel, 2007). Yarbus (1967) 

later posed different questions to the participants of his relatively influential experiment, 

while their eye movements were recorded when viewing the same image several times. 

These questions addressed for example the material circumstances, ages, clothing or 

activities of persons depicted within the image. He found that depending on the task, 

the distribution of fixations varied significantly (see Figure 19).  
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Figure 19. Yarbus' (1967) recordings of eye movement from the same subject with 

seven different tasks (taken from Duchowski, 2017, p. 9) 

 

Accordingly, Yarbus (1967) stated that eye movements provide insights into cognitive 

processes since these reflect the observers’ attention. These findings could be ex-

tended by the work of Noton and Stark (1971a, 1971b, 1971c). They showed that par-

ticipants often fixate specific features of an object such as curves and angles, which 

provide the most information. According to the authors, this happens serially, so that 

features are assembled one after another while being matched with internal (memory) 

representations of the object. However, even without varying tasks, the order of eye 

movements or scanpaths of subjects viewing the same image can vary both between 

individuals but also between multiple observations of the same individual.  

Both Yarbus' (1967) and Noton and Stark's (1971a) works built the foundations for the 

use of eye tracking in order to gain insights into processes of visual attention. In con-

trast to the Gestalt psychologists, their findings strongly point towards a serial con-

struction of mental representations through sequentially fixating multiple regions of in-

terest instead of perceiving a scene as a whole (Duchowski, 2017). However, it is im-

portant to note that (visual) attention may consist of more than just foveal gaze (Du-

chowski, 2017). An obvious example for this phenomenon is that in order to see weakly 

glowing stars within the night sky, it is useful to look slightly next to them (because of 
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the higher number of rods next to the fovea, which are designed for perception at low 

light levels). Attention can be directed at the star, although it is not within the fovea. 

Within a research context, this was for example shown by Posner, Snyder, and Da-

vidson (1980), who found that attention can be independent from the foveal direction 

of gaze, for example when stimuli are presented at a certain angle next to a fixation 

point. The finding that objects can be perceived and categorized without direct spatial 

attention was also supported by several more recent research works (e.g. Fei-Fei, 

VanRullen, Koch, & Perona, 2005; Li, VanRullen, Koch, & Perona, 2002; Reddy, 

Wilken, & Koch, 2004). Even though many people assume that attention is strictly re-

lated to the fovea, because this is mainly the case within everyday life, this is not nec-

essarily the case. Instead, Posner et al. (1980) for example compared attention with a 

spotlight, which “enhances the efficiency of detection of events within its beam” (Pos-

ner et al., 1980, p. 172). Accordingly, the authors separated two aspects of visual at-

tention: orienting and detecting. Orienting encompasses the pointing of attention into 

a direction which does not necessarily require eye movements. Detecting on the other 

hand, meaning “the contact between the attentional system and the input signal” (Pos-

ner et al., 1980, p. 173) however requires an attentional spotlight, which goes along 

with eye movements. The distinction between different types of attention was also sup-

ported by research of Reddy, Moradi, and Koch (2007), who found different patterns 

of neural activity within the cortex for effects of spatial attention and a task-based com-

ponent of attention.  

Within more recent research on scene perception, it could be shown that observers 

can understand the gist of a scene very quickly, even when a scene is shown as short 

as 40ms (Castelhano & Henderson, 2008) and before the eyes begin to move (Graef, 

2005). But where do people look? It was discovered early on that particularly informa-

tive areas are often fixated (Antes, 1974; Mackworth & Morandi, 1967). Moreover, the 

saliency of different locations seems to play a role (Mannan, Ruddock, & Wooding, 

1995, 1996; Parkhurst, Law, & Niebur, 2002; Parkhurst & Niebur, 2003), which sup-

ports the role of attentional bottom-up processes discussed before (see 2.5.1). As Da 

Silva, Courboulay, and Estraillier (2011) could show, saliency can also play a role for 

the perception of visual complexity. They found that saliency and attention maps can 

serve as estimators for the image complexity of natural scenes. In sum however, very 

little efforts have been taken until today in order to investigate visual complexity by 
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means of using ocular parameters, which can help to describe and quantify viewing 

behaviour. This is surprising, since considering the previously described findings, eye 

tracking can be helpful in order to gain insights into attentional processes and beyond. 

Rare approaches in this direction were however undertaken by Bradley et al. (2011) 

and Madan et al. (2017). While the main focus of both studies was on emotion, they 

also found a greater number of fixations, shorter fixation durations and longer scan-

paths for scenes compared to the less complex figure-ground images. They did how-

ever not investigate in more detail which aspects of visual complexity produced these 

results.  

In conclusion, eye movements such as fixations can provide insights into attentional 

processes. Particularly early fixations are often spread around informative and salient 

areas. These may also help to draw conclusions about the visual complexity of a pic-

ture. For example, when larger areas of an image are salient, which leads to a larger 

number of fixations, the picture may be perceived as more visually complex. The next 

paragraph will focus on ocular parameters, which could relate to visual complexity. 

Thereby, it is important to keep in mind that perception is often associated with, but 

does not necessarily depend on visual attention. 

 

Recorded eye tracking data allows for various inferences concerning visual processing 

and visual attention, as discussed within the previous paragraph. Different types of 

ocular parameters can thereby be considered, such as gaze, blinks or pupil parame-

ters. The former particularly allow for insights into the localization of visual attention, 

which plays an important role for example within the perception of scenes. According 

to Duchowski (2017), three types of eye movements are important within the context 

of gaze: fixations, saccades and smooth pursuit movements. I will focus on the former 

two within the subsequent discussion of relevant parameters since smooth pursuit 

movements are of minor relevance when static stimuli are used. Additionally, se-

quences of multiple fixations and saccades are scanpaths (see also Rötting, 2001), 

which can also be of interest and will therefore be discussed. The subsequent para-

graphs are thus structured into fixation measures, saccade measures, scanpath 

measures, pupillometry and blinks. All of the described parameters were used for the 
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prediction of visual complexity ratings within study 3 and 4, while the number of fixa-

tions, scanpath length and spatial density were also investigated experimentally. Next 

to the measures, subparts from their calculation were also included for explorative 

analyses. 

 

 

Fixations can be described as “pauses over informative regions of interest” (Salvucci 

& Goldberg, 2000, p. 71) or “eye movements that stabilize the retina over a stationary 

object of interest” (Duchowski, 2017, p. 44). However, these also encompass miniature 

eye movements such as microsaccades, drift and tremor (Duchowski, 2017; Martinez-

Conde & Macknik, 2015). On average, fixations often last between 200 and 300 milli-

seconds (ms), but can be as short as 30 ms and as long as several seconds (Holmqvist 

& Andersson, 2017). In general, longer fixations are often associated with a deeper 

and more effortful cognitive processing, which is supported by findings from scene 

perception, usability and visual search (for a review, see Holmqvist & Andersson, 

2017).  

Within the context of visual complexity, fixations can be of special interest since as 

pointed out in the definitions, these are usually related to interesting regions, which 

may appear in larger number within more complex stimuli. Consequently, Bradley et 

al. (2011) and Madan et al. (2017) found a positive relation between visual complexity 

and number of fixations. Within Bradley et al.'s (2011) work, this also went along with 

shorter average fixation durations for complex images. On the other hand, Moffitt 

(1980) concluded that fixation duration increases with a larger number of items per 

fixation (when the information value of each item is held constant) and also increases 

with a larger information value of each item (when the number of items per fixation is 

held constant). Nuthmann (2017) additionally found that image features such as lumi-

nance, clutter and edge density also had an impact on fixation durations within different 

experimental tasks. Both the number and duration of fixations can thus be of interest 

for the investigation of visual complexity, since these may serve as indicators for the 

quantity and information amount of elements in an image, as for example suggested 

by Bradley et al. (2011). Although often considered as noise that is present when at-

tempting to hold the gaze steady during fixations (Duchowski, 2017), drift was also 
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included as a parameter, although there was no specific hypothesis regarding possible 

relations with visual complexity. 

 

 

Saccades on the other hand are usually described as “rapid movements between fix-

ations” (Salvucci & Goldberg, 2000, p. 71) or “rapid eye movements used in reposi-

tioning the fovea to a new location in the visual environment” (Duchowski, 2017, p. 40). 

In contrast to these, pursuit movements help to track slowly moving objects (Rötting, 

2001, p. 76). 

Concerning relevant parameters, the number of saccades similar to the number of 

fixations as well as the (mean) amplitude or length of saccades can be of interest 

within the investigation of visual complexity. For the former, Kotval and Goldberg 

(1998) for example revealed a larger number of saccades for an extensive search 

within a computer interface. Moreover, Phillips and Edelman (2008) found that saccade 

amplitude accounted for a large part of the variance of visual search performance. 

Furthermore, Bradley et al. (2011) found clear differences between figure-ground and 

scene images with regard to saccade amplitude.  

Moreover, the fixation to saccade ratio compares the time spent with the processing 

of information (as assumed to reflect in fixation time) with the time used for searching 

(saccade time) (Kotval & Goldberg, 1998). High ratios can thus indicate a higher 

amount of information processing as opposed to search. However, Kotval and Gold-

berg (1998) could however not find differences for this measure among different inter-

faces. All in all, the previous findings suggest that saccade parameters can also serve 

as indicators of visual complexity. 

Velocity was also included as a parameter. Referring to this, Hutton and Tegally 

(2005) for example found a decrease in velocity for an attentionally demanding sec-

ondary task, when subjects performed smooth pursuit eye movements. Moreover, Sav-

age, Potter, and Tatler (2013) showed higher saccade peak velocities for a high cog-

nitive load condition. 
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Scanpaths are sequences of consecutive fixations and saccades (Goldberg & Helf-

man, 2010). From these, a variety of measures that can be derived. These will be 

described in the following, including some findings from previous research. 

One of the typical scanpath parameters is scanpath length, which is calculated by 

summing the distances between gazepoints (Kotval & Goldberg, 1998). The previous 

authors for example used the length of scanpaths as a measure for search behaviour 

in websites with longer scanpaths indicating less efficient search behaviour. Similarly, 

Renshaw, Finlay, Tyfa, and Ward (2003) used scanpath length as an indicator of good 

versus bad design of graphs with shorter scanpaths for the well designed graphs. Sim-

ilarly, Simonin, Kieffer, and Carbonell (2005) found that display layouts with a better 

visual comfort were also those with shorter scanpaths. With regard to visual complex-

ity, both Bradley et al. (2011) and Madan et al. (2017) found longer scanpaths for more 

complex pictures.  

Another scanpath parameter is convex hull area. This represents the area circum-

scribed by the entire scanpath. Therefore, it can also be used as an indicator of visual 

search, with smaller areas indicating more efficient search behaviour (Goldberg & 

Kotval, 1999). Using a circumscribing convex hull instead of a circle reduces the influ-

ence of small deviations in gazepoint samples as visualized in Figure 20.  

 

 

Figure 20. Visualization of the convex hull area, from Goldberg and Kotval (1999) 

 

Moreover, spatial density describes the spatial distribution of scanpath nodes within 

a grid, for example of 10 by 10 squares, as a percentage of the number of cells with 

nodes compared to the total number (see Figure 21). This was again used as an indi-

cator of visual search within previous studies. When nodes are distributed evenly in 

the whole visual field, this produces larger values, indicating more extensive and less 
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efficient search behaviour according to Goldberg and Kotval (1999). On the other hand, 

smaller spatial density values can point to a more efficient and direct search. Differ-

ences in spatial density between different interfaces have been found by Kotval and 

Goldberg (1998). 

 

Figure 21. Spatial density visualization, from Goldberg and Kotval (1999) 

 

Based on the defined grid that the picture area was split into, an additional measure 

was calculated. This is the standard deviation of the number of scanpath nodes in all 

cells of the spatial density matrix (SD Nr. of Nodes) and thus gives an estimate of the 

variability of the fixation distribution. This is assumed to indicate the regularity of the 

gaze behaviour. Within an additional measure, the same calculation takes into account 

only those cells of the matrix with at least one scanpath node (SD Nr. of Nodes > 0). 

This approach may increase the general variance of the measure particularly for short 

presentation durations, since there are many of the cells within the matrix without scan-

path nodes. Moreover, another new measure called Organisation of Fixations was 

calculated. Based on the distribution of fixations within the grid cells, a value of 1 for 

this measure indicates that all fixations are focussed in one cell while smaller values 

indicate that these are widely distributed across many cells.  

 

Similar to spatial density, transition density also provides information of the area of 

search but additionally adds a temporal component by integrating a representation of 

the transitions to and from a defined number of areas (Kotval & Goldberg, 1998). 

Thereby, a high density may again point towards a rather inefficient search, while a 

low density can indicate a more directed and efficient search behaviour (see also Fig-

ure 22). Like convex hull area and spatial density, transition density may be hypothe-

sized to relate to visual complexity. Different levels of visual complexity may have sim-

ilar effects as the manipulations of the design of user interfaces used by Goldberg and 
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Kotval (1999) with regard to the search behaviour and thus affect these parameters 

accordingly. 

 

 

Figure 22. Transition density matrix, from Goldberg and Kotval (1999) 

 

Building on Goldberg and Kotval's (1999) spatial and transition density, two further 

measures were introduced by Krejtz, Szmidt, Duchowski, and Krejtz (2014) and Krejtz 

et al. (2015) for the quantification of gaze patterns. Both are based on Shannon's 

(1948) entropy and should thus serve as estimates of the uncertainty or predictability 

of a gaze pattern. Therefore, the image is first split into a number of areas of interest 

(AOIs) or grid areas, similar to the spatial density measure (see Figure 21 for visuali-

zation). The primary measure, stationary entropy, focusses on the probability distri-

bution of fixations within the different AOIs, from which the average level of uncertainty 

within the spatial distribution of their sequence is calculated. A higher stationary en-

tropy points towards a homogeneous distribution of visual attention across the different 

image areas, while a small value suggests that fixations are relatively concentrated on 

few AOIs. The transition entropy however provides a measure for the predictability 

of visual scanning pattern by calculating the entropy of the transitions between AOIs. 

A minimum transition entropy value of zero suggests that transitions from a source AOI 

always go to the same destination AOI, while a large transition entropy means that 
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transitions go from the source AOI to any destination AOI with equal likelihood, pro-

ducing a larger randomness and thus entropy. 

Both measures have been reported to be related to sleepiness and lane departure 

within a driving context (Shiferaw et al., 2018) as well as secondary cognitive load 

(Allsop, Gray, Bülthoff, & Chuang, 2017) and anxiety (Allsop & Gray, 2014). However, 

since they incorporate the randomness versus predictability of gaze, it could be hy-

pothesized that these might also be sensitive to changes in visual complexity. 

Further measures focus on the spatial distribution of fixations. Among these is first of 

all the Nearest Neighbour Index (NNI), as described by Clark and Evans (1954). With 

regard to the distribution of fixations, this describes if they are ordered (with values 

larger than one), random (with values equal to one) or clustered (with values smaller 

than one) (Duchowski, 2017). This has often been used within the context of mental 

workload (e.g. Di Nocera et al., 2015; Di Nocera, Terenzi, & Camilli, 2006), but might 

also reflect different search strategies, for example of how clinicians observe electro-

cardiograms as in Davies, Vigo, Harper, and Jay (2016). As for the other measures, it 

might be hypothesized that the NNI might also be related to visual complexity, since 

the distribution of fixations with regard to clustering or ordering may also be affected 

by the visual complexity of the stimulus. 

Another measure for the quantification of the time course of eye movements is the 

coefficient K, which indicates focal or ambient attention (Duchowski & Krejtz, 2017; 

Krejtz, Duchowski, Krejtz, Szarkowska, & Kopacz, 2016). It takes into account both 

fixation durations as well as saccade amplitudes for the calculation. Positive values of 

the coefficient, resulting from longer fixations followed by short saccades, indicate focal 

processing while negative values of the coefficient due to short fixations followed by 

long saccades indicate ambient processing. Previous research with this has for exam-

ple revealed effects within a cartographic task (Krejtz, Coltekin, Duchowski, & 

Niedzielska, 2017).  

 

 

Next to gaze parameters, the assessment of the pupil size allows for the calculation of 

further measures which may relate to visual complexity. Next to adaptations to natural 
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lighting conditions, it has been found that the pupil can also change its size due to 

cognitive processes. In particular, pupillary responses have been (successfully) used 

as estimates for the intensity of mental activity and information processing (Laeng, 

Sirois, & Gredebäck, 2012; Sirois & Brisson, 2014). Following the early work of Hess 

and Polt (1960), which showed sensitivity of pupil size for arousal and interest, one 

focus within the subsequent research was cognitive effort and mental workload (e.g. 

Iqbal, Zheng, & Bailey, 2004; Palinko, Kun, Shyrokov, & Heeman, 2010; Pomplun & 

Sunkara, 2003) as well as attention (Burge et al., 2013; Geva, Zivan, Warsha, & Olchik, 

2013). Due to its sensitivity for light, it has to be considered that luminance levels 

should either be controlled or light-independent measures of pupillary activity could be 

considered in order to avoid possible confounding. With regard to the latter aspect, a 

number of measures have been proposed that address this issue. Among these are 

the Index of Cognitive Activity (ICA), the Index of Pupillary Activity (IPA) and the low 

frequency/high frequency (LF/HF) ratio. 

The Index of Cognitive Activity (ICA) was developed by Marshall (2002) as a meas-

ure of the cognitive effort of a user during the interaction with a visual display. It is 

based on the assumption that effort-related changes in pupil dilation appear faster than 

light-related changes, which however usually have a larger amplitude. The measure 

has shown to positively relate to cognitive load within multiple previous research works 

(Demberg, Sayeed, Mahr, & Müller, 2013; Dlugosch, Conti, & Bengler, 2013; Schwalm, 

2009). The Index of Pupillary Activity (IPA) (Duchowski et al., 2018) uses a similar 

approach as the ICA and was shown to be sensitive to task difficulty by the authors. 

Next to the final parameters, partial parameters involved within the calculation such as 

the rise and drop based on the filtering procedure as well as possible alternative cal-

culations such as using a discrete instead of a continuous filter approach, the pupil 

area instead of the diameter or the raw samples instead of filtered data were included 

exploratively. Finally, the LF/HF ratio of power spectral densities of pupillary signal 

was proposed as an additional luminance-independent measure by Peysakhovich, 

Causse, Scannella, and Dehais (2015). This considers more closely the interaction 

between effects of luminance and cognition in order to exclude the influence of the 

former as far as possible. The authors found that while luminance affected both low 

and high frequencies similarly, the influence of cognitive aspects (load on memory in 

particular) had a larger influence on low frequencies within the pupillary signal. They 
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could thus show a significant effect of memory load for their measure independent of 

luminance. While all three pupillary measures have not yet been investigated within 

the context of visual complexity to the best of my knowledge, it might be hypothesized 

that visually complex stimuli may, similar to previous findings, put higher cognitive de-

mands on subjects. Therefore, these measures might likewise be sensitive to effects 

of visual complexity. 

 

 

Blink-based parameters are typically not among the most popular measures within hu-

man-machine interaction. However, some previous research works have revealed ef-

fects that might be interesting also with regard to visual complexity. Concerning cogni-

tive load for example, Savage et al. (2013) showed that blink frequency increased 

within a high cognitive load condition. Similar results of an increased blink rate for high 

mental workload conditions were found by Recarte, Pérez, Conchillo, and Nunes 

(2008). The authors additionally investigated the level of visual demand by introducing 

an independent visual search task. This however revealed opposite effects compared 

to mental workload, with a blink inhibition for the condition of higher visual demand. 

Faure, Lobjois, and Benguigui (2016) similarly showed that more demanding driving 

environments decreased blink frequency, while increasing as a cognitive secondary 

task was introduced. According to the authors, eye blinks are not affected by light con-

ditions as opposed to pupil diameter. This may make eye blink frequency and other 

blink-based measures interesting for the further use as indicators of visual complexity 

or mental workload. Next to blink frequency, the percentage of eye closure (PER-

CLOS) (Wierwille, Ellsworth, Wreggit, Fairbanks, & Kirn, 1994) is another typical blink-

based parameter. While originally a measure for fatigue, Halverson, Estepp, Christen-

sen, and Monnin (2012) found that it could also be used for the classification of work-

load levels. Eventually, this might also reveal as sensitive for differences in visual com-

plexity. 

All in all, various ocular parameters have been developed within previous research. 

While some of these have yet been studied in the context of visual complexity or visual 

demand, many have been originally established within different contexts such as 

search behaviour or mental workload. Nevertheless, these might provide insights into 
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the attentional and cognitive processes involved within the perception of visual com-

plexity. Investigating these may first of all allow for both further insights into perception 

processes as a consequence of the experimental analysis of the effects of influencing 

variables, while their integration within the prediction of visual complexity ratings may 

contribute to more accurate models. Since ocular parameters may allow to quantify 

certain cognitive and interindividual aspects of information processing, this information 

may account for additional variance beyond computational parameters.   
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The goal of this dissertation is to bring forward research on visual complexity within 

human-machine interaction in various regards. Subsequently, the current state of re-

search on visual complexity is summarized and gaps within the existing body of re-

search are pointed out. Consequently, the structure of studies for addressing these 

research gaps is presented.  

Multiple definitions for visual complexity exist, with one of the most popular ones de-

scribing it as “the level of detail or intricacy contained within an image” (Forsythe, 2009, 

p. 158; Snodgrass & Vanderwart, 1980, p. 183). Within existing information processing 

models, the construct is commonly specified in the very beginning, before further cog-

nitive processes happen (e.g. Deng & Poole, 2010; Leder et al., 2004). A large variety 

of different influencing variables have been proposed for visual complexity, however 

few approaches have yet been undertaken to systematically investigate their influence. 

However, Ichikawa (1985) and Chipman (1977) underlined the relevance of both a 

quantitative and a structural dimension using experimental approaches. Concerning 

the relations with other constructs, most studies have focussed on connections with 

aesthetical preference (e.g. Berlyne, 1974; Geissler et al., 2006; Tuch et al., 2012). 

Within human-machine interaction, visual complexity is starting to gain attention for 

example concerning the design of websites (e.g. Tuch et al., 2012) or driving (e.g. 

Edquist et al., 2012). Computational measures have been successfully used as indi-

cators of visual complexity (e.g. Gartus & Leder, 2017), while relations with ocular pa-

rameters have only very rarely been investigated (Bradley et al., 2011; Madan et al., 

2017).  

Accordingly, gaps within the actual state of research concern the dimensionality of the 

construct. This has not yet been conclusively agreed on, since many existing research 

works, focussing on the dimensionality of influencing variables, contradict each other. 

This impedes a general understanding and common definition of the construct. More-

over, much of the research on influencing variables of visual complexity is based on 

correlational studies while few experimental approaches haven been taken. These 

would allow for a better control of possible confounding factors as well as conclusions 

about causal effects. In particular, this holds true for applied research in the context of 

human-machine interaction. 
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Furthermore, it is surprising that eye tracking has yet only rarely been used for the 

investigation of visual complexity. This would provide both better insights into atten-

tional and cognitive processes but can also be used for the prediction of visual com-

plexity ratings in combination with computational measures. Within previous research, 

predictions have been based on computational measures and therefore allow only for 

the prediction of mean complexity ratings for stimuli but not for the consideration of 

interindividual differences between subjects. Finally, hardly any research exists that 

would permit qualified conclusions regarding the relation between visual complexity 

and mental workload. This would however underline the role of the construct visual 

complexity particularly within human factors.  

These research gaps are addressed within four studies, which were conducted within 

the scope of this dissertation project. Their structure and particular focus is visualized 

in Figure 23. 
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Figure 23. Structure of the four studies conducted of this dissertation project and their 

research focus  

 

The obtained results will then be integrated into a research model of visual complexity 

in human-machine interaction, which will also incorporate findings from previous re-

search literature. This will include relevant influencing variables of visual complexity as 

well as effects on other constructs such as mental workload and performance as well 

as associations with ocular and computational parameters. This is described and pre-

sented within paragraph 7.2.  

• Investigation of effects of video complexity on the subjective 
perception of mental workload within a surveillance task

• Assessment of its impact on performance measures and 
physiological parameters

Study 1 - Motivation: Video complexity and mental 
workload

• Identification of potential influencing variables of visual complexity 
from literature research and investigation of their impact on global 
visual complexity rating

• Investigation of the factorial structure of influencing variales and the 
relation between variables, factors and global visual complexity

Study 2 - Foundations: Factorial structure of visual 
complexity

• Experimental investigation of principal influencing variables of visual 
complexity with regard to their effects on subjective ratings as well as 
eye tracking parameters

• Prediction of individual and mean complexity ratings from both 
computational as well as ocular parameters

Study 3 - Foundations: Influencing variables of visual 
complexity and ocular parameters

• Experimental investigation of further influencing factors within 
websites, transfer of findings from study 3

• Investigation of relations between visual complexity and mental 
workload

• Prediction of individual and mean complexity ratings from 
computational and ocular parameters

Study 4 - Application: Visual complexity in user 
interfaces
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The goal of the first study on complexity and autocycling frequencies of videos in con-

trol rooms is to identify effects of video complexity on the mental workload within an 

applied task for control room operators. Thereby, the relevance of complexity within 

the context of human-machine interaction is investigated. Within the following, the 

background of the study is addressed before the research questions are deducted. 

Subsequently, the method of the study is described and results are reported and later 

discussed.  

 

 

Within the research project “Video in control rooms: Mental workload analysis”, con-

ducted on behalf of the German Federal Institute for Occupational Safety and Health, 

a central project goal consisted in the investigation of how different video display op-

tions within control rooms affect the mental workload of operators. Within the presented 

part of the project, effects of autocycling frequency were investigated. Autocycling de-

scribes the consecutive automated change between video signals from different cam-

eras on one screen. With regard to video autocycling, little empirical evidence exists 

regarding the effects on operators’ mental workload. No appropriate publications could 

be identified within an extensive literature research concerning the effects of using au-

tocycling or different autocycling frequencies on operators’ mental workload. In partic-

ular, experimental investigations are missing, which would be particularly helpful for 

providing reliable recommendations concerning the workplace design in control rooms 

using video transmission. While Pikaar et al. (2015) suggest that a maximum of 12-16 

camera images can be handled as simultaneous livestreams by operators at low task 

complexity, this can hardly be transferred to the use of autocycling in control rooms. 

Although Deutsches Institut für Normung e.V. (2008) within the DIN EN ISO 11064 

generally suggests to avoid using autocycling in control rooms, it can in some cases 

be necessary for the monitoring of a larger number of cameras.  

Next to autocycling frequency, other aspects may strongly contribute to the mental 

workload level of control room operators and eventually interact with video autocycling.  
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Bruijn, Jansen, Lenior, Schreibers, and Pikaar (2016) for example already drew atten-

tion to the importance of image complexity within CCTV control rooms. A number of 

complexity factors were summarized by the authors, including crowding, ‘behaviour’ 

and movement of the target and the number of distractors. However, as for autocycling 

frequency, no experimental investigations of the effect of image complexity could be 

identified, which makes it hard to draw profound conclusions about its effects particu-

larly on mental workload.  

In conclusion, little literature on the effects of video complexity and video autocycling 

on operator mental workload exists. However, as argued in paragraph 2.3.1, it can be 

hypothesized that complexity affects mental workload due to the higher demand for 

cognitive resources required for information processing and at the same time limited 

capacities, for example in the visual short-term memory (Alvarez & Cavanagh, 2004; 

Wickens, 2008). Previous findings from applied contexts such as driving (Edquist et 

al., 2012; Verwey, 2000), aircraft (Svensson et al., 1997) or air traffic control (Djokic et 

al., 2010) support this theoretical assumption. 

Next to video complexity, autocycling frequency can be hypothesized to affect mental 

workload of control room operators within a monitoring task. Although this cannot be 

directly deducted from rarely existing previous literature, the demand for cognitive re-

sources is similarly likely to increase with faster autocycling frequencies, since the op-

erator is required to adapt to the context of different cameras backgrounds more often 

and within a shorter timeframe. 

These two factors might not only have an impact on subjective ratings, but also affect 

performance measures such as response latencies and hit or error rates as well as 

physiological measures that are typically used as indicators of mental workload. These 

can contribute to the assessment of a comprehensive image of the workload. A number 

of frequently used physiological indicators of mental workload are based on the elec-

trocardiogram (ECG) (Manzey, 1998) as well as the registration of eye movements 

(Marquart, Cabrall, & Winter, 2015). The ECG assesses cardiovascular activity and 

allows the continuous monitoring of mental workload. Additionally, it is rather unobtru-

sive, for example compared to electroencephalogram (EEG) and can therefore be as-

sessed more easily within field studies (Roscoe, 1992). Consequently, it has been 

used for example for the assessment of pilot workload (Roscoe, 1992; Wilson, 2002). 

With regard to the derived ECG measures, it can generally be differentiated between 
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heart rate and heart rate variability (HRV). Both have shown to be sensitive for differ-

ences in mental workload, however HRV is often ascribed a larger relevance (for a 

review, see Manzey, 1998). Two HRV measures often used as workload indicators are 

the Root Mean Square of Successive Differences (RMSSD) for subsequent R-R 

intervals as well as the power spectral density in the low frequency component (LF) 

from 0.04 to 0.15 Hz (Cinaz, La Marca, Arnrich, & Tröster, 2010; Fallahi, 

Motamedzade, Heidarimoghadam, Soltanian, & Miyake, 2016; Tjolleng et al., 

2017). Both RMSSD as well as LF power values typically decrease for higher levels 

of mental workload (Cinaz et al., 2010; Heine et al., 2017). 

Moreover, ocular parameters can serve as correlates of mental workload and thus 

provide further insights into the effects of the experimental manipulations. With re-

gard to these, a number of parameters have previously been investigated in relation 

to different workload levels. Among these are basic measures such as the number 

of fixations or fixation duration, which have also been reported as related to visual 

complexity (see paragraph 2.5.3), but also a number of others (see for example 

Marquart et al., 2015). I will specifically focus on the Percentage of Eyelid Closure 

(PERCLOS), which is defined as the percentage of time, in which the eyelid covers 

80 % or more of the pupil (Marquart et al., 2015). This has typically been used as 

a measure of alertness or drowsiness (Dinges & Grace, 1998). However, since 

Halverson et al. (2012) discovered its usefulness for the prediction of mental work-

load, it has become more popular also within this area (e.g. Schneider & Deml, 

2016).  

Based on the theoretical background, the following research questions are investigated 

within this study:  

 

 

1. Does a higher level of complexity in videos lead to an increase in the subjective 

perception of operators’ mental workload within a surveillance task? 

2. Does autocycling frequency positively affect the subjective perception of oper-

ators’ mental workload within a surveillance task? 

3. Do increased video complexity and autocycling frequency affect performance 

measures and thus lead to higher response latencies and error rates? 
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4. Do higher video complexity and autocycling frequency of videos affect the phys-

iological measures RMSSD, LF Power and PERCLOS? 

 

 

Given the little previous work, the methodological approach for this study is rather ex-

plorative, while at the same time requiring an experimental design in order to provide 

reliable results. The details regarding the study implementation are described within 

the following.  

 

 

The sample consisted of 34 persons, who were employed full-time within a control 

room. 15 of the participants were working within a traffic control room (ship lock or 

public transportation), 15 in a security control room (private security companies, police 

or swimming lifeguards) and four in system monitoring (from industry, energy or water 

supply). Participants were recruited with help of the control rooms. The study was con-

ducted during working hours and was not further compensated. Among all participants 

were 6 women (17.6 %) and 28 men (82.4%) with an average age of 43.6 years (SD 

= 9.3). Age of all participants ranged from 28 to 60 years, with 6.4 years (SD = 5.8) of 

professional experience. 

 

 

A controlled laboratory study was conducted within different control rooms across Ger-

many. Therefore, a mobile control room experimental setup consisting of a PC and 

three 24 inch displays was constructed (see Figure 24). The middle display was used 

for the presentation of videos while the display on the left showed a map, where in line 

with the cover story the currently active camera was marked in red. The right display 

was occupied with a secondary mental rotation task (Schneider & Deml, 2016) based 

on Shepard and Metzler's (1988) two-dimensional objects, which was conducted in 

order to assess spare mental capacity that is not occupied by the primary task (Mulder, 

1979). This is however not reported here for the sake of brevity, but can be found in 

Ries and Deml (2019). 
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For the implementation of the experimental routine, a software was programmed in 

order to coordinate the video playback and synchronize the assessment of multiple 

performance and physiological measures.  

 

 

Figure 24. Experimental setup of study 1 

 

The design of the experiment consisted of a 2 (video complexity) x 3 (autocycling fre-

quency) repeated measures design, resulting in six experimental blocks, which were 

presented in a random order (see Figure 25). 

Video complexity was manipulated by the amount of crowding in the video referring to 

Bruijn et al. (2016), who identified this factor as relevant for the image complexity in 

CCTV control rooms. Accordingly, videos with many persons or objects were selected 

for the condition of high complexity while videos with few persons were selected for 

the condition of low complexity. The video material will be described in more detail in 

3.3.3. With regard to the manipulation of autocycling frequency, the video image either 

changed every three seconds (fast autocycling), six seconds (medium autocycling) or 

nine seconds (slow autocycling). Using this experimental design, effects of the two 
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independent variables video complexity and autocycling frequency on multiple depend-

ent variables were investigated in order to draw a comprehensive picture of the oper-

ators’ mental workload. Among these were subjective ratings of mental workload, 

which are described in paragraph 3.3.3.2, as well as performance and physiological 

measures. While both the percentage of correct reactions to displayed warning sym-

bols as well as the required reaction times serve as measures of performance, the 

physiological measures are described in more detail within paragraph 3.3.3.3. 

 

Independent variables: 

 Autocycling frequency 

Slow (9s) Medium (6s) Fast (3s)  

Video  

Complexity 

Low LC-slow LC-medium LC-fast 

High  HC-slow HC-medium HC-fast 

 

 

 

Dependent variables: 

• Subjective: ratings of mental workload 

• Performance: Percentage of correct reactions and Reaction Times 

• Physiological measures: ECG and Eye tracking 

 

Figure 25. Experimental design of study 1 

 

In the beginning of the experiment, participants were instructed with regard to the ex-

perimental task. Based on a cover story, they should imagine working in a police con-

trol room, where they were responsible for the video surveillance of different areas 

within a city. Their primary task was the monitoring of events in the videos, which were 

presented in the middle screen. In irregular intervals, small black and white warning 

symbols appeared at random positions on the video stream, which participants had to 

react to by pressing the space bar. During the six experimental blocks, eye tracking, 

performance and physiological data were continuously assessed. After each block, a 
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computerized questionnaire was administered in order to capture the participants’ per-

ceived level of mental workload (see paragraph 3.3.3.2).  

 

 

 

Manipulation of the image complexity of videos was implemented by selecting accord-

ing videos with a high or low degree of crowding, based on the number of persons 

visible in the video. The aspect of crowding is assumed to affect image complexity in 

videos according to Bruijn et al. (2016). Consequently, videos with many persons were 

selected for the high complexity conditions and videos with few persons for the low 

complexity condition. Videos were collected from various online platforms, most of 

which were originally created for computer vision research, such as the CUHK Crowd 

Dataset (Shao, Loy, & Wang, 2017) or the i-lids Dataset (AVSS, 2007). Examples for 

videos of low and high complexity are depicted in Figure 26 and Figure 27. The se-

lected videos were then cut into pieces of three, six or nine seconds for the manipula-

tion of autocycling frequency, which required the original videos to be of sufficient 

length for the manipulation. The selected and edited videos were then presented se-

quentially within the experiment. 
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Figure 26. Low complexity video material 

 

Figure 27. High complexity video material 

 

 

There were several questionnaires administered after each of the six experimental 

blocks. The main focus within this work is on the NASA-Task Load Index (NASA-TLX; 

Hart & Staveland, 1988), which was used in order to assess the mental workload of 

the participants during their task. This was presented without the scale of physical de-

mand, which appeared of minor relevance within the study. Following the NASA - Raw 

Task Load Index (RTLX) approach (Byers, Bittner, & Hill, 1989), the mean value of the 

remaining five scales mental demand, temporal demand, performance, effort and frus-

tration served as the total value for mental workload. The reported values are thus 

within the range between 1 and 20. Among the other questionnaires that were used 

was for example the System Usability Scale (SUS; Brooke, 1996). Their results will not 

be reported here for the sake of brevity, but can be found in Ries and Deml (2019). 
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ECG 

For the recording of the electrocardiogram (ECG), the biosignal recorder Varioport-B 

of the company Becker Meditec was used. The ECG module can record the signal with 

a resolution of 0.002 mV within a range of ± 5.4 mV. For this study, a sampling rate of 

512 Hz was selected. Thereby, three single-use electrodes were applied to the chest 

of the participants at the positions suggested by the manufacturer (see Figure 28). 

 

Figure 28. ECG electrode positions, taken from Becker (2016) 

 

From the raw data, QRS-complexes were first detected and from these the Root Mean 

Square of Successive Differences (RMSSD) as well as power spectral density in the 

low-frequency (LF) range according to the Welch method as a measure of heart rate 

variability were calculated with the help of own software routines. 

 

Eye-Tracking 

During the experiment, participants were wearing a Dikablis Professional eye-tracker 

(Ergoneers GmbH) with a sample rate of 60 Hz. This allows the assessment of the 

pupil with an accuracy of 0.05° of visual angle and of gaze with an accuracy of 0.1°-

0.3°. The fieldcam records the visual field of the participant with a resolution of 

1920x1080 pixels and an angle of 40°-90°, while the two eye cams record with a res-

olution of 648x488 pixels. For this study, both the analysis software D-Lab (Ergoneers 

GmbH, 2017) as well as own software routines were used in order to calculate the 

Percentage of Eyelid Closure (PERCLOS).  
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For the analysis of the collected physiological data, primarily the median absolute de-

viation (MAD) was used, which is a robust method for dealing with outliers (Leys, Ley, 

Klein, Bernard, & Licata, 2013). I used a moderately conservative criterion of 2.5 to 

exclude outliers from the further analyses. The subsequent inferential statistical anal-

ysis was conducted with Linear Mixed-Effect Regressions (LMER) or Generalized Lin-

ear Mixed-Effect Regressions (GLMER) in case of the RMSSD with a logarithmic link 

function due to the shape of the distribution of residuals. Therefore, the lme4 package 

(Bates, Mächler, Bolker, & Walker, 2015) with function lmer as well as the MASS pack-

age (Venables & Ripley, 2002) with function glmmPQL-function were used in software 

R (R. Core Team, 2018). In comparison with the more traditional approach of using 

repeated measures ANOVAs, mixed models such as LMER or GLMER allow for the 

estimation of variance components for random factors such as participants instead of 

aggregating data, which allows researchers to consider all factors and thereby achieve 

a better understanding of the underlying data (Baayen, Davidson, & Bates, 2008; Judd, 

Westfall, & Kenny, 2012). Further advantages of mixed models include the handling of 

missing and unbalanced data as well as the performance with small numbers of ob-

servations (Baayen et al., 2008). Effects of the fixed factors were analysed using car’s 

(Fox & Weisberg, 2019) Anova function as well as emmeans (Lenth, 2019) for post-

hoc tests. Result plots were created with the help of the R-package ggplot2 (Wickham, 

2016). All error bars within the plots depict the 95% confidence interval. In the follow-

ing, the χ²-statistics and Tukey post-hoc tests from these are reported for reasons of 

brevity.  

 

 

Within the repeated measures 3 (autocycling frequency) x 2 (complexity) experimental 

design, effects of both factors on various dependent variables were investigated. The 

analyses of the multiple behavioural and physiological measures allow for a compre-

hensive view on the mental workload of the operators. The dependent variables are 

reported within the following paragraph. First of all, I will focus on rating data before 

addressing performance and physiological measures. 
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 Mental workload – NASA-RTLX 

With regard to the subjective ratings of mental workload, which were assessed using 

the NASA-RTLX, the mean value of the five scales mental demand, temporal demand, 

performance, effort and frustration was used as the total value for mental workload. 

The statistical analysis of these first of all revealed a main effect of autocycling fre-

quency on ratings of mental workload, χ²(2) = 38.13, p < .0001. Tukey post hoc tests 

showed that mental workload for video sequences of three seconds was rated as sig-

nificantly higher compared to six, β = 0.68, SE = 0.25, p < .05, and nine seconds, β = 

1.52, SE = 0.25, p < .0001. Moreover, mental workload was rated significantly higher 

for blocks with video sequences of six seconds compared to those with sequences of 

nine seconds, β = 0.84, SE = 0.25, p < .01. 

Moreover, mental workload was rated significantly higher for experimental blocks with 

highly complex video material compared to those with little complex material, χ²(1) = 

8.47, p < .01. The interaction between autocycling frequency and complexity had no 

significant effect on mental workload ratings, χ²(2) = 1.10, p = .58. 

The rating data are visualized in Figure 29 and details regarding the regression model 

are reported in appendix 9.1. Within all following graphs, error bars depict the 95% 

confidence interval. 
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Figure 29. NASA-RTLX ratings in study 1.  

 

 

Percentage of correct reactions 

Video complexity significantly affected the percentage of correct reactions to the dis-

played alarm symbols with more accurate reactions for experimental blocks with less 

complex material, χ²(1) = 20.51, p < .0001. No significant effects were found for auto-

cycling frequency, χ²(2) = 1.07, p = .58, nor the interaction of both factors, χ²(2) = 0.25, 

p = .88. Data is visualized in Figure 30 and details concerning the regression model 

are reported in appendix 9.2.  
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Figure 30. Percentage of correct reactions in study 1.  

 

Reaction time  

Regarding the performance measure reaction time, again a significant influence of 

video complexity could be found with faster reactions for experimental blocks of low 

complexity, χ²(1) = 52.76, p < .0001. While autocycling frequency had no significant 

effect on reaction time, χ²(2) = 2.49, p = .29, there was a significant interaction between 

both factors, χ²(2) = 10.85, p < .01. Due to the hybrid type of interaction, this does 

however not restrict the interpretability of the complexity main effect (Bortz & Schuster, 

2010; Leigh & Kinnear, 1980). Data are visualized in Figure 31 and details concerning 

the regression model are reported in appendix 9.3. 
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Figure 31. Reaction time in study 1. 

 

 

In order to complete the image on the mental workload state of operators, a selection 

of workload-related physiological measures was analysed. Among these are both ECG 

and eye tracking parameters. These are reported within the following. A more compre-

hensive overview of all assessed measures is reported in Ries and Deml (2019). 

 

ECG - RMSSD 

First of all, the ECG measure RMSSD (the Root Mean Square of Successive Differ-

ences of subsequent R-R intervals) is analysed. Thereby, a significant effect of auto-

cycling frequency was found, χ²(2) = 7.70, p < .05. Tukey post hoc tests revealed sig-

nificantly larger RMSSD values for blocks with video sequences of nine seconds com-

pared to three seconds, β = 0.063, SE = 0.024, p < .05, while there were no significant 

differences between blocks of nine and six seconds, β = 0.049, SE = 0.024, p = .10, 

and between blocks of six and three seconds, β = 0.014, SE = 0.025, p = .84. Moreo-

ver, neither video complexity, χ²(1) = 0.97, p = .33 nor the interaction of autocycling 

frequency and video complexity, χ²(2) = 0.03, p = .99, had a significant influence on 
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RMSSD values. Data are visualized in Figure 32 and details about the regression 

model are reported in appendix 9.4. 

 

 

Figure 32. RMSSD in study 1. 

 

ECG – Low frequency power 

For the power of the power spectral density in the ECG low frequency component (LF) 

from 0.04 to 0.15 Hz, a significant effect of video complexity was found with higher 

power for less complex videos, χ²(1) = 4.82, p < .05. Neither autocycling frequency, 

χ²(2) = 3.03, p = .22, nor the interaction of both factors, χ²(2) = 1.75, p = .42, had a 

significant effect on low frequency power. Data are visualized in Figure 33 and the 

regression model is reported in appendix 9.5. 
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Figure 33. Low Frequency Power in study 1.  

 

Eye-tracking - Percentage of Eyelid Closure (PERCLOS) 

Autocycling frequency, χ²(2) = 24.35, p < .0001, had a significant effect on the percent-

age of eyelid closure with higher values for experimental blocks with video sequences 

of nine seconds compared to sequences of three seconds, β = 0.81, SE = 0.17, p < 

.0001, and six seconds, β = 0.50, SE = 0.17, p < .01, while there was no significant 

difference between blocks with sequences of six and three seconds, β = 0.31, SE = 

0.16, p = .15. There was also a main effect of video complexity on PERCLOS values 

with lower PERCLOS values for more complex videos, χ²(2) = 21.18, p < .0001. The 

interaction between both factors had no significant effect on PERCLOS values, χ²(2) = 

0.52, p = .77. Data are visualized in Figure 34 and details concerning the regression 

model are reported in appendix 9.6.  
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Figure 34. Percentage of Eyelid Closure (PERCLOS) in study 1. 
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The overall results of this first study stress the relevance of video complexity within the 

workplace of a control room setting. Both autocycling frequency and complexity of vid-

eos significantly affected mental workload ratings with faster autocycling and larger 

video complexity causing increased mental workload ratings in a CCTV surveillance 

task. 

Moreover, complexity particularly affected the two performance measures, with a lower 

number of correct reactions and longer response times for more complex videos. Since 

both performance indicators were negatively affected by the higher level of complexity, 

this underlines its impact on mental workload. The performance decrements may how-

ever also partly be explained by an obstructed detection of alarm symbols due to the 

higher number of elements in complex videos. 

Effects of both autocycling frequency and video complexity on physiological measures 

further underlined their impact on the participants’ workload level beyond subjective 

and performance measures. First of all, lower RMSSD values were found for faster 

autocycling frequencies. According to the research literature (Cinaz et al., 2010; 

Heine et al., 2017), this supports the increase in mental workload associated with 

faster autocycling. Moreover, significantly lower power in the LF range was found for 

complex videos, which is also typically associated with increased mental workload 

(Heine et al., 2017; Mehler, Reimer, & Wang, 2011). Finally, both autocycling fre-

quency and video complexity affected the eye tracking parameter PERCLOS with 

lower PERCLOS values for both faster autocycling and complex videos. Since PER-

CLOS is typically positively related to sleepiness and performance decrements (Mar-

quart et al., 2015) and could be used for the accurate classification of workload levels 

(Halverson et al., 2012), the results appear to plausibly relate to the subjective ratings. 

In addition, since PERCLOS measures the percentage of time in which the eyelid is 

closed, it can also be strongly related to eye blinks. These were found to increase with 

the level of visual demand (Recarte et al., 2008). Within this context, the negative re-

lation between PERCLOS and both autocycling frequency and video complexity further 

supports the workload effects identified by means of subjective, performance and fur-

ther physiological measures.  
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In conclusion, all three types of employed measures underline the role of image com-

plexity within the CCTV control room setting. Within this study, it has shown to affect 

the workload state of operators next to other features such as the autocycling fre-

quency of videos. Accordingly, the complexity of video material should be considered 

within the workplace design in CCTV control rooms. Unlike autocycling frequency, it 

cannot be directly adapted in order to optimize the workload level of operators in most 

cases. However, it might be important for example to select an appropriate autocycling 

frequency, which is adjusted to the complexity level in order to avoid overload. 

But complexity may not only play a role within work tasks in the context of CCTV or 

video surveillance. It can also play an important role in many other domains of human 

machine interaction, since the interaction with graphical depictions is essential for 

many work-related activities and beyond. In this regard, the design of graphical user 

interfaces is one domain where particularly visual complexity may play a key role and 

where the finding of an impact on mental workload from this study can eventually be 

transferred to. This remains to be investigated within the subsequent studies. 

 

Limitations 

Regarding the limitations of this study, when experimenting within rather applied set-

tings using realistic video material, effects of course largely depend on the validity of 

stimulus material. Within this study, many possible factors may have affected both rat-

ings, performance and also physiological measures. Among these are for example 

video quality, lighting and contrast conditions or viewing angles. Due to the limited 

availability of suitable realistic video material within public databases, a certain varia-

bility may have remained within the material. Thus, it cannot be excluded that further 

factors may potentially have produced a confounding of the results. However, best care 

was taken to avoid systematic differences between complex and simple videos within 

the above-mentioned confounding factors. For all autocycling conditions of one com-

plexity level, videos from the same sources were used so that confounding could 

largely be excluded in this respect. Regarding the original stimulus material, a pre-

rating of the videos with an independent sample however could have further ensured 

its validity with regard to both differences in complexity levels but also the influence of 

possible confounding factors.  
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Moreover, the subjects’ task of course plays an important role for the results. Within 

this study, subjects monitored CCTV video material, while an integrated reaction task 

required the response to small alarm symbols presented at random locations superim-

posed to the videos. It remains possible that a different experimental task with different 

attentional requirements might have produced diverging results. Thereby, it is possible 

that the background of the task, which was conveyed by the cover story of monitoring 

CCTV cameras within a police control room, may have played a role. It can be pre-

sumed to have an impact if the video material should be monitored for example in order 

to recognize violent or criminal acts or in order to estimate the number of passengers 

for public transportation. Next to the security demands, the frequency of required re-

actions may also influence the task perception and with that various dependent varia-

bles. 

Finally, this study strictly speaking does not directly address visual complexity, which 

mostly refers to static images, but video image complexity. For the implementation of 

manipulations, I focussed on Bruijn et al.'s (2016) concept of image complexity for 

CCTV-systems. By selecting videos with a different amount of visible persons, the as-

pect of crowding was addressed, which is one factor of the image complexity of videos 

according to Bruijn et al. (2016). Crowding as related to the number of persons within 

the image might also be a relevant aspect for the visual complexity of static images, 

referring to the quantitative dimension (see paragraph 2.2.3). Thus, it might be pre-

sumed that both constructs overlap, for example with regard to the influence of quan-

titative and structural aspects, but additional aspects contribute to the complexity of 

videos such as movement, speed and behaviour (Bruijn et al., 2016). Within these 

regards, it differs from static visual complexity. However, the impact of complexity, as 

shown within this study by means of the effect on mental workload, will most likely also 

carry relevance within other contexts. In order to ensure if a transfer of these findings 

is valid, further research is needed. 

 

Outlook 

Within future studies, the concept of video or image complexity as primarily brought up 

by Bruijn et al. (2016) can further be investigated, also in comparison to the concept of 

visual complexity of images. While Bruijn et al. (2016) already suggested a number of 



3. Study 1 - Motivation: Video complexity and mental workload 

 

103 

factors, which determine the complexity of videos, few of these have yet been experi-

mentally investigated. For the visual complexity of images, a number of different vari-

ables and factors (see 2.2.3) have been identified, although these are not generally 

agreed on either. The relation between both constructs and potential similarities be-

tween influencing variables could be addressed in subsequent studies. Relevant influ-

encing variables for both could for example be quantitative aspects such as the number 

of elements as well as structural aspects such as symmetry. However, the temporal 

aspect of movement within dynamic videos is obviously a unique feature of video com-

plexity. Approaches for the quantification or measurement of video complexity yet re-

main to be investigated. One way could for example be the use of file compression 

methods. With regard to visual complexity, file sizes of image compression methods 

such as JPEG sometimes serve as complexity measures (e.g. Tuch et al., 2011). Since 

video files basically consist of a large number of single frames, this approach could 

eventually be transferred to this material as well. Compressed video file sizes of video 

formats such as MP4 could then act as indicators of video complexity. To the best of 

my knowledge, this approach has not been pursued yet and thus remains to be tested.  

Moreover, referring to an aspect mentioned before, the relevance of different task and 

work contexts for the perception of complexity remains another interesting aspect to 

be investigated within subsequent studies. Are videos perceived as more complex if a 

high level of attention is required due to the security demands of the task? This could 

be operationalized for example by using the same video material within different task 

instructions and cover stories, such as the context of airport security with high security 

demands in comparison to the monitoring of passenger numbers at a local train station 

with low security demands. Findings could also provide for a better understanding of 

the influence of aspects such as experience and motivation on complexity perception. 
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While the first study underlined the relevance of complexity within human-machine in-

teraction, the next study will closely investigate the construct visual complexity and its 

influencing variables. The existing definitions as well as the factorial structure are still 

not commonly agreed on within the research community. Hence, this study provides a 

better understanding of visual complexity while integrating existing findings. 

 

 

Within previous research works, a number of variables have been identified that were 

assumed to contribute to visual complexity. An extensive overview of these findings is 

provided in paragraph 2.2.3. Within the former research literature however, results are 

often strongly diverging with a number of different influencing variables and factors 

obtained by different authors. With regard to the perception of scene images for exam-

ple, Oliva et al. (2004) revealed quantity of objects, clutter, openness, symmetry, or-

ganization and variety of colours as relevant variables for visual complexity of scenes 

within a hierarchical grouping. Riglis (1998) however identified symmetry, similarity, 

smoothness of curves and angles present, minimum description length and familiarity 

with visual stimuli as the primary aspects based on a literature research. Nadal et al. 

(2010) on the other hand selected the seven features unintelligibility of the elements 

(“the difficulty to identify the elements in the image”), disorganization (“the difficulty to 

organize the elements into a coherent scene”, both from Nadal et al., 2010, p. 178), 

amount of elements, variety of elements, asymmetry, variety of colours and three-di-

mensional appearance as the most relevant ones based on a literature research. As it 

can be seen, the identified variables partly overlap between these references, however 

there remains considerable nonconformity with regard to many others. A similar picture 

emerges when literature focussing on the visual complexity of user interfaces and web-

sites is considered (see also paragraph 2.3.2). For example, Miniukovich and Angeli 

(2014) suggested the eight variables symmetry, ease of grouping, prototypicality, grid, 

edge congestion, figure-ground contrast, colour variability and visual clutter, which they 

classified according to the three main dimensions information organization, information 
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discriminability and information amount (see Figure 13). In a more recent work how-

ever, Miniukovich et al. (2018) selected nine aspects instead, which were classified 

according to the four main facets quantity of information, variety of visual form, spatial 

organization and perceivability of detail. The nine aspects considered were number of 

distinct units of information, number of groups of units of information, variety of colours, 

variety of sizes, vertical symmetry, content alignment point, congestion, figure-ground 

contrast and amount of white space (see Table 1). On the other hand, Deng and Poole 

(2010) for example proposed within a more general framework the dimensions visual 

diversity, which encompasses the different types of elements within a webpage as well 

as visual richness, which describes the amount of information such as text, graphics 

and links as key aspects. Michailidou et al. (2008) however named density and diver-

sity as most relevant aspects.  

As it can be seen, the information from existing literature provides a good starting point 

for a closer investigation and profound definition of the construct visual complexity. 

However, a number of contradictions between the previous research works become 

apparent. These discrepancies arise both between different groups of stimuli such as 

scene images and screenshots from webpages or user interfaces but also appear be-

tween different research papers within one specific domain.  

This may be related to the fact that much of the existing research such as Riglis (1998), 

Miniukovich and Angeli (2014) or Miniukovich et al. (2018) strongly rely on literature 

research for the identification and classification of influencing variables of visual com-

plexity, without further challenging the relations between the identified influencing var-

iables and factors and a global visual complexity score. Here, the incorporation of ad-

ditional methodological approaches for a closer examination can contribute to more 

reliable findings and thus to a better understanding of the construct visual complexity.  

Two older studies have already followed this strategy. Using an experimental ap-

proach, Ichikawa (1985) identified both a faster and a slower cognitive process as be-

ing relevant within the perception of visual complexity. While the former serves the 

identification of quantity, the latter influences the detection of structure. Similarly, Chip-

man's (1977) findings that determinants of pattern complexity can be grouped into 

quantitative and qualitative variables are also based on experimental investigations. 

These two examples may thus point to a two-dimensional structure of the construct, 

with a quantitative and a qualitative factor. Both however only used rather simple black 
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and white stimuli. Nadal et al. (2010) furthermore more closely investigated the struc-

ture of seven primarily selected variables using both artistic and non-artistic stimuli and 

identified the three dimensions “elements”, “disorganization” and “asymmetry”. While 

the amount of elements, variety of elements and variety of colours were associated 

with the first dimension “elements”, unintelligibility of elements and disorganization 

were associated with the second dimension “disorganization”. Finally, the dimension 

“asymmetry” consisted only of the variable asymmetry. Within the context of the previ-

ous experimental works, the three-dimensional structure discovered by Nadal et al. 

(2010) is at least in some parts surprising. Based on the earlier experimental findings 

by Ichikawa (1985) and Chipman (1977), it would be assumed that the variables (a)-

symmetry and (dis)-organization were related as parts of a structural dimension. 

In order to achieve more clarity with regard to the structure of influencing variables and 

their contributions to a global visual complexity score, it will be analysed more closely 

within this study. Thereby, multiple contexts are considered within a factor analytic ap-

proach. Based on the extensive review of visual complexity literature in foundational 

(see paragraph 2.2.3) as well as applied domains (see paragraph 2.3.2), a number of 

aspects of visual complexity were selected for further investigation. It was ensured that 

only basic variables with possible relevance for different kinds of stimuli (from photo-

graphs to screenshots of user interfaces) were selected. Among these, with respect to 

their incidence, the variables reported in Table 2 were selected. Unintelligibility of ele-

ments was however excluded within the process of study 2a) and not used in study 

2b), which is described in detail within paragraph 4.4. 
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Table 2. Identified potential influencing variables for further investigation 

 

Number of elements 

Variety of elements 

Density of elements 

Variety of colours 

Colour contrast 

Organization 

Symmetry 

Visual balance 

Unintelligibility of elements 

 

In conclusion, this study has two primary goals: first of all, the relation between the 

identified potential influencing variables and a global rating of visual complexity will be 

investigated in order to draw conclusions regarding their influence on the perception 

of visual complexity. Secondly, the dimensional structure of all potential influencing 

variables and their impact on the global visual complexity rating will be addressed in 

order to provide insights about the dimensionality of the construct visual complexity.  

Results of this study can help to achieve a better understanding of the construct and 

bring more clarity into the existing literature. Previously, many different relevant as-

pects have been proposed within different research works while yet few integrative 

attempts have been made in order to consolidate the gathered findings. Moreover, it 

remains unclear to this date if systematic differences exist between different types of 

stimuli. The existing literature provides an unclear image with a number of overlapping 

aspects for example between shape patterns, images and user interfaces, while other 

proposed aspects greatly vary between the different stimulus materials. This could 

suggest that visual complexity is a largely domain-specific construct instead of a 

broadly valid and general one. In order to address this point, two partial studies were 

conducted using different stimuli, with photographs as basic stimuli and screenshots 

of websites as application-related stimuli. Comparing findings from both allows for con-
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clusions about the generalizability of the construct visual complexity as well as poten-

tial differences between regarding both the role of influencing variables and factors for 

the perception of visual complexity.  

 

 

The aforementioned aspects will be investigated within this study according to the fol-

lowing research questions: 

1. Do the identified influencing variables number of elements, variety of elements, 

(unintelligibility of elements), variety of colours, colour contrast, organization, 

symmetry and visual balance relate to a global rating of visual complexity, both 

for photographs and for webpage screenshots? 

2. What is the factorial structure of the influencing variables, both for photographs 

and for webpage screenshots? Are all factors related to a global rating of visual 

complexity? 

3. Are there systematic differences between photographs and webpage screen-

shots regarding the relations of influencing variables and factors with a global 

visual complexity rating? 

 

 

In order to investigate the research questions, two online studies were conducted. 

While the study design and procedure of both were very similar, study a) used photo-

graphs as stimuli while study b) addressed the perception of webpage screenshots1. 

In the following, I will describe the participants, materials used as well as study design, 

procedure and the statistical analysis of both partial studies in detail. Since features 

such as the participant sample as well as the stimuli differed between both studies, I 

will report these separately within paragraphs 4.3.1 and 4.3.2, while describing other 

 

 

1 Stimulus selection and data collection for study 2a) was done in close collaboration with master student 

Yang Xie while stimulus selection and data collection for study 2b) was accomplished in close collabo-

ration with bachelor student Jessica Waibel 
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parts such as the study design, procedure or the statistical analyses jointly for both 

partial studies.  

 

 

Within study a), 96 persons participated. From these, two were excluded from the fur-

ther analysis due to a very fast completion of the online survey which reflected in high 

relative speed index (RSI) values (> 2.5) (Leiner, 2013) and suspicious rating patterns. 

Of the remaining 94 subjects, 38 were females (40.4%) and 56 (59.6%) males. The 

average age was 25.7 years (SD = 4.4). The majority (80 or 85.1%) of the participants 

were students.  

In study b), 60 persons participated. Of those, 40 (66.7%) were females and 20 (33.3%) 

males. The average age was 29.5 years (SD = 12.7) and the majority of all subjects 

(34 or 56.7%) were students 

 

 

For both studies, a repeated-measures design was used. In study a), there were the 

two groups of high and low visual complexity, which were operationalized by using 

either figure-ground or scene images. In study b) however, a 3 (complexity) x 3 (web-

site type) design was used with low, medium and high visual complexity and screen-

shots of online shops, news pages and company websites.  

Both studies were conducted online using the platform “SoSci Survey”. They began 

with information about the procedure as well as an informed consent. After agreeing, 

demographic details were enquired from the participants. Subsequently, one exercise 

trial with an extra stimulus image was included in each study in order to allow subjects 

to get accustomed to the study procedure. Afterwards, images were presented in ran-

dom order with all questionnaire items as described in paragraph 4.3.3.2 listed directly 

underneath. All ratings had to be entered on seven-point Likert scales. This way, the 

experiment was performed in a self-paced manner, where subjects could evaluate the 

stimuli while making their judgements.  
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In study a), photographs were used as stimuli in order to investigate the relations of 

potential influencing variables with each other as well as with the global complexity 

rating for these. In order to use strongly controlled material, 18 images from the Inter-

national Affective Picture System (IAPS) (Lang, Bradley, & Cuthbert, 2008) were se-

lected2. Since affective influences were not of interest for the research questions within 

this study, only pictures from the emotionally neutral category were selected. For the 

low complexity category, nine figure-ground images were used. All of these depict one 

object on a monotonous background. For the high complexity category, nine scene 

images without a clear figure-ground composition were used. This approach follows 

Bradley et al. (2007) and Bradley et al. (2011), where example images can be found. 

Since pictures from the IAPS database are not intended for publication, original images 

were not included. 

In Study b), 36 website screenshots were used as stimuli. These were created from 

real websites from the three categories news, company websites and online-shops. 

These categories were decided upon according to Roth et al. (2010), who analysed 

the 100 most visited websites of Germany, Austria, Switzerland and the USA and ex-

tracted these as the most popular categories next to social networks. The latter were 

excluded, since the typical design of social network starting or home pages offers little 

room for experimental manipulation, often offering only the option to login, while vary-

ing strongly between different sites (Roth et al., 2010). During the selection, care was 

taken to include only relatively unknown websites in order to prevent possible effects 

of familiarity. Screenshots in a resolution of 1280 x 720 pixels were created for initially 

72 websites of the three categories using the browser plugin “FireShot” (GetFireShot, 

2021). From these, 36 were picked and assigned to one of the three groups low, me-

dium and high visual complexity according to a pre-rating of four separate subjects. 

Two examples for stimuli from the category online-shop are depicted in Figure 35 and 

 

 

2 IAPS pictures used in this study were: Figure-Ground - Neutral: 6150, 7010, 7056, 7110, 7150, 7175, 

7190, 7211, 7950; Scene - Neutral: 5120, 5455, 5731, 7234, 7496, 7510, 7560, 7590, 7595 
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Figure 36. The assignment table with all stimuli and categories can be found in appen-

dix 9.9. 

 

 

Figure 35. Company website – low visual complexity 

 

 

Figure 36. Company website – high visual complexity 
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Both studies used the same questionnaires in order to assess ratings from the partici-

pants. Within the first part, stimuli should be assessed by the subjects with regard to a 

number of potentially relevant related constructs as well as the possible influencing 

variables identified within the previous literature research. For the ratings, 7-point Likert 

scales ranging from very low (German: “sehr gering”) until very high (“sehr hoch”) were 

used, where only the extrema were labelled. With the help of these, the items visual 

complexity (“Visuelle Komplexität”), liking (“Gefallen”), interest (“Interesse”), familiarity 

with contents (“Vertrautheit mit Inhalten”) should be judged before addressing the 

seven influencing variables. Among these were the number of elements (“Anzahl an 

Elementen”), variety of elements (“Vielfalt an Elementen”), density of elements (“Dichte 

der Elemente”), colour variety (“Farbvielfalt”), colour contrast (“Farbkontrast”), organi-

zation (“Ordnung”), symmetry (“Symmetrie”) and visual balance (“Visuelle Balance”). 

The item unintelligibility of elements (“Unterscheidbarkeit der Elemente”) was used 

within study a) but later removed from the further analysis (as described in paragraph 

4.4) and excluded within study b). In study b), subsequently the short version of the 

visual aesthetics of websites inventory (VisAWI) (Moshagen & Thielsch, 2013) consist-

ing of four items was administered in order to assess the aesthetical appraisal of these. 

Moreover, the prototypicality of the websites was assessed using the item “The website 

looks like a typical website” (“Die Webseite sieht wie eine typische Webseite aus”). 

Within the following, not all acquired ratings are reported for the sake of brevity.  

 

 

For the statistical analysis of both studies, regressions were used for the examination 

of the relations between potential influencing variables and a global visual complexity 

rating. Due to the ordinal data structure resulting from the use of Likert scales, cumu-

lative link mixed models were used for the analyses with the help of the R-package 

ordinal (Christensen, 2018) and the function clmm. These mixed models allowed for 

the integration of random effects for both subjects and stimuli, which were included 

with random intercepts. The advantages of using mixed models are described in more 

detail within paragraph 3.3.4. Analyses of variance were then conducted in order to 
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examine relations of the influencing variables with global complexity ratings using the 

Anova function of R-package car (Fox & Weisberg, 2019). 

For the analysis of the factorial structure of the influencing variables, factor analyses 

were used. The number of factors was determined using Horn's (1965) parallel analy-

sis by means of the R package psych (Revelle, 2018) using the function fa.parallel. 

Subsequently, factor analyses were computed using Varimax rotation with the fa func-

tion in the same package. The adequacy of the resulting models was then examined 

by the root mean square of residuals (RMSR), the root mean square error of approxi-

mation (RMSEA) and the Tucker-Lewis Index (TLI), which all showed appropriate val-

ues.  

The regression analyses of factor scores on the global visual complexity rating was 

again implemented with cumulative link mixed models using the clmm function of R 

package ordinal (Christensen, 2018). 

 

 

Within the following, results from both partial studies are reported one after another. 

For each study, descriptive data are depicted first of all, before regression and factor 

analyses results are reported. 

 

Study a) Photographs 

Ratings of visual complexity are visualized in Figure 37 in order to depict the range and 

variety of ratings for the stimuli used. 
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Figure 37. Boxplot of visual complexity ratings for all images used. (The nine images 

on the left, 6150-7950, are figure-ground images, while the nine images on the right, 

5120-7595, are scene images) 

 

Within the following, the relation between potential influencing variables, which had 

been identified within the previous literature research, and global complexity ratings 

are reported. Therefore, cumulative link mixed-model regressions were used. The de-

tailed results of the regression model are presented in the appendix 9.7 in order to 

improve readability due to the large size of the table caused by the ordinal scaling of 

the predicting influencing variables. The ordinal regression model of all potential influ-

encing variables on visual complexity ratings gave a marginal R² of .45 and a condi-

tional R² of .60. Results from the subsequent analysis of variance, showing the statis-

tical significance of all predictors are depicted in Table 3.  
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Table 3. 

Analysis of variance for influencing variables 

Predictors χ² p 

Number of elements χ²(6) = 44.57 p < .0001 

Variety of elements χ²(6) = 43.78 p < .0001 

Density of elements χ²(6) = 35.81 p < .0001 

Variety of colours χ²(6) = 22.89 p < .0001 

Colour contrast χ²(6) = 13.06 p < .05 

Organization χ²(6) = 9.78 p = .13 

Symmetry χ²(6) = 17.89 p < .01 

Visual Balance χ²(6) = 5.43 p = .49 

 

Furthermore, the dimensionality of the various influencing variables was investigated 

within a factor analysis. Therefore, first of all, the Kaiser-Meyer-Olkin (KMO) Measure 

of Sampling Adequacy (MSA) was examined in order to assess of the suitability of the 

data. The overall MSA was 0.81 (‘meritorious’ according to Kaiser, 1974), while the 

MSAs for all single scales were above 0.7, suggesting that the data allow for the use 

of exploratory factor analysis (Hutcheson & Sofroniou, 1999). Additionally, the signifi-

cant Bartlett’s test (p < .001) suggests that the correlation matrix is not an identity ma-

trix and there are relations between the variables. According to the subsequent Horn’s 

parallel analysis, a solution with three factors was selected. This was also in line with 

a visual analysis of the scree plot. The item unintelligibility of elements (“Unter-

scheidbarkeit der Elemente”) was eliminated because it did not contribute to a simple 

factor structure and failed to meet a minimum criterion of a primary factor loading of .4 

or above.  

Finally, a factor analysis with varimax rotation was conducted. Factor loadings are vis-

ualized in Figure 38. Additionally, a table with all factor loadings can be found in the 

appendix 9.8.  
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Figure 38. Factor loadings for three factor solution with Varimax rotation in study 2a) 

 

For this factor structure, the adequacy of the model was evaluated. With a root mean 

square of residuals (RMSR) of 0.01, a root mean square error of approximation 

(RMSEA) of 0.045 and a Tucker-Lewis Index (TLI) of 0.99, the model seems adequate. 

Factor 1 was labelled “quantity” due to the high loadings of the items number of ele-

ments, variety of elements and density of elements. This factor explained a variance 

of 33%. The second factor was labelled “structure” because of high loadings of items 

organization, symmetry and visual balance. This factor accounted for 24% of the total 

variance. The third and last factor was labelled “colour” because primarily the two items 

variety of colours and colour contrast loaded on it. This factor explained 11% of the 

total variance.  

The previously reported factor solution emerged from the relation of hypothesized in-

fluencing variables. In order to investigate the relation between the three factors and 

the global visual complexity ratings, finally an ordinal regression of factor scores on 

complexity ratings was computed. This showed significant positive relations between 

complexity ratings and factors quantity and colour as well as a negative relation with 

the factor structure as depicted in Table 4. The ordinal regression model of factor 
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scores on visual complexity ratings gave a marginal R² of .43 and a conditional R² of 

.58.  

 

Table 4. 

Regression of factor scores on global visual complexity ratings 

Predictors Estimate SE z p 

Factor 1 (Quantity) 1.70 0.09 18.82 p < .0001 

Factor 2 (Structure) -0.63 0.07 -8.68 p < .0001 

Factor 3 (Colour) 0.53 0.08 6.64 p < .0001 

 

Study b) Website Screenshots 

Ratings of visual complexity for the website screenshots used as stimuli are depicted 

in Figure 39 in order to visualize their range and variety. 

 

 

Figure 39. Boxplot of visual complexity ratings for all website screenshots used. The 

label describes the category (news, online-shops or company sites) as well as the 



4. Study 2: Foundations: Factorial structure of visual complexity 

 

118 

complexity level (high complexity – HC, medium complexity - MC or low complexity -

LC) and number of the stimulus. The assignment table can be found in appendix 9.9. 

 

As in study 2a), cumulative link mixed model regressions were calculated in order to 

investigate the relation between ratings of potential influencing variables and the global 

complexity ratings. The detailed results table is presented in the appendix 9.10 in order 

to improve readability. The ordinal regression model of all potential influencing varia-

bles on visual complexity ratings gave a marginal R² of .49 and a conditional R² of .60. 

Results from the subsequent analysis of variance, showing the statistical significance 

of all predictors are depicted in Table 5. 

 

Table 5. 

Analysis of variance for influencing variables 

Predictors χ² p 

Number of elements χ²(6) = 147.48 p < .0001 

Variety of elements χ²(6) = 17.42 p < .01 

Density of elements χ²(6) = 50.48 p < .0001 

Variety of colours χ²(6) = 11.61 p = .07 

Colour contrast χ²(6) = 5.69 p = .46 

Organization χ²(6) = 22.50 p < .001 

Symmetry χ²(6) = 19.06 p < .01 

Visual Balance χ²(6) = 12.19 p = .06 

 

As a next step, the dimensionality of the preselection of all potential eight influencing 

variables was investigated within a factor analysis. Within this partial study, the overall 

MSA was 0.76, while the MSAs for all single scales were 0.66 or above, suggesting 

that the sample is appropriate for performing factor analysis (Hutcheson & Sofroniou, 

1999). Moreover, a significant (p < .001) Bartlett’s test suggests that there are relations 

between the variables and therefore the correlation matrix is not an identity matrix. Like 

in the previous partial study, a solution with three factors was selected according to 
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Horn’s parallel analysis and also in line with a visual analysis of the scree plot. Subse-

quently, the factor analysis with varimax rotation was conducted. Factor loadings are 

visualized in Figure 40. Additionally, a table with all factor loadings can be found in the 

appendix 9.11.  

 

 

Figure 40. Factor loadings for three factor solution with Varimax rotation in study 2b) 

 

With a root mean square of residuals (RMSR) of 0.01, a root mean square error of 

approximation (RMSEA) of 0.058 and a Tucker-Lewis Index (TLI) of 0.98, the model 

seems adequate. 

The resulting factor structure was similar to study 2a). Factor 1 (“quantity”) with high 

loadings of the items number of elements, variety of elements and density of elements, 

explained a variance of 29%. Factor 2 (“structure”) with high loadings of items organi-

zation, symmetry and visual balance, accounted for 27% of the total variance within 

this study. Finally, factor 3 (“colour”) with primary loadings of the items variety of col-

ours and colour contrast, explained 17% of the total variance.  

At last, the relation between factor scores and the global visual complexity was inves-

tigated using an ordinal regression. As in study 2a), this showed a significant positive 

effect of factor 1 (“quantity) and factor 3 (“colour”) as well as a negative effect of factor 



4. Study 2: Foundations: Factorial structure of visual complexity 

 

120 

2 (“structure”) on complexity ratings as depicted in Table 6. The ordinal regression 

model of factor scores on visual complexity ratings gave a marginal R² of .45 and a 

conditional R² of .57. 

 

Table 6. 

Regression of factor scores on global visual complexity ratings 

Predictors Estimate SE z p 

Factor 1 (Quantity) 1.83 0.07 25.94 p < .0001 

Factor 2 (Structure) -0.38 0.06 -6.68 p < .0001 

Factor 3 (Colour) 0.39 0.05 7.56 p < .0001 

 

 

This study was conducted in order to achieve a better understanding of the construct 

visual complexity as well as the impact of different influencing variables. Within two 

partial studies, photographs and website screenshots were used as different domains 

of stimuli as to draw conclusions about the generalizability of the construct. For the 

study, a number of potential influencing variables had been identified within a previous 

literature research. Subjects then rated the presented stimuli with regard to these as 

well as for global visual complexity. The acquired data was analysed first of all with 

regard to the relation between potential influencing variables and the global visual com-

plexity rating. Moreover, the factorial structure of influencing variables was examined 

by means of factor analyses. Finally, the relation between factor scores and global 

visual complexity ratings was investigated within regressions in order to check for the 

significance of the dimensions with regard to visual complexity. 

First of all, results from the regression with potential influencing variables for photo-

graphs revealed that the number of elements, variety of elements, density of elements, 

variety of colours, colour contrast and symmetry were significantly related to the global 

visual complexity rating. On the other hand, both organisation and visual balance did 

not show a significant relation. For website screenshots, number of elements, variety 

of elements and density of elements again showed a significant relation. However, 

colour contrast was apparently not significantly related to the global rating while variety 
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of colours was marginally significant with p = .07. Opposed to study 2a), organisation 

showed a clear relation with visual complexity for website screenshots while symmetry 

was significantly related as in the first partial study. Finally, visual balance gained mar-

ginal significance for website screenshots with p = .06.  

Comparing both partial studies, regressions with potential influencing variables re-

vealed some similarities but also differences. The two colour-related factors variety of 

colours and colour contrast appear to have a larger impact on photographs than on 

website screenshots, while both organisation and visual balance (even though the lat-

ter was only marginally significant) appeared to have a larger effect for website screen-

shots. In hindsight, this may not appear too surprising. It might be argued that structural 

aspects such as the organisation and visual balance are of larger relevance for the 

visual complexity of user interfaces, which is underlined by the evidently negative re-

lation between visual complexity and organisation as reported in appendix 9.10. Within 

less complex websites, items might for example be arranged along a grid following a 

clear structure. This clear structure may however be less present within photographs 

of natural scenes. Here, colour as a natural feature may have a larger impact. Since 

the variety of colours and colour contrast are not primarily design-features within IAPS-

images, these may point towards a higher degree of visual clutter and thus serve as a 

proxy for visual complexity. This is in line for example with the evidently positive rela-

tionship between the variety of colours and visual complexity as reported in appendix 

9.7. 

Within the factor analyses for both partial studies, very similar three-factor solutions 

could be identified for both photographs as well as for website screenshots. Thereby, 

a first “quantity”-factor received high loadings from the items number of elements, va-

riety of elements and density of elements. It is labelled quantity since the number of 

elements loaded highest on this factor within both partial studies. The two other items 

variety and density of elements are obviously strongly related to this. This retrospec-

tively seem very plausible, since it is likely that the density and variety of elements 

increase with the number of elements, although there may be instances where this is 

not the case. The second factor was labelled “structure” due to the high loadings of 

symmetry, organisation and visual balance, which contribute to similar parts. As a post-

hoc explanation for this finding, it can be quoted that symmetry and visual balance are 

strongly related (Hübner & Fillinger, 2016). Moreover, symmetry facilitates perceptual 
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grouping (Wagemans, Elder et al., 2012), which may be hypothesized to apply to visual 

balance as well. Finally, the rating of organisation (or “Anordnung” in German) may 

similarly encompass several aspects that fall beyond the principles of perceptual 

grouping such as proximity or common fate (Wagemans, Elder et al., 2012). However, 

no further instructions or explanations regarding this item were given to the subjects, 

therefore this can only be assumed. Finally, the third factor was labelled “colour” due 

to the high loadings of the items variety of colours and colour contrast. All of the three 

factors are of relevance for the perception of visual complexity as suggested by the 

significant relations between factor scores and global visual complexity ratings.  

The identified factorial structure is mainly in line with previous findings from experi-

mental research literature. Similar to Chipman (1977) and Ichikawa (1985), it empha-

sizes the meaning of both a quantitative as well as a structural factor of visual com-

plexity, while additionally bringing up a third, colour-related factor. This might not have 

played a major role within previous investigations, since these in some cases used 

black and white stimuli, which also applies for both Chipman (1977) and Ichikawa 

(1985). Other researchers classified colour within a quantitative factor (Nadal et al., 

2010) or as related to variety (Miniukovich et al., 2018). Yet, the findings from this study 

clearly suggest colour as an independent factor. 

The factor analysis results clearly contradict those revealed by Nadal et al. (2010). 

They similarly identified three factors, however with a very different structure of factor 

loadings, which makes the interpretation rather difficult. While in their work, unintelligi-

bility of elements and disorganization loaded highly on a second factor, asymmetry 

loaded heavily on a third factor. This is also opposed to experimental findings by Chip-

man (1977) and Ichikawa (1985), that suggest a two-factorial structure with a quanti-

tative and a structural factor. The structural factor is typically found to encompass both 

aspects of symmetry and organisation (Chipman & Mendelson, 1979). Eventually, the 

surprising factor structure identified by Nadal et al. (2010) can in part be related to the 

negative formulation of items (e.g. asymmetry, disorganization, unintelligibility of ele-

ments), which may have confused participants (Colosi, 2005). Depending on the scale 

labelling (for example from “completely disagree” to “completely agree”), this might 

have led to a potential double negation, which may be an aspect that contributed to 

findings of a different factorial structure. In conclusion, the results of this study showed 
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the same factorial structure of visual complexity within the two different stimulus do-

mains photographs and website screenshots, based on the findings from both partial 

studies. This suggests that the construct is universal instead of domain-specific and 

contributes to a better understanding and definition of the construct visual complexity. 

Finally, within regressions of factor scores on global visual complexity ratings, the im-

pact of the three factors on the perception of visual complexity was investigated. As for 

the factor analysis, results were very similar between both partial studies, showing sig-

nificant relations with all three factors. While the “quantity”-factor showed a positive 

relation like the “colour”-factor, a negative relation was found for the “structure”-factor. 

Taken together with the loadings of the factor analysis, this suggests that a higher 

number, variety and density of elements is related to a higher level of visual complexity. 

This also applies for a higher variety of colours and colour contrast. Moreover, a larger 

degree of symmetry, organisation and visual balance goes along with a lower level of 

visual complexity. This again seems plausible and is in line with findings from previous 

research (e.g. Chipman & Mendelson, 1979; Harper, Jay, Michailidou, & Quan, 2013). 

Importantly, the factor scores accounted for a considerable proportion of the total var-

iance of global complexity ratings (58% for photographs and 49% for website screen-

shots). This is especially remarkable when compared to the variance explained by all 

influencing factors (61% and 52%, respectively).  

 

Limitations 

However, there are of course some limitations. First of all, photographs and website 

screenshots were investigated within this study. While these revealed robust results 

with regard to the factorial structure and relations between factor scores and global 

visual complexity ratings, this of course does not mean that similar results will neces-

sarily show for all other stimulus domains. It remains to be investigated if the identified 

factorial structure also holds true in contexts such as driving or for artworks.  

Moreover, all findings within this study are based on questionnaire data and thus pro-

vide a good understanding of subjective perceptions. However, these have not been 

complemented with more “objective” measures such as performance parameters or 

ocular and computational measures yet. These however may complete the picture by 

allowing further insights into cognitive processes associated with the perception of vis-

ual complexity.  
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What remains unclear is the understandability of items. While these were selected 

carefully based on existing research literature, no further explanation was given as part 

of the instruction of this study. This was intentionally avoided, so that subjects were 

not influenced in a certain way. Instead, they should make their unbiased judgements 

for the different items based on their understanding of these. This approach neces-

sarily produces the possibility that subjects interpreted items such as visual balance or 

unintelligibility of items differently. While the latter was excluded from the further anal-

yses because it did not show a primary factor loading of .4 or above, all other items 

however seemed appropriate for factor analysis as suggested by decent MSAs. Since 

these rely on the shared variance of items, this would likely not be the case if items 

were not understandable, which might rather have gone along with either no variance 

or random ratings.  

As a last aspect, the presentation durations of stimuli were not controlled within the 

online surveys. The reason for this was to allow subjects to closely inspect the pictures 

while making their judgements. This however also means that subjects might have 

spent more time observing for example the more complex images. This could then 

have affected the subjective rating. In this regard, Cardaci, Di Gesù, Petrou, and 

Tabacchi (2009) for example showed a relation between visual complexity and per-

ceived presentation duration, while Palumbo, Ogden, Makin, and Bertamini (2014) 

could find no such relation. Further studies may however be helpful in order to address 

the possible relation between visual complexity and perceived presentation duration, 

which might possibly influence subjective ratings. 

 

Outlook 

First of all, consequent works can help to examine the validity of the identified factor 

structure as well as the relevance of influencing variables within other domains. For 

example, it might be investigated if the findings on visual complexity from this study 

can be transferred to the context of driving, where visual complexity can be highly rel-

evant (e.g. Horberry et al., 2006). Despite its effects on lane keeping performance for 

example (Horberry et al., 2006), few investigations have so far more closely addressed 

the role of visual complexity within this context. 



4. Study 2: Foundations: Factorial structure of visual complexity 

 

125 

Moreover, the findings from this study can be further substantiated. Particularly, in or-

der to systematically examine the impact of the identified influencing variables on vis-

ual complexity beyond correlational analyses, experimental research designs could be 

used. Within these, single dimensions could be systematically manipulated in order to 

assess their effects on visual complexity ratings. Moreover, additional measures might 

be integrated in order to allow for further insights and a better understanding of the 

cognitive processes associated with the perception of visual complexity. In particular, 

ocular parameters from eye tracking will likely provide further insights into attentional 

mechanisms. Moreover, computational measures could be used for the investigation 

of relations and thereby, for example in combination with ocular parameters, for the 

prediction of visual complexity ratings. This approach will be implemented within the 

next two studies. 
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While the previous study allowed for a detailed overview of the construct visual com-

plexity as well as its relations with influencing variables, these have rarely been inves-

tigated systematically by means of experimental methodology. Within strongly con-

trolled conditions, this study investigates the effects of manipulations of relevant influ-

encing variables both on subjective ratings as well as various ocular parameters. More-

over, it explores if eye tracking can contribute to the prediction of complexity ratings 

beyond computational measures. 

 

 

According to Standish (2008), both a quantitative as well as a qualitative or structural 

aspect are essential for complexity in general. Findings of researchers such as 

Ichikawa (1985) and Chipman (1977) suggest a similar image of quantitative and struc-

tural aspects specifically with regard to visual complexity (for an extensive overview of 

research literature see also paragraph 2.2.3). The importance of both factors for the 

perception and processing of visual complexity was also supported within the previous 

study. However, their influence on global visual complexity ratings for pictures has 

rarely been directly addressed in experimental investigations before. These however 

allow for causal reasoning, going beyond the analysis of correlational associations. 

Even though Ichikawa's (1985) findings are based on an experimental approach, these 

do not allow for conclusions regarding global complexity judgements, but rather fo-

cussed on the underlying cognitive processes. In this regard, an experimental manip-

ulation of selected influencing factors and the assessment of ratings contribute to a 

consolidation of findings. Based on Chipman (1977) and Ichikawa (1985) as well as 

the findings from study 2, the number of elements as well as symmetry were selected 

as the most important aspects for both the quantitative as well as the structural factor 

of visual complexity, respectively. These accounted for the largest part of variance in 

global visual complexity ratings within the previous study. The third factor “colour” was 

not considered within this study in order to focus on the two other factors and keep the 

experimental design simple. 
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Beyond the general advantages of an experimental study design, this approach fur-

thermore allows for the analysis of various ocular parameters. On the one hand, these 

can significantly contribute to deeper insights into cognitive and especially attentional 

processes during the perception of visual complexity. On the other hand, they can 

complement rating data and thus provide a more comprehensive assessment of visual 

complexity and eventually contribute to the prediction of visual complexity ratings be-

yond computational measures. However, ocular parameters have only rarely been 

used in research on visual complexity to this date (see paragraph 2.5.3). Within the 

few studies incorporating eye tracking methodology, Bradley et al. (2011) and Madan 

et al. (2017) showed a larger number of fixations and longer scanpaths for more com-

plex images. Scanpath length is typically calculated as the sum of all distances be-

tween fixations (Goldberg & Kotval, 1999). However, in research in the field of user 

interface design, the study of eye movements has been common for some time and 

has yielded interesting findings regarding the use of multiple parameters for interface 

evaluations (Goldberg & Kotval, 1999; Holmqvist & Andersson, 2017; Kotval & Gold-

berg, 1998). Some of these parameters may also be informative for the investigation 

of visual complexity in addition to subjective ratings. One of these parameters is spatial 

density, which can be used as an indicator of the extent of visual search in interfaces 

(Goldberg & Kotval, 1999). It serves as a measure for the spatial distribution of gaze 

and is calculated by dividing the interface or stimulus into a grid (for example 10 x 10) 

and assessing the number of cells containing at least one scanpath node divided by 

the total number of grid cells (Goldberg & Kotval, 1999). This is also visualized in Fig-

ure 41. While larger spatial distribution indicates extensive search, smaller values can 

point to a more directed search in interfaces. Generalizing the assessment of the spa-

tial distribution of gaze beyond interfaces, the spatial density can potentially also be 

highly valuable in visual complexity research. Next to the number of fixations and the 

scanpath length, which were shown to relate to visual complexity (Bradley et al., 2011; 

Madan et al., 2017) and can, in the case of scanpath length, reflect search behaviour 

within user interfaces (Goldberg & Kotval, 1999), spatial density can complement this 

picture by integrating the spatial dimension of gaze distribution.  



5. Study 3: Foundations: Influencing variables of visual complexity and ocular parameters 

 

128 

 

Figure 41. Spatial density visualization, taken from Goldberg and Kotval (1999). This 

would be a spatial density of 12/100.  

 

While potentially reflecting effects of experimental manipulations, ocular parameters 

can also add to the prediction of visual complexity ratings beyond computational 

measures. The latter have been used for the prediction of mean complexity ratings 

within previous research (e.g. Gartus & Leder, 2017; Tuch et al., 2012, see also para-

graph 2.4). Beyond these, ocular parameters can extend the possibilities for prediction 

in two ways. First of all, both volitional (top-down) as well as automatic (bottom-up) 

aspects of attention can influence gaze behaviour (see discussion in paragraph 2.5.1 

and 2.5.2), which may also be reflected in ocular parameters. Secondly, parameters 

are calculated on trial-level, thus for each picture and subject individually. As opposed 

to computational measures, which are picture-specific, this allows the consideration of 

intraindividual differences. This variance between persons, which may relate to differ-

ent experience, expectations, motivation or personality, might also affect gaze patterns 

as well as pupillometry. Thus, a higher level of detail can be achieved within the pre-

diction. Therefore, the integration of ocular parameters appears beneficial in many re-

spects.  

In conclusion, within this study, I primarily used an experimental approach for the in-

vestigation of the most relevant influencing variables of visual complexity. The number 

of elements and symmetry were therefore selected, representing both the quantitative 

and the structural factor of visual complexity. In order to exclude possibilities of con-

founding as far as possible, abstract shape patterns were used as stimuli. These of-

fered the possibility of controlling the experimental factors without side effects of other 

aspects such as previous experience or individual preference. With this approach, the 
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effects on both visual complexity ratings as well as ocular parameters are investigated. 

Moreover, computational as well as ocular parameters are used for the prediction of 

complexity ratings. In the following, research questions according to these goals are 

specified. 

 

 

1. What are the effects of manipulations of quantitative (specifically the number of 

elements) as well as structural (specifically symmetry) aspects in stimuli on vis-

ual complexity ratings? 

2. What are the effects of manipulations of quantitative (specifically the number of 

elements) as well as structural (specifically symmetry) aspects in stimuli on the 

ocular parameters number of fixations, scanpath length and spatial density? 

3. How well can mean and single visual complexity ratings be predicted from com-

putational and ocular parameters? 

 

 

For the investigation of these research questions, a laboratory eye tracking experiment 

was conducted, which is described in detail in the following. 

 

 

33 persons participated within the experiment, among them 20 male (60.6%) and 13 

(39.4%) females with a mean age of 24.3 years (SD = 3.7). 27 of the participants 

(81.8%) were students, while the other 6 (18.2%) were employed. The study lasted 

approximately 30 minutes and participation was refunded with 5€. All participants had 

normal or corrected-to-normal vision.  

 

 

In order to study the effects of quantity and structure as principle visual complexity 

factors, a repeated-measures 4 (number of elements) x 3 (symmetry) x 3 (type of ele-
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ment) experimental design was used. Within this, the first two factors were of substan-

tial interest. The factor number of elements had four levels with either one, five, nine 

or 13 elements in a picture. Symmetry was adapted using the method suggested by 

Bauerly and Liu (2008) where symmetry is calculated as the similarity of pixels on op-

posite sides of an axis of reflection. Bauerly and Liu's (2008) original formula was 

adapted so that symmetries of white pixels were not considered in the calculation be-

cause of the white background. The mean value of horizontal, vertical and both diago-

nal axes served as overall symmetry measure. The stimulus pictures were adjusted in 

order to match one of the three levels no symmetry (s = 0), medium symmetry (0.35 < 

s < 0.65) or perfect symmetry (s = 1). Finally, as type of element, either dots, squares 

or crosses were used. This factor was included to increase variation within stimuli alt-

hough there was no theory-based hypothesis concerning this factor. This also holds 

true for the two different arrangements of elements that were used for each factor level.  

An overview over the experimental design is given in Figure 42. 

 

Independent variables: 

Number of elements Symmetry Type of element 

• 1 element 

• 5 elements 

• 9 elements 

• 13 elements 

• no symmetry  

• medium symmetry 

• perfect symmetry 

• dot 

• square 

• cross 

 

 

 

Dependent variables: 

• Subjective ratings of visual complexity 

• Ocular parameters: Number of fixations, scanpath length, spatial density 

 

Figure 42. Experimental design for study 3 
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Participants were first of all instructed that they could abort the experiment at any time 

without consequences as well as that data was stored anonymously and used for re-

search purposes before they gave written informed consent. The experiment then 

started with instructions for the participants, which explained that their task would be 

to carefully watch images with shape patterns before giving ratings for each image 

directly after its presentation. After the subsequent calibration of the eye tracker, the 

experimental procedure was started using OpenSesame 3.2.6 (Mathôt, Schreij, & 

Theeuwes, 2012). First of all, participants could get accustomed with the experimental 

procedure with three practice trials containing stimuli similar to the experimental im-

ages. The following main part of the experiment comprised the randomized presenta-

tion of 72 stimulus pictures, which are described in detail within paragraph 5.3.3. Each 

picture was presented for 6000ms, preceded by a fixation cross and followed by a short 

questionnaire, which will be described in paragraph 5.3.3. All ratings were self-paced. 

After 36 trials, there was a break that subjects could use to move or relax.  
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Stimuli 

For the experiment, a stimulus set consisting of 72 black and white images with shape 

patterns was created according to the experimental design3. Thus, each combination 

of the factor levels number of elements, symmetry and type of element is represented 

by two images with different arrangements of elements. The images were exported as 

GIF-files with a resolution of 1024 x 1024 pixels. Examples of pictures are shown in 

Figure 43. 

 

 

 

Figure 43. Two examples for stimulus images in study 3; left side: nine elements, per-

fect symmetry, dots; right side: 13 elements, no symmetry, square. 

 

For all stimuli, the range of computational measures described in paragraph 2.4 was 

calculated except colour-related measures, since only black and white stimuli were 

used. This resulted in a 150 measures and combinations of measures in total.  

 
Questionnaire 

Within the questionnaire following each experimental trial, participants were asked to 

rate the visual complexity as well as the liking of the picture in 7-point scales ranging 

from 1 = “very low” to 7 = “very high”. 

 

 

3 Stimulus creation was accomplished in close collaboration with master student Sibylle de Vandière 
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Apparatus 

All stimuli were displayed on a 24-inch LCD monitor (LG 24MB56HQ; display dimen-

sion = 52.69 cm × 29.64 cm; resolution = 1920 × 1080 pixels; refresh rate = 60 Hz). 

The eye-to-screen distance amounted to approximately 98 cm. Picture size was 1024 

× 1024 pixels, thus corresponding to a visual angle of 16.3° × 16.3°. 

For the assessment of eye movements, a video-based SR Research Eyelink 1000 Plus 

eye tracker was used. Monocular eye position data of the dominant eye were sampled 

at 2000 Hz. It was used with a desktop mount for screen-based eye tracking, while the 

participants’ heads were stabilized in a chin-rest in order to achieve a higher accuracy. 

After the detection of blinks, saccades and fixations were detected within the software 

Data Viewer (SR Research, 2019), using the standard configuration that classifies an 

eye movement as a saccade when it exceeds 30°/s velocity or 8000°/s² acceleration. 

The time intervals between saccades were defined as fixations. From the assessed 

data, all ocular parameters described in paragraph 2.5.3 were calculated for each trial, 

resulting in 46 measures in total. 

 

 

Data was analysed in the software R (R Core Team, 2017). For the statistical analysis 

of ocular parameters, linear mixed effects models were fitted within the R-package 

lme4 (Bates et al., 2015). For the statistical analysis of visual complexity ratings from 

a seven point Likert scale, cumulative link mixed models implemented in the R-pack-

age ordinal (Christensen, 2018) were used. In both cases, number of elements and 

symmetry were entered as fixed effects while as random intercepts for subjects, stimuli 

and object types were used. Factor level “1 element” was treated as a control condition 

and excluded from statistical analyses because symmetry manipulations within this 

condition with one element were not assumed to have actual influence on their per-

ception. All ratings are however depicted within the figures for the sake of complete-

ness. Main and interaction effects of the factors were analysed within likelihood ratio 

test using the chi square distribution by means of the Anova function from package car 

(Fox & Weisberg, 2019) as well as post-hoc tests in package emmeans (Lenth, 2019). 

Arguments for the use of mixed effects models are discussed in detail by Judd et al. 

(2012) and within paragraph 3.3.4. Result plots were created with the help of the R-
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package ggplot2 (Wickham, 2016). All error bars within the plots depict the 95% con-

fidence interval. The procedure for the prediction of mean and single complexity ratings 

is described in detail within the subsequent results to improve readability. 

 

 

Within the following, the results of this study are reported. First of all, the effects of the 

described experimental design on visual complexity ratings as well as three ocular pa-

rameters are investigated. This allows for reliable causal conclusions regarding the 

impact of selected influencing variables on the perception of visual complexity.  

Subsequently, prediction models for mean and single visual complexity ratings are ex-

amined. These rely on both computational and ocular parameters. 

 

 

First of all, the number of elements in a picture had a significant effect on the rating of 

visual complexity, χ²(2) = 120.55, p < .0001. Furthermore, the factor symmetry also 

significantly affected the rating of visual complexity, χ²(2) = 96.89, p < .0001. Finally, 

the interaction between number of elements and symmetry also affected the rating of 

visual complexity, χ²(4) = 10.14, p = <.05. Due to the ordinal type of interaction, this 

does not restrict the interpretability of the two main effects.  

The marginal R² was .34 and the conditional R² was .56 for the underlying regression 

model, which is reported in more detail within appendix 9.12. Rating scores are visu-

alized in Figure 44. 
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Figure 44. Subjective ratings of visual complexity in study 3 

 

 

Number of Fixations 

First of all, the number of elements in a picture had a significant effect on the number 

of fixations, χ²(2) = 126.80, p < .0001. Tukey post hoc tests showed that the number 

of fixations was higher for pictures with 13 elements compared to pictures with nine, β 

= 1.24, SE = 0.23, p < .0001, and five elements, β = 2.53, SE = 0.23, p < .0001. Simi-

larly, the number of fixations was higher for pictures with nine elements compared to 

pictures with five elements, β = 1.29, SE = 0.23, p < .0001. 

Moreover, the factor symmetry had a significant effect on the number of fixations, χ²(2) 

= 41.39, p < .0001. Tukey post hoc tests revealed that the number of fixations was 

higher for asymmetrical compared to symmetrical pictures, β = 1.37, SE = 0.23, p < 

.0001, while the difference between asymmetrical pictures and those with medium 

symmetry was not significant, β = 0.29, SE = 0.23, p = .42. Furthermore, the number 

of fixations was higher for pictures with medium symmetry than for symmetrical pic-

tures, β = 1.08, SE = 0.23, p < .001.  
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The interaction between the number of elements and symmetry had no significant ef-

fect on the number of fixations, χ²(4) = 7.43, p = .12. Values for number of fixations are 

visualized in Figure 45. While the marginal R² was .05, the conditional R² was .56 for 

the underlying regression model. More information about this can be found within the 

appendix 9.13. 

 

 

Figure 45. Number of Fixations in study 3 

 

Scanpath Length 

For the preprocessing of scanpath length data, trials with a scanpath length of zero 

pixels were primarily excluded from further analyses. Subsequently, the median abso-

lute deviation (MAD), which is a robust approach for dealing with outliers (Leys et al., 

2013), was used with a moderately conservative criterion of 2.5 to exclude remaining 

outliers. Within the linear mixed effects models, random intercepts were included for 

subjects and trials as for the other measures. However, type of object did not account 

for any variance and was therefore not included as a random intercept in order to avoid 

a singular fit of the model.  

Results revealed that the number of elements, χ²(2) = 80.19, p < .0001, symmetry, 

χ²(2) = 59.86, p < .0001, and the interaction of the two factors, χ²(4) = 88.66, p < .0001, 
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had a significant effect on the scanpath length in pixels. Scanpath lengths are depicted 

in Figure 46. For the underlying regression model, the marginal R² was .19, while the 

conditional R² was .55. More information about this can be found within the appendix 

9.14. 

 

 

Figure 46. Scanpath length (in pixel) in study 3 

 

Spatial Density 

For the measure of spatial density, the number of elements, χ²(2) = 280.35, p < .0001, 

and symmetry, χ²(2) = 23.22, p < .0001, as well as the interaction of the two factors, 

χ²(4) = 16.42, p < .001, had a significant effect on the spatial density. The scores are 

illustrated in Figure 47. The marginal R² was .20 and the conditional R² was .53 for the 

underlying regression model. More information about this can be found within the ap-

pendix 9.15. 
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Figure 47. Spatial density (in percent) in study 3 

 

 

Finally, both computational and ocular parameters were used for the prediction of vis-

ual complexity ratings. In the first step, the mean visual complexity ratings for each 

picture were addressed by means of a least absolute shrinkage and selection operator 

(LASSO) regression (Tibshirani, 1996). This is a form of a regularized regression that 

can be used to assess the combined effect of many potentially correlated variables. 

Within the regularization process, coefficients of the regression variables are penal-

ized. Since a number of these are shrinked to zero, this allows for variable selection. 

The tuning parameter λ thereby controls the strength of the penalty. It is well suited for 

the application in cases with a relatively small number of observations and a large 

number of predictors and allows for good model interpretability while reducing overfit-

ting.  

Within the analysis, both computational (150) and ocular (46) measures served as po-

tential predictors, resulting in a total number of 196 variables. First of all, mean visual 

complexity ratings as well as the mean of all ocular parameters were calculated for 
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each stimulus picture across all subjects, resulting in 72 values each. Since the com-

putational parameters were analysed for each image, these are available on image-

level per se and not on the trial-level. The computational measures are described in 

detail within paragraph 2.4, while the ocular measures are depicted in paragraph 2.5.3. 

Subsequently, one predictor with near zero variation was excluded, while the remain-

ing predictors were centered and scaled. While the latter is necessary for LASSO re-

gressions, both help to prevent scaling problems and improve interpretability. After 

that, the dataset was randomly split into an 80% training and 20% test set. This was 

done in order to compare prediction errors between both with regard to overfitting. 

Consequently, a cross-validated LASSO regression model was fit with the help of the 

R-package glmnet (Friedman, Hastie, & Tibshirani, 2010). The penalty parameter λ 

was chosen based on the criterion of the mean-squared error (MSE) according to the 

“tolerance” model for a more parsimonious fit based on 100 penalty values (see Figure 

48).  

 

 

Figure 48. Mean-Squared Error (MSE) in relation to λ from lasso regression in  

study 3. The two dotted lines represent the optimal (left) and tolerance (right) fit lambda 

 

24 predictors were selected, which are listed within Table 7. Of these, the upper five 

variables denote ocular parameters as described in more detail within paragraph 2.5.3. 

The others are computational parameters, among these combinations of compression 

(e.g. GIF, JPEG; TIFF) and edge (e.g. Perimeter, Canny) measures, including both 
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mean and standard deviations of the pixel distribution within an image. Other selected 

variables stem from decomposition measures such as the number of quads of different 

sizes, or comprise measures for symmetry, visual balance and homogeneity. Since the 

examination of statistical significance of LASSO predictors is based on strong assump-

tions (Lockhart, Taylor, Tibshirani, & Tibshirani, 2014), which are not testable when the 

number of predictors exceeds the number of observations as argued by Wasserman 

(2013), only the coefficient estimates are reported here. 

 

Table 7. 

Selected variables from lasso regression with coefficients for prediction of mean com-

plexity ratings in study 3 

Variable  Coefficient estimate 

(Intercept)  4.40 

Number of Blinks  -0.076 

Number of Saccades  0.12 

Average Drift  -0.027 

Coefficient K  -0.0050 

ICA drop  0.0098 

TIFF filesize  0.22 

Ratio TIFF filesize to image pixels  0.000035 

Mean Edge Canny GIF  0.029 

Mean Edge Perimeter GIF  0.000042 

Mean Edge Perimeter TIFF  0.000000000000000010 

Mean Edge Perimeter PNG  0.000000000000000020 

SD Edge Canny GIF  0.061 

SD Edge Canny JPEG  0.011 

SD Edge Canny TIFF  0.00018 

Mean x SD Edge Perimeter GIF  0.17 

Mean x SD Edge Perimeter TIFF  0.0040 

Mean x SD Edge Perimeter PNG  0.0000000000000038 

Symmetry diagonal top left bottom right (\)  -0.20 

Quads 1x1  0.0051 

Quads 32x32  0.098 

Quads 128x128  0.060 

APB Horizontal Inner Outer  0.085 

APB Vertical Inner Outer  -0.031 

Homogeneity  0.62 
 

Note. Due to the large differences in size, I offended the suggestions of the APA to report two decimal 

places but instead decided to report two valid places for each coefficient.  
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The correlations between the 24 predictors as well as the criterion visual complexity 

(VC) rating in the top line are visualized in Figure 49. 

 

Figure 49. Correlations of selected predictors for mean complexity rating in study 3 

 

The regression model fit on the training data gave an R² of .99 and a mean-squared 

error (MSE) of 0.062. The model was then used for the prediction of test data. A plot 

of the actual mean visual complexity ratings versus the according predictions from the 

regression model is depicted in Figure 50. The R² within the test data was .97 and the 

MSE 0.084. 
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Figure 50. True versus predicted mean visual complexity ratings of the test data in 

study 3. 

 

In a next step, prediction models for individual visual complexity ratings were investi-

gated. The combination of prerequisites within the data could hardly be met with well 

established “standard” methods. The latter included ordinal scaling of the criterion vis-

ual complexity rating due to the seven-point Likert scale that was used, a clustered 

data structure both by subject and by stimulus image as well as a large number of 

potential predictors. Therefore, three different methodologies were evaluated within an 

explorative approach. 

 

As a first step, the variables selected previously within the LASSO regression model 

of mean visual complexity ratings were used within a mixed-effects ordinal regression 

with a random intercept for subjects. It could be hypothesized that due to their impact 

on mean visual complexity ratings, they should also account for considerable variance 

within single ratings.  
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First of all, from the 24 predictors selected within the LASSO regression model, the 

variables Ratio TIFF filesize to image pixels, Mean Edge Perimeter TIFF, Mean Edge 

Perimeter PNG, SD Edge Canny JPEG, SD Edge Canny TIFF, Mean x SD Edge Pe-

rimeter TIFF, Mean x SD Edge Perimeter PNG were removed because of collinearity.  

The remaining 17 variables were than included within the ordinal mixed-effects regres-

sion model, for which again a set of training data consisting of 80% of the total obser-

vations were used. The model was implemented with the help of the function olmm 

from R-package vcrpart (Bürgin & Ritschard, 2017), with a random intercept for sub-

jects. Within the training data, this achieved a correct classification rate of .47. Detailed 

information concerning the regression model can be found within appendix 9.16.  

The regression model was then used for the prediction of single visual complexity rat-

ings within the previously unknown test data. When the subject vector is taken into 

account, a correction classification rate of .45 could be achieved. If this is ignored and 

the population-averaged response probabilities are considered instead, the correct 

classification rate is .39. Confusion matrices for training and test data, the latter 

both with subject vector considered and ignored, are visualized within Figure 51. 

Next to the correct classification rate, which indicates the percentage at which the pre-

dicted category is the same as the actual, additional evaluation metrics that also take 

into account the distance between categories may be of particular interest given the 

ordinal scaling of the visual complexity rating. In this regard, Gaudette and Japkowicz 

(2009) suggested to use the mean squared error (MSE) or the mean adjusted error 

(MAE), even though these are actually intended for continuous data. Baccianella, 

Esuli, and Sebastiani (2009) however showed that both these measures may perform 

poorly with imbalanced categories and suggest to use an adapted, macroaveraged 

version of the MAE, which is calculated for each category and then averaged, to that 

each category is given equal weight. All evaluation measures for both training and test 

data are reported in Table 8.  
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Figure 51. Confusion matrices of ordinal mixed regression for single visual complexity 

ratings within training data (top) and test data with subject vector considered (bottom 

left) and ignored (bottom right) in study 3 

 

Within the next step, a random forest approach was used for the classification of single 

visual complexity ratings. Random forests (Breiman, 2001) are a popular tree-based 

technique, which is based on fitting large collections of de-correlated regression or 

classification trees to bootstrap-sampled versions of data and subsequently averaging 

the results (Hastie, Tibshirani, & Friedman, 2017). At each step, a random selection of 

predictor variables is considered. Classical random forests however do not offer the 

possibility to take into account a clustered data structure or ordinal scaling of data.  
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Random forests including all available predictor variables were modelled with the help 

of the R-package ranger (Wright & Ziegler, 2017). In order to improve prediction per-

formance of the final random forest model, the parameters number of variables ran-

domly sampled as candidates at each split (mtry), minimum node size and sample size 

were tuned within a grid search. The number of trees was set to 500. This procedure 

provided the lowest out-of-bag error of .58 and, hence, a correct classification rate of 

.42 for an mtry of 14, a minimum node size of 4 and a sample size of .50. The variable 

importance values for the top 30 variables in the final model are visualized within Figure 

52. Variable importance describes the accumulated improvement of the split-criterion 

for the split variables (Hastie et al., 2017). 

The final random forest allowed for a correct classification rate of .38 within the test 

data. All evaluation measures for both training and test data are reported in Table 8. 

Confusion matrices are visualized in Figure 53. 

 

 

Figure 52. Variable importance values in the final random forest model for the predic-

tion of single visual complexity ratings in study 3 
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Figure 53. Confusion matrices of random forest for single visual complexity ratings 

within training (left) and test data (right) in study 3 

 

Finally, an approach of variable selection by means of the L1-penalized Lasso estima-

tion for generalized linear mixed models was used as implemented within the R-pack-

age glmmLasso (Groll, 2018; Groll & Tutz, 2014). While providing the functionality of 

Lasso variable selection, this approach can also take into account the clustered data 

structure with random effects for subjects and stimuli and offers cumulative link models 

for ordinal responses, which are suitable for the seven-point Likert scale ratings of 

visual complexity. 

After determining the optimal penalty parameter λ based on the Bayesian information 

criterion (BIC) (Schwarz, 1978), the final model was built based on the optimal pa-

rameters. Thereby, three different approaches were taken. The first model encom-

passed two random effects for both subjects and stimuli and achieved a correct 

classification rate of .47. Within this, the variable Homogeneity was selected. De-

tails regarding the regression model are reported in appendix 9.17. Within the test 

data, this model showed a correct classification rate of .46. A detailed overview of 

all evaluation measures for both training and test data is reported in Table 8. Confusion 

matrices are visualized in Figure 54. 
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Figure 54. Confusion matrices of glmmLasso with random effects for subjects and 

stimuli for single visual complexity ratings within training (left) and test data (right) in 

study 3 

 

The second glmmLasso model encompassed one random effect for subjects, in 

order to investigate the prediction performance when stimulus information are not 

considered or available. This achieved a correct classification rate of .44. Within 

this, the variables TIFF and Homogeneity were selected. Detailed information re-

garding the model and coefficients are reported within appendix 9.18. Within the 

test data, this model gave a correct classification rate of .42. A detailed overview of 

all evaluation measures for both training and test data is reported in Table 8. Confusion 

matrices are visualized in Figure 55. 

 

Finally, the third glmmLasso model encompassed no random effects in order to in-

vestigate the prediction performance without considering any additional information 

apart from the automated and ocular measures. This achieved a correct classifica-

tion rate of .42 with variable Homogeneity selected. Detailed information concern-

ing the final model can be found in appendix 9.19. Within the test data, this model 

gave a correct classification rate of .37. A detailed overview of all evaluation 

measures for both training and test data is reported in Table 8. Confusion matrices are 

visualized in Figure 56. 
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Figure 55. Confusion matrices of glmmLasso with a random effect for subjects for sin-

gle visual complexity ratings within training (left) and test data (right) in study 3 

 

 

Figure 56. Confusion matrices of glmmLasso without random effects for single visual 

complexity ratings within training (left) and test data (right) in study 3 
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Table 8. 

Evaluation measures of different models for the prediction of single visual complexity 

ratings for both training and test data within study 3 

Method Corr. 

Class 

MAE MSE MAE 

M 

MAE M categorywise 

     Category 

     1 2 3 4 5 6 7 

Training data           

olmm  

train 
.47 0.68 1.05 0.71 0.22 0.83 0.86 0.97 0.68 0.64 0.79 

RF  

train 
.42 0.89 1.71 0.94 0.19 1.17 1.21 1.03 0.88 0.92 1.20 

glmmLasso 

train RE Sub Stim 
.47 0.68 1.03 0.72 0.21 0.86 0.83 0.94 0.60 0.67 0.94 

glmmLasso 

train RE Sub 
.44 0.76 1.23 0.81 0.25 0.94 0.99 1.01 0.60 0.79 1.05 

glmmLasso 

train no RE 
.42 0.90 1.76 0.99 0.18 1.17 1.41 1.21 0.52 0.96 1.49 

Test data            

olmm  

test RE Sub 
.45 0.73 1.14 0.76 0.26 0.88 0.95 0.99 0.55 0.70 1.00 

olmm  

test averaged 
.39 0.91 1.68 0.94 0.21 1.13 1.27 1.27 0.79 0.77 1.17 

RF  

test 
.38 0.97 1.95 1.03 0.20 1.26 1.25 1.16 0.92 0.98 1.44 

glmmLasso 

test RE Sub Stim 
.46 0.71 1.10 0.76 0.25 0.91 0.81 0.96 0.49 0.73 1.17 

glmmLasso 

test RE Sub  
.42 0.76 1.20 0.81 0.26 0.98 0.90 0.99 0.57 0.78 1.17 

glmmLasso 

test no RE 
.37 1.00 1.97 1.07 0.22 1.24 1.42 1.23 0.73 1.07 1.56 

 

Note. Corr. Class: Correct classification rate, MAE: mean absolute error, MSE: mean standard error, 
MAE M: MAE macroaveraged according to Baccianella et al. (2009), MAE M categorywise: MAE for the re-
sponse levels of the seven-point Likert scale separately, RE: random effect, Sub: Subject, Stim: Stimu-
lus, the methods and overall measures with the best performance in both training and test data are 
highlighted in bold   
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Within this study, the effects of two fundamental factors of visual complexity, quantity 

and structure, were investigated within a laboratory eye tracking experiment. Thereby, 

the correlational findings from study 2 regarding ratings of visual complexity should 

firstly be experimentally substantiated if possible. Moreover, findings from a selection 

of ocular parameters can reflect attentional aspects and might thus allow for insights 

regarding the cognitive processing of visual complexity. Finally, ocular and computa-

tional measures are used to predict both mean and single visual complexity ratings. 

 

Conclusion 

The results from this study showed that both the quantitative aspect number of ele-

ments as well as the structural variable symmetry significantly affected the visual com-

plexity ratings. While stimuli were rated as more complex when they contained more 

elements, a higher level of symmetry went along with lower ratings of visual complexity. 

This is in line with both correlational findings from study 2 and previous research liter-

ature, where both a quantitative as well as a qualitative dimension were seen as crucial 

for the perception of visual complexity (Chipman, 1977; Gartus & Leder, 2017; 

Ichikawa, 1985). Next to the two main effects, an ordinal interaction effect of both fac-

tors was found. This might be related to a different impact of symmetry on complexity 

ratings for larger numbers of elements. Pictures with only one element served as a 

control condition and were excluded from the statistical analyses. Within these, the 

central image axes used for the definition of symmetry categories may have been of 

less relevance for the subjects’ perception. Instead, they might have largely used the 

centre of the single object as a reference point for symmetry, resulting in a rather high 

level of ‘perceived’ symmetry in contrast to the computational one. Therefore, the per-

ceived symmetry level may have differed from the computed one.  

 

Ocular parameters 

Next to subjective ratings, it could be shown that the number of elements as well as 

symmetry also affected the selected ocular parameters. With regard to the number of 

fixations, main effects for both factors were revealed, where a larger number of ele-
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ments and a lower degree of symmetry led to a higher number of fixations. This corre-

sponds to findings by Bradley et al. (2011) and Madan et al. (2017), who similarly iden-

tified a positive relation between visual complexity and the number of fixations. 

For scanpath length, an interaction effect of both experimental factors was identified. 

On the one hand, scanpath length was larger for pictures with medium symmetry com-

pared to symmetrical pictures and increased with a growing number of elements for 

these two symmetry levels. On the other hand, scanpath length for asymmetrical pic-

tures was largest for pictures with five elements and then decreased with a growing 

number of elements. This may point towards a switch of gaze behaviour between very 

simple, asymmetrical and thus unstructured and more complex images. Participants 

may have used a rather sequential gaze behaviour for most pictures, where they suc-

cessively gazed at various objects within the picture. This is also described within 

Treisman and Gelade's (1980) feature integration theory, which supposes that focal 

attention, becoming manifest in the serial scanning of successive locations, is neces-

sary for the integration of features for perception. The larger number of elements and 

decrease in symmetry would then lead to an increased scanpath length, which could 

also be observed within the data. For asymmetrical pictures with many elements how-

ever, this gaze behaviour might have been associated with too much effort, also with 

regard to the limited presentation duration of 6000ms. Instead, they may have applied 

a holistic gaze behaviour for these rather complex pictures, which may have resulted 

in decreasing scanpath lengths.  

This may be related to what Oliva (2005) describes as the “gist of a scene”, meaning 

that observers can get a grasp of a scene including information about basic features 

within very short time. This is underlined by Potter (1976), who found that an average 

scene can be understood within as little as 100ms. This “gist” refers not only to low-

level features of an image, but includes both perceptual and conceptual levels accord-

ing to her. This aspect is also stressed within Torralba, Oliva, Castelhano, and Hen-

derson's (2006) contextual guidance model, which suggests that a holistic representa-

tion of a scene can be built quickly enough to guide the subsequent deployment of 

attention as well as the eye movements. Another possible explanation for this effect is 

related to the concept of perceptual grouping (Wagemans, Elder et al., 2012) and the 

role of symmetry within it. Perceptual grouping describes the fact that “observers per-

ceive some elements of the visual field as ‘going together’ more strongly than others” 
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(Wagemans, Elder et al., 2012, p. 1178), with symmetry as an important factor that 

facilitates the grouping of elements. In this regard, results from a strongly controlled 

experiment by Machilsen, Pauwels, and Wagemans (2009) empirically underline the 

relevance of mirror symmetry for perceptual grouping. A last possible aspect that might 

have contributed to the emergence of this rather unexpected result pattern is related 

to aspects of short-term memory, namely Miller's (1956) magical number seven plus 

or minus two. This is the number of information chunks that according to him can be 

held within the short-term memory and thus characterises the memory span within a 

fixed-capacity model. Although more recent research suggests a lower number of 

about four elements or chunks (Alvarez & Cavanagh, 2004; Luck & Vogel, 1997), the 

visual information load of objects was also shown to affect capacity beyond to the sole 

number of elements (Alvarez & Cavanagh, 2004). Even though the experimental task 

did not explicitly require subjects to memorize items, memory capacity might still have 

influenced gaze behaviour of participants. In this context, memory capacities for limited 

number of objects, taken together with the impeded perceptual grouping for asymmet-

rical stimuli or a rather holistic processing of the scene, may explain the decreasing 

scanpath length for asymmetrical pictures with more than five objects. 

Finally, for the measure spatial density, a similar number of elements by symmetry 

interaction effect was found. As for scanpath length, spatial density was larger for pic-

tures with medium symmetry compared to perfectly symmetrical pictures and in-

creased with a growing number of elements. For asymmetrical pictures however, spa-

tial density increased with growing number of elements until a maximum for nine ele-

ments, but decreased for 13 elements. Similar possible explanations for this result pat-

tern can be proposed as for the scanpath length. It remains however unclear, why the 

peak for spatial density was at asymmetrical pictures with nine compared to five ele-

ments for scanpath length. 

 

Prediction 

With the help of the Lasso regression model, very accurate predictions of mean visual 

complexity ratings for the stimulus images could be achieved with an R² of close to 1 

and very small MSE values. Within the Lasso feature selection, both automated as well 

as ocular parameters were selected, which might suggest that both relate to the per-

ception and rating of visual complexity and may thus be helpful for the prediction of 
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visual complexity ratings. A large coefficient was particularly found for Homogeneity, a 

measure of visual balance established by Hübner and Fillinger (2016) in order to as-

sess how scattered the elements within a picture are. Further large coefficients in-

cluded compression measures such as TIFF filesize, combinations of edge detection 

and compression measures such as Mean x SD Edge Perimeter GIF as well as struc-

tural measures such as diagonal symmetry. In comparison to previous research works 

such as Gartus and Leder's (2017) studies, in which a maximum of explained variance 

of .82 within a linear regression model and .89 within a random forest could be 

achieved, the excellent prediction accuracy within this study may appear surprising, 

particularly given the smaller sample size and less stimuli compared to Gartus and 

Leder (2017). One reason for the better performance may consist in the stimulus ma-

terial that was used. While the number of the number of elements, symmetry and type 

of elements were systematically varied according to the experimental design, the pic-

tures of black and white shape patterns that were used might be described as generally 

less complex and diverse compared to the two stimulus sets by Gartus and Leder 

(2017). It might be hypothesized that larger levels of diversity within the stimuli may go 

along with a larger variety of influences on the complexity ratings, which cannot com-

plete be accounted for with the help of computational measures. On the other hand, 

the implemented computational and ocular measures may of course also play an im-

portant role with regard to the accuracy of the model. While firstly, Hübner and Fill-

inger's (2016) Homogeneity, which was strongly related to the visual complexity ratings 

within this study, was not included by Gartus and Leder (2017), the integration of ocular 

parameters may also have contributed to the improved prediction performance. 

With regard to the models for single visual complexity ratings, three rather explorative 

approaches were taken by means of different methods. This was due to the relatively 

complex requirements imposed by the clustered data structure, ordinal scaling of the 

criterion and the large number of potential predictors. These can hardly be perfectly 

met using well-established standard methods. First of all, the variables selected within 

the previous Lasso regression model for mean visual complexity ratings were included 

within an ordinal mixed model with a random intercept for subjects. Secondly, a ran-

dom forest approach for classification was used. While this does not consider the or-

dinal structure and does not allow including random effects, random forests often offer 
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good performance (e.g. Gartus & Leder, 2017; Hastie et al., 2017) and can also con-

sider complex non-linear relationships. Finally, generalized linear mixed-models with 

Lasso feature selection (glmmLasso) were implemented. These meet the requirements 

of ordinal scaling of the criterion, clustered data and feature selection very well. 

The results showed similar correct classification accuracies for ordinal mixed-models 

with a random intercept for subjects and glmmLasso with random effects for both sub-

jects and stimuli of between 45 and 47 percent and an MAEM of 0.71 and 0.76. Since 

the evaluation measures are similar between training and test data, overfitting seems 

to play only a minor role within these. Remarkable, glmmLasso yields good perfor-

mance with only one (Homogeneity) or two variables (TIFF filesize and Homogeneity) 

selected, with 46% of correct classifications for test data and an MAEM of 0.76 when 

both random effects for subjects and stimuli are included and 42% and an MAEM of 

0.80 when only subjects are considered, respectively. Interestingly, no ocular param-

eters were selected by the glmmLasso method within this study. This may appear sur-

prising at first, since the computational measures TIFF filesize and Homogeneity do 

not vary between trials but only between pictures. It thus might have been expected 

that for the accurate prediction of single ratings, ocular parameters should have proven 

as essential. While ocular parameters were selected within the Lasso model of mean 

visual complexity ratings and are therefore considered within the ordinal mixed model 

and additionally showed large variable importances within the random forest, these 

seemed to play no important role within the glmmLasso regression. Two possible ex-

planations for this could be seen. First of all, it might be argued that there were only 

minor differences in visual complexity ratings between subjects within this study, so 

that image-specific computational measures alone were already sufficient for the pre-

diction of single visual complexity ratings. This is however not in line with the findings 

of decreasing prediction accuracies, when subject information is not considered within 

the models. These much rather suggest that particularly the included random effects 

for subjects can account for interindividual differences in the rating of visual complexity.  

In this context, the percentages of correct classification below 50% mean that the ma-

jority of ratings were not classified in the correct rating category. This may appear dis-

appointing at first, suggesting that ratings cannot be adequately be predicted from the 

available data. Within ordinal data, the correct classification rate alone however does 
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not show the whole picture. MAE evaluation measures below one for all methods ex-

cept for the random forest and glmmLasso without any random effect indicate that 

rating predictions on average are not further than one category level apart from the 

actual rating, with much smaller errors particularly for category one, which encom-

passed a large proportion of all ratings. This is also illustrated within the confusion 

matrices. All in all, at least when subject information is taken into account, prediction 

models based on computational (and potentially also ocular) parameters can provide 

a relatively good approximation for individual visual complexity ratings. 

 

Limitations 

A first limitation of this study refers to the stimuli that were utilized. Very basic black 

and white shape patterns were used in order to avoid any possible confounding by 

other aspects. This however implies that a large number of other factors could not be 

addressed. Among these are for example aspects of the “colour”-dimension discov-

ered in study 2 but also further aspects such as the density of elements or the variety 

of elements, belonging to the “quantitative” dimension. The integration of all possible 

factors would have generated a very complex experimental design. Thus, no conclu-

sions about effects of these can be drawn from this study. Since the luminance of the 

stimuli was not controlled within this study, this may bias the use ocular measures such 

as the pupil size as indicators of visual complexity. Therefore, only pupil measures that 

control for lighting conditions such as the IPA were taken into account. 

Moreover, the viewing durations within the experiment were controlled and set to 

6000ms in order to avoid different viewing durations. These would certainly have ap-

peared within a self-paced experiment. Eventually, complex images might have been 

observed longer than less complex images, as shown for example by Shigeto, Ishi-

guro, and Nittono (2011). This might have biased the visual complexity ratings. For the 

perception of visual complexity within naturalistic settings, the potential effects of dif-

ferent viewing duration on complexity perception might be an important issue, which 

yet could not be considered within the laboratory setting of this study.  

Finally, the assessment of visual complexity ratings on a seven-point Likert scale may 

be a double-edged issue. One the one hand, the use of Likert scales is relatively com-

mon in research on visual complexity. Gartus and Leder (2018) for example used a 

five-point Likert scale to assess the impression of visual complexity while Nadal et al. 
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(2010) for example used a nine-point Likert scale. Additionally, the approach of using 

a seven-point Likert scale proved to be functional within study 2. On the other hand, 

the ordinal scaling of the rather small range of ratings complicates the analysis and 

particularly the prediction of single values. In contrast to mean ratings, methods for the 

prediction of ordinal data are necessary, which are not yet as widely established. Pos-

sibly, the use of a slider scale with a continuous range of response values for example 

would permit the use of classical linear mixed effects models. However, the use of 

slider scales showed to negatively affect the distribution of values and to increase re-

sponse times, why it is not recommended (Funke, 2016). 

 

Outlook 

Within this experiment, the number of elements and symmetry, representing the two 

basic visual complexity factors quantity and structure, were experimentally investi-

gated. Within future research, a systematic investigation of other factors as well as 

potential covariates might help to further clarify the construct and examine relations 

also within different domains. Moreover, a larger variation within the stimuli’s complex-

ity range might help to precisely address the sensitivity of scanpath patterns and spatial 

density for different complexity levels and particularly the effects of single influencing 

variables such as symmetry. Concerning the investigation of prediction models for sin-

gle visual complexity ratings, a larger variation within stimuli as well as a larger sample 

size may prove to be advantageous in future studies. Since ratings within this study 

were largely clustered in the lower range of the 7-point Likert scale with most ratings 

in the lowest category one and almost none within category seven, the latter could be 

hardly predicted with appropriate accuracy. Additional stimuli within the higher com-

plexity range and a larger sample size might thus help to establish more accurate mod-

els accounting for the whole range of the scale. Next to the implemented methods, 

further approaches are conceivable. With regard to feature selection or dimension re-

duction for example, results from methods such as recursive feature selection, princi-

ple component analysis or the Boruta algorithm (Kursa, Jankowski, & Rudnicki, 2010) 

may be compared to the reported ones while with regard to the actual prediction mod-

els, methods such as mixed-effects random forests (Hajjem, Bellavance, & Larocque, 

2014) might be examined in order to take into account both clustered data structure as 

well as non-linear relationships between predictors and visual complexity ratings. On 
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the other hand, non-linear transformations could also be applied to predictor variables 

as for example done by Gartus and Leder (2017), who could improve prediction per-

formance by applying a power transformation to computed mirror symmetry values.  

Additionally, varying picture presentation durations within experimental studies might 

facilitate further inferences about underlying cognitive processes and dimensions 

(Ichikawa, 1985). 

While the use of eye tracking methodology appeared promising for the closer investi-

gation of the construct visual complexity, it may also help to gain further insights re-

garding the perception of visual complexity for more naturalistic stimuli. This may carry 

special relevance within the field of human computer interaction, for example regarding 

the design of user interfaces, where visual complexity may also be related to mental 

workload (Harper et al., 2009). For the purpose of optimizing the design of user inter-

face with regard to visual complexity, particularly the prediction of visual complexity 

ratings from computational and ocular parameters might be of great use. 
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Within the previous study, strongly controlled black and white shape patterns were 

used for the investigation of visual complexity. This study aims to examine if the previ-

ous findings from study 3 can be transferred to an applied setting. In order for that, the 

identified relations between influencing variables and ratings of visual complexity as 

well as ocular and computational measures will be examined. In particular, screen-

shots of websites are used as stimuli. Within these, further influencing variables are 

considered which may contribute to the perception of visual complexity within this con-

text. The findings of this study can help to underline the impact of influencing variables 

within the applied context of user interfaces and be helpful with regard to their design. 

Furthermore, the approach of this study can find practical application for example in 

the prediction of complexity ratings from both computational measures as well as ocu-

lar parameters, which could also complement classical usability testing. Finally, the 

investigation of relations between visual complexity and mental workload is of particu-

lar interest for the assessment of the role of the former construct within human-machine 

interaction. 

 

 

The previous study supported the significance of both a quantitative as well as a struc-

tural factor for the perception of visual complexity. As previously discussed, this is in 

line with findings from basic research. With regard to user interfaces however, findings 

on influencing variables are rather contradictory. While Miniukovich and Angeli (2014) 

for example suggested a three-dimensional structure of the construct with the factors 

information organization, information amount and information discriminability, Miniuko-

vich et al. (2018) proposed a different structure with four dimensions (quantity of infor-

mation, variety of visual form, spatial organization, perceivability of detail). For a more 

detailed discussion of influencing variables of the visual complexity of user interfaces 

as well as their dimensionality, see paragraph 2.3.2. In order to add clarity and com-

pare the dimensional structure of visual complexity within different domains, study 2 
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was previously conducted. This revealed that the relation between global visual com-

plexity ratings and its influencing variables as well as their factorial structure were 

largely comparable between photographs and website screenshots with the three fac-

tors quantity, structure and colour being related to global visual complexity ratings. 

While study 3 then experimentally investigated the influence of a quantitative and a 

structural dimension using black and white shape patterns, experimental investigations 

for user interfaces such as websites are still missing to the best of my knowledge. 

Within this study, it is examined if insights from basic research can be successfully 

transferred to an applied context.  

Of the three complexity factors identified in study 2, the quantitative and the structural 

ones were experimentally investigated in study 3. The third, colour-related factor has 

however not been addressed yet. Factor scores of this dimension were shown to con-

tribute to the global visual complexity ratings while regressions with single variables 

revealed an influence of the variety of colours and colour contrast particularly for pho-

tographs. Within website screenshots, these single variables however appeared less 

relevant. As also discussed in paragraph 2.2.3, findings from previous literature re-

garding the effect of colour are similarly inconstant. While results by Reinecke et al. 

(2013) and Nadal et al. (2010) point towards an influence of colourfulness on visual 

complexity, other authors such as Ciocca et al. (2015) suggest that colour plays no 

important role with regard to complexity. All in all, this leaves the relationship between 

visual complexity and colour still rather unclear. In order to shed light on this issue, this 

study will address the effects of colourfulness within an experimental approach. 

Thereby, it will be clarified if colourfulness can affect the perception of visual complexity 

particularly within website screenshots or if it has only little or no impact. 

In addition, it may be hypothesized that further factors are of relevance in particular 

with regard to the perception of user interfaces. This may relate particularly to the fact 

that unlike for basic shape patterns, subjects have certain pre-experience and expec-

tations about the design of user interfaces such as websites, which may also affect the 

perception of visual complexity. In this regard, Roth et al. (2010) for example showed 

that users’ mental models of web pages determined where certain types of objects 

such as the logo or name, the navigation area or the search field were expected on a 

web page (see Figure 57).  
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Figure 57. Placement of types of objects for an online shop web page, taken from 

Roth et al. (2010) 

 

Accordingly, if objects are placed according to the mental model of the user, it can be 

assumed that these may be perceived as prototypical while if they are placed at unex-

pected locations, the web page should be perceived as non-prototypical. The proto-

typicality of the web pages can then be hypothesized to affect the perception of visual 

complexity as also reasoned in paragraph 2.2.5.3. Due to the familiar structure of pro-

totypical stimuli, the perceptual grouping may be facilitated compared to non-prototyp-

ical ones. In this regard, Kimchi and Hadad (2002) for example found within an exper-

iment by using either upright or inverted letters as familiar or unfamiliar visual configu-

rations that past experience contributes to the early perceptual grouping of elements 
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into configurations. Effects of prototypicality could moreover be shown by Tuch et al. 

(2012) with regard to aesthetic judgements, however to the best of my knowledge no 

systematic investigations have yet directly addressed the role of prototypicality for the 

perception of visual complexity. 

Furthermore, the previous study identified effects of visual complexity factors on mul-

tiple gaze parameters such as the number of fixations, scanpath length and spatial 

density. While the former measure showed linear relations with the number of elements 

and symmetry as expected, the latter two revealed interaction effects, which may point 

towards a different information processing style for more complex stimuli. In this con-

text, it is of particular interest to use rather complex naturalistic stimuli such as websites 

for the investigation of effects on ocular parameters in order to take into account a 

different complexity range of stimuli as compared to study 3. Results can then contrib-

ute to a better understanding of visual attention in human-computer interaction. 

Regarding the relevance of visual complexity within human-machine interaction, study 

1 revealed effects of video complexity on control room operators’ mental workload 

within a CCTV surveillance task. This was evident not only in subjective ratings, but 

also showed influence on performance measures and physiological indicators of men-

tal workload. Within human-computer interaction, visual complexity effects on mental 

workload have however hardly been investigated. There are yet good reasons to as-

sume an impact, for example the limited capacities for information processing, as also 

discussed in paragraph 2.3.1. Therefore, the relation between visual complexity and 

mental workload is addressed within this study. 

Finally, the previous study revealed very promising results regarding the prediction of 

visual complexity ratings. Thus, mean ratings of visual complexity could be predicted 

with a very high accuracy using a combination of both computational and ocular pa-

rameters. Moreover, complexity ratings for single trials were predicted initially with sat-

isfactory accuracy. Within this study, it will be investigated whether the prediction ap-

proach can be extended to screenshots of websites. Within these, an accurate predic-

tion of visual complexity can offer several benefits. First of all, due to its relation with 

aesthetical judgements (see paragraph 2.2.5.2) and its presumed effect on mental 

workload, it appears relevant particularly within the interaction with technology. Com-

plementing usability testing for example, it can reveal additional insights regarding the 

design of user interfaces, particularly when focussing on the first impression of the 
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interface. The prediction of visual complexity ratings can moreover be used for a quick 

screening of user interface designs instead of rather time-consuming behavioural as-

sessments. Combined with online webcam-based eye tracking (e.g. Semmelmann & 

Weigelt, 2018), which gains increasing popularity, this approach could be used for re-

mote online studies or even live feedback for websites, which could be conducted with 

less effort than typical laboratory studies or testing. In this regard, the present study 

may depict a valuable first contribution. 

 

 

1. Do number of elements, symmetry, colourfulness and prototypicality affect vis-

ual complexity ratings of website screenshots as well as the ocular parameters 

number of fixations, scanpath length and spatial density? 

2. Is the visual complexity of website screenshots related to the perception of men-

tal workload? 

3. How well can mean and single visual complexity ratings for website screenshots 

be predicted from computational and ocular parameters? 

 

 

For the investigation of the research questions, a laboratory eye tracking experiment 

with realistic website screenshots was conducted. This is described in detail within the 

following paragraphs. 

 

 

41 subjects participated within the experiment, of which one had to be excluded be-

cause the experiment could not be finished. Of the remaining 40 subjects, 19 were 

females (47.5 %) and 21 males (52.5%) with a mean age of 26.0 years (SD = 7.6). 36 

(90.0%) of the subjects were students, while four (4.0 %) were employed. The study 

lasted approximately 45 minutes and participation was refunded with 10€. All partici-

pants had normal or corrected-to-normal vision.  
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For the investigation of the previously stated research questions, a repeated-measures 

3 (number of elements) x 2 (symmetry) x 2 (colourfulness) x 2 (prototypicality) experi-

mental design was used. Moreover, an additional factor website type with three cate-

gories company, news and shopping was included in order to represent the variety of 

the most popular websites. This was however not of theoretical interest and thus not 

further considered within the analyses. However, the three selected websites were 

modified according to the previous experimental design, which is also visualized in 

Figure 58. 

 

Independent variables: 

Number of  

elements 
Symmetry Prototypicality Colourfulness 

• 3 elements 

• 6 elements 

• 9 elements 

• symmetrical 

• asymmetrical 

• prototypical 

• not prototypical 

• high colour-

fulness 

• low colour-

fulness 

 

 

 

Dependent variables: 

• Subjective ratings of visual complexity 

• Ocular parameters: Number of fixations, scanpath length, spatial density 

 

Figure 58. Experimental design for study 4 

 

An independent manipulation of all factors was a central aspect for the appropriate 

creation of the according stimuli in order to ensure the interpretability of potential ef-

fects. First of all, the number of elements had three levels with either three, six or nine 

elements within a website. One element was defined as a cluster of information content 

such as a news item consisting of an image with related text. Since elements within 
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company, news and shopping websites strongly differ, examples for elements from all 

three website types are given in Figure 59, Figure 60 and Figure 61. 

 

 

Figure 59. Example for one element in a website of type company 

 

 

Figure 60. Example for one element in a website of type news 
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Figure 61. Example for one element in a website of type shopping 

 

The second factor symmetry had two levels with either high or low symmetry. It was 

manipulated with respect to the vertical symmetry axis, which in contrast to the hori-

zontal axis is of greater relevance within websites (Seckler, Opwis, & Tuch, 2015; Tuch 

et al., 2010). The manipulation of symmetry did only affect the element clusters within 

the website but not its headline in order to maintain a realistic appearance of the site. 

It was then controlled by means of Elawady et al.'s (2017) method for the quantification 

of symmetry within naturalistic images. This gives a value between zero for minimum 

and 100 for the maximum symmetry. The mean symmetry for the symmetrical screen-

shots was 0.43 (SD = 0.10), while the mean symmetry for asymmetrical stimuli was 

0.18 (SD = 0.10). Two examples are visualized in Figure 62. 

 

 

Figure 62. Symmetrical (left) and asymmetrical example (right) of a company website 
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Similar to symmetry, the next factor colourfulness also had two levels, high and low 

colourfulness. It was manipulated by increasing or decreasing the hue of the image 

and controlling the calculated level of colourfulness according to Hasler and 

Suesstrunk's (2003) method. This calculates the colourfulness of an image within the 

RGB colour space. According to their classification, an image with a value of zero is 

not colourful, while a value of 59 is quite colourful and 109 is extremely colourful. As 

for the manipulation of symmetry, differences between the two levels of colourfulness 

should be recognizable while both levels should still appear realistic and neither too 

colourful nor too colourless. Within the stimuli used, the colourful stimuli had an aver-

age colourfulness of 46.83 (SD = 8.50), while the less colourful images had an average 

colourfulness of 26.04 (SD = 6.67). Examples for screenshots with low and high col-

ourfulness are shown in Figure 63. 

 

 

Figure 63. Low colourfulness (left) and high colourfulness example (right) of a com-

pany website 

 

Finally, the fourth factor prototypicality again had two levels: prototypical and not pro-

totypical. The manipulation of this factor was based on Roth et al.'s (2010) findings 

(see also Figure 57). Within their study, the authors identified locations where subjects 

expected certain items, such as logo, search field and newsletter link. Accordingly, 

elements of the menu bar such as the logo, navigation area, search function and con-

tact as well as the newsletter registration were placed either at the expected location 

or on the opposite side of the image (see for example Figure 64). Since unlike sym-
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metry or colourfulness, prototypicality can hardly be quantified by means of computa-

tional methods, a manipulation check was integrated within the study in order to ensure 

the validity of the manipulation. 

 

 

Figure 64. High (left) and low prototypicality example (right) of a company website 

 

As an additional factor and in order to create a larger variation within stimuli, different 

types of websites were considered. According to Roth et al. (2010), the majority of the 

100 most visited websites of Germany, Austria, Switzerland and the USA belonged to 

the categories company pages, social network sites, news portals, online shops and 

search engines. Social network sites usually show only very limited content without 

login, while the design of search engine site is usually also very rudimentary. There-

fore, similarly to Roth et al. (2010), the three categories online shops, news pages and 

company pages were selected while for each type, a rather unknown German website 

was chosen as a model for the realistic creation of stimuli. As a company site, the 

website www.dmk.de was selected, while www.newlook.com/de was chosen as a 

shopping site. Finally, www.kurier.at served as a basis for the creation of news page 

screenshots. Since there were no specific hypotheses regarding the type of website, 

effects for these were not analysed.  

 

The procedure of the experiment began with the instruction of participants that they 

could abort the experiment at any time without consequences. Moreover, they were 

explained that data was stored anonymously and used for research purposes, to which 

they gave written informed consent. 
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Subsequently, participants were explained within the experimental instructions that 

their task would be to carefully watch a number of website screenshots before giving 

ratings for each of these directly after presentation. After the following calibration of the 

eye tracker, the experimental procedure was started in OpenSesame 3.2.6 (Mathôt et 

al., 2012). First of all, participants could get accustomed with the experimental proce-

dure within three practice trials containing stimuli similar to the actual website screen-

shots. The following main part of the experiment comprised the presentation of 72 

stimulus pictures, which are described in detail within paragraph 6.3.3. Each picture 

was presented for 6000ms, preceded by a fixation cross and followed by a question-

naire for the assessment of visual complexity, liking, prototypicality and mental work-

load ratings, which is also described in paragraph 6.3.3. All ratings were self-paced. 

The study was structured into three blocks consisting of 24 trials with screenshots for 

each website type. Both blocks and individual trials were presented in a randomized 

order. Between the three blocks, participants could take a short brake in order to move 

and relax. At the end of the experiment, the familiarity of subjects with the original 

websites prior to the experiment was inquired within a questionnaire. This showed that 

the website www.dmk.de was familiar to two subjects, while the website www.new-

look.com/de was also familiar to two subjects. The news page www.kurier.at was fa-

miliar to four subjects. All eight experimental blocks with the corresponding trials of 

websites that were familiar to a certain subject were excluded from further statistical 

analyses in order to avoid possible confounding with familiarity.  

 

 

Website Screenshots 

Within this study, website screenshots were used as stimuli. For the creation of these, 

existing but rather unknown websites were used as a basis in order to make the final 

stimuli appear as realistic as possible4. Still, these should not be known to the subjects 

to avoid effects of familiarity. Further selection criteria were German language and 

current design which admitted the manipulation of the factors.  

 

 

4 Stimulus creation was accomplished in close collaboration with master student Yi Ding 
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This resulted in the selection of the company website www.dmk.de, the shopping web-

site www.firstlook.com/de and the news website www.kurier.at, which served as mod-

els for the further adaption according to the experimental design. This was accom-

plished with the help of the software Axure RP (Axure Software Solutions, 2018). 

Within this, the number of elements, prototypicality and symmetry were manipulated 

by in- or excluding and rearranging elements as described within paragraph 6.3.2. 

Subsequently, the colourfulness of the images was adjusted. Thus, each combination 

of factors levels is consequently represented by one screenshot of the company site, 

one screenshot of the news website and one screenshot of the shopping site. 

The images were exported as JPG-files with a resolution of 1024 x 768 pixels. Exam-

ples of the three types of websites with three elements are depicted in Figure 65. 

 

 

 

 

Figure 65. Examples of websites screenshots of different types of websites with three 

elements, symmetrical, prototypical, low colourfulness 
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As in study 3, the computational measures described in paragraph 2.4 were calculated 

for all stimuli. This resulted in a total of 183 measures and combinations of measures, 

including colour-related measures, which had not been considered within study 3.  

 

Questionnaire 

Within the questionnaire following each experimental trial, participants were asked to 

rate the visual complexity as well as the liking and prototypicality of the picture in 7-

point scales ranging from 1 = “very low” to 7 = “very high”. The latter was verbalised 

as “This website looks like a typical website” (“Diese Webseite sieht wie eine typische 

Webseite aus”), according to the definition of prototypicality as “the amount to which 

an object is representative of a class of objects’’ (Leder et al., 2004, p. 496) or of how 

typical an example is considered for a category (Rosch, 1973). 

In addition, the mental effort during the observation of each website screenshot was 

assessed. Therefore, Poitschke's (2011) adaptation of the German scale for the as-

sessment of subjectively perceived effort (“Skala zur Erfassung subjektiv erlebter An-

strengung (SEA)” by Eilers, Nachreiner, and Hänecke (1986), which again is based on 

the rating scale of mental effort (RSME) by Zijlstra and van Doorn (1985). The unidi-

mensional scale is often used for the measurement of mental workload (Verwey & 

Veltman, 1996) and has shown to be sensitive to changes in mental workload (e.g. Lin 

& Cai, 2009; Mulder, Dijksterhuis, Stuiver, & Waard, 2009) despite its relative simplicity 

and fast administration. The scale was presented visually (see Figure 66) and subjects 

entered the according value using the keyboard.  
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Figure 66. Adaptation of the scale for the assessment of subjectively perceived effort 

(SEA) by Poitschke (2011) 

 

Apparatus 

The same apparatus was used as within study 3. Details can thus be found in para-

graph 5.3.3. From the collected eye tracking data, 44 ocular parameters were calcu-

lated. A picture size of 1024 × 768 pixels at an eye-to-screen distance of approximately 

98 cm resulted in a visual angle of 16.3° × 12.3°. 

 

 

As in study 3, mixed models were used for the statistical analyses of the data. Details 

can thus be found within paragraph 5.3.4. The analysis of visual complexity ratings and 

the ocular parameters number of fixations, scanpath length and spatial density was 

supplemented with repeated measures correlations between visual complexity and 

mental workload ratings, which were calculated with the help of Bakdash and Ma-

rusich's (2017) package rmcorr in R (R. Core Team, 2018). Within the result plots, all 

error bars depict the 95% confidence interval. 

 

 

Subsequently, the results from this study are reported. After the manipulation check 

for prototypicality, visual complexity ratings are analysed with regard to the impact of 

several influencing variables. Subsequently, the findings on the relation between visual 
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complexity and mental effort ratings are described. Furthermore, effects of the experi-

mental manipulations on the ocular measures number of fixations, scanpath length and 

spatial density are investigated. Finally, both computational and ocular parameters are 

used for the prediction of mean and single visual complexity ratings.  

 

 

First of all, a manipulation check for prototypicality was conducted in order to ensure 

the validity of both prototypicality levels, so that the more prototypically designed web-

sites are also perceived as more prototypical. According to a paired samples t-test, this 

was the case with prototypical screenshots (M = 3.58, SD = 1.58) rated as more pro-

totypical than the non-prototypical screenshots (M = 2.23, SD = 1.40), t(1343) = 26.23, 

p < 0.0001. Data are also visualized in Figure 67. 

 

 

Figure 67. Manipulation check for prototypicality of website screenshots. The point 

within the boxplot depicts the mean and the line the median. 

 

Consequently, effects of all four potential influencing factors on ratings of visual com-

plexity were investigated using cumulative link mixed models with random effects for 

subjects, images and types of websites. First of all, a significant main effect for the 
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number of elements could be found, χ²(2) = 179.93, p < .0001. Tukey post hoc tests 

revealed that pictures with nine elements were rated as more complex compared to 

pictures with six, β = 0.76, SE = 0.13, p < .0001, and three elements, β = 3.84, SE = 

0.15, p < .0001. Similarly, pictures with six elements were rated as more complex than 

pictures with three elements, β = 3.08, SE = 0.14, p < .0001. 

Furthermore, the factor symmetry significantly affected the rating of visual complexity, 

χ²(1) = 15.72, p < .0001, with asymmetrical screenshots being rated as more complex 

than symmetrical ones. The two main effects number of elements and symmetry are 

depicted in Figure 68. 

 

 

 
Figure 68. Effects of number of elements and symmetry on visual complexity ratings 

in study 4 

 

Moreover, prototypicality had a significant effect on visual complexity ratings as well, 

χ²(1) = 27.91, p < .0001, with non-prototypical screenshots being rated as more com-

plex than prototypical ones. This is depicted, together with the main effect of number 

of elements, in Figure 69. Colourfulness had no significant effect on visual complexity 

ratings, χ²(1) = 0.08, p = .78. There was also a significant ordinal interaction between 
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symmetry and prototypicality, χ²(1) = 4.87, p < .05, which is visualized in Figure 70. 

This did however not restrict the interpretability of the two main effects.  

The marginal R² was .33 and the conditional R² was .64 for the underlying regression 

model. The coefficients for this can be found within appendix 9.20. 

 

 

Figure 69. Effects of number of elements and prototypicality on visual complexity rat-

ings in study 4 
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Figure 70. Ordinal interaction effect of symmetry and prototypicality on visual com-

plexity ratings in study 4 

 

 

In order to examine the relation between visual complexity and mental workload, I cal-

culated the repeated measures correlation between visual complexity ratings and the 

subjectively experience effort. This showed a significant relation, r(2643) = .60, p < 

.0001, which is also visualized in Figure 71.  
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Figure 71. Visualization of the correlation between visual complexity and subjectively 

experience effort as a measure of mental workload. Every line represents one sub-

ject.  

 

 

As in study 3, effects of the experimental factors on the ocular parameters number of 

fixations, scanpath length and spatial density were investigated.  

 

Number of Fixations 

Firstly, the number of elements significantly affected the number of fixations, χ²(2) = 

55.37, p < .0001. Tukey post hoc tests revealed a lower number of fixations for website 

screenshots with three elements than for those with nine elements, β = -0.78, SE = 

0.12, p < .0001, and those with six elements, β = -0.74, SE = 0.12, p < .0001. However, 

there was no significant difference between screenshots with six and nine elements 

with regard to the number of fixations, β = 0.03, SE = 0.12, p = .9557. 

Moreover, the factor symmetry had a significant effect on the number of fixations with 

more fixations for symmetrical screenshots, χ²(1) = 10.63, p < .01. This is visualized in 
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Figure 72 together with the main effect of the number of elements. Finally, prototypi-

cality affected the number of fixations as well, with more fixations for prototypical 

screenshots, χ²(1) = 12.53, p < .001, which is depicted in Figure 73. Colourfulness had 

no significant effect on the number of fixations, χ²(1) = 0.17, p = 0.68, neither had the 

interactions between factors, p >.05. The marginal R² for the underlying regression 

model was .02, while the conditional R² was .46. More information about this can be 

found within the appendix 9.21. 

 

 

Figure 72. Number of fixations by number of elements and symmetry in study 4 
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Figure 73. Number of fixations by number of elements and prototypicality in study 4 

 

Scanpath Length 

Both symmetry, χ²(1) = 6.31, p < .05, as well as prototypicality, χ²(1) = 4.04, p < .05, 

had a significant effect on the scanpath length, with longer scanpaths for symmetrical 

and non-prototypical screenshots. Effect of both factors are visualized in Figure 74. 

The number of elements, χ²(2) = 0.83, p = .66 and colourfulness, χ²(1) = 0.00, p = .98, 

had no significant effect on the scanpath length, neither had the interactions between 

factors, p >.05. The marginal R² was .02 and the conditional R² was .42 for the under-

lying regression model. More information about this can be found within the appendix 

9.22. 
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Figure 74. Scanpath length by symmetry and prototypicality in study 4 

 
Spatial Density 

Regarding spatial density, there was first of all a significant main effect of the number 

of elements, χ²(2) = 206.43, p < .0001.  

Moreover, symmetry had an effect on spatial density, χ²(1) = 5.43, p < .05, as well as 

prototypicality, χ²(1) = 19.61, p < .0001 with larger spatial density for symmetrical and 

prototypical screenshots. The effect of symmetry is, together with the effect of number 

of elements, visualized in Figure 75. 
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Figure 75. Spatial Density by number of elements and symmetry in study 4 

 

There were also two significant ordinal interaction effects, one between number of el-

ements and prototypicality, χ²(2) = 7.76, p < .05, and one between symmetry and pro-

totypicality, χ²(1) = 4.18, p < .05. Both did however not restrict the interpretability of the 

main effects. The former effect is visualized in Figure 76 and the latter in Figure 77. 

Colourfulness had no significant effect on spatial density, χ²(1) = 0.44, p = .51. The 

marginal R² was .10 and the conditional R² was .31 for the underlying regression 

model, which is documented in more detail within appendix 9.23. 
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Figure 76. Spatial Density by number of elements and prototypicality in study 4 

 

 

Figure 77. Spatial Density by symmetry and prototypicality in study 4 
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Finally, prediction models for both mean and single visual complexity ratings based on 

ocular and computational parameters were examined similar to the approach within 

study 3. For addressing mean ratings, LASSO regression (Tibshirani, 1996) was used. 

Within this, a variety of 183 computational measures (as described in paragraph 2.4) 

and 44 ocular measures (as described in paragraph 2.5.3) was considered. Firstly, the 

mean visual complexity ratings and ocular parameters were calculated for each image, 

resulting in 72 values. Subsequently, all variables were centered and scaled. With scal-

ing is essential for LASSO regressions, this procedure also helps to prevent scaling 

problems and improves interpretability. Then, data were randomly split into an 80% 

training and 20% test set, so that prediction models could be examined with previously 

unknown data with regard to overfitting. 

 

Consequently, a cross-validated lasso regression model was fit with the help of the R-

package glmnet (Friedman et al., 2010). Within this, the penalty parameter λ was se-

lected based on the criterion of the mean-squared error (MSE) according to the “opti-

mal” model based on 100 penalty values Figure 78. 

 

Figure 78. Mean-Squared Error (MSE) in relation to λ from lasso technique in  

study 4. The two dotted lines represent the optimal (left) and tolerance (right) fit lambda 
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Within the LASSO regression, 21 of the 256 variables were included within the final 

model. These are reported with their coefficient estimated in Table 9. 

Of these, the upper five variables denote ocular parameters as described in more detail 

within paragraph 2.5.3. The others are computational parameters, among these com-

binations of compression (e.g. GIF, JPEG; TIFF) and edge (e.g. Perimeter, Canny, 

RMS) measures, including both mean and standard deviations of the pixel distribution 

within an image. Other selected variables relate to structural aspects of the image, 

such as symmetry or visual balance (such as the APB measure by Wilson & Chatter-

jee, 2005), segmentation and decomposition methods such as the number of quads 

as well as measures for visual clutter by Rosenholtz et al. (2007) such as Feature 

Congestion, Colour Congestion and Orientation Congestion.  
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Table 9. 

Selected variables from lasso regression with coefficients for prediction of mean com-

plexity ratings in study 4 

Variable Coefficient estimate 

(Intercept)  3.99 

Mean Velocity  -0.036 

Mean Drift  0.056 

Stationary Entropy  0.035 

SD Nr. of Nodes  -0.081 

PERCLOS  -0.011 

SD Edge Phase Congruency GIF  0.049 

SD Edge Phase Congruency TIFF  0.0017 

SD Edge Phase Congruency PNG  0.00000000000000015 

Mean x SD Edge Perimeter GIF  0.13 

Mean x SD Edge Perimeter JPEG  0.0040 

Vertical Symmetry  -0.17 

Quads 4x4  0.35 

RMS SD  0.096 

APB Horizontal Inner Outer  0.013 

APB Vertical  -0.022 

APB Vertical Inner Outer  -0.083 

Nr. of Segments  0.14 

Average of Elawady et al.'s (2017) five 
largest symmetries 

 -0.12 

SD for Colour Congestion clutter map  -0.0072 

SD for Orientation Congestion clutter map  -0.12 

Feature Congestion  0.21 
 

Note. Due to the large differences in size, I offended the suggestions of the APA to report two decimal 

places but instead decided to report two valid places for each coefficient.  

 

The correlations between the averages of 21 predictors and the visual complexity rat-

ing for all screenshots from the trial data are visualized in Figure 79. 
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Figure 79. Correlations of selected predictors and the mean visual complexity rating 

in study 4 

 

The model gave an R² of .97 and a mean-squared error (MSE) of 0.068 within the 

training data. It was then used for the prediction of the previously unknown test data. 

A plot of the actual mean visual complexity ratings versus the according predictions 

from the regression model is depicted in Figure 80. The R² within the test data was .91 

and MSE 0.098. 
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Figure 80. Predicted vs. actual values for mean visual complexity ratings in study 4 

 

Subsequently, prediction models for individual visual complexity ratings were exam-

ined as within study 3. First of all, from the variables selected within the previous Lasso 

regression model for mean visual complexity ratings, SD Edge Phase Congruency 

TIFF, SD Edge Phase Congruency PNG and Mean x SD Edge Perimeter JPEG were 

removed due to collinearity. The remaining 18 variables were then included within a 

mixed-effects ordinal regression with a random intercept for subjects. This was calcu-

lated with the help of the function olmm from R-package vcrpart (Bürgin & Ritschard, 

2017) for the training dataset, consisting of 80% of the total observations. Within the 

training data, this achieved a correct classification rate of .43. Detailed information 

concerning the regression model can be found within appendix 9.24. 

This regression model was then used for the prediction of single visual complexity rat-

ings within the previously unknown test data. When the subject vector is taken into 

account, a correction classification rate of .41 could be achieved. If this was ignored 

and the population-averaged response probabilities were considered instead, the 
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correct classification rate was .39. Confusion matrices for training and test data, the 

latter both with subject vector considered and ignored, are visualized within Figure 

81. Next to the correct classification rate, MSE, MAE and Baccianella et al.'s (2009) 

macroaveraged MAE were calculated, which are reported in in Table 10. 

 

 

  

Figure 81. Confusion matrices of ordinal mixed regression for single visual complexity 

ratings within training data (top) and test data with subject vector considered (bottom 

left) and ignored (bottom right) in study 4 

 

Subsequently, a random forest model was fitted for the training data with the help of 

the R-package ranger (Wright & Ziegler, 2017), using all available variables. The pa-

rameters number of variables randomly sampled as candidates at each split (mtry), 
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minimum node size and sample size were tuned within a grid search in order to im-

prove prediction performance. This gave the best results with a correct classification 

rate of .33 for an mtry of 20, a minimum node size of 10 and a sample fraction of .60 

with 500 trees. The variable importance values (Hastie et al., 2017) for the top 30 var-

iables in the model are visualized within Figure 82. 

 

 

Figure 82. Variable importance values in the final random forest model for the predic-

tion of single visual complexity ratings in study 4 

 

The final random forest allowed for a correct classification rate of .33 within the test 

data. All evaluation measures for both training and test data are reported in Table 10. 

Confusion matrices are visualized in Figure 83. 
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Figure 83. Confusion matrices of random forest for single visual complexity ratings 

within training (left) and test data (right) in study 4 

 

As the last method, generalized linear mixed models with Lasso variable selection 

(glmmLasso) were applied within a similar process as within study 3. After the optimal 

penalty parameter λ was determined based on the Bayesian information criterion (BIC) 

(Schwarz, 1978), the final models were built based on the optimal parameters.  

First of all, a model with two random effects for both subjects and stimuli was calcu-

lated. The final model included the variables Scanpath Length (by Fixations), Vertical 

Symmetry, Quads 4x4, Quads 8x8, RMS SD, RMS Mean x SD, RMS JPEG Size, Nr. 

of Segments, Näsänen Complexity as well as Orientation, Feature Congestion map 

Filesize and Orientation map Filesize as referring to Rosenholtz et al. (2007). Detailed 

information regarding the model and coefficients can be found in appendix 9.25. With 

the help of this model, 44% of the ratings in the training and 45% of the test data could 

be correctly classified. A detailed overview of all evaluation measures for both training 

and test data is reported in Table 10. Confusion matrices are visualized in Figure 84. 
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Figure 84. Confusion matrices of glmmLasso with random effects for subjects and stim-

uli for single visual complexity ratings within training (left) and test data (right) in  

study 4 

 

Secondly, a model with only a random intercept for subjects was calculated, which 

encompassed the variables Quads 4x4, Quads 8x8, RMS JPEG Size, Näsänen Com-

plexity and Orientation. Detailed information regarding the model and coefficients can 

be found in appendix 9.26. This achieved a correct classification rate of .41 within the 

training data. Within the test data, this model gave a correct classification rate of .41. 

A detailed overview of all evaluation measures for both training and test data is re-

ported in Table 10. Confusion matrices are visualized in Figure 85. 
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Figure 85. Confusion matrices of glmmLasso with a random effect for subjects for sin-

gle visual complexity ratings within training (left) and test data (right) in study 4 

 

The third glmmLasso model encompassed no random effects in order to investigate 

the prediction performance without considering any additional information apart from 

the automated and ocular measures. Thereby, the eleven variables Number of Fixa-

tions, Vertical Symmetry, Quads 4x4, Quads 8x8, RMS SD, RMS JPEG Size, Number 

of Segments, Spatial Frequency, Näsänen Complexity, Orientation and Feature Con-

gestion were included within the final model, which achieved a correct classification 

rate of .33 within the training data. Detailed information regarding the model and coef-

ficients are reported within appendix 9.27. Within the test data, this model gave a cor-

rect classification rate of .36. An overview of all evaluation measures for both training 

and test data is reported in Table 10. Confusion matrices are visualized in Figure 86. 
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Figure 86. Confusion matrices of glmmLasso without random effects for single visual 

complexity ratings within training (left) and test data (right) in study 4 
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Table 10. 

Evaluation measures of different models for the prediction of single visual complexity 

ratings for both training and test data within study 4 

Method Corr. 

Class 

MAE MSE MAE 

M 

MAE M categorywise 

     Category 

     1 2 3 4 5 6 7 

Training data           

olmm  

train 
.43 0.76 1.18 0.85 0.85 0.56 0.83 1.12 0.56 0.61 1.41 

RF  

train 
.33 1.10 2.33 1.23 1.44 0.98 1.34 1.18 0.80 0.93 1.97 

glmmLasso 

train RE Sub Stim 
.44 .73 1.12 0.81 0.78 0.51 0.81 1.11 0.55 0.59 1.35 

glmmLasso 

train RE Sub 
.41 0.83 1.30 0.88 0.86 0.66 0.91 1.16 0.57 0.61 1.40 

glmmLasso 

train no RE 
.33 1.05 2.06 1.23 1.38 0.79 1.32 1.22 0.58 1.09 2.24 

Test data            

olmm  

test RE Sub 
.41 0.76 1.18 0.86 0.81 0.59 0.85 1.17 0.51 0.75 1.31 

olmm  

test averaged 

.34 1.02 2.01 1.24 1.29 0.71 1.33 1.29 0.43 1.16 2.46 

RF  

test 

.33 1.07 2.28 1.28 1.38 0.95 1.36 1.37 0.56 0.95 2.38 

glmmLasso 

test RE Sub Stim 

.45 .73 1.15 0.82 0.81 0.53 0.78 1.17 0.49 0.74 1.23 

glmmLasso 

test RE Sub  

.41 0.78 1.22 0.87 0.90 0.62 0.91 1.14 0.51 0.78 1.19 

glmmLasso 

test no RE 

.36 .98 1.93 1.22 1.29 0.73 1.29 1.28 0.34 1.08 2.54 

 

Note. Corr. Class: Correct classification rate, MAE: mean absolute error, MSE: mean standard error, 
MAE M: MAE macroaveraged according to Baccianella et al. (2009), MAE M categorywise: MAE for the re-
sponse levels of the seven-point Likert scale separately, RE: random effect, Sub: Subject, Stim: Stimu-
lus, the methods and overall measures with the best performance in both training and test data are 
highlighted in bold 
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Within this study, an experimental approach was used in order to investigate the impact 

of several influencing variables on visual complexity ratings as well as on ocular pa-

rameters within the applied context of website screenshots. Stimuli were created by 

adapting three real websites of the type shopping, company and news according to the 

experimental design. These were presented to 40 subjects, whose ratings and gaze 

behaviour was assessed. Ocular parameters were also combined with computational 

measures in order to predict both mean and single visual complexity ratings. This con-

stitutes an extension of the approach used within study 3, where only basic black and 

white shape patterns served as stimuli. Within the following, a conclusion of the find-

ings from this study is given before limitations are discussed and an outlook is pre-

sented. 

 

Conclusion 

Similar to study 3, results from this study again revealed a strong influence of both the 

number of elements as well as symmetry on visual complexity ratings. Thereby, asym-

metrical screenshots and screenshots with more objects were rated as more complex. 

Moreover, the prototypicality of the website screenshots also had a considerable im-

pact on the visual complexity ratings with less prototypical websites being rated as 

more complex. For the manipulation of prototypicality, the structural configuration of 

different website elements such as the logo, navigation area or search function was 

adapted, so that these were either placed at expected or unexpected locations. Ac-

cording to the results of the manipulation check, this approach appeared to success-

fully influence the perception of prototypicality, which may be due to the influence of 

subjects’ mental models. These are based on previous experience and can allow for 

inferences and predictions for example regarding the typical design of websites (Roth 

et al., 2010). As shown within the study, prototypicality can also influence the percep-

tion of visual complexity. This is particularly interesting with respect to Leder et al.'s 

(2004) model of aesthetical experience. Within this, the implicit memory integration, 

which also encompasses the processing of prototypicality, sequentially follows the per-

ceptual analysis, which includes the processing of complexity (see also image section 

in Figure 87). 
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Figure 87. Image section of Leder et al.'s (2004) model of aesthetic processing 

 

Although the authors stress that “it is important to note that the model does not depict 

a strict serial flow of information.” (p. 493), the presumably bidirectional relations be-

tween visual complexity and prototypicality are notable and may suggest that the per-

ception of visual complexity does not merely rely on bottom-up processing, which is 

based on stimulus features. The visual features in prototypical and non-prototypical 

websites screenshots do not differ, these are only differently arranged. Instead of pure 

bottom-up processing, influences based on previous experience and resulting expec-

tations that go beyond a purely perceptual analysis also seem to affect the perception 

of visual complexity. 

With regard to the effects of colourfulness, study 2 suggested the relevance of an ad-

ditional colour-related dimension within visual complexity. While both colour contrast 

and the variety of colours were significantly related to visual complexity for photo-

graphs, a regression revealed less clear coherences for website screenshots. In order 

to address this issue in more detail, the influence of colourfulness was experimentally 

investigated within this study. Thereby, no significant effect on visual complexity ratings 

could be found, for which there are mainly two possible explanations. The first option 

is that colourfulness has no or only a very small impact on the visual complexity per-

ception of websites, which might also be in line with the correlational findings from 

website screenshots within study 2, while significant relations were found for photo-

graphs. Another possible explanation for this finding is that the manipulation of colour-

fulness was too subtle so that differences were hardly perceived by the subjects. The 



6. Study 4: Application: Visual Complexity in user interfaces 

 

196 

manipulation followed Hasler and Suesstrunk's (2003) method for the quantification of 

colourfulness with mean colourfulness values of 46.83 for colourful images, which ac-

cording to their classification is near to the mark of 59 meaning “quite colourful” and 

26.04 for less colourful images, which is closer to zero meaning “not colourful”. Alt-

hough a difference between the calculated colourfulness values of both groups can be 

seen, this may have had too little effect regarding the actual perceptual impression. Of 

course, the differences between colourfulness groups could have easily been adjusted 

more strongly. However, the created websites screenshots should also still look real-

istic and neither appear extremely colourful nor too colourless. Since the differences 

between the two colourfulness conditions are rather low, effects of colourfulness might 

have been observed if stronger differences or different methods for the manipulation 

would have been used. 

 

Interaction Symmetry x Prototypicality 

In addition to the main effects, two significant interactions were identified. Firstly, the 

ordinal interaction between symmetry and prototypicality suggested that symmetry had 

a larger effect on visual complexity ratings for prototypical images than for non-proto-

typical images. This might be related to the association between symmetry and proto-

typicality. While both factors were manipulated independently by focussing on the ele-

ment clusters within the website for symmetry and the menu items for prototypicality, 

particularly asymmetrical prototypical stimuli may rarely appear in reality, since proto-

typical design of a website might often also include the symmetry of its elements. This 

aspect might partially counteract the manipulation and lead to a reduced perception of 

prototypicality in relation to the other stimuli, which might have increased the visual 

complexity rating and thus explain the interaction effect.  

 

Relation between visual complexity and mental workload 

Next to the effects of influencing factors on visual complexity ratings, the relation be-

tween the latter and mental workload were analysed. The strong positive correlation 

between both is also in line with the findings from study 1, where video complexity 

significantly affected the mental workload of operators. In sum, the results from this 

study can be interpreted as underlining the role of visual complexity in the context of 

human-machine interaction, since the association was also shown to be particularly 
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valid within user interfaces such as websites. The results are additionally considerable, 

since subjects within this study had no further experimental task apart from the obser-

vation of screenshots. It might be hypothesized that effects of visual complexity might 

have had even larger effects on mental workload when subjects had to perform a 

search task for example. 

 

Eye tracking 

From the gathered eye tracking data, effects of the influencing factors were analysed 

regarding three parameters: number of fixations, scanpath length and spatial density.  

Within the number of fixations, it could be shown that three factors significantly affected 

this measure. First of all, more fixations were found for screenshots with a larger num-

ber of objects. The difference between three and six as well as between three and nine 

elements were significant, while no significant difference was found between six and 

nine elements. This may relate to the smaller differences in visual complexity ratings 

between six and nine elements. One possible reason for these findings may be the 

limited capacity of the short-term memory. While Miller (1956) proposed a capacity of 

seven plus or minus two information chunks, more recent literature suggests rather 

lower amounts (Alvarez & Cavanagh, 2004; Luck & Vogel, 1997), with visual infor-

mation of the single objects affecting the capacity limits as well. The reaching and ex-

ceeding of short-term capacity limits might thus reduce the increment of visual explo-

ration of the website screenshots and cause the lower differences in the number of 

fixations between six and nine elements.  

Moreover, both symmetry and prototypicality affected the number of fixations. A larger 

number of fixations was found for both prototypical and symmetrical websites screen-

shots. This might appear rather surprising at first, since a larger number of fixations 

was found for asymmetrical images within study 3, using rather simple shape patterns. 

Within this study however, the result pattern was reversed. This may relate to the 

higher complexity of the website screenshots compared to the relatively simple shape 

patterns used in study 3. Along with this, different manipulations of symmetry were 

applied. Within study 3, mirror symmetry along the image axes was used for the ma-

nipulation of the rather basic stimuli, while this was hardly viable for naturalistic stimuli 

such as website screenshots in study 4. Thus, Elawady et al.'s (2017) method was 

used for the symmetry assessment. With regard to the different types of symmetry 
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considered within the two studies, the results can be related to a number of findings 

from previous research literature. First of all, Locher and Nodine (1989) differentiated 

between static and dynamic symmetry. According to the authors, static symmetry de-

scribes “the exact duplication of structural elements about an axis of symmetry” 

(Locher & Nodine, 1989, p. 476). This perfectly describes the stimuli from the symmet-

rical category within study 3, since these were mirror-symmetric with regard to several 

axes. Dynamic symmetry however “is achieved by differentially weighting and counter-

weighting distributions of compositional elements about an imaginary axis of symmetry 

which serves as a fulcrum” (Locher & Nodine, 1989, p. 476). It can thus be seen as a 

more deliberate form of symmetry. Findings of the authors point towards a restriction 

of visual exploration by static symmetry, while dynamic symmetry enhances it. Locher 

and Nodine (1989) explain this by the fact that stimuli with static symmetry contain 

fewer unique elements. Due to the mirror symmetry, both sides of an axis are identical, 

therefore elements are not unique. This is however not the case for dynamic symmetry. 

The authors suggest that the latter encourages visual exploration out of curiosity and 

in order to reduce information uncertainty. Moreover, using naturalistic images such as 

street and natural scenes, Kootstra, Boer, and Schomaker (2011) showed that partic-

ularly early fixations often fall within symmetrical areas of a picture. This firstly empha-

sizes the role of symmetry within early cognitive processes, but also complements 

Locher and Nodine's (1989) by incorporating results from gaze data. In sum, the pre-

vious references can be helpful in order to explain the at first sight contradictory results 

of study 3 and 4 and in particular might give a reason for the larger number of fixations 

for symmetrical screenshots within the latter, which may indicate enhanced visual ex-

ploration. Moreover, they might also help to explain the effect of prototypicality with 

more fixations for prototypical screenshots. Prototypicality, similar to dynamic sym-

metry, might similarly encourage the visual exploration of the website, since it provides 

a familiar framework for the observer in contrast to non-prototypical screenshots.  

With regard to the scanpath length, significant effects of symmetry and prototypicality 

were found as well. While scanpaths were longer for symmetrical screenshots, scan-

paths for prototypical images were shorter. The positive relation with symmetry may 

be explained by an enhanced visual exploration for (dynamic) symmetrical screenshots 

similarly to the effects on the number of fixations. The finding of shorter scanpaths for 

prototypical images in combination with a larger number of fixations however seems 
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surprising at first sight. Yet, the arrangement of elements within the non-prototypical 

condition, where for example the navigation menu is placed at the bottom of a website, 

might have triggered longer saccades because of the larger distance with other ele-

ments as compared to the prototypical condition. However, no significant effects of 

number of elements and colourfulness on scanpath length were found. For the number 

of elements, a positive effect on scanpath length would have been expected. This could 

be justified first of all by the findings from study 3, where this pattern was identified. 

Moreover, within serial processing as according to Treisman and Gelade's (1980) fea-

ture-integration theory for example, more objects would also require a more extensive 

consecutive scanning and thus longer scanpaths in order to construct a mental repre-

sentation of the picture. The higher complexity level of stimuli within this study however 

might have worked against this effect, while both symmetry and prototypicality re-

vealed an impact on scanpath length.  

Finally, multiple effects could be found regarding the measure spatial density. First of 

all, the spatial density was larger the higher the number of elements in the screenshot 

was. This larger spatial density likely indicates a larger spatial distribution of fixations 

due to the higher number of elements, which occupy broader areas of the screenshot.  

Moreover, symmetry had a significant effect on spatial density with larger spatial den-

sity for symmetrical screenshots. Similar to the effects of the number of fixations as 

well as regarding the results for scanpath length, this might again be explained by the 

enhanced visual exploration of the stimulus due to dynamic symmetry (cf. Locher 

& Nodine, 1989). Moreover, there was an ordinal interaction between symmetry and 

prototypicality, showing a larger effect of prototypicality for symmetrical stimuli. Further 

research is needed in order to explain this interaction effect.  

Prototypicality also affected spatial density with larger values for prototypical screen-

shots. Similar to the findings on the number of fixations and effects of symmetry, this 

could also reflect an enhanced visual exploration. Within an ordinal interaction effect 

of number of elements and prototypicality however, it was revealed that the influence 

of prototypicality was more pronounced among stimuli with fewer objects while there 

was only little effect of prototypicality for screenshots with nine elements. This could 

relate to the spatial distribution of elements within the screenshots. Due to the larger 

number of elements, the spatial distribution of fixations was generally larger within 

screenshots with nine elements, while the impact of the placement of the logo, search 
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field and newsletter link might have been diminished. A possible reason for this might 

be that the majority of the fixations in screenshots with nine elements might have fo-

cussed on the elements, while the relevance of and visual attention towards other ar-

eas such as the logo and navigation area may have increased for screenshots with 

less elements. This may be a possible explanation for the larger impact of prototypi-

cality on spatial density for screenshots with a smaller number of elements, however 

other possible explanatory approaches remain to be investigated. 

 

Prediction 

Next to the experimental analyses within this study, prediction models for both mean 

and single visual complexity ratings based on computational and ocular parameters 

were examined.  

Similar to study 3, a LASSO regression model was used for mean visual complexity 

ratings, which yielded very accurate predictions. Within this, 21 measures were se-

lected, among these five ocular parameters and 16 computational measures. The se-

lected ocular parameters were Mean Velocity, Mean Drift, Stationary Entropy, SD 

Number of Nodes and PERCLOS. Particularly with regard to Mean Drift, it might ap-

pear rather surprising that this was included within the model by the LASSO method, 

since it has rarely been studied within the context of visual perception to the best of my 

knowledge but is mostly rather seen as an artefact (Duchowski, 2017). Concerning 

computational measures, variables from different groups such as compression (e.g. 

GIF, JPEG; TIFF) and edge (e.g. Perimeter, Canny, RMS) measures, structural image 

aspects such as symmetry or visual balance, segmentation and decomposition meth-

ods such as the number of quads as well as measures for visual clutter by Rosenholtz 

et al. (2007) were selected. Thereby, particularly the variables Quads 4x4, Feature 

Congestion and Vertical symmetry showed larger regression coefficients. The accu-

racy of the model is comparable to study 3. Regarding the selected measures, there 

are some communalities but also differences. Within both studies, combinations of 

edge and image compression, symmetry and visual balance measures as well as quad 

numbers of different sizes from quadtree decomposition were included. Within this 

study, (sub-)measures for visual clutter by Rosenholtz et al. (2007) seemed to be rel-

evant, however these were not calculated for study 3 since these are only applicable 

to colour images. Regarding ocular parameters, the selected parameters largely differ 
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between the two studies, which may go back to the different types of stimulus images 

that were used. 

Overall, the highly accurate prediction of mean visual complexity ratings is considera-

ble, given that further potential aspects such as prototypicality contributed to the per-

ception and rating of visual complexity, as found within the experimental part of this 

study. Since these are based on expectations or mental models of the observer, they 

can yet hardly be represented by computational parameters, however these might at 

least partially be assessed by ocular parameters. Averaging both these ratings as well 

as ocular parameters across participants however seemed to counterbalance interin-

dividual differences and allowed for very accurate predictions of mean visual complex-

ity ratings. Findings from using this methodology to real-world data in the future might 

thus provide hints regarding design decisions for the website depending on the pre-

dicted visual complexity level, for example regarding the number of presented items or 

their structure. This approach, focussing on mean visual complexity ratings, does how-

ever not consider interindividual differences within the perception and judgement. 

This variation may go back to several aspects, including preference and previous ex-

perience with certain types of websites, demographic aspects, personality traits or in-

terestingness. While larger experience with a certain type of websites such as shop-

ping websites may lead to generally lower ratings of visual complexity for this type, 

demographic and personality traits might also affect the perception of complexity. 

Chamorro-Premuzic, Burke, Hsu, and Swami (2010) for example showed that age, 

gender and personality factors such as openness and conscientiousness were related 

to preference for complex artworks. It might however be hypothesized that interindivid-

ual aspects might not only have an impact on the perception of artworks, but also on 

other stimuli such as website screenshots and in this regard add to the variance of 

visual complexity ratings. Additionally, interestingness is similarly related to visual com-

plexity as discussed in paragraph 2.2.5.3 (e.g. Aitken, 1974; Berlyne & Boudewijns, 

1971; Day, 1968). Particularly for naturalistic stimuli, interestingness may however not 

only be an attribute of the stimulus, but also relate to individual interests. For example, 

an online shop for plants is probably perceived as more interesting by an amateur 

gardener as compared to someone who is not interested in plants at all. It could thus 

be hypothesized that interindividual differences, for example with regard to the per-

ceived interestingness of stimuli, might also affect their visual complexity ratings. 
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In order to account for these differences between individuals with regard to the com-

plexity rating of specific website screenshots, prediction models for single visual com-

plexity ratings were investigated similarly to study 3. Again, the three approaches of 

an ordinal mixed-model, random forest and glmmLasso were evaluated. Within these, 

the highest correct classification rate of 44% in the training and 45% in the test data 

and lowest MSE as well as MAE were found for the glmmLasso method with random 

effects for both subjects and stimuli. Within this, the ocular parameter scanpath length 

and the computational measures Vertical Symmetry, Quads 4x4, Quads 8x8, RMS SD, 

RMS Mean x SD, RMS JPEG Size, Nr. of Segments, Näsänen Complexity as well as 

Orientation, Feature Congestion map Filesize and Orientation map Filesize were in-

cluded by the algorithm. The glmmLasso approach with a random intercept for subjects 

yielded similar accuracies as the ordinal mixed-model regression with the same ran-

dom effect, while the subject-averaged ordinal mixed-model, the random forest and 

glmmLasso model without any random effect gave the lowest correct classification 

rates of between 33 and 36% and highest MSE and MAE values. These results sug-

gest that the integration of additional information, particularly regarding differences be-

tween subjects but also between stimuli, can improve the accuracy of the prediction 

model as compared to when this information is not taken into account. All in all, accu-

racies for the rating data within this study are slightly lower than within study 3. This 

may reflect the larger number of potential influences on applied stimuli such as website 

screenshots, which can hardly be assessed by means of computational or ocular pa-

rameters. Particularly high MAEM values and thus low accuracies were found for cate-

gories 4 and 7. For category 7, this may relate to the relatively smaller number of rat-

ings on this level. For category 4 however, this appears rather surprising. While there 

are slightly less ratings within this category as compared to the adjacent categories, 

this alone is unlikely to explain why category 4 is comparatively rarely predicted by 

most measures as can be seen within the confusion matrices. A more plausible expla-

nation might be that some of the ratings within this category reflect a central tendency 

bias and are thus less related to the according range of computational and ocular 

measures.  

The latter played a slightly larger part compared to study 3 with scanpath length se-

lected in the first glmmLasso model with two random effects and number of fixations 

selected within the third glmmLasso model without random effects, while various ocular 



6. Study 4: Application: Visual Complexity in user interfaces 

 

203 

parameters showed large variable importance values within the random forest model. 

Still, due to the data structure, it might have been expected that these carried more 

relevance. However, similar to study 3, it is possible that the random intercepts for 

subjects in the first and second glmmLasso model already accounted for much of the 

explainable variation between different ratings of the same stimulus in combination of 

information about the stimulus from computational parameters. 

Morevoer, due to the balanced experimental design that was implemented with the 

help of controlled stimuli and that was based on three basic templates of a shopping, 

company and news website, the overall variation both of ratings but also of computa-

tional and ocular measures was probably lower than when considering a range of dif-

ferent real website screenshots. With regard to the latter, the likely larger variation 

within predictors might positively affect prediction performance. Yet all in all, the pre-

sented methodology provides a good starting point for a transfer to uncontrolled, real-

world stimuli such as screenshots from real websites or user interfaces. 

 

Limitations 

Of course, there are several limitations to this experiment. First of all, many further 

possible influencing variables such as the variety of elements, density of elements and 

visual balance might still influence visual complexity ratings and also affect ocular pa-

rameters. The implemented experimental design with four factors however was already 

rather complex. An integration of additional factors would both have complicated the 

creation of controlled stimuli even more and also significantly extended the length of 

the experiment due to a multiplication of the number of stimuli from 72 to at least 144. 

Moreover, the interpretability of main effects might have been reduced because of po-

tential interactions among the factors. In sum, a selection of four supposedly relevant 

factors was considered within this experiment, in which the number of elements, sym-

metry and colourfulness represented the three visual complexity factors quantity, struc-

ture and colour identified within study 2. Additionally, the influence of prototypicality 

was investigated. In order to consider a broader range of possible factors, further ex-

periments are necessary in which selections of factors could be systematically investi-

gated. Thereby, a more fine-grained rating scale might be applied for the assessment 

of visual complexity ratings as discussed within the subsequent outlook-section. 



6. Study 4: Application: Visual Complexity in user interfaces 

 

204 

Next to the selection of influencing variables, a broader range of ocular parameters 

could have been considered within the experimental analyses. In order to cover differ-

ent aspects of gaze behaviour however, the three parameters number of fixations, 

scanpath length and spatial density were chosen. While all three are related to visual 

search (Goldberg & Kotval, 1999), the number of fixations might rather reflect the num-

ber of components or elements that the observer processes (Goldberg & Kotval, 1999), 

which is also in line with the identified effect of the number of elements. Scanpath 

length according to Goldberg and Kotval (1999) however rather reflects the efficiency 

of the visual search behaviour, which relates to saccade amplitudes. Findings from this 

study, specifically the shorter scanpaths for prototypical screenshots, are in line with 

Goldberg and Kotval's (1999) proposition of shorter scanpaths indicating more efficient 

search behaviour, while longer scanpaths for symmetrical screenshots may indicate 

more extensive visual exploration as discussed above. Finally, the third parameter 

spatial density was taken into account, which refers to the spatial distribution of fixa-

tions, indicating the spatial coverage of a stimulus or interface within visual search 

(Goldberg & Kotval, 1999). The three selected parameters thus cover different aspects 

of gaze behaviour, as also revealed within the results. Considering the existence of 

many further potentially relevant parameters however, a larger number was analysed 

for the prediction of visual complexity ratings. Nevertheless, the experimental analyses 

of all 44 parameters would have gone far beyond the scope of this work. Still, a detailed 

analysis of additional parameters might provide further insights into attentional aspects 

and the search behaviour of observers.  

Furthermore, a limitation of the study`s experimental design consists in the strictly con-

trolled stimuli. These allowed for precise analyses of effects of influencing variables on 

visual complexity ratings as well as on ocular parameters. However, this approach also 

restricts to a certain extent the variation of stimuli that would have appeared when 

using various screenshots from a number of real websites as naturalistic stimuli. This 

might have provided benefits regarding the prediction performance due to a possibly 

larger variation both in computational as well as in ocular parameters. Moreover, a 

broader range of stimuli might also have implicated the selection of both very simple 

and also very complex screenshots, which again might have improved the prediction 

accuracy particularly within the extreme ranges due to the larger number of very low 

and very high complexity ratings. Next to the controlling of the experimental design, 



6. Study 4: Application: Visual Complexity in user interfaces 

 

205 

the presentation time was also strictly controlled. This provided advantages concerning 

the comparability of ocular measures as well as visual complexity ratings by preventing 

possible confoundings due to different viewing durations. Within a naturalistic context 

however, different viewing durations may appear as a result of differences in visual 

complexity. Assessing viewing durations within subsequent studies might therefore 

also shed light with regard to the perception of visual complexity, either by comparing 

visual complexity judgements for systematically manipulated levels of viewing dura-

tions or within free-viewing tasks. The latter was already examined for example by 

Shigeto et al. (2011), who identified longer viewing durations for more complex stimuli.  

Finally, no performance measures were assessed within this study. While subjective 

ratings clearly suggested relations with mental workload, these could have been further 

underlined by the integration of performance data, as also shown for example in study 

1. However, this would have required a different experimental task, most likely also in 

combination with a dynamic sequence or at least with variable viewing durations, in 

order to assess reaction times for example. Since it would have contradicted the strictly 

controlled investigation of influencing variables within this work as described before, it 

was not implemented within this work. Still, it remains an interesting issue that could 

be addressed within future research. 

 

Outlook 

Several aspects of this study offer potential for following investigations. These are dis-

cussed within the following.  

First of all, the experimental investigations of the effect of colourfulness on visual com-

plexity did not reveal clear results. While no significant effect of colourfulness on visual 

complexity ratings could be found, this might also be due to the relatively subtle differ-

ences between the two conditions. Within future research, differences between the 

levels of colourfulness should therefore be enlarged or a broader variation of colour-

fulness conditions should be considered in order to ensure that the stimuli are ade-

quate for the identification of possible effects on the perception of visual complexity. 

Therefore, three or more levels of colourfulness ranging from low to high colourfulness 

could be used within the manipulation in order to allow for a detailed differentiation of 

possible effects. Additionally, by calibrating the monitor colours, their precise display 

could be ensured. This would also contribute to the reproducibility of findings. 
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Furthermore, next to colourfulness, other aspects such as the number of colours or 

colour contrast might also be taken into account. The analysis of relations between 

ratings of these variables and visual complexity showed inconclusive results within 

study 2. While both variables were significantly related to visual complexity ratings for 

photographs, this was not the case for website screenshots. However, factor scores of 

the colour dimension had a significant impact for both types of stimuli. Therefore, the 

influence of colour on the perception of visual complexity should be investigated more 

closely within subsequent research. This might encompass not only a manipulation of 

colourfulness but also of the number of colours or colour contrast, although it might be 

assumed that these are often interrelated particularly when naturalistic images or 

screenshots serve as stimuli.  

Moreover, further quantitative and structural influencing variables of visual complexity 

might also be investigated within future studies by experimental means. This might 

particularly refer to aspects such as the variety of elements or density of elements. 

Although these are often related with each other in naturalistic stimuli, as suggested in 

study 2, independent manipulations might provide additional insights into their effects 

and possible interactions. 

As already indicated in the paragraph limitations, further ocular parameters could ad-

ditionally be considered within subsequent studies. This could provide additional in-

sights into the viewing behaviour in relation to visual complexity and conclusions about 

the attentional processes involved. 

Focussing on the relation with mental workload, performance measures as well as 

physiological indicators might be integrated into future studies in order to achieve a 

holistic image of effects on the mental workload state of users. Furthermore, associa-

tions of visual complexity with usability and user experience as well as aesthetical 

judgements and emotions could be addressed within future research. Thereby, the 

impact of visual complexity on cognitive and affective processes of the user could be 

assessed more comprehensively.  

Focussing on the prediction of visual complexity ratings, subsequent research might 

capture the approach of combining both computational and ocular parameters and ap-

ply it to a larger number of real-world user interfaces and websites. Since this study 

underlined both the sensitivity of ocular parameters for manipulations of influencing 

variables as well as their applicability in combination with computational measures for 
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the prediction of visual complexity ratings, the logical next step would be to aim for less 

controlled stimuli. Thereby, a large pool of stimuli encompassing a broad variation in 

different regards could easily be created and employed within research. This would 

also help to create and improve a general prediction model with a higher prediction 

accuracy also within extremely low and high visual complexity ranges. Thereby, a more 

fine-grained rating scale could be used for the assessment of the subjective perception 

of visual complexity. In contrast to the seven-point Likert scale used within this study, 

for example a slider bar with up to 100 discrete values might provide more detailed 

ratings and facilitate the analysis of data, which would not have to be considered as 

ordinally scaled. This would however probably come at the price of higher response 

times (Funke, Reips, & Thomas, 2011).  

As a next step, visual complexity might also be investigated within dynamic scenarios. 

This might comprise video sequences as within study 1 for example. Here, it might be 

hypothesized that video complexity incorporates both the visual complexity of single 

video frames as well as properties of their temporal sequence. Moreover, the investi-

gation of dynamic scenarios might be particularly interesting with regard to the interac-

tion with user interfaces. This often involves several steps, as for example when inter-

acting with websites. The interaction of users typically starts for example at the main 

page, from where they navigate through the website structure according to their goals 

(see for example Tan & Wei, 2006). The visual complexity of single pages visited 

throughout the navigation process may be hypothesized to contribute to the goal-

achievement of the users, e.g. the finding of specific information or the completion of 

a transaction as well as mental workload or affective processes. Within the investiga-

tion, performance measures such as the required time for a navigation process or for 

finding certain information or products might be integrated. These could serve as ad-

ditional indicators of mental workload next to subjective or physiological measures. 

Moreover, since situational awareness can also be related to performance (Endsley, 

2019), the assessment of mental representations of user interfaces might similarly be 

of interest in order to draw inferences about potential effects of visual complexity. All 

in all, considering visual complexity within a dynamic sequence might be particularly 

interesting for future research, particularly regarding the design of user interfaces for 

example. 
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In conclusion, the results of this study stress the role of both quantitative and structural 

influencing variables on the subjective perception of visual complexity as well as the 

impact of prototypicality, which may relate to mental models built on the previous ex-

perience of subjects. Moreover, effects on ocular parameters such as scanpath length 

underline the suitability of their use within the investigation of visual complexity. Using 

both computational and ocular parameters, visual complexity ratings could be pre-

dicted with acceptable accuracy within regression models.  

These findings and the clear relation of visual complexity with mental workload under-

lined the relevance of the construct within human-machine interaction.  

The achieved results can be helpful both within research but also be adapted for the 

design of interfaces. Within the former, the investigation of influencing variables con-

tributed to the theoretical understanding of the construct. Beyond that, the integration 

of eye tracking methodology, for example by including ocular parameters next to com-

putational ones for the prediction of visual complexity ratings, opens new possibilities 

in research on visual complexity. With regard to the latter, the insights from this work 

might serve as points of reference for example for the design of user interfaces with 

regard to quantitative and structural aspects as well as the effects on users’ mental 

workload. 

  



7. Overall discussion 

 

209 

 

Within the subsequent overall discussion, the insights from the conducted studies are 

concluded and connected at first, before they are combined with findings from previous 

literature into a research model of visual complexity in human-machine interaction. 

Subsequently, both limitations and implications are pointed out. Finally, a summary 

and outlook of issues for further research is given.  

 

 

Four studies were conducted within the scope of this dissertation, focussing on the 

investigation of the role of visual complexity within human-machine interaction. 

The first study focussed on the role of autocycling frequency and video complexity 

within a CCTV surveillance task in control rooms. Results showed that both factors 

affected the mental workload of operators not only by means of subjective ratings, but 

also with regard to performance and physiological measures. In the context of previous 

research works on mental workload in control rooms, this provided experimental sup-

port for considering complexity more closely within human-machine interaction. This 

had previously also been suggested by Pikaar et al. (2015), who described the poten-

tial influence of visual properties and complexity factors on the cognitive processes of 

the observer within the concept of scenes, which they defined as logical or meaningful 

sets of visual information.  

Although video complexity is not the same as visual complexity (which mostly refers to 

static stimuli), it can still be assumed that visual complexity of single frames is an es-

sential feature of video complexity and that similar influencing factors such as the num-

ber of elements affect both. All in all, the findings of complexity effects on mental work-

load underline the importance of the further investigation of the construct for the do-

main of human-machine interaction. 

Therefore, study 2 firstly aimed at gaining a better theoretical understanding of the 

construct visual complexity and its influencing variables. By examining both basic IAPS 

photographs (Lang et al., 2008) as well as website screenshots, potential influencing 

variables could be structured into the three factors quantity, structure and colour. To-

gether with their significant relations with visual complexity ratings, this provides the 
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basis for a better theoretical understanding of the construct and supports its general 

validity within several domains. 

Of the three factors identified within study 2, the influence of the two factors quantity 

and structure was then supported experimentally within study 3, which allows for 

causal inferences regarding their impact. Manipulations of these, applied on basic 

black and white shape patterns, revealed significant effects on both visual complexity 

ratings and various ocular parameters, which stresses the suitability of the latter for 

research on visual complexity. Moreover, good accuracies could be achieved by com-

bining both ocular and computational measures for the prediction of visual complexity 

ratings.  

A similar approach was used on applied stimuli in study 4. With website screenshots 

serving as stimuli, it was revealed that next to quantity and structure, prototypicality 

had an impact on visual complexity ratings as well as ocular parameters. Additionally, 

a clear relation between visual complexity and mental workload was identified on the 

base of subjective ratings. Again, the prediction performance particularly for mean vis-

ual complexity ratings was very good.  

Within these four studies, the research gaps identified within the research agenda in 

paragraph 2.6 were thus addressed, as described within the following. 

First of all, the gathered findings regarding the influencing variables and their factorial 

structure contribute to a better theoretical understanding and therefore help to formu-

late a generally acknowledged definition of visual complexity, which is based on the 

influence of quantitative, structural and colour-related aspects. The impact of influenc-

ing variables was also further stressed within experimental investigations, which un-

derline the causality of the relations while building on findings from previous literature 

such as Chipman (1977) and Ichikawa (1985) and extending these to more naturalistic 

stimuli. This additionally contributed to the theoretical foundations of the construct and 

provides a reliable basis for further research. 

Furthermore, the eye tracking methodology provided insights into the attentional as-

pects and gaze behaviour involved within the perception of visual complexity, while 

having been rarely used within research on visual complexity yet. Significant effects of 

visual complexity influencing variables on various ocular measures suggest that these 

are highly suitable for the investigation and identification of visual complexity effects 

and are therefore worth being incorporated within future research works. 
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Finally, single visual complexity ratings have been firstly predicted by combining both 

computational and ocular parameters. In contrast to previous research, the approach 

of integrating ocular parameters next to computational ones allowed both for the pre-

diction of individual ratings while providing good accuracies for the prediction of mean 

complexity ratings as well, which extends previous findings that are based merely on 

computational measures. 
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Based on the results gathered within the framework of this dissertation project as well 

as the findings and models from previous research literature (see for example para-

graph 2.2.4), an integrative research model of visual complexity in human-machine 

interaction is developed. This considers the role of influencing factors of visual com-

plexity as well as the effects of visual complexity and its relations with other constructs 

such as mental workload. Moreover, associations with ocular parameters as well as 

effect of previous experience are included. The model is presented in Figure 88. Within 

the model, latent variables are depicted as circles and manifest variables as squares 

as it is common within latent variable models. The relations within the model as repre-

sented by arrows should not necessarily be seen as strictly unidirectional. Very likely, 

this research model is far from complete. However, the intention of this model is to sum 

up the current state of research focussing on visual complexity and related constructs 

within the context of human-machine interaction to the best of my knowledge in order 

to encourage future research in this field as well as to draw attention towards the rele-

vance of the construct. 

The references linked within the depiction of the model are the following: 

1: Ichikawa (1985) 

2: Leder et al. (2004) 

3: Torralba et al. (2006); Awh et al. (2012) 

4: Itti, Koch, and Niebur (1998); Torralba et al. (2006) 

5: Berlyne (1971); Berlyne et al. (1963); Tuch et al. (2011; 2012) 

6: Zajonc (1968, 2001) 

7: Nadkarni and Gupta (2007) 

 

Subsequently, theoretical foundations and findings, which serve as the foundations for 

the model, are described in detail.  
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Figure 88. Integrative research model of visual complexity in human-machine interac-

tion 
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With regard to the influencing factors, Ichikawa (1985) proposed a tentative model 

for the judgement of pattern complexity. This reflects his results regarding the two cog-

nitive processes of visual complexity perception, with a fast process for the detection 

of quantitative features and a slower process for the detection of structural features, 

as depicted in Figure 89 and previously described in more detail in paragraph 2.2.3.  

 

Figure 89. Ichikawa's (1985) tentative model for the judgement of pattern complexity 

 

Results from studies 2, 3 and 4 support the role of both quantitative as well as structural 

properties for the perception of visual complexity. While study 2 showed that factor 

scores of the quantitative and the structural factor were significantly related to visual 

complexity ratings, study 3 and study 4 underlined their relevance based on experi-

mental investigations. Moreover, study 2 suggests that a third, colour-related factor 

has an impact on visual complexity perception. For this however, unlike for the other 

two factors, no previous research literature exists concerning the timeframe of pro-

cessing. Regarding the stimulus material, study 3 used basic shape patterns similar to 

Ichikawa's (1985) research, while photographs and screenshots of websites were used 

within study 2 and 4. Since the gathered results are thus based on different types of 

stimuli, the model not only applies to pattern complexity as Ichikawa's (1985) findings 

but refers to visual complexity in general.  

The three identified factors of visual complexity each comprise a number of influencing 

factors. Study 2 assessed their dimensionality and found that the number of elements, 

the variety of elements and the density of elements contribute to the quantitative factor 

while the structural factor contains the influencing variables organization, symmetry 

and visual balance. Finally, the variety of colours and colour contrast are the constitu-

ents of the colour-related factor. This selection of influencing variables however might 

not be exhaustive, since other aspects that were not included within the analysis could 
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additionally be related to visual complexity and its identified factorial structure. Yet, 

since the selection of potential influencing variables for the investigation was based on 

an extensive review of visual complexity literature, the most important aspects were 

most likely included. For each of the three identified factors of visual complexity, the 

most relevant influencing variable was then selected for subsequent experimental in-

vestigation. Among these, the number of elements and symmetry significantly affected 

visual complexity ratings within study 3. Additionally, colourfulness (which is assumed 

to combine both the variety of colours and colour contrast) was investigated within 

study 4, but did not show a significant effect on visual complexity ratings. This may be 

due to the relatively small differences in the manipulation. 

In sum, the factors quantity, structure and colour and their related influencing variables 

affect the perception of visual complexity as shown within the results of studies 2, 3 

and 4. Additionally, previous researchers such as Ichikawa (1985) had found support 

for the influence of quantity and structure and addressed the temporal sequence of 

their processing. Therefore, the factors and related influencing variables depict the first 

essential part of the integrative research model of visual complexity. 

 

At the same time, computational measures can be calculated for stimulus images. 

Partly, these can also represent influencing variables of visual complexity, for example 

for quantitative aspects such as the number of elements or density of elements (for 

example when using segmentation methods), structural ones such as symmetry (Bau-

erly & Liu, 2008; Elawady et al., 2017) or colourfulness (Hasler & Suesstrunk, 2003; 

Yendrikhovskij et al., 1997). Other measures however, such as image compression 

measures, edge measures or decomposition measures are not directly related to spe-

cific factors. However, it can be assumed that these are particularly affected by quan-

titative aspects, since the number and density of objects most likely has a larger impact 

on these compared to structural or colour-related aspects. Previous research had re-

vealed that subjective ratings of visual complexity are strongly related to computational 

measures (e.g. Gartus & Leder, 2017; Tuch et al., 2009). Within studies 3 and 4 of this 

dissertation project, computational measures similarly such as compressed file sizes, 

edge density and decomposition measures contributed to the prediction accuracy for 

visual complexity ratings. Therefore, these are included within an early stage of the 
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research model, since they arise directly from a certain stimulus image while being 

related to both influencing factors as well as visual complexity.  

Next to the previously described influencing factors, previous experience can also 

affect the perception of visual complexity. Within Leder et al.'s (2004) model of aes-

thetic experience, this is associated with implicit memory integration, which again in-

cludes the processing of familiarity and prototypicality (see Figure 4). As shown within 

study 4, prototypicality can also affect the perception and subjective judgement of vis-

ual complexity. The definition of prototypicality as “the amount to which an object is 

representative of a class of objects’’ (Leder et al., 2004, p. 496) implies that it relies on 

previous experience with different objects of a certain class, which is necessary in or-

der to judge the degree to which a specific object is representative for this class. The 

role of previous experience also becomes evident within the ‘mere-expose’ effect (Za-

jonc, 1968, 2001). The mere-exposure paradigm relies on the repeated exposure of a 

subject to a certain stimulus. Research with this has shown that repeated experience 

with stimuli enhances positive affect towards the stimulus itself but also towards similar 

stimuli that were not exposed (Zajonc, 2001). However, as shown by Berlyne (1970), 

Saegert and Jellison (1970) as well as Smith and Dorfman (1975) for example, the 

effect of repeated exposure on liking may interact with the visual complexity of stimuli. 

Berlyne (1970) for instance showed that the liking of complex stimuli increased with 

exposure while the liking of simple stimuli tended to decrease. Cox and Cox (1988) 

therefore suggested that complexity might act as a moderator of repetition effects on 

liking. This relation however may also be bidirectional. Snodgrass and Vanderwart 

(1980) for example found a significant negative correlation between familiarity and vis-

ual complexity ratings within their picture set and discussed possible explanations for 

this finding. In sum, previous literature revealed that previous experience or exposure 

with stimuli can affect both the prototypicality of as well as the familiarity with these. 

This effect can go beyond previously observed stimuli and extend also to similar ones. 

With regard to familiarity, relations with visual complexity have been identified within 

previous research. For prototypicality, it was revealed within study 4 that it can affect 

the perception of visual complexity. Similar to familiarity, this relation is not necessarily 

unidirectional, with complexity levels also possibly influencing the rating of prototypi-

cality. Previous research has moreover relatively clearly underlined the role of both 

familiarity and prototypicality with regard to aesthetical appraisal (e.g. Leder et al., 
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2004; Tuch et al., 2012). This relation may at least partly be moderated by visual com-

plexity. The described relations between previous experience, prototypicality, familiar-

ity, visual complexity and aesthetical appraisal are included into the research model in 

order to depict an overview and integrate research findings regarding the interrelations 

of the constructs.  

Next to previous experience, interindividual differences such as age, gender or per-

sonality may similarly influence the perception of visual complexity. Within this regard, 

Chamorro-Premuzic et al. (2010) for example found that the personality dimensions 

openness to experience, extraversion and conscientiousness significantly correlated 

with the preference for classified complexity of visual art. Moreover, significant rela-

tions with age, sex, education and visits to museums were found. These findings go 

back to a study with a large sample of N = 3254. Earlier research from Eisenman (1967, 

1968) similarly found effects of sex, birth-order [sic] and personality attributes on visual 

complexity preferences. With regard to websites, Reinecke and Gajos (2014) used a 

large dataset of ratings and found interaction effects between visual complexity and 

age, gender, country as well as education with regard to visual appeal. For example, 

the authors found that older persons and those with a lower education level preferred 

more complex websites. With regard to gender, females for example disliked simple 

websites more than males. Similarly, Wang, H.-F., Wang, P.-Y., Liao, C.-C., and Lin, 

Y.-Y. (2014) identified gender effects in children with regard to preference for visual 

complexity of websites within their study. Focussing on personality, Martin, Sherrard, 

and Wentzel (2005) found that the trait of sensation seeking influenced the preference 

for visual complexity. While high sensation seekers preferred complex visual designs, 

low sensation seekers preferred simple designs. 

In conclusion, findings from previous research literature showed that interindividual 

aspects such as gender, age, and personality affect the preference for complexity. 

Relatively little research has yet directly addressed their influence on the perception of 

visual complexity, for example that personality affected the subjective ratings of visual 

complexity. Yet, it might be hypothesized that interindividual differences in preference 

for complexity partly go back to a different perception and judgement of visual com-

plexity. Therefore, next to previous experience, interindividual aspects such as gender, 
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age and personality are included into the research model as potential influencing fac-

tors of visual complexity. However, this association remains a preliminary hypothesis 

until further research has investigated the relation more closely. 

Furthermore, as could be shown by studies 3 and 4 of this dissertation as well as within 

previous research by Madan et al. (2017) and Bradley et al. (2011), gaze behaviour 

and pupillometry can reflect the perception and processing of visual complexity. The 

resulting ocular parameters can relate to different aspects of visual attention, among 

these particularly bottom-up as well as top-down effects. As explicitly discussed in par-

agraph 2.5.1, representatives of bottom-up processing argue that features of the stim-

ulus such as saliency determine the visual processing and thereby also the visual at-

tention and eye movements (Itti et al., 1998; e.g. Itti & Koch, 2001) while top-down 

theories assume that visual attention can be directed via voluntary control, for example 

depending on motivational aspects such as specific goals or task demands (e.g. Folk 

et al., 1992; Posner, 1980). In this regard, Henderson (2003) differentiates between 

different mechanisms of the visual-cognitive system that control gaze in order to fixate 

informative and important image regions. First of all, he focusses on stimulus-based 

gaze control, which includes image features such as spatial frequency, edge density, 

contrast and saliency for example. Next to that, knowledge-driven aspects are relevant 

for gaze control according to him. This draws on short- and long-term memories re-

garding visual, spatial and semantic information about the observed scene as well as 

previously observed similar scenes next to goals and plans of the observer. This 

knowledge-driven control of gaze is of particular relevance for the observation of mean-

ingful scenes during the execution of tasks as compared to visual saliency (e.g. Hen-

derson, Weeks, & Hollingworth, 1999; Land & Hayhoe, 2001; Turano, Geruschat, & 

Baker, 2003). Among the knowledge-driven aspects of gaze control fall episodic scene 

knowledge (“information about a specific scene that can be learned over the short term 

in the current perceptual encounter”, Henderson, 2003, p. 500) as well as scene-

schema knowledge (“generic semantic and spatial knowledge about a particular type 

of scene”, Henderson, 2003, p. 501) and task-related knowledge. In sum, these stress 

the role of knowledge for gaze behaviour in natural scenes, among which user inter-

face or website screenshots may also be counted.  

The contextual guidance model (Torralba et al., 2006) integrates both local salience 

features as well as global context features and thus combines bottom-up saliency, 
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scene context and top-down mechanisms at an early stage of visual processing. This 

is assumed to rely on both a global and a local pathway. These two are depicted in 

Figure 90 and together create a scene-modulated saliency map, which in contrast to a 

pure bottom-up saliency map integrates global image features as well as top-down 

influences such as the specific search task and thus can help to identify image regions 

for visual exploration. 

 

Figure 90. Contextual guidance model by Torralba et al. (2006) 

 

Within the experimental investigation of Torralba et al.'s (2006) model using eye track-

ing methodology, the authors found that their contextual guidance model predicted the 

first five fixations significantly better compared to the saliency-only model (73% vs. 

58% accuracy). This finding particularly underlines the role of top-down influences and 

global image features for gaze behaviour. Similarly, Awh et al. (2012) suggest to in-

clude a third aspect next to bottom-up (such as saliency) and top-down influences 

(such as current goals), which they call selection history. According to the authors, this 

represents past experience with previously attended items in a certain context as well 

as reward history (for example when the visual selection of certain items in associated 

with previous reward), but can also encompass other effects of past experience.  

In conclusion, with regard to the processing and perception of visual complexity in hu-

man-machine interaction, different types of processes can have an impact, particularly 

when interacting with user interfaces. Next to bottom-up features such as saliency and 

top-down effects of specific goals, previous experience with regard to selection history 

or knowledge based on the context of the scene for example can have an impact on 
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gaze behaviour. This should particularly carry relevance for user interfaces, since their 

design may often define global image features while users in many cases have already 

made previous experiences with similar interfaces. In this regard, the interrelation be-

tween theories of visual attention and visual complexity appears as particularly rele-

vant, since the visual complexity as an image feature may play a role within visual 

attention theories. The integration of insights from the latter may in turn provide bene-

fits in research on visual complexity and particularly with regard to gaze behaviour and 

ocular parameters. Therefore, the links between both are integrated into the research 

model in order to raise attention to the connections, which again may provide clues 

and stress the need for future research in this field. 

 

Effects of visual complexity 

As shown before, visual complexity is affected by a number of factors and is related to 

other constructs and measures. It can however also influence numerous other con-

structs. First of all, findings from previous literature suggest that visual complexity is 

positively related to the arousal of subjects. As discussed in detail within paragraph 

2.2.5.1, Berlyne et al. (1963) for example provided support for an effect of complexity 

on arousal and later introduced the term “arousal potential” (Berlyne, 1971). According 

to him, this is associated with collative properties of the stimulus such as complexity 

as well as novelty and surprisingness next to psychophysiological (e.g. intensity) and 

ecological properties (e.g. gratification or discomfort). Later research, such as the find-

ings of Marin and Leder (2013), supported the positive association between complexity 

and arousal for example for IAPS pictures (Lang et al., 2008) as well as for paintings. 

With regard to human-machine interaction, Deng and Poole (2010) similarly found a 

positive effect of webpage visual complexity on arousal ratings (see also their research 

model of webpage visual complexity depicted in Figure 5). Similarly, Tuch et al. (2011; 

2009) for example found effects of visual complexity and arousal ratings as well as 

physiological measures. On the other hand, according to Madan et al. (2017), arousing 

stimuli may also be rated as more complex. But in sum, a broader literature base exists 

for the former direction of the relation. 

Next to arousal, visual complexity can affect the impression of pleasantness or (aes-

thetical) preference. This again goes back to Berlyne (1971, 1974), as explicitly dis-

cussed in paragraph 2.2.5.2. He suggested that medium levels of visual complexity 
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are generally preferred, since these go along with an optimal amount of arousal. While 

the suggested inverted u-shape has been supported by a number of findings (e.g. Far-

ley & Weinstock, 1980; Imamoglu, 2000; Saklofske, 1975; Vitz, 1966) also within the 

field of human-computer interaction (Chassy et al., 2015; Geissler et al., 2006; Güçlüt-

ürk et al., 2016), numerous other studies rather suggested a linear relation instead (for 

a detailed discussion see paragraph 2.2.5.2). This has also been shown for websites 

for example by Tuch et al. (2011; 2012). Despite the contradictory results regarding 

the shape, the general relation between both constructs has been supported multiple 

times.  

Next to arousal and pleasantness, Nadkarni and Gupta (2007) showed that visual com-

plexity can affect user satisfaction. Within their theoretical model of perceived website 

complexity (see Figure 6 and detailed description within paragraph 2.2.4), they con-

clude their empirical findings that objective website complexity affects perceived web-

site complexity, while this relation is moderated by user familiarity. Moreover, they 

found that the relation between perceived website complexity and user satisfaction is 

moderated by task goals. This finding particularly underlines the role of complexity 

within human-computer interaction.  

Finally, studies 1 and 4 of this dissertation underlined the relations between visual 

complexity and mental workload. While findings in both studies are based on subjec-

tive ratings of mental workload, study 1 additionally presented results from perfor-

mance measures such as reaction time and hits as well as physiological measures, for 

example ECG.  

All in all, the effects of visual complexity on arousal, pleasure, user satisfaction and 

mental workload particularly underline the relevance of considering visual complexity 

within the domain of human-machine interaction. Since these aspects can play a role 

for the human-centered design of human-machine interfaces, they are integrated 

within the previously presented research model of visual complexity in human-machine 

interaction (see Figure 88). 

 

 

Within the range of this dissertation, of course a number of aspects could not be ad-

dressed in detail. First of all, of course not all potential influencing variables of visual 

complexity could be exhaustively investigated within the conducted experiments for 
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example. While a selection of the presumed most relevant variables of the visual com-

plexity factors determined in study 2 were experimentally investigated within study 3 

and 4, variables such as the variety of elements were not considered more closely. In 

order to achieve a fully comprehensive picture, further potential influencing variables 

of visual complexity such as variety and density of elements and particularly their in-

teractions could be experimentally addressed within future research. Although this may 

lead to more complex experimental designs, a combined investigation of several influ-

encing variables might provide insights regarding their interdependence. Additionally, 

while subjective ratings of visual complexity showed linear main effects across the pre-

sented studies, some ocular parameters suggested various interactions between these 

as for example concerning the number of elements and symmetry. These findings fur-

ther underline the possible benefits of the combined consideration of multiple influenc-

ing variables which might, as for example suggested by findings from eye tracking, 

allow for conclusions regarding the cognitive and attentional processes involved in the 

processing of stimuli of different visual complexity. 

Moreover, the effects of interindividual aspects such as personality, gender, age or 

previous experience could not be investigated in detail. As discussed within paragraph 

7.2, previous research literature found that for example gender, age and personality 

factors can influence the preference for different levels of complexity in visual art (e.g. 

Chamorro-Premuzic et al., 2010). While this effect might not only refer to art, but also 

be found in other stimuli, it could also be hypothesized that it is partly based on differ-

ences in the perception and individual judgement of visual complexity. Therefore, the 

assessment and investigation of the influence of different interindividual aspects such 

as age, gender and particularly personality should similarly be incorporated into sub-

sequent research. This might allow for insights into interindividual differences in the 

cognitive processing of visual complexity. By incorporating different gaze parameters 

within the investigation, potential findings could further be underlined. 

Apart from that, previous experience as related to familiarity or expertise with a certain 

type of user interface for example can also influence the processing of visual complex-

ity as discussed in paragraph 7.2. While the influence of previous experience was con-

trolled within the conducted experimental studies by using only previously unknown 

stimuli, the systematic investigation of familiarity or experience effects remains to be 
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addressed within subsequent studies. Within the domain of human-machine interac-

tion, this might particularly be relevant for conclusions regarding the training of novices 

or differences between experts and novices with regard to the perception and interac-

tion with user interfaces. For the investigation, experienced experts within a certain 

domain, who are accustomed to using a technical system and user interfaces could for 

example be compared with novices concerning the perception and judgement of visual 

complexity. In this regard, the analysis of gathered gaze data might also allow for in-

sights into differences in gaze strategies between both groups. Within previous re-

search, effects of expertise on gaze patterns have for example been found within sur-

gery (e.g. Law, Atkins, Kirkpatrick, & Lomax, 2004), biology (Jarodzka, Scheiter, Ger-

jets, & van Gog, 2010), programming (Bednarik, 2012) and even collaborative tasks 

(Liu et al., 2009). Moreover, according to a meta-analysis of 65 references on the in-

fluence of expertise on the comprehension of visualizations by Gegenfurtner, Lehtinen, 

and Säljö (2011), experts compared to non-experts showed shorter fixation durations, 

longer saccades, more fixations on task-relevant areas and fewer on task-redundant 

areas. The authors discuss that this may relate to a superiority in parafoveal processing 

and the allocation of selective attention. These findings suggest that the incorporation 

of expertise, which is based on previous experience, can have a significant impact on 

the gaze behaviour of subjects. The integrated investigation of expertise and visual 

complexity within future research might thus help to find out how expertise facilitates 

the perceptual coping with different (and particularly higher) levels of visual complexity. 

Next to expertise, effects of the familiarity of stimuli could be addressed within experi-

mental investigations by presenting previously unknown stimuli more or less often to 

subjects before assessing their judgements of visual complexity and gaze behaviour. 

This would allow for conclusions regarding the effects of mere exposure of stimuli on 

the perception of visual complexity while not requiring subjects to have previous expe-

rience with stimuli, which would allow the independent and highly controlled assess-

ment of familiarity effects. 

Furthermore, a limited number of stimulus domains was considered within the investi-

gation of visual complexity in this dissertation project. Among these were video se-

quences in study 1, photographs and website screenshots in study 2, black and white 

shape patterns in study 3 and again website screenshots within study 4. Since results 

appear consistent between the studies, the conclusions previously drawn from these 
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seem relatively reliable. However, this does not necessarily mean that these can be 

directly transferred to any type of visual stimulus like drawings or other kinds of visual 

art for example, which have not been investigated within the framework of the pre-

sented studies but were taken into account within previous research works. This also 

applies to other types of user interfaces such as car displays or interfaces of other 

machines or electronic devices. Although their design often appears rather reduced 

compared to websites for example, differences in visual complexity can have effects 

on the user or driver as well, as for example shown by Yoon et al. (2015). They found 

that visual complexity aspects such as the quantity of components also affected the 

visual search performance in an automotive instrument cluster. In this regard, future 

research might investigate if the dimensional framework identified within this disserta-

tion is also valid for other types of user interfaces and if the prediction of complexity 

ratings from computational and ocular measures provides similarly good results. This 

also holds valid for dynamic sequences such as the navigation between multiple sub-

pages of a user interface or the observation of videos within control rooms. Referring 

to the relevance of findings for real life, Tuch et al. (2009) stressed that “as the name 

implies, in real HCI situations (such as browsing the web) it is actual interaction, rather 

than passive viewing, which is most influential in shaping the overall user experience” 

(p. 713). Even though the main focus of the presented studies was on static images, 

this can still carry relevance with regard to real life. First of all, as suggested by Tuch 

et al. (2012), first impressions are formed very quickly during visual inspection, for ex-

ample of websites, which may determine of the user decides to stay on the site or 

continues browsing to other sites. In this regard, the visual complexity of static website 

screenshots itself may play an important role. Moreover, findings from investigations 

with static pictures may also provide hints with regard to dynamic contexts. For exam-

ple, variables such as the number of elements may have an impact for both static and 

dynamic visual complexity. Based on this assumption, the impact of video complexity 

on mental workload was for example assessed within study 1, using the number of 

different persons in the video as an indicator of complexity. However, the role of certain 

influencing factors of dynamic complexity was not addressed in detail, neither within 

study 1, nor within the framework of my dissertation. The issue of defining video com-

plexity, which might be particularly helpful for example in the context of workplace de-
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sign within CCTV control rooms therefore remains to be addressed within future re-

search works. Similarly, dynamic sequences for example of multiple pages of an inter-

face that are visited within the process of achieving a certain goal, for example when 

a website or software is searched for specific information, has (to the best of my 

knowledge) not yet been addressed in previous research either and could be a goal of 

future studies, also discussed in more detail within study 4. All in all, the perception of 

visual complexity in dynamic real-world scenarios remains an interesting aspect for 

future research on visual complexity.  

 

Regarding the impact of visual complexity in real life, particularly concerning the design 

of human-machine interfaces for example, its effects on the perception of user experi-

ence and usability could be further explored in future studies. Usability is a core con-

cept within human-computer interaction (Hornbæk, 2006) and describes the “extent to 

which a system, product or service can be used by specified users to achieve specified 

goals with effectiveness, efficiency and satisfaction in a specified context of use” 

(Deutsches Institut für Normung e.V., 2018, p. 8). Moreover, user experience has in-

creasingly gained interest over the last years (Hassenzahl & Tractinsky, 2006; Law, 

Roto, Hassenzahl, Vermeeren, & Kort, 2009). It is defined as the “user’s perceptions 

and responses that result from the use and/or anticipated use of a system, product or 

service“ (Deutsches Institut für Normung e.V., 2018, p. 11). While the association of 

visual complexity with these constructs has not yet been directly addressed, Nadkarni 

and Gupta's (2007) findings that website complexity has an effect on user satisfaction 

might therefore serve as a good starting point for further investigations. Within these, 

quantitative assessments may for example incorporate Brooke's (1996) system usa-

bility scale or the user experience questionnaire by Laugwitz, Held, and Schrepp 

(2008). The gathered insights may help to draw conclusions regarding the role of visual 

complexity with regard to the human-centered design of technical systems and even-

tually further underline the relevance of the concept beyond the identified effects on 

mental workload for example. The notion of considering visual complexity as a meas-

ure of usability was also taken up by Stickel, Ebner, and Holzinger (2010), however 

the authors did not address the relation explicitly, for example by assessing effects on 

usability. 
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Another aspect that could not be addressed within the framework of the conducted 

studies is the integration of neurophysiological methodology for the investigation of 

visual complexity. Next to gaze data, these can provide deeper insights into the neu-

rocognitive foundations for the processing of visual complexity. Previous studies laid a 

base by using electroencephalography (EEG), identifying visual complexity effects 

both from event-related potentials (ERPs, e.g. Barkaszi, Czigler, & Balázs, 2013; Brad-

ley et al., 2007) but also within time-frequency analyses. Findings of Bradley et al. 

(2007) for example suggest ERP differences in occipital and frontal areas within a time 

window between 150 and 250 milliseconds. Literature using time-frequency analyses 

showed complexity effects particularly in alpha and beta frequencies (Bruce, Delafield, 

Bonnie, Winwood, & Gale, 1972; Gale, Coles, & Boyd, 1971). Within a more detailed 

investigation, Gale, Spratt, Christie, and Smallbone (1975) found that the number of 

elements as well as their variety had effects on alpha and beta frequencies, while the 

number of elements affected theta frequency. Next to EEG, additional insights can be 

provided using functional magnetic resonance imaging (fMRI). A first step in this direc-

tion was made wihtin a study by Schlochtermeier et al. (2013), who addressed the role 

of visual complexity within emotional picture and word processing by using fMRI.  

While all of these findings stem from basic research, studies from applied contexts 

such as human-machine interaction have not used neurophysiological methodology 

for research on visual complexity yet. Based on these previous results however, both 

EEG and fMRI methodology might provide additional insights into the neural pro-

cessing of visual complexity in human-machine interaction, since these allow for both 

the localisation of neural activation within functional areas of the brain, but also give 

insights into the precise temporal sequence of its effects. Combined with an experi-

mental approach such as the one used by Ichikawa (1985), who investigated the role 

of complexity aspects with different presentation durations, a detailed understanding 

of the processing of influencing variables of visual complexity as well as their temporal 

sequence could be achieved.  

While the proposed research model of visual complexity in human-machine interaction 

integrates findings of the four conducted studies with previous literature and thus also 

provides a framework of relevant relations between visual complexity and other con-

structs, most of the corresponding results are based on correlations. This means that 
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no definitive statements can be made regarding the directionality and causality of re-

lations between constructs, such as visual complexity and arousal for example. Next 

to the use of advanced experimental study designs, at least as far these are viable, 

structural equation modelling might be an appropriate tool for the further examination 

and statistical analysis of the relations between latent variables. This approach might 

help to further validate the interrelations of visual complexity beyond the existing evi-

dence and thus help to underline the relevance of the model.  

Furthermore, there is a certain conceptual ambiguity between visual complexity and 

other constructs or terms. While visual complexity is often defined as “the level of detail 

or intricacy contained within an image” (Forsythe, 2009, p. 158; Snodgrass 

& Vanderwart, 1980, p. 183), the term (visual) perceptual load was for example used 

by Macdonald and Lavie (2011) to describe “the amount of information involved in the 

perceptual processing of the task stimuli” (p. 1780). The term load was also by other 

authors with a similar meaning. For example, Alvarez and Cavanagh (2004) referred 

to the visual information load of objects, which they found to have an influence on the 

capacity of short-term memory next to the number of objects. Moreover, Engström et 

al. (2005) for example used the term visual load when referring to a visually demanding 

secondary task within a driving simulator study. Similar to mental workload, the con-

cept of visual load as suggested by Macdonald and Lavie (2011) thus relates to an 

available amount of (attentional) capacities that are consumed by a certain task and 

leave less resources available for task-irrelevant information (Lavie, 1995; Lavie 

& Tsal, 1994). This also determines if attentional selection happens at an early or late 

stage according to the authors. In contrast, the stress and strain model by Rohmert 

(1984), which is well established within the field of human factors, would however sug-

gest a separation of the stresses coming from the outside (such as visual complexity 

for example) and the strains resulting from these within the individual (for example 

mental workload). Compared to this, Macdonald and Lavie's (2011) concept thus ra-

ther suggests an interplay of both levels comprised by the concept of visual or percep-

tual load, which also influences the locus of selective attention. This would however 

contradict a unidirectional process as for example implicated by Rohmert (1984). Con-

sequently, the concept visual load offers the benefit of considering capacity limits (for 

example of the short-term memory), which can also affect the perception of visual com-

plexity as for example reflected by the gaze behaviour (see for example the discussion 
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of the results on ocular parameters for study 3 in paragraph 5.5). Therefore, visual 

complexity might not only influence mental workload unidirectionally, but in its percep-

tion and processing also depend on the available mental resources, such as the ca-

pacity of the short-term memory as shown by Alvarez and Cavanagh (2004). Within 

further investigations, this interplay would be worth to be examined in more detail. This 

might help to gain further insights into the cognitive processes involved in the percep-

tion of differently complex stimuli. By that, not only the relation between visual com-

plexity and mental workload could be more closely addressed, but also a clearer dis-

tinction and definition of the concepts visual complexity and visual load might be facil-

itated. A first approach for addressing the described issue might consist in using a 

dual-task paradigm with both tasks occupying the visual modality as related to Wick-

ens' (1984) multiple resource model. By increasing mental workload level in this mo-

dality, its influence on the perception and judgement of visual complexity could be in-

vestigated. A starting point for the closer investigation of the interplay between visual 

complexity and mental workload was done within an experiment (Ries, Wolf, 

Olschowski, Döllken, & Deml, 2018), which however used an auditory manipulation of 

mental workload, while effects on ocular parameters were examined. This idea could 

also be further pursued by using a visual secondary task and a more advanced ma-

nipulation of visual complexity, as for example through the variation of influencing var-

iables as implemented within study 3 or 4 of this dissertation. Within the more detailed 

investigation of the role of mental resources and the interrelation between visual com-

plexity and mental workload, the analysis of gaze behaviour might provide a better 

understanding of the cognitive processes involved. The partly opposing effects for oc-

ular parameters within studies 3 and 4, which may arise from different demands for 

limited processing resources, may offer first insights in this respect. However, further 

research is needed to examine these post-hoc explanations in detail.  

In conclusion, the four conducted studies enrich the existing body of research on visual 

complexity in human-machine interaction by addressing some current issues. Yet, of 

course not all open questions could be addressed in detail within the scope of this 

dissertation. The last paragraph therefore pointed out the limitations of the research 

works as well as starting points for subsequent investigations. 
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Within the scope of this dissertation, four studies were conducted in order to address 

the role of visual complexity within human-machine interaction from three different per-

spectives. First of all, at a theoretical level, visual complexity was further scrutinized by 

examining the impact of different influencing variables as well as the factorial structure 

of the construct. In the second place, at the level of measurement, the relations with 

computational and ocular parameters were investigated, which may contribute to the 

assessment of a comprehensive image of visual complexity. Finally, at the level of 

impacts, effects on mental workload were shown both for the visual complexity of web-

site screenshots but also for video complexity in a CCTV surveillance task from the 

context of a control room. Next to mental workload, previous research additionally 

showed associations between visual complexity and visual aesthetics, user satisfac-

tion, performance and arousal (e.g. Marin & Leder, 2013; Nadkarni & Gupta, 2007; 

Tuch et al., 2009). Moreover, visual complexity could be relevant with regard to the 

user experience and usability of systems as discussed within the previous paragraph. 

All in all, the examined and hypothesized associations with the mentioned constructs 

particularly underline the relevance of visual complexity within the field human-ma-

chine interaction. 

Beyond the domains addressed within this work, visual complexity can also have an 

impact on many further activities such as driving, both with regard to the road environ-

ment as well as the instrument cluster (Edquist et al., 2012; Yoon et al., 2015). More-

over, it might even affect ‘traditional’ workplace design in manufacturing for example 

where the visual demands of the work task (such as the difficulty in visual differentia-

tion, which according to Nadal et al. (2010) also reflects a facet of visual complexity) 

can have an impact for example regarding the recommended working height 

(Deutsches Institut für Normung e.V., 2009). Next to the established effects of visual 

complexity in different application areas, the acquired findings on theoretical founda-

tions may also have practical implications. In this regard, the impact of influencing var-

iables as well as the factorial structure of the construct visual complexity was investi-

gated within this dissertation. This can contribute to a better understanding and a uni-

versal definition of the construct, since both aspects allow for a better grasp of what 

visual complexity is and which factors contribute to its perception. Considering the dif-

ferences in definitions (see paragraph 2.2.1) and proposed influencing variables and 
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factors (see paragraph 2.2.3), these findings appear valuable both as a base for further 

research but also as points of reference for practitioners. Knowledge about the impact 

of influencing variables on the subjective impression of visual complexity may for ex-

ample help to reduce or optimize the complexity level of user interfaces for example.  

Furthermore, the findings on effects of visual complexity on the subjects’ gaze behav-

iour demonstrated that the consideration of ocular parameters within research on vis-

ual complexity is very promising, since these can shed light upon the underlying atten-

tional processes involved in the visual perception of complexity. On this basis, they 

can also serve as indicators of visual complexity and thus be used for the prediction of 

visual complexity ratings in addition to computational measures. The new approach of 

integrating both types of measures within this work provided good prediction accura-

cies for mean visual complexity ratings while also allowing to also consider interindi-

vidual differences and address single ratings instead of mean values. The achieved 

results are remarkable, particularly given the rather small sample size and number of 

stimuli. This might make the proposed prediction approach also interesting for use in 

the field of user research for example. Particularly when combined with interindividual 

attributes such as age, gender and personality as well as the level of previous experi-

ence, the use of eye tracking methodology may provide new insights into differences 

in the processing of visual complexity. The integration of interindividual aspects might 

also help to further improve prediction models of visual complexity ratings by explaining 

additional shares of variance. 

Finally, the findings gathered within the scope of this dissertation were integrated with 

previous research into a research model of visual complexity in human-machine inter-

action. This illustrates the relations between visual complexity influencing variables, 

the construct itself, but also other aspects that are affected by visual complexity. More-

over, backgrounds of visual processing and attention are taken into account, providing 

relevant links with findings from basic research and underlying cognitive processes. 

The research model not only summarizes the state of research up to this date, but may 

also encourage the generation of hypotheses for future studies in this field.  

In conclusion, next to other types of complexity such as cognitive, display and task 

complexity (Endsley & Jones, 2012), visual complexity can play a central role within 

different human-machine interfaces, such as control rooms, graphical user interfaces 

and driving. Thereby, it not only affects people during work, but within many scenarios 
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of daily life. As suggested within this work and previous research literature, higher lev-

els of visual complexity can lead to an increase in mental workload and have effects 

on other measures such as performance (e.g. Svensson et al., 1997) and liking (e.g. 

Berlyne, 1971). While the degree of tolerance towards visual complexity may differ 

between subjects, for example based on individual properties such as expertise, age 

or gender, there are also possible strategies for dealing with the visual complexity of 

user interfaces. First of all, findings regarding the impact of influencing variables on the 

perception of visual complexity can help to establish guidelines for reducing the visual 

complexity, for example by decreasing the number of elements, establishing structure 

or by grouping or “chunking” elements together. On the other hand, Donald Norman 

(2016) within his book “Living with Complexity” provides examples for cases, where a 

high level of (also visual) complexity is appropriate, such as the flight deck of a Boeing 

787 (see Figure 91) and consequently suggests that complexity itself is neither good 

nor bad.  

 

 

Figure 91. Flight deck of a Boeing 787, taken from Norman (2016) as an example of 

appropriate complexity 
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Instead, he argues that “Just as the owner of a cluttered desk sees order in its struc-

ture, we will see order and reason in complexity once we come to understand the un-

derlying principles. But when that complexity is random and arbitrary, then we have 

reason to be annoyed.” (Norman, 2016, p. 4). According to him, “good design can help 

to tame the complexity, not by making things less complex – for the complexity is re-

quired – but by managing the complexity (Norman, 2016, p. 5). This aspect – good 

design – is an important aspect, to which the discipline of human factors can strongly 

contribute in order to make systems and products useful and usable. 
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  NASA Mean 

Predictors Estimates CI p 

(Intercept) 14.22 13.23 – 15.21 <.001 

Frequency [1/6s] -0.45 -1.13 – 0.24 .200 

Frequency [1/9s] -1.31 -1.99 – -0.62 <.001 

Complexity [low] -0.29 -0.97 – 0.40 .409 

Frequency [1/6s]:Complexity [low] -0.46 -1.43 – 0.50 .346 

Frequency [1/9s]:Complexity [low] -0.43 -1.40 – 0.54 .384 

Random Effects 

σ2 2.07 

τ00 Subject 6.63 

ICC 0.76 

N Subject 34 

Observations 204 

Marginal R2 / Conditional R2 .053 / .775 
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  Hit Ratio 

Predictors Estimates CI p 

(Intercept) 0.86 0.81 – 0.90 <.001 

Frequency [1/6s] -0.01 -0.06 – 0.03 .482 

Frequency [1/9s] -0.02 -0.06 – 0.02 .291 

Complexity [low] 0.05 0.01 – 0.09 .019 

Frequency [1/6s]:Complexity [low] 0.01 -0.05 – 0.07 .804 

Frequency [1/9s]:Complexity [low] 0.01 -0.04 – 0.07 .619 

Random Effects 

σ2 0.01 

τ00 Subject 0.01 

ICC 0.51 

N Subject 34 

Observations 204 

Marginal R2 / Conditional R2 .053 / .533 
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  Reaction Time 

Predictors Estimates CI p 

(Intercept) 1376.94 1304.71 – 1449.18 <.001 

Frequency [1/6s] 41.75 -32.52 – 116.02 .271 

Frequency [1/9s] -26.33 -100.59 – 47.94 .487 

Complexity [low] -99.97 -174.24 – -25.71 .008 

Frequency [1/6s]:Complexity [low] -160.39 -265.42 – -55.36 .003 

Frequency [1/9s]:Complexity [low] -16.41 -121.44 – 88.62 .759 

Random Effects 

σ2 24409.01 

τ00 Subject 21770.14 

ICC 0.47 

N Subject 34 

Observations 204 

Marginal R2 / Conditional R2 .147 / .549 

 

 

  RMSSD 

Predictors Estimates CI p 

(Intercept) 2.54 2.40 – 2.68 <0.001 

Frequency [1/6s] 0.02 -0.06 – 0.09 0.676 

Frequency [1/9s] 0.07 -0.00 – 0.14 0.061 

Complexity [low] 0.02 -0.05 – 0.09 0.522 

Frequency [1/6s]:Complexity [low] -0.00 -0.10 – 0.10 0.969 

Frequency [1/9s]:Complexity [low] -0.01 -0.10 – 0.09 0.871 

N Subject 32 

Observations 359 
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  ECG: LF Power 

Predictors Estimates CI p 

(Intercept) 337.76 257.49 – 418.04 <0.001 

Frequency [1/6s] 22.52 -51.38 – 96.74 0.551 

Frequency [1/9s] 61.50 -12.64 – 135.70 0.104 

Complexity [low] 86.11 13.84 – 158.48 0.019 

Frequency [1/6s]:Complexity [low] -64.37 -167.82 – 39.09 0.222 

Frequency [1/9s]:Complexity [low] -53.97 -156.45 – 48.51 0.301 

Random Effects 

σ2 36464.85 

τ00 Subject 29807.75 

ICC 0.45 

N Subject 32 

Observations 322 

Marginal R2 / Conditional R2 .017 / .459 
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  PERCLOS 

Predictors Estimates CI p 

(Intercept) 3.31 2.42 – 4.19 <0.001 

Frequency [1/6s] 0.42 -0.03 – 0.88 0.066 

Frequency [1/9s] -0.09 -0.74 – 0.56 0.783 

Complexity [low] -0.23 -0.87 – 0.41 0.473 

Frequency [1/6s]:Complexity [low] 0.73 0.27 – 1.18 0.002 

Frequency [1/9s]:Complexity [low] 0.86 0.40 – 1.31 <0.001 

Random Effects 

σ2 1.57 

τ00 Subject 5.83 

ICC 0.79 

N Subject 33 

Observations 353 

Marginal R2 / Conditional R2 .027 / .794 
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  Visual complexity rating 

Predictors Estimate SE z p 

Threshold coefficients     

1|2 -1.07 0.54 -1.98  

2|3 1.15 0.54 2.14  

3|4 2.41 0.54 4.47  

4|5 3.59 0.54 6.65  

5|6 5.18 0.55 9.48  

6|7 7.41 0.56 13.22  

Coefficients     

Number of elements [2] 0.13 0.21 0.61 .54 

Number of elements [3] -0.07 0.26 -0.27 .79 

Number of elements [4] 0.21 0.29 0.73 .47 

Number of elements [5] 0.33 0.28 1.15 .25 

Number of elements [6] 0.62 0.31 1.96 <.05 

Number of elements [7] 2.10 0.39 5.44 <.0001 

Variety of elements [2] 0.32 0.21 1.50 .13 

Variety of elements [3] 1.19 0.26 4.56 <.0001 

Variety of elements [4] 1.36 0.29 4.74 <.0001 

Variety of elements [5] 1.47 0.29 5.07 <.0001 

Variety of elements [6] 1.80 0.32 5.57 <.0001 

Variety of elements [7] 1.66 0.43 3.82 <.001 

Density of elements [2] 0.23 0.20 1.11 .27 

Density of elements [3] 0.47 0.23 2.05 <.05 

Density of elements [4] 0.81 0.25 3.29 <.01 

Density of elements [5] 1.20 0.26 4.58 <.0001 
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Density of elements [6] 1.44 0.28 5.11 <.0001 

Density of elements [7] 1.56 0.37 4.17 <.0001 

Variety of Colours [2] 0.64 0.22 2.95 <.01 

Variety of Colours [3] 0.92 0.24 3.83 <.001 

Variety of Colours [4] 0.94 0.26 3.58 <.001 

Variety of Colours [5] 1.13 0.28 4.11 <.0001 

Variety of Colours [6] 0.93 0.31 3.03 <.01 

Variety of Colours [7] 1.57 0.40 3.93 <.001 

Colour contrast [2] 0.27 0.29 0.91 .36 

Colour contrast [3] 0.47 0.30 1.58 .12 

Colour contrast [4] 0.37 0.31 1.20 .23 

Colour contrast [5] -0.04 0.31 -0.12 .91 

Colour contrast [6] 0.29 0.32 0.92 .36 

Colour contrast [7] 0.26 0.37 0.70 .49 

Organization [2] 0.03 0.28 0.10 .92 

Organization [3] 0.19 0.29 0.66 .51 

Organization [4] -0.09 0.30 -0.29 .78 

Organization [5] -0.02 0.31 -0.06 .95 

Organization [6] -0.18 0.32 -0.58 .56 

Organization [7] -0.60 0.36 -1.70 .09 

Symmetry [2] 0.12 0.23 0.54 .59 

Symmetry [3] -0.16 0.24 -0.67 .50 

Symmetry [4] -0.50 0.25 -1.97 <.05 

Symmetry [5] -0.14 0.26 -0.54 .59 

Symmetry [6] -0.55 0.28 -1.98 <.05 

Symmetry [7] -0.56 0.33 -1.72 .09 

Visual Balance [2] 0.18 0.43 0.43 .67 

Visual Balance [3] -0.16 0.41 -0.40 .69 



 

281 

Visual Balance [4] -0.07 0.42 -0.16 .87 

Visual Balance [5] -0.01 0.43 -0.03 .98 

Visual Balance [6] 0.18 0.44 0.41 .68 

Visual Balance [7] -0.01 0.47 -0.01 .99 

Random Effects  

σ2 3.29  

τ00 Subject 0.74  

τ00 Stimulus 0.52  

ICC 0.28  

N Subject 94  

N Stimulus 18  

Observations 1692  

Marginal R2 / Conditional R2 .451 / .603  

 

 

 Factor 1 Factor 2 Factor 3 Communality 
Number of elements 0.93 -0.18 0.10 1.1 
Variety of elements 0.80 -0.23 0.28 1.4 
Density of elements 0.85 -0.15 0.11 1.1 
Variety of colours 0.42 -0.02 0.71 1.6 
Colour contrast 0.08 0.29 0.51 1.7 
Organization 0.37 0.74 -0.05 1.5 
Symmetry -0.26 0.76 -0.06 1.2 
Visual balance -0.08 0.75 0.21 1.2 
     
SS loadings 2.62 1.89 0.91  
Proportion Variance 0.33 0.24 0.11  
Cumulative Variance 0.33 0.56 0.68  
Proportion Explained 0.48 0.35 0.17  
Cumulative Proportion 0.48 0.83 1.00  

 

 

  Visual complexity rating 

Predictors Odds Ratios CI p 

Threshold 1|2 0.03 0.02 – 0.04 <.001 

Threshold 2|3 0.24 0.16 – 0.35 <.001 
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Threshold 3|4 0.80 0.55 – 1.18 .262 

Threshold 4|5 2.53 1.72 – 3.72 <.001 

Threshold 5|6 11.63 7.79 – 17.37 <.001 

Threshold 6|7 95.46 60.64 – 150.26 <.001 

Factor 1 score 5.49 4.60 – 6.55 <.001 

Factor 2 score 0.53 0.46 – 0.61 <.001 

Factor 3 score 1.71 1.46 – 2.00 <.001 

Random Effects 

σ2 3.29 

τ00 Subject 0.71 

τ00 Stimulus 0.47 

ICC 0.26 

N Subject 94 

N Stimulus 18 

Observations 1692 

Marginal R2 / Conditional R2 .431 / .581 

 

 

Category Complexity Website 

News high #01 Triggerfish 

News high #02 ProPhysik 

News high #03 Die Presse 

News high #04 Parfümerie 

News medium #05 Der Standard 

News medium #06 ArtInWords 

News medium #07 ArtScene 

News medium #08 Vol.at 

News low #09 DasNeueste 

News low #10 Bilanz 

News low #11 LBV 

News low #12 ArchiNews 

Online-Shop high #13 Lubera 
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Online-Shop high #14 Baldur 

Online-Shop high #15 Easy 

Online-Shop high #16 Puzzle 

Online-Shop medium #17 Bakker 

Online-Shop medium #18 Kunstsupermarkt  

Online-Shop medium #19 Gourvita 

Online-Shop medium #20 Ikarus 

Online-Shop low #21 Wogg 

Online-Shop low #22 Kaffeeonline 

Online-Shop low #23 Zeitwunder 

Online-Shop low #24 Wagner 

Company high #25 StammMetall 

Company high #26 Reichenbacher 

Company high #27 Medienversicherung 

Company high #28 ETHMess 

Company medium #29 Tucher 

Company medium #30 MaxBoegl 

Company medium #31 LeckerProdukte 

Company medium #32 Heidenhain 

Company low #33 Ospa 

Company low #34 BrotamHaken 

Company low #35 Lotto 

Company low #36 SHK  
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  Visual complexity rating 

Predictors Estimate SE z p 

Threshold coefficients     

1|2 -1.28 0.53 -2.42  

2|3 0.62 0.53 1.18  

3|4 1.77 0.53 3.34  

4|5 3.17 0.53 5.96  

5|6 4.80 0.54 8.96  

6|7 6.75 0.54 12.47  

Coefficients     

Number of elements [2] 1.62 0.39 4.19 <.0001 

Number of elements [3] 2.36 0.41 5.78 <.0001 

Number of elements [4] 2.82 0.43 6.64 <.0001 

Number of elements [5] 3.28 0.43 7.6 <.0001 

Number of elements [6] 3.73 0.45 8.29 <.0001 

Number of elements [7] 5.15 0.49 10.5 <.0001 

Variety of elements [2] -0.49 0.35 -1.43 .15 

Variety of elements [3] -0.3 0.36 -0.83 .41 

Variety of elements [4] -0.11 0.37 -0.3 .76 

Variety of elements [5] -0.04 0.37 -0.12 .91 

Variety of elements [6] 0.21 0.39 0.54 .59 

Variety of elements [7] 0.65 0.44 1.5 .13 

Density of elements [2] 0.06 0.28 0.23 .82 

Density of elements [3] 0.44 0.3 1.44 .15 

Density of elements [4] 0.62 0.33 1.92 .06 
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Density of elements [5] 0.83 0.33 2.5 <.05 

Density of elements [6] 1.57 0.35 4.54 <.0001 

Density of elements [7] 1.71 0.39 4.36 <.0001 

Variety of Colours [2] -0.02 0.24 -0.1 .92 

Variety of Colours [3] -0.07 0.25 -0.27 .79 

Variety of Colours [4] 0.23 0.26 0.9 .37 

Variety of Colours [5] 0.08 0.27 0.31 .76 

Variety of Colours [6] 0.41 0.28 1.47 .14 

Variety of Colours [7] 0.01 0.31 0.03 .97 

Colour contrast [2] -0.06 0.29 -0.21 .83 

Colour contrast [3] 0.04 0.29 0.14 .89 

Colour contrast [4] -0.17 0.29 -0.57 .57 

Colour contrast [5] -0.01 0.29 -0.04 .97 

Colour contrast [6] -0.03 0.3 -0.08 .93 

Colour contrast [7] 0.31 0.33 0.95 .34 

Organization [2] -0.46 0.36 -1.29 .20 

Organization [3] -0.37 0.36 -1.02 .30 

Organization [4] -0.54 0.36 -1.47 .14 

Organization [5] -0.66 0.37 -1.77 .09 

Organization [6] -1.15 0.38 -3.01 <.01 

Organization [7] -1.31 0.43 -3.05 <.01 

Symmetry [2] -0.4 0.36 -1.12 .26 

Symmetry [3] -0.08 0.36 -0.21 .83 

Symmetry [4] 0 0.36 -0.01 .99 

Symmetry [5] 0.29 0.36 0.79 .43 

Symmetry [6] 0.23 0.37 0.63 .53 

Symmetry [7] 0.67 0.42 1.6 .11 

Visual Balance [2] 0.69 0.4 1.72 .09 
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Visual Balance [3] 0.55 0.4 1.36 .17 

Visual Balance [4] 0.41 0.41 0.99 .32 

Visual Balance [5] 0.2 0.42 0.47 .64 

Visual Balance [6] 0.33 0.43 0.77 .44 

Visual Balance [7] 0.7 0.46 1.5 .13 

Random Effects  

σ2 3.29  

τ00 Subject 0.89  

τ00 Stimulus 0.07  

ICC 0.23  

N Subject 60  

N Stimulus 36  

Observations 2160  

Marginal R2 / Conditional R2 .486 / .602  

 

 

 Factor 1 Factor 2 Factor 3 Communality 
Number of elements 0.92 -0.14 0.17 1.1 
Variety of elements 0.78 -0.03 0.26 1.2 
Density of elements 0.84 -0.19 0.16 1.2 
Variety of colours 0.26 0.03 0.95 1.2 
Colour contrast 0.17 0.21 0.55 1.5 
Organization -0.21 0.90 0.04 1.1 
Symmetry -0.06 0.77 0.01 1.0 
Visual balance -0.08 0.81 0.08 1.0 
     
SS loadings 2.31 2.17 1.33  
Proportion Variance 0.29 0.27 0.17  
Cumulative Variance 0.29 0.56 0.73  
Proportion Explained 0.40 0.37 0.23  
Cumulative Proportion 0.40 0.77 1.00  

 

 

  Visual complexity rating 

Predictors Odds Ratios CI p 

Threshold 1|2 0.01 0.01 – 0.01 <.001 

Threshold 2|3 0.05 0.04 – 0.07 <.001 
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Threshold 3|4 0.17 0.13 – 0.23 <.001 

Threshold 4|5 0.70 0.53 – 0.93 .013 

Threshold 5|6 3.50 2.63 – 4.66 <.001 

Threshold 6|7 21.63 15.81 – 29.58 <.001 

Factor 1 score 6.25 5.45 – 7.18 <.001 

Factor 2 score 0.68 0.61 – 0.77 <.001 

Factor 3 score 1.48 1.33 – 1.63 <.001 

Random Effects 

σ2 3.29 

τ00 Subject 0.89 

τ00 Website 0.09 

ICC 0.23 

N Subject 60 

N Website 36 

Observations 2160 

Marginal R2 / Conditional R2 .445 / .573 
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Visual complexity ratings 

Predictors Odds Ratios CI p 

Threshold 0.02 0.01 – 0.04 <.001 

spacing 5.53 5.13 – 5.96 <.001 

Number of elements [9] 7.58 4.83 – 11.90 <.001 

Number of elements [13] 32.72 20.46 – 52.32 <.001 

Symmetry [0.5] 0.75 0.48 – 1.16 .194 

Symmetry [1] 0.17 0.11 – 0.26 <.001 

Number [9] * Symmetry [0.5] 0.54 0.29 – 1.00 .049 

Number [13] * Symmetry [0.5] 0.53 0.28 – 0.99 .045 

Number [9] * Symmetry [1] 0.37 0.20 – 0.70 .002 

Number [13] * Symmetry [1] 0.54 0.29 – 1.02 .058 

Random Effects 

σ2 3.29 

τ00 Stimulus 0.05 

τ00 Subject 1.66 

τ00 Object 0.00 

ICC 0.34 

N Subject 33 

N Stimulus 54 

N Object 3 

Observations 1782 

Marginal R2 / Conditional R2 .338 / .564 
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  Number of Fixations 

Predictors Estimates CI p 

(Intercept) 16.56 15.06 – 18.05 <.001 

Number of elements [9] 1.18 0.10 – 2.26 .033 

Number of elements [13] 0.31 -0.77 – 1.39 .576 

Symmetry [0.5] -1.78 -2.54 – -1.01 <.001 

Symmetry [1] 1.83 1.07 – 2.60 <.001 

Number [9] * Symmetry [0.5] -0.11 -1.19 – 0.97 .840 

Number [13] * Symmetry [0.5] -0.64 -1.40 – 0.12 .099 

Number [9] * Symmetry [1] 0.91 -0.16 – 1.99 .097 

Number [13] * Symmetry [1] 1.23 0.46 – 1.99 .002 

Random Effects 

σ2 12.00 

τ00 Stimulus 0.09 

τ00 Subject 13.62 

τ00 Object 0.29 

ICC 0.54 

N Subject 33 

N Stimulus 54 

N Object 3 

Observations 1782 

Marginal R2 / Conditional R2 .054 / .563 
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  Scanpath Length (in pixels) 

Predictors Estimates CI p 

(Intercept) 4326.05 3884.00 – 4768.11 <.001 

Number of elements [9] 2577.26 1997.14 – 3157.38 <.001 

Number of elements [13] 737.39 157.65 – 1317.12 .013 

Symmetry [0.5] -1880.19 -2290.13 – -1470.26 <.001 

Symmetry [1] -516.92 -927.02 – -106.82 .013 

Number [9] * Symmetry [0.5] 872.53 292.91 – 1452.14 .003 

Number [13] * Symmetry [0.5] -1604.12 -2014.06 – -1194.19 <.001 

Number [9] * Symmetry [1] 2098.15 1518.28 – 2678.01 <.001 

Number [13] * Symmetry [1] -273.38 -683.81 – 137.05 .192 

Random Effects 

σ2 1320774.04 

τ00 Stimulus 90786.57 

τ00 Subject 954542.65 

ICC 0.44 

N Subject 33 

N Stimulus 54 

Observations 1763 

Marginal R2 / Conditional R2 .190 / .548 
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  Spatial Density 

Predictors Estimates CI p 

(Intercept) 10.30 9.26 – 11.35 <.001 

Number of elements [9] 2.54 1.30 – 3.77 <.001 

Number of elements [13] 0.42 -0.82 – 1.66 .507 

Symmetry [0.5] -1.54 -2.42 – -0.67 .001 

Symmetry [1] 3.11 2.23 – 3.98 <.001 

Number [9] * Symmetry [0.5] 1.32 0.09 – 2.56 .036 

Number [13] * Symmetry [0.5] -1.26 -2.13 – -0.38 .005 

Number [9] * Symmetry [1] 1.02 -0.22 – 2.26 .106 

Number [13] * Symmetry [1] 1.95 1.07 – 2.82 <.001 

Random Effects 

σ2 8.22 

τ00 Stimulus 0.35 

τ00 Subject 5.16 

τ00 Object 0.09 

ICC 0.40 

N Subject 33 

N Stimulus 54 

N Object 3 

Observations 1782 

Marginal R2 / Conditional R2 .204 / .526 
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  Visual Complexity Rating 

Predictors Estimate SE z 

Category-specific fixed effects    

1|2:(Intercept) -3.74 0.18 -20.79 

2|3:(Intercept) -1.05 0.15 -7.16 

3|4:(Intercept) 0.49 0.17 2.85 

4|5:(Intercept) 1.73 0.11 15.39 

5|6:(Intercept) 3.43 0.21 16.38 

6|7:(Intercept) 5.39 0.35 15.46 

Global fixed effects    

Number of Blinks 0.15 0.11 1.36 

Number of Saccades -0.24 0.13 -1.81 

Average Drift 0.40 0.12 0.01 

Coefficient K -0.00 0.11 -0.01 

ICA drop 0.03 0.09 0.34 

TIFF filesize 0.92 0.74 1.24 

Mean Edge Canny GIF 2.96 1.92 1.54 

Mean Edge Perimeter GIF -0.08 7.34 -0.01 

SD Edge Canny GIF -1.77 2.25 -0.79 

Mean x SD Edge Perimeter GIF -3.17 7.72 -0.41 

Symmetry diagonal top left bottom right 1.00 0.23 4.36 

Quads 1x1 0.07 0.27 0.27 

Quads 32x32 0.22 0.25 0.89 

Quads 128x128 -0.40 0.28 -1.41 

APB Horizontal Inner Outer -0.30 0.23 -1.30 

APB Vertical Inner Outer 0.11 0.19 0.60 
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Homogeneity -1.43 0.43 -3.37 

Random Effects 

SD Subject 1.10 
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  Visual Complexity Rating  

Predictors Estimate SE z p 

Category-specific fixed ef-
fects 

    

Theta 1 -3.53 0.15 -23.45 <.0001 

Theta 2 -0.87 0.09 -10.00 <.0001 

Theta 3 0.65 0.09 7.52 <.0001 

Theta 4 1.88 0.09 21.61 <.0001 

Theta 5 3.52 0.09 38.94 <.0001 

Theta 6 5.39 0.10 53.78 <.0001 

Global fixed effects     

Homogeneity -2.92 0.13 -22.62 <.0001 

Random effects     

SD Subject 0.98    

SD Stimulus 0.83    
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  Visual Complexity Rating  

Predictors Estimate SE z p 

Category-specific fixed 
effects 

    

Theta 1 -3.18 0.13 -24.40 <.0001 

Theta 2 -0.96 0.08 -12.44 <.0001 

Theta 3 0.49 0.08 6.44 <.0001 

Theta 4 1.70 0.08 21.99 <.0001 

Theta 5 3.30 0.08 40.80 <.0001 

Theta 6 5.08 0.09 56.03 <.0001 

Global fixed effects     

TIFF filesize -0.78 0.11 -7.25 <.0001 

Homogeneity -1.95 0.12 -15.95 <.0001 

Random effects     

SD Subject 0.99    
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  Visual Complexity Rating  

Predictors Estimate SE z p 

Category-specific fixed 
effects 

    

Theta 1 -2.84 0.07 -42.44 <.0001 

Theta 2 -0.69 0.03 -24.55 <.0001 

Theta 3 0.56 0.03 21.21 <.0001 

Theta 4 1.54 0.03 54.56 <.0001 

Theta 5 2.80 0.03 83.31 <.0001 

Theta 6 4.31 0.05 87.51 <.0001 

Global fixed effects     

Homogeneity -2.35 0.07 -33.09 <.0001 
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  Visual Complexity Rating 

Predictors Odds Ratios CI p 

threshold.1 0.24 0.10 – 0.53 .001 

spacing 5.79 5.43 – 6.16 <.001 

Number of elements [6] 19.43 9.37 – 40.32 <.001 

Number of elements [9] 51.52 24.59 – 107.93 <.001 

Symmetry [B] 2.31 1.11 – 4.82 .025 

Colourfulness [B] 1.14 0.55 – 2.35 .727 

Prototypicality [B] 2.55 1.23 – 5.28 .012 

Number [6] * Symmetry [B] 0.98 0.35 – 2.73 .962 

Number [9] * Symmetry [B] 0.78 0.28 – 2.19 .641 

Number [6] * Colour [B] 1.03 0.37 – 2.85 .955 

Number [9] * Colour [B] 0.81 0.29 – 2.25 .679 

Symmetry [B] * Colour [B] 1.15 0.41 – 3.23 .791 

Number [6] * Prototyp. [B] 1.22 0.44 – 3.37 .708 

Number [9] * Prototyp. [B] 0.95 0.34 – 2.64 .919 

Symmetry [B] * Prototyp. [B] 0.42 0.15 – 1.20 .106 

Colour [B] * Prototyp. [B] 0.94 0.34 – 2.63 .909 

(Number [6] * Symmetry [B]) * Colour [B] 0.74 0.17 – 3.15 .683 

(Number [9] * Symmetry [B]) * Colour [B] 0.75 0.18 – 3.22 .703 

(Number [6] * Symmetry [B]) * Prototyp. [B] 1.77 0.41 – 7.56 .440 

(Number [9] * Symmetry [B]) * Prototyp. [B] 1.73 0.40 – 7.38 .460 

(Number [6] * Colour [B]) * Prototyp. [B] 0.66 0.16 – 2.78 .568 

(Number [9] * Colour [B]) * Prototyp. [B] 1.25 0.29 – 5.31 .766 

(Symmetry [B] * Colour [B]) * Prototyp. [B] 0.78 0.18 – 3.35 .735 

(Number [B] * Symmetry [B] * Colour [B]) * 
Prototyp. [B] 

1.55 0.20 – 12.04 .674 
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(Number [C] * Symmetriy [B] * Colour [B]) * 
Prototyp. [B] 

1.30 0.17 – 10.15 .799 

Random Effects 

σ2 3.29 

τ00 Stimulus 0.11 

τ00 Subject 2.62 

τ00 Type 0.11 

ICC 0.46 

N Subject 40 

N Stimulus 72 

N Type 3 

Observations 2688 

Marginal R2 / Conditional R2 .326 / .639 
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  Number of Fixations 

Predictors Estimate CI p 

(Intercept) 22.88 22.14 – 23.62 <.001 

Number of elements [6] -0.51 -0.64 – -0.37 <.001 

Number of elements [9] 0.02 -0.11 – 0.16 .730 

Symmetry [B] 0.17 0.08 – 0.26 <.001 

Colourfulness [B] -0.13 -0.26 – 0.00 .054 

Prototypicality [B] 0.03 -0.11 – 0.16 .693 

Number [6] * Symmetry [B] -0.03 -0.16 – 0.11 .707 

Number [9] * Symmetry [B] 0.04 -0.06 – 0.13 .460 

Number [6] * Colour [B] 0.02 -0.07 – 0.11 .682 

Number [9] * Colour [B] 0.08 -0.06 – 0.21 .258 

Symmetry [B] * Colour [B] 0.24 0.10 – 0.37 .001 

Number [6] * Prototyp. [B] 0.16 0.06 – 0.25 .001 

Number [9] * Prototyp. [B] 0.07 -0.06 – 0.20 .307 

Symmetry [B] * Prototyp. [B] 0.02 -0.12 – 0.15 .822 

Colour [B] * Prototyp. [B] -0.03 -0.16 – 0.11 .678 

(Number [6] * Symmetry [B]) * Colour [B] 0.09 -0.00 – 0.19 .050 

(Number [9] * Symmetry [B]) * Colour [B] 0.02 -0.08 – 0.11 .733 

(Number [6] * Symmetry [B]) * Prototyp. [B] -0.02 -0.16 – 0.11 .734 

(Number [9] * Symmetry [B]) * Prototyp. [B] 0.01 -0.12 – 0.15 .834 

(Number [6] * Colour [B]) * Prototyp. [B] 0.03 -0.11 – 0.16 .701 

(Number [9] * Colour [B]) * Prototyp. [B] 0.07 -0.07 – 0.20 .318 

(Symmetry [B] * Colour [B]) * Prototyp. [B] -0.08 -0.21 – 0.05 .235 

(Number [B] * Symmetry [B] * Colour [B]) * Pro-
totyp. [B] 

-0.00 -0.10 – 0.09 .930 

(Number [C] * Symmetriy [B] * Colour [B]) * Pro-
totyp. [B] 

-0.01 -0.14 – 0.13 .929 
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Random Effects 

σ2 5.74 

τ00 Stimulus 0.01 

τ00 Subject 4.54 

τ00 Type 0.08 

ICC 0.45 

N Stimulus 72 

N Subject 40 

N Type 3 

Observations 2684 

Marginal R2 / Conditional R2 .020 / .458 
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  Scanpath Length 

Predictors Estimate CI p 

(Intercept) 4857.65 4551.40 – 5163.89 <.001 

Number of elements [6] -11.65 -108.46 – 85.17 .814 

Number of elements [9] 32.90 -63.92 – 129.71 .505 

Symmetry [B] -70.25 -138.70 – -1.79 .044 

Colourfulness [B] -51.79 -148.60 – 45.01 .294 

Prototypicality [B] -11.52 -108.33 – 85.29 .816 

Number [6] * Symmetry [B] 14.77 -82.04 – 111.58 .765 

Number [9] * Symmetry [B] -11.96 -80.42 – 56.49 .732 

Number [6] * Colour [B] -1.02 -69.47 – 67.44 .977 

Number [9] * Colour [B] 5.48 -91.34 – 102.29 .912 

Symmetry [B] * Colour [B] 43.50 -53.31 – 140.30 .379 

Number [6] * Prototyp. [B] 87.69 19.24 – 156.15 .012 

Number [9] * Prototyp. [B] 17.60 -79.21 – 114.40 .722 

Symmetry [B] * Prototyp. [B] 0.73 -96.09 – 97.54 .988 

Colour [B] * Prototyp. [B] -41.38 -138.18 – 55.43 .402 

(Number [6] * Symmetry [B]) * Colour [B] -7.44 -75.90 – 61.01 .831 

(Number [9] * Symmetry [B]) * Colour [B] 3.13 -65.32 – 71.59 .929 

(Number [6] * Symmetry [B]) * Prototyp. [B] -75.08 -171.89 – 21.74 .129 

(Number [9] * Symmetry [B]) * Prototyp. [B] 6.02 -90.78 – 102.83 .903 

(Number [6] * Colour [B]) * Prototyp. [B] -59.42 -156.23 – 37.40 .229 

(Number [9] * Colour [B]) * Prototyp. [B] 30.00 -66.82 – 126.81 .544 

(Symmetry [B] * Colour [B]) * Prototyp. [B] 0.30 -96.50 – 97.11 .995 

(Number [B] * Symmetry [B] * Colour [B]) * 
Prototyp. [B] 

-13.34 -81.79 – 55.12 .703 

(Number [C] * Symmetriy [B] * Colour [B]) * 
Prototyp. [B] 

107.14 10.33 – 203.95 .030 
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Random Effects 

σ2 923120.86 

τ00 Stimulus 63046.86 

τ00 Subject 560388.28 

τ00 Type 27526.71 

ICC 0.41 

N Subject 40 

N Stimulus 72 

N Type 3 

Observations 2684 

Marginal R2 / Conditional R2 .016 / .423 
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  Spatial Density 

Predictors Estimate CI p 

(Intercept) 16.05 15.37 – 16.73 <.001 

Number of elements [6] -1.29 -1.47 – -1.11 <.001 

Number of elements [9] -0.00 -0.18 – 0.18 .963 

Symmetry [B] 0.29 0.16 – 0.42 <.001 

Colourfulness [B] -0.14 -0.32 – 0.04 .119 

Prototypicality [B] -0.00 -0.19 – 0.18 .959 

Number [6] * Symmetry [B] 0.04 -0.14 – 0.22 .683 

Number [9] * Symmetry [B] 0.01 -0.12 – 0.14 .863 

Number [6] * Colour [B] 0.04 -0.08 – 0.17 .507 

Number [9] * Colour [B] 0.03 -0.15 – 0.21 .740 

Symmetry [B] * Colour [B] 0.39 0.21 – 0.57 <.001 

Number [6] * Prototyp. [B] 0.15 0.02 – 0.28 .020 

Number [9] * Prototyp. [B] -0.02 -0.20 – 0.16 .817 

Symmetry [B] * Prototyp. [B] -0.06 -0.24 – 0.12 .498 

Colour [B] * Prototyp. [B] -0.05 -0.23 – 0.13 .571 

(Number [6] * Symmetry [B]) * Colour [B] 0.13 0.01 – 0.26 .041 

(Number [9] * Symmetry [B]) * Colour [B] 0.06 -0.07 – 0.18 .378 

(Number [6] * Symmetry [B]) * Prototyp. [B] 0.23 0.05 – 0.41 .012 

(Number [9] * Symmetry [B]) * Prototyp. [B] 0.04 -0.14 – 0.22 .688 

(Number [6] * Colour [B]) * Prototyp. [B] -0.02 -0.21 – 0.16 .788 

(Number [9] * Colour [B]) * Prototyp. [B] 0.04 -0.14 – 0.22 .687 

(Symmetry [B] * Colour [B]) * Prototyp. [B] 0.03 -0.15 – 0.21 .734 

(Number [B] * Symmetry [B] * Colour [B]) * Pro-
totyp. [B] 

-0.07 -0.20 – 0.06 .296 

(Number [C] * Symmetriy [B] * Colour [B]) * 
Prototyp. [B] 

0.03 -0.15 – 0.21 .767 
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Random Effects 

σ2 7.27 

τ00 Stimulus 0.11 

τ00 Subject 1.82 

τ00 Type 0.21 

ICC 0.23 

N Subject 40 

N Stimulus 72 

N Type 3 

Observations 2684 

Marginal R2 / Conditional R2 .101 / .306 
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  Visual Complexity Rating 

Predictors Estimate SE z 

Category-specific fixed effects    

1|2:(Intercept) -4.74 0.18 -26.39 

2|3:(Intercept) -2.02 0.11 -17.95 

3|4:(Intercept) -0.43 0.12 -3.48 

4|5:(Intercept) 0.72 0.10 7.48 

5|6:(Intercept) 2.77 0.09 31.05 

6|7:(Intercept) 4.71 0.11 42.22 

Global fixed effects    

Mean Velocity 0.14 0.07 2.06 

Mean Drift -0.05 0.14 -0.36 

Stationary Entropy 0.03 0.09 0.33 

SD Nr. of Nodes 0.07 0.08 0.95 

PERCLOS 0.11 0.07 1.44 

SD Edge Phase Congruency GIF -0.02 0.18 -1.13 

Mean x SD Edge Perimeter GIF -0.16 0.25 -0.64 

Vertical Symmetry 0.42 0.21 2.05 

Quads 4x4 -0.70 0.18 -3.92 

RMS SD -0.32 0.29 -1.13 

APB Horizontal Inner Outer -0.13 0.09 -1.39 

APB Vertical 0.03 0.10 0.32 

APB Vertical Inner Outer 0.08 0.06 1.29 

Nr. of Segments -0.19 0.16 -1.16 

Average of Elawady et al.'s (2017) five largest 
symmetries 

0.26 0.11 2.33 
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SD for Colour Congestion clutter map 0.12 0.08 1.43 

SD for Orientation Congestion clutter map 0.41 0.22 1.85 

Feature Congestion -0.38 0.17 -2.28 

Random Effects 

SD Subject 1.23 
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  Visual Complexity Rating  

Predictors Estimate SE z p 

Category-specific fixed ef-
fects 

    

Theta 1 -5.04 0.19 -26.30 <.0001 

Theta 2 -2.29 0.11 -20.46 <.0001 

Theta 3 -0.69 0.11 -6.24 <.0001 

Theta 4 0.47 0.11 4.25 <.0001 

Theta 5 2.52 0.11 22.50 <.0001 

Theta 6 4.49 0.12 37.95 <.0001 

Global fixed effects     

Scanpath Length (by Fixa-
tions) 

0.15 0.05 2.84 <.01 

Vertical Symmetry 0.71 0.14 5.06 <.0001 

Quads 4x4 -0.75 0.23 -3.27 <.01 

Quads 8x8 -0.13 0.19 -0.70 .48 

RMS SD -0.73 0.19 -3.83 <.001 

RMS Mean x SD 1.56 0.47 3.30 <.001 

RMS JPEG Size -0.60 0.66 -0.91 .36 

Nr. of Segments -0.48 0.20 -2.38 <.05 

Näsänen Complexity 0.04 0.38 0.10 .92 

Orientation  0.54 0.66 0.82 .41 

Feature Congestion map 
Filesize 

0.07 1.13 0.06 .95 

Orientation map Filesize -1.11 1.24 -0.90 .37 

Random effects     

SD Subject 1.63    
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SD Stimulus 0.44    
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  Visual Complexity Rating  

Predictors Estimate SE z p 

Category-specific fixed effects     

Theta 1 -4.75 0.18 -26.53 <.0001 

Theta 2 -2.16 0.10 -20.68 <.0001 

Theta 3 -0.67 0.10 -6.49 <.0001 

Theta 4 0.41 0.10 4.02 <.0001 

Theta 5 2.37 0.10 22.62 <.0001 

Theta 6 4.27 0.11 38.50 <.0001 

Global fixed effects     

Quads 4x4 -0.93 0.10 -9.70 <.0001 

Quads 8x8 -0.66 0.09 -7.46 <.0001 

RMS JPEG Size 1.27 0.24 5.29 <.0001 

Näsänen Complexity -0.85 0.14 -6.27 <.0001 

Orientation  -0.62 0.13 -4.97 <.0001 

Random effects     

SD Subject 1.55    
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  Visual Complexity Rating  

Predictors Estimate SE z p 

Category-specific fixed effects     

Theta 1 -3.63 0.07 -52.82 <.0001 

Theta 2 -1.61 0.03 -64.30 <.0001 

Theta 3 -0.44 0.02 -21.41 <.0001 

Theta 4 0.38 0.02 18.71 <.0001 

Theta 5 1.85 0.03 73.62 <.0001 

Theta 6 3.45 0.04 83.26 <.0001 

Global fixed effects     

Nr. of Fixations 0.27 0.04 6.74 <.0001 

Vertical Symmetry 0.45 0.09 4.91 <.0001 

Quads 4x4 -0.67 0.13 -5.34 <.0001 

Quads 8x8 -0.10 0.12 -0.82 .41 

RMS SD -0.29 0.11 -2.61 <.01 

RMS JPEG Size -0.07 0.32 -0.23 .82 

Nr. of Segments -0.14 0.10 -1.34 .18 

Spatial Frequency 0.24 0.21 1.14 .25 

Näsänen Complexity -0.14 0.22 -0.64 .52 

Orientation  0.84 0.28 3.02 <.01 

Feature Congestion -1.08 0.19 -5.65 <.0001 

 


