
A Reactive Path Planning Approach for a
Four-Wheel Robot by the Decomposition

Coordination Method

Hala El Ouarrak and Mostafa Rachik
Department of mathematics, Computer Sciences

Faculty of Science Ben M’Sik
Av Driss El Harti B.P 7955, Sidi Othmane, Casablanca, Morocco

Telephone:+212619428458
Email: h.elouarrak@gmail.com

Ibrahim Sanou, Fatiha Akef and Mohammed Mestari
Laboratory of Signals Distributed Systems

and Artificial Intelligence (SSDIA)
ENSET Mohammedia

Av Hassan II Mohammedia, Morocco
Email: mestari@enset-media.ac.ma

Abstract—In this paper, we discuss the problem of safe navi-
gation by solving a non-linear model for a four-wheel robot while
avoiding the upcoming obstacles that may cross its path using the
Decomposition Coordination Method (DC). The method consists
of first, choosing a non-linear system with the associated objective
functions to optimize. Then we carry on the resolution of the
model using the Decomposition Coordination Method, which
allows the non-linearity of the model to be handled locally and
ensures coordination through the use of the Lagrange multipliers.
An obstacle-avoidance algorithm is presented thus offering a
collision-free solution. A numerical application is given to concert
the efficiency of the method employed herein along with the
simulation results.

I. INTRODUCTION

The study of autonomous systems and mainly the robot’s
behaviour has known an increasing amount of research in the
recent century focused mainly on autonomous navigation and
tracking of nonlinear systems [1], [2]. Many significant results
have been adopted concerning nonlinear systems, opening the
way to study more complex mobile systems [3], [4].

That being said, methods for solving non-linear systems
often require very complex mathematical tools, which makes
the convergence very difficult when the size of the problem
raises. The search for new approaches and efficient solutions
remains an active research venture. Many methods using
genetic algorithms have been presented in numerous ways to
resolve scalar optimization problem (SOP) [5]-[6]. Nonethe-
less, the convergence of such methods to optimal Pareto front
is very strenuous [7], when the constraints of the problem
are not easy to satisfy or when the objective space is non-
convex. In addition, these algorithms determine any bound
of optimal Pareto front of the problem. On the other hand,
the path planning problem [8], [9], [10] and specifically, the
collision free path planning problem has known a noticeable
improvement and a recurrent interest among the scientific
society. The previous work categorizes into two different
approaches:

• The reactive approach [12], [13] which offers a fast re-
activity to avoid obstacles within a dynamic environment
with a low amount of computation but without requiring
the knowledge of the robot’s surrounding.

• The deliberative approach [14] has been centrally quick-
ened by the industrial use of robot’s arm manipulator ever
since 1961. The objective is the global planning of the
motion strategy based on a model of the world, that will
allow the robot to navigate from its current position to a
desired final position.

The approach adopted herein is the reactive approach for
it doesn’t require the full knowledge of the environment’s
information and for the fast reactivity it provides. Our main
objective is to find the optimal control input that would
allow the robot to navigate from an initial state q0 and reach
the final desired state qd in the most optimal way within
a dynamic environment. We calculate the control sequence
by first providing a model for the robot that integrates the
kinematics and dynamics constraints. The model is in most
cases a nonlinear system that can’t be linearized. We associate
several objective functions to optimize. We then proceed to the
resolution of the multi-objective optimization problem by the
use of the Decomposition Coordination method (DC) [15].
One of the best features of this approach the local treatment
of the nonlinearity of the model which reduces the computing
time, thus offering a fast reactivity to answer the real-time
constraint. The DC Method consists of the conversion of
the nonlinear system along with the associated optimization
problem to an equivalent scalar optimization problem (SOP)
with a single objective (cost) function. This conversion is
achieved by the use of the minimax method that we will
present later in this paper. To solve such SOP problem, we
start by transforming the differential equations into equivalent
difference equations that are then computed by discrete-time
units

This method can be applied to a various type of optimization

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

978-1-5386-0549-3/17/$31.00 ©2017 IEEE .513



problems and facilitate the implementation on an Analog Neu-
ral Network (ANN) which one of the propitious applications
that it offers [17].

This work is divided as follows: In section II we present the
chosen model of the robot. The section III is mainly focused on
the formulation of the problem and the process of conversion
into SOP problem. In section IV we start by analyzing the
problem, and we introduce the DC method as a solution for
the nonlinear system. We provide sufficient conditions for
the stability and convergence of the algorithm by using two
theorems previously presented in [15]. Then in section V, we
propose the resolution of a particular case of a four-wheel
robot, and we give the simulation results which consolidates
the theoretical approach presented herein. The conclusion is
contained in section VI.

II. MODEL OF THE ROBOT

The aim of this section is the presentation of the robot’s
model. Many models have been studied in the literature vary
from the most simple robot ( one directional robot) to the
most complicated one ( humanoid robots). For a matter of
simplicity, we work under the following assumptions: the
workspace where the robot navigates is planar and the rolling
is slip-free. We also assume the velocity vector to be null when
the wheel is in direct contact with the surface at a geometrical
point (tire deformation is neglected) [18].

Let us consider O of coordinates (x, y), as the central point
of the rear axis, φ be the robot heading orientation, ϕ the
steering angle and D the distance between the front wheels
and rear axes. Let q = (x, y, φ, ϕ)T be the state vector of the
robot and u = (ν, η)T the velocity (See Fig.1). The robot can
only navigate in a perpendicular direction to its rotation axis
[18] under the Assemptions presented above. One of the most
import constraints to consider is the nonholonomic constraints
which we can present as follows [19], [20] :

q̇ =


cos(φ) 0
sin(φ) 0

1
D tan(ϕ) 0

0 1

× (νη
)

(1)

Another crucial aspect we need to consider is the dynamics
of the robot. Many models have been studied in the literature.
However, we will use a more simple representation for this

Fig. 1. Four wheel robot

case study by adding a parameter γ which would offer better
results and the most optimal solution [21]. We have:

q̇ =
c

m
u− γq (2)

The model we present below shows both kinematics and
dynamic constraints which offer a genuine representation of
the robot’s motion. We present the nonlinear model for the
four-wheel robot as follows [22]:

q̇ = B(q)× u− γ × q (3)

where: B(q) = c
m


cos(φ) 0
sin(φ) 0

1
D tan(ϕ) 0

0 1

 is the control matrix.

q = (x, y, φ, ϕ)T and u = (ν, η)T are respectively the
state vector and the control input of the nonlinear system.
m and c are respectively the mass and the electro-mechanical
transmission coefficient [21]. To compute the discrete-time DC
Method, we must convert the nonlinear continuous model (3)
into a discrete time model with respect to a specific format of
the NECMOP seen in [15], using the forward Euler rule we
then obtain:

qk+1 = B(qk)uk + (1− γδt)qk = f(qk, uk) (4)

III. STATEMENT OF THE PROBLEM

In this section we examine the nonlinear discrete-time
system presented as follows:{

qk+1 = f(qk, uk)

q0 given
(5)

Where qk ∈ IRn and uk ∈ IRm. qk and uk are respectively
the state and the control input of the system at time k. Our
objective is to allow the robot to navigate to the desired state
by figuring out the optimal control sequence which enables this
outcome at time k while ensuring a collision-free trajectory.
To settle the incongruent objectives functions, we associate a
weight to each function. These weights are set according to
the constraints of the deciding entity. Therefore, solving this
problem depends on finding the set of optimal states under the
constraint of a single objective function. As mentioned earlier,
we make use of the Minimax method [15] to transform the
problem from a multi-objectives optimization problem into a
SOP problem. This approach gives the smallest value of the
maximum values of all the objective functions Ji. We define
ωk as the weight of the k component with

∑p
k=0 ωi = 1 , and

the objective functions (J1, J2, ..., Jp) such as:

E(q, u) = max1≤i≤P {wiJi(q, u)} (6)

We associate the optimisation problem (6) to the non-linear
system (5) thus obtaining the following SOP:

min{U∗
l /0≤l≤N−1}E(q, u)

s.t qk+1 = f(qk, uk)

with q0 = q(0) given

(7)
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Fig. 2. decomposition principle

where qk = (xk, yk,Φk, ϕk)T and uk = (νk, ηk)T are
respectively the state vector and the control input at time k.
Solving such complex system (7) proves difficult due to the
great amount of computation it requires which may increase
exponentially.

IV. ANALYSIS OF THE PROBLEM

In this section we propose a solution to the problem (7)
by using the DC method. We proceed to the decomposition
of the system into a group of N interconnected subsystems
organised into an easy serial configuration(See Fig.2), where
tk is the output for the subsystem k.{

tk = f(qk, uk), k = 0, . . . , N − 2

qk = tk−1, k = 0, . . . , N − 1
(8)

Therefore, the problem (7) can be written as follows:
min{u∗

k|0≤k≤N−1}E(q, u)

s.t tk = f(qk, uk)

with q0 = q(0) given

(9)

With qk = (xk, yk,Φk, ϕk)T and uk = (νk, ηk)T are
respectively the state vector and the control input at time k.
We build the ordinary Lagrange function [15], to solve the
derivation problem for the cost function (9):
L0 = 1

NE(q, u) + µT0 (f(q0, u0)− t0)

Lk = 1
NE(q, u) + µTk (f(qk, uk)− tk) + βtk(qk − tk−1)

LN−1 = 1
NE(q, u) + µTN−1(f(qN−1, uN−1)− qd)

+βtN−1(qN−1 − tN−2)
(10)

Where µk(n components) and βk (n components) are the
Lagrange multiplier vectors presented to take into consid-
eration the equality constraints (8). By derivating the ordi-
nary Lagrange function (10), we can transpose the equality-
constrained minimization problem (9) into a set of differential
equations. According to the KKT conditions [15], an equi-
librium point (q∗k,u∗k,µ∗k,β∗k ,t∗k) , must satisfy the following
equations:

∇qkL =
1

N

∂E

∂qk
+ µ∗k

T (1− γ) + β∗k
T = 0 (11)

∇uk
L =

1

N

∂E

∂qk
+ µ∗kB = 0 (12)

∇µk
L = Bu∗k + (1− γ)q∗k − t∗k = 0 (13)

∇tkL = −µ∗k + β∗k+1 = 0 (14)

∇βk
L = q∗k + t∗k−1 = 0 (15)

Thus to elucidate the equality constrained minimization prob-
lem (9) we need to resolve the associated system of differential
equations (11) - (15).

A. Decomposition-Coordination algorithm

This method was introduced by [15], [16] it relies on a
decomposition procedure for the treatment of the associated
system of differential equations (11)-(15) into two levels (see
Fig.3). The upper level utilizes equations (14) and (15) and
fixes tk and k, which in turn are proposed to the lower level
that runs equations (11)-(14). The resolution of equations (11)-
(14) is performed locally to solve the wholeness of the problem
(9). We then need to proceed to the discretization of the system
of differential equations (11)-(15) using the forward Euler rule.
The system of differential equations (11)-(15) can be turned
into the system of difference equations:

q
(j+1)
k = q

(j)
k + λq

(
1
N
∂E
∂qk

+ µ
(j)
k

T
(1− γ) + β

(j)
k

T
)

u
(j+1)
k = u

(j)
k + λu

(
1
N
∂E
∂qk

+ µ
(j)
k B

)
µ
(j+1)
k = µ

(j)
k + λµ

(
Bu

(j)
k + (1− γ)q

(j)
k − t

(j)
k

)
for k = 1, ..., N − 1

(16)
To guarantee the transmission of the necessary information to
the operative of the lower level with a global outlook to the op-
timization process (i.e., satisfaction of all equations (11)-(15)),
it is crucial to coordinate the two levels. This coordination lay
foundation on the simultaneous use of β(j)

k (k = 1, ..., N − 1)

and t(j)k (k = 0, ..., N−2) by the upper level. These parameters
which constitutes the coordination parameters are thought-
about as known within the lower level, thus enabling the local
resolution of the system of difference equations (16) and the
determination of the variables q∗k(t

(j)
k , β

(j)
k ), u∗k(t

(j)
k , β

(j)
k ) and

µ∗k(t
(j)
k , β

(j)
k ) which respectively satisfy equations (16). The

Fig. 3. Information transfer between the upper level and the lower level
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results q∗k(t
(j)
k , β

(j)
k ) and µ∗k(t

(j)
k , β

(j)
k ) are given to the upper

level which verifies the correctness of the previously supplied
information and corrects it if necessary. The coordination
parameters t(j)k and β(j)

k are given by the upper level resulting
from the relations:



t
(j+1)
k = t

(j)
k + λt

(
µ∗k(t

(j)
k , β

(j)
k ) + β

(j)
k+1

)
k = 0, 1, ..., N − 2

β
(j+1)
k = β

(j)
k + λβ

(
q∗k(t

(j)
k , β

(j)
k ) + t

(j)
k+1

)
k = 0, 1, ..., N − 2

(17)

We keep running the solution of the equations (16) until
we achieve satisfactory coordination, i.e. fulfillment of the
coordination equations (17). The algorithm thus presented is
shown in Fig.3.

B. Stability analysis

To study the convergence of the DC method we prove
that the resolution can be shortened to the solving of the
coordinating level. We introduce the following notations to
simplify the study of stability and convergence. Let us posit

vk =

(
qk
uk

)
, and call v∗k(t∗k, β

∗
k),µ∗k(t∗k, β

∗
k) ,t∗k and β∗k the so-

lution sought. Also let us call v∗k(t
(j)
k , β

(j)
k ) and µ∗k(t

(j)
k , β

(j)
k )

are the variables calculated at the lower level through the set
of equations (16), in order to establish the local satisfaction
of equations (11)-(13). we also define t∗k and β∗k as the
coordination variables to be processed at the upper level
through the algorithms of coordination (17). Let us also posit:

Gk =

(
∇qkL
∇uk

L

)
, Pk = ∇µk

L , Rk = ∇βk
L ,

Hk = ∇tkL Let us posit:
e
(j)
vk = v∗k(t

(j)
k , β

(j)
k )− v∗k(t∗k, β

∗
k)

e
(j)
µk = µ∗k(t

(j)
k , β

(j)
k )− µ∗k(t∗k, β

∗
k)

e
(j)
tk

= t
(j)
k − t∗

e
(j)
βk

= β
(j)
k − β∗

(18)

which illustrates the errors computed at iteration j of the coor-
dination loop. Let us posit the following Lyapunov function:

Θ(j) =
1

2

N−1∑
k=0

e
(j)
tk

T
e
(j)
tk

+ e
(j)
βk

T
e
(j)
βk

(19)

And let us define:{
∆e

(j)
tk

= e
(j+1)
tk

− e(j)tk = −λH(j)
k

∆e
(j)
βk

= e
(j+1)
βk

− e(j)βk
= −λR(j)

k

(20)

with λt = λβ = λ. We calculate the variation of the
Lyaponov function as follows:

∆Θ = Θ(j + 1)−Θ(j) = A(j)λ2 +B(j)λ (21)

where A(j) =
N−1∑
k=0

∆e
(j)
tk

T
∆e

(j)
tk

+ ∆e
(j)
βk

T
∆e

(j)
βk

and B(j) =

N−1∑
k=0

e
(j)
tk

T
∆e

(j)
tk

+ e
(j)
βk

T
∆e

(j)
βk

We employ the fallowing theo-

rems presented in [15]:

Theorem IV.1. Let e(j)vk , e(j)µk , e(j)tk and e
(j)
βk

be the errors
calculated at the iteration j of the coordination loop. Then:
e(j)vk → 0 and e(j)µk

→ 0 if e(j)tk → 0 and e(j)βk
→ 0

Theorem IV.2. The convergence is satisfied with sufficient

conditions if one of the matrices
∂G∗k
∂vk

(k = 0, 1, . . . , N−1) is

positive definite and the others are only positive semi-definite

and if A(j) 6= 0 , λ should be chosen as: 0 ≤ λ ≤
∣∣B(j)

A(j)

∣∣
C. Obstacle avoidance

In this section, we aim to calculate an optimal collision-
free trajectory. The main purpose of this embedded solution is
the automatic execution of the optimal control sequence that
would allow the robot to navigate safely while avoiding the
eventual obstacles it may collides. The algorithm that would
provide such a trajectory can be expressed as follows:
• m: Number of obstacles.
• Tm: The optimal trajectory computed from the mth

obstacle.
• q

(m)
0 (x

(m)
0 , y

(m)
0 , φ

(m)
0 , ϕ

(m)
0 ): Coordinates of the initial

starting from the mth obstacle.
• qobs(x

(m)
obs , y

(m)
obs , φ

(m)
obs , ϕ

(m)
obs ): Coordinates of the mth ob-

stacle.
The algorithm runs as follows:

• Compute the optimal trajectory T0 without
any obstacle from the initial state q(0)0 to the
final state qF , with m = 0.

• As qF is not reached yet :
– if an obstacle appears:
∗ Then m = m+ 1
∗ Correction of the trajectory, we put:
· x(m)

0 = x
(m)
obs + δx

· y(m)
0 = y

(m)
obs + δy

· θ(m)
0 = θ

(m)
obs + δθ

· ψ(m)
0 = ψ

(m)
obs + δψ

∗ and then compute the optimal trajec-
tory Tm from q

(m)
0 to qF .

– Otherwise continue to execute the previ-
ous trajectory.

• Optimal safe trajectory reached.

The information gathered would allow us to foresee the crash
and identify its likely-hood. Since the external environment
regroups many parameters namely: position, speed, accelera-
tion etc... those parameters are crucial to the selection of a
suitable control sequence for a collision-free path.
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V. NUMERICAL APPLICATION

Consider the four wheel car model described by the non-
linear discrete-time equation:{

qk+1 = f(qk, uk) = 0.99qk + 0.1B(qk)uk

q0 is given
(22)

where B(qk) =
c

m


cos(φk) 0
sin(φk) 0

1
D tan(ϕk) 0

0 1


with qk = (xk, yk, φk, ϕk)T being the state vector and
uk = (νk, ηk)T the control input at time k. We associate the
following optimization problem:

min 1
2 [
∑8
k=0 u

2
k]

s.t qk+1 = f(qk, uk)

and tk = qk+1

with q0 = q(0) k = 0, ..., 8

(23)

where q0 is the given initial condition. The corresponding
Lagrangian is:

L =
2∑
k=0

Lk (24)

Lk =
1

2

8∑
k=0

u2k +

8∑
k=0

µTk (0.99qk + 0.1Buk − tk)

+

8∑
k=0

βT (0.99qk − tk−1) (25)

where µk(k = 0, ..., 8) and βk(k = 1, ..., 8) are the Lagrange
multiplier vectors presented to take into consideration the
equality constraints (8). The optimal set q∗k, u∗k, µ∗k, t∗k(k =
0, ..., 8) and β∗k(k = 1, ..., 8) should fulfill these Lagrangian
conditions of stationeries in relation with the variables and the
Lagrange multipliers:

∇µk
L = δBu∗k + 0.99q∗k − t∗k = 0

∇q0L = 0.99q∗0 + µ∗0 = 0

∇qkL = 0.99q∗k + µ∗k + β∗k = 0

∇uk
L = 0.1u∗k +BTµ∗k = 0

 Lower Level (26)

∇βk
L = 0.99q∗k − t∗k−1 = 0

∇tkL = −µ∗k − β∗k+1 = 0

∇t2L = µ∗2 = 0

 Upper Level (27)

As it is depicted in Fig3, the calculation of the above equations
is distributed into two levels. Firstly, the upper level treats
equations (27) and computes t(j)0 and β

(j)
1 . Then, the lower

level utilizes the equations (26) to solve the problem in a global
way. The coordination parameters t(j)0 and β

(j)
1 are adjusted

by the upper level abiding these equations:

t
(j+1)
0 = t

(j)
0 + λt

(
µ∗0(t

(j)
0 ) + β

(j)
1

)
(28)

β
(j+1)
1 = β

(j)
1 + λβ

(
q∗1(β

(j)
1 ) + t

(j)
2

)
(29)

where t
(j)
0 and β

(j)
1 are given. The parameters u∗0(t

(j)
0 ),

µ∗k(t
(j)
0 )and q∗k(β

(j)
k ) are calculated as follows, in accordance

with (26)-(27):
∇µ0

L = 0

∇u0L = 0

∇t0L = 0

∇β1
L = 0

⇒


q∗0t

1
0.99 (t∗0

(j)0.1Bu∗0)

u∗0 = 1
0.1Bµ

∗
0

µ∗0 = β∗1
(j)

q∗1 = 1
0.99 t

∗
0
(j)

(30)

We repeat the relationships (30) at each development of
coordination parameters and until the equations (27)-(26) are
fulfilled. To study the convergence, we must respect the com-
pletion of the two sufficient conditions for stability described
in section IV. We then can write:

Gk =

(
∇qkL
∇uk

L

)
=

(
(1− γδt)qk + µk + βk

0.1uk +Bµk

)
, Vk =

(
qk
uk

)
(31)

for k = 0, ..., 8

The first condition is satisfied because all the matrices
∂G∗k

T

∂vk
(k = 0, 1, . . . , N − 1) are positive definite, so they are also
semi-definite, thereby satisfying the convergence conditions
presented in section IV:

∂G∗k
T

∂vk
=

(
0.99 0

0 0.1

)
(32)

with γ = 0.1 then the matrices
∂G∗k
∂vk

are positive semi definite.

To validate the second condition we choose:

0 < λ < −B(j)

A(j)
=
∣∣B(j)

A(j)

∣∣ (33)

We proceed to the simulation using the following numerical
example: the initial state is set to q0 = (0, 0, 0, 0) and the final
desired state to reach is set to qd = (5, 5, 0, 0). The results
clearly shows a series of straight lines formed between q0 and
each q(m)

0 , which is the most optimal trajectory possible while

Fig. 4. Optimal trajectory obstacle free and the optimal collision free path
from the initial state q0 to the final state qF
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Fig. 5. Optimal control parameters u1 = ν and u2 = η for the obstacle
avoidance path

Fig. 6. Evolution of the adaptability coefficient λ adjusted according to the
condition 0 < λ < −B(j)

A(j)
=
∣∣B(j)
A(j)

∣∣ in case (a) with four obstacles and case
(b) with three obstacles

avoiding the obstacles. The variation of the control sequence
uk for each state qi is illustrated in Fig.5, where u1 = vk
and u2 = ηk. In Fig.5, we observe the change in the control
occurs every time the robot is about to enter in collision with
an obstacle. Finally, in Fig.6 we can easily see the convergence
of the method after the third iteration, which guarantees a rapid
responsiveness with a low computing time regardless of the
complexity of the system.

VI. CONCLUSION

In this paper, we propose a new way for solving a non-
linear discrete-time model for a four-wheeled robot with
the Decomposition Coordination Method within a dynamic
environment to ensure a collision free path. One of the best
features of the DC method is the local treatment of the
non-linearity of the system which is very useful for the
case study of this article. The approach consists primarily,
of the concepts parallel treatment, while providing effective
coordination. We also proved the stability and convergence of
the algorithm by satisfying the conditions presented in section
IV. Moreover, we presented an efficient solution to the safe
navigation problem using an obstacle avoidance algorithm.
The Numerical application shown in this paper proves that
the method employed here can be advantageously applied to
SOP problem, especially for resolving problems that would

require an amount of calculations that are hard to conduct
through an overall approach. Another interesting features of
the DC method is that it is easily adaptable to parallel com-
putation and can, therefore, be implemented on an Analogue
Neural Network. The future work will mainly consist of the
implementation on a neural network and its applications.
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une tâche de grazing ”. Ph.D. dissertation, University dAngers, 2005.

[2] L. Huang, Y. S Lim, D. Li, C. E. L. Toeh, ”Design and Analysis of
a Four-wheel Omnidirectional Mobile Robot”. in 2nd Int. Conf. Auton.
Robot. Agents, vol. 5, New zealand, 2004, pp. 2013.

[3] P. C. Müller, ”Robot dynamics and control”. Automatica, vol. 28, no. 3,
pp. 655656, 1992.

[4] K. Kozowski, D. Pazderski, I. Rudas, and J. Tar, Modeling and control of
a 4-wheel skid-steering mobile robot : From theory to practice,. Poznan
University of Technology, 2004.

[5] D. The Luc, ”Multi-Objective Linear Programming Problem”. Springer,
2012, vol. 3, no. 1.

[6] G. Eichfelder, Adaptive scalarization methods in multiobjective optimiza-
tion. SIAM J. OPTIM., vol. 19, no. 4, pp. 16941718, 2008.

[7] A. Abraham, L. Jain, and G. E. Robert, ”Evolutionary multiobjective
optimization”. Springer, 2005.

[8] L. Caeacciolo, A. D. Luca, and S. Iannitti, Trajectory Tracking Control
of a Four-wheel Differentially Driven Mobile Robot. in 1999 IEEE Int.
Conf. Robot. Autom. Detroit, Michigan: 1999 IEEE, 1999, pp. 26322638.

[9] G. Mester, Motion Control of Wheeled Mobile Robots Modeling of the
Wheeled Mobile Robots. in 4th Serbian-Hungarian Jt. Symp. Intell. Syst.
SISY, 2006, pp. 119130.

[10] B. D. Argall, Learning Mobile Robot Motion Control From Demon-
stration and Corrective Feedback. Ph.D. dissertation, Robotics Institute,
Carnegie Mellon University, 2009.

[11] T. Lozano-Perez, Spatial planning: a configuration space approach. AI
Memo 605. Cambridge, Mass. MIT Artificial Intelligence Laboratory,
1980.

[12] M. Khatib, ”Sensor-based motion control for mobile robots”. Ph.D.
dissertation, LAAS-CNRS, 1996.

[13] P. Fiorini and Z. Shiller, ”Motion planning in dynamic environments
using velocity obstacles”. Int. J. Rob. Res., vol. 17, no. 7, pp. 760772,
1998.

[14] T. Lozano-Perez, ”Automatic planning of manipulator transfer move-
ments”. IEEE Trans. Syst. Man Cybern., vol. 11, no. 10, pp. 681698,
1981.

[15] M. Mestari, M. Benzirar, N. Saber, and M. Khouil, ”Solving nonlinear
equality constrained multiobjective optimization problems using neural
networks”. IEEE Trans. neural networks Learn. Syst., vol. 26, no. 10,
pp. 250020, oct 2015.

[16] M. Mestari, A. Namir, and J. Abouir, ”Switched capacitor neural
networks for optimal control of nonlinear dynamic systems: Design and
stability analysis”. SAMS Journal, vol. 41, no. 3, pp. 559-591, 2001.

[17] M. Mestari, ”An Analog Neural Network Implementation in Fixed
Time of Adjustable Order Statistic Filters and Applications”. IEEE
Transactions on Neural Networks, vol. 15, no. 3, May 2004, pp. 766-
785.

[18] S. R. PETTI, ”Safe navigation within dynamic environments: a prtial
motion planning approach”. Ph.D. dissertation, 2007.

[19] Z. Song, D. Zhao, J. Yi, and X. Li, ”Robust motion control for
nonholonomic constrained mechanical systems: sliding mode approach”.
in Proceeding. 2005, Am. Control Conf. 2005., 2005, pp. 28832888.

[20] K. Kozlowski and D. Pazderski, ”Modeling and control of a 4-wheel
skid-steering mobile robot”. Int. J. Appl. Math. Comput. Sci., vol. 14,
no. 4, pp. 477496, 2004.

[21] M. Egerstedt, ”Control of Mobile Robots”. [Online]. Available:
https://class.coursera.org/conrob-002

[22] H. E. Ouarrak, A. Bouaine, M. Rachik and M. Mestari, ”Trajectory plan-
ning for a four-wheel robot using decomposition-coordination principle”.
in 2015 Third World Conference on Complex Systems (WCCS), Mar-
rakech, Morocco, Nov 2015, pp. 1-6. doi: 10.1109/ICoCS.2015.7483265.

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

518


