4,265 research outputs found

    Mechanical properties of the concrete containing porcelain waste as sand

    Get PDF
    The demand of concrete have been increases on a daily bases which consume a lot of natural resource such as sand and gravel, there is an immediate need for finding suitable alternative which can be used to replace sand partially with another materials with high propor-tion . Ceramic waste is one of the strongest research areas that include the activity of replacement in all the sides of construction materi-als. This research aims to improve the performance of concrete using ceramic waste, and demonstrate the performance of mechanical properties to the concrete with partial replacement of sand by using waste porcelain. For these, we analyzed the mechanical properties of the concrete such as compressive strength, split tensile and flexural strength, the specimen were measured based on 10% ,20% ,30% ,40%, and 50% weight ratio of replace sand with waste porcelain at different time under water for 7 days , 28 days , 60 days . The optimum consideration were given to mechanical properties of the concrete, at different amount of ceramic waste as sand

    Nonlinear self-tuning control for power oscillation damping

    No full text
    Power systems exhibit nonlinear behavior especially during disturbances, necessitating the application of appropriate nonlinear control techniques. Lack of availability of accurate and updated models for the whole power system adds to the challenge. Conventional damping control design approaches consider a single operating condition of the system, which are obviously simple but tend to lack performance robustness. Objective of this research work is to design a measurement based self-tuning controller, which does not rely on accurate models and deals with nonlinearities in system response. Designed controller is required to ensure settling of inter-area oscillations within 10−12s, following disturbance such as a line outage. The neural network (NN) model is illustrated for the representation of nonlinear power systems. An optimization based algorithm, Levenberg-Marquardt (LM), for online estimation of power system dynamic behavior is proposed in batch mode to improve the model estimation. Careful study shows that the LM algorithm yields better closed loop performance, compared to conventional recursive least square (RLS) approach with the pole-shifting controller (PSC) in linear framework. Exploiting the capability of LM, a special form of neural network compatible with feedback linearization technique, is applied. Validation of the performance of proposed algorithm is done through the modeling and simulating heavy loading of transmission lines, when the nonlinearities are pronounced. Nonlinear NN model in the Feedback Linearization (FLNN) form gives better estimation than the autoregressive with an external input (ARX) form. The proposed identifier (FLNN with LM algorithm) is then tested on a 4−machine, 2−area power system in conjunction with the feedback linearization controller (FBLC) under varying operating conditions. This case study indicates that the developed closed loop strategy performs better than the linear NN with PSC. Extension of FLNN with FBLC structure in a multi-variable setup is also done. LM algorithm is successfully employed with the multi-input multi-output FLNN structure in a sliding window batch mode, and FBLC controller generates multiple control signals for FACTS. Case studies on a large scale 16−machine, 5−area power system are reported for different power flow scenarios, to prove the superiority of proposed schemes: both MIMO and MISO against a conventional model based controller. A coefficient vector for FBLC is derived, and utilized online at each time instant, to enhance the damping performance of controller, transforming into a time varying controller

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation

    Get PDF
    We propose an automatic methodology framework for short- and long-term prediction of time series by means of fuzzy inference systems. In this methodology, fuzzy techniques and statistical techniques for nonparametric residual variance estimation are combined in order to build autoregressive predictive models implemented as fuzzy inference systems. Nonparametric residual variance estimation plays a key role in driving the identification and learning procedures. Concrete criteria and procedures within the proposed methodology framework are applied to a number of time series prediction problems. The learn from examples method introduced by Wang and Mendel (W&M) is used for identification. The Levenberg–Marquardt (L–M) optimization method is then applied for tuning. The W&M method produces compact and potentially accurate inference systems when applied after a proper variable selection stage. The L–M method yields the best compromise between accuracy and interpretability of results, among a set of alternatives. Delta test based residual variance estimations are used in order to select the best subset of inputs to the fuzzy inference systems as well as the number of linguistic labels for the inputs. Experiments on a diverse set of time series prediction benchmarks are compared against least-squares support vector machines (LS-SVM), optimally pruned extreme learning machine (OP-ELM), and k-NN based autoregressors. The advantages of the proposed methodology are shown in terms of linguistic interpretability, generalization capability and computational cost. Furthermore, fuzzy models are shown to be consistently more accurate for prediction in the case of time series coming from real-world applications.Ministerio de Ciencia e Innovación TEC2008-04920Junta de Andalucía P08-TIC-03674, IAC07-I-0205:33080, IAC08-II-3347:5626

    Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter

    Get PDF
    This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications

    An electric circuit model for a lithium-ion battery cell based on automotive drive cycles measurements

    Get PDF
    The on-board energy storage system plays a key role in electric vehicles since it directly affects their performance and autonomy. The lithium-ion battery offers satisfactory characteristics that make electric vehicles competitive with conventional ones. This article focuses on modeling and estimating the parameters of the lithium-ion battery cell when used in different electric vehicle drive cycles and styles. The model consists of an equivalent electrical circuit based on a second-order Thevenin model. To identify the parameters of the model, two algorithms were tested: Trust-Region-Reflective and Levenberg-Marquardt. To account for the dynamic behavior of the battery cell in an electric vehicle, this identification is based on measurement data that represents the actual use of the battery in different conditions and driving styles. Finally, the model is validated by comparing simulation results to measurements using the mean square error (MSE) as model performance criteria for the driving cycles (UDDS, LA-92, US06, neural network (NN), and HWFET). The results demonstrate interesting performance mostly for the driving cycles (UDDS and LA-92). This confirms that the model developed is the best solution to be integrated in a battery management system of an electric vehicle

    Short Term Load Forecasting for Turkey Energy Distribution System with Artificial Neural Networks

    Get PDF
    The constant increase in consumption of electricity has become one of the biggest problems today. The evaluation of energy resources has also made it worthwhile to consume it. In this respect, the transmission of electric energy and the operation of power systems have become important issues. As a result, reliable, high quality and affordable energy supply has become the most important task of operators. Realizing these elements can certainly be accomplished with good planning. One of the most important elements of this planning is undoubtedly consumption estimates. Therefore, knowing when consumers will consume energy is of great importance for operators as well as energy producers. Consumption estimates or, in other words, load estimates are also important in terms of the price balance that will occur in the market. In this study, the short-term load estimation of Düzce, Turkey is performed with Artificial Neural Networks (ANN). In the study, the April values were taken as reference and the estimates were obtained according to the input results of this month. As a result of this study, it is seen that the load consumption with nonlinear data can be successfully forecasted by ANN

    Short-term forecasting of load and renewable energy using artifical neural network

    Get PDF
    Load forecasting is a technique used for the prediction of electrical load demands in battery management. In general, the aggregated level used for short-term electrical load forecasting (STLF) consists of either numerical or non-numerical information collected from multiple sources, which helps in obtaining accurate data and efficient forecasting. However, the aggregated level cannot precisely forecast the validation and testing phases of numerical data, including the real-time measurements of irradiance level (W/m2) and photovoltaic output power (W). Forecasting is also a challenge due to the fluctuations caused by the random usage of appliances in the existing weekly, diurnal, and annual cycle load data. In this study, we have overcome this challenge by using Artificial Neural Network (ANN) methods such as Bayesian Regularisation (BR) and Levenberg-Marquardt (LM) algorithms. The STLF achieved by ANN-based methods can improve the forecast accuracy. The overall performance of the BR and LM algorithms were analyzed during the development phases of the ANN. The input layer, hidden layer and output layer used to train and test the ANN together predict the 24-hour electricity demand. The results show that utilizing the LM and BR algorithms delivers a highly efficient architecture for renewable power estimation demand. © 2021 Seventh Sense Research Group
    corecore