199 research outputs found

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Evolutionary Robotics

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Exploring New Horizons in Evolutionary Design of Robots

    Get PDF
    International audienceThis introduction paper to the 2009 IROS workshop “Exploring new horizons in Evolutionary Design of Robots” considers the field of Evolutionary Robotics (ER) from the perspective of its potential users: roboticists. The core hypothesis motivating this field of research will be discussed, as well as the potential use of ER in a robot design process. Three main aspects of ER will be presented: (a) ER as an automatic parameter tuning procedure, which is the most mature application and is used to solve real robotics problem, (b) evolutionary-aided design, which may benefit the designer as an efficient tool to build robotic systems and (c) automatic synthesis, which corresponds to the automatic design of a mechatronic device. Critical issues will also be presented as well as current trends and pespectives in ER

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    A Developmental Evolutionary Learning Framework for Robotic Chinese Stroke Writing

    Get PDF
    The ability of robots to write Chinese strokes, which is recognized as a sophisticated task, involves complicated kinematic control algorithms. The conventional approaches for robotic writing of Chinese strokes often suffer from limited font generation methods, which limits the ability of robots to perform high-quality writing. This paper instead proposes a developmental evolutionary learning framework that enables a robot to learn to write fundamental Chinese strokes. The framework first considers the learning process of robotic writing as an evolutionary easy-to-difficult procedure. Then, a developmental learning mechanism called “Lift-constraint, act and saturate” that stems from developmental robotics is used to determine how the robot learns tasks ranging from simple to difficult by building on the learning results from the easy tasks. The developmental constraints, which include altitude adjustments, number of mutation points, and stroke trajectory points, determine the learning complexity of robot writing. The developmental algorithm divides the evolutionary procedure into three developmental learning stages. In each stage, the stroke trajectory points gradually increase, while the number of mutation points and adjustment altitudes gradually decrease, allowing the learning difficulties involved in these three stages to be categorized as easy, medium, and difficult. Our robot starts with an easy learning task and then gradually progresses to the medium and difficult tasks. Under various developmental constraint setups in each stage, the robot applies an evolutionary algorithm to handle the basic shapes of the Chinese strokes and eventually acquires the ability to write with good quality. The experimental results demonstrate that the proposed framework allows a calligraphic robot to gradually learn to write five fundamental Chinese strokes and also reveal a developmental pattern similar to that of humans. Compared to an evolutionary algorithm without the developmental mechanism, the proposed framework achieves good writing quality more rapidly

    A Reactive Path Planning Approach for a Four-wheel Robot by the Decomposition Coordination Method

    Get PDF
    In this paper, we discuss the problem of safe navi- gation by solving a non-linear model for a four-wheel robot while avoiding the upcoming obstacles that may cross its path using the Decomposition Coordination Method (DC). The method consists of first, choosing a non-linear system with the associated objective functions to optimize. Then we carry on the resolution of the model using the Decomposition Coordination Method,  which allows the non-linearity of the model to be handled locally and ensures coordination through the use of the Lagrange multipliers. An obstacle-avoidance algorithm is presented thus offering a collision-free solution. A numerical application is given to concert the efficiency of the method employed herein along with the simulation results

    Co-Design Optimisation of Morphing Topology and Control of Winged Drones

    Full text link
    The design and control of winged aircraft and drones is an iterative process aimed at identifying a compromise of mission-specific costs and constraints. When agility is required, shape-shifting (morphing) drones represent an efficient solution. However, morphing drones require the addition of actuated joints that increase the topology and control coupling, making the design process more complex. We propose a co-design optimisation method that assists the engineers by proposing a morphing drone's conceptual design that includes topology, actuation, morphing strategy, and controller parameters. The method consists of applying multi-objective constraint-based optimisation to a multi-body winged drone with trajectory optimisation to solve the motion intelligence problem under diverse flight mission requirements. We show that co-designed morphing drones outperform fixed-winged drones in terms of energy efficiency and agility, suggesting that the proposed co-design method could be a useful addition to the aircraft engineering toolbox

    GPU Computing for Cognitive Robotics

    Get PDF
    This thesis presents the first investigation of the impact of GPU computing on cognitive robotics by providing a series of novel experiments in the area of action and language acquisition in humanoid robots and computer vision. Cognitive robotics is concerned with endowing robots with high-level cognitive capabilities to enable the achievement of complex goals in complex environments. Reaching the ultimate goal of developing cognitive robots will require tremendous amounts of computational power, which was until recently provided mostly by standard CPU processors. CPU cores are optimised for serial code execution at the expense of parallel execution, which renders them relatively inefficient when it comes to high-performance computing applications. The ever-increasing market demand for high-performance, real-time 3D graphics has evolved the GPU into a highly parallel, multithreaded, many-core processor extraordinary computational power and very high memory bandwidth. These vast computational resources of modern GPUs can now be used by the most of the cognitive robotics models as they tend to be inherently parallel. Various interesting and insightful cognitive models were developed and addressed important scientific questions concerning action-language acquisition and computer vision. While they have provided us with important scientific insights, their complexity and application has not improved much over the last years. The experimental tasks as well as the scale of these models are often minimised to avoid excessive training times that grow exponentially with the number of neurons and the training data. This impedes further progress and development of complex neurocontrollers that would be able to take the cognitive robotics research a step closer to reaching the ultimate goal of creating intelligent machines. This thesis presents several cases where the application of the GPU computing on cognitive robotics algorithms resulted in the development of large-scale neurocontrollers of previously unseen complexity enabling the conducting of the novel experiments described herein.European Commission Seventh Framework Programm

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man
    corecore