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 The on-board energy storage system plays a key role in electric vehicles 

since it directly affects their performance and autonomy. The lithium-ion 

battery offers satisfactory characteristics that make electric vehicles 

competitive with conventional ones. This article focuses on modeling and 

estimating the parameters of the lithium-ion battery cell when used in 

different electric vehicle drive cycles and styles. The model consists of an 

equivalent electrical circuit based on a second-order Thevenin model. To 

identify the parameters of the model, two algorithms were tested: Trust-

Region-Reflective and Levenberg-Marquardt. To account for the dynamic 

behavior of the battery cell in an electric vehicle, this identification is based 

on measurement data that represents the actual use of the battery in different 

conditions and driving styles. Finally, the model is validated by comparing 

simulation results to measurements using the mean square error (MSE) as 

model performance criteria for the driving cycles (UDDS, LA-92, US06, 

neural network (NN), and HWFET). The results demonstrate interesting 

performance mostly for the driving cycles (UDDS and LA-92). This 

confirms that the model developed is the best solution to be integrated in a 

battery management system of an electric vehicle.  
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1. INTRODUCTION 

Among the solutions to the problems generated by mobility, the electrification of vehicles is 

increasingly considered by public and private stakeholders [1]. Electric and hybrid vehicles can reduce our 

fossil fuel consumption [2-5]. In this type of vehicle, the most sensitive component is the battery. This article 

aims to study battery cell performance in electric vehicles. The study focuses on lithium-ion accumulators, 

which have the most promising properties on the market among different battery technologies, particularly in 

terms of energy and mass power [6-11]. It is currently the best candidate for energy storage in electric 

vehicles [12, 13]. 

To achieve the aim of this study, it is first necessary to have a battery cell model that not only 

describes the electrical behavior, but also considers the thermal behavior of the battery cell. These elements 

directly affect vehicle performance [14]. Moreover, the model of the battery cell must consist of the 

https://creativecommons.org/licenses/by-sa/4.0/
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minimum necessary elements to minimize simulation time without sacrificing accuracy in order to be 

integrated into a battery management system.  

The simplicity of the model identification must also satisfy these requirements [15]. In electric 

vehicles, precise modeling and simulation of a battery to examine the performance of the storage system is 

required. A model can be defined as a simplified mathematical representation of a battery. The models make 

it possible to predict the behavior of a battery and to observe phenomena that are often impossible to measure 

in real use in electric vehicles. For example, a model can allow us to simulate several years of the life cycle 

of a storage system in a few minutes. This obviates having to build physical prototypes each time and to 

conduct expensive experiments. Predictive engineering necessitates developing a model that considers 

aspects of interest as closely as possible to reality to answer certain engineering questions. 

Battery modeling involves several categories of modeling: Physicochemical modeling, "black box" 

modeling, energy modeling, and electrical modeling. Many researchers conduct electrical modeling using 

equivalent electrical circuits. In the modeling of the equivalent electrical circuit, the electrical characteristics 

of the battery are taken into account and passive linear elements are used. Such models are easy to 

understand and their level of detail depends on the problem to be solved. 

The model identification of electrochemical accumulators is made by tests on the battery cell. It 

comprises selecting a technique that best suits the chosen model. Because it must consider the accumulator 

behavior during transient and permanent phases of operation, it is useful to use identification techniques that 

aim to study the accumulator dynamics in the time-type domain that corresponds to the nature of the model. 

The main objective of this article is to develop an equivalent electrical circuit model [16] for a Li-ion battery 

cell intended for use in electric vehicles. Modeling is based on measurements during different driving cycles 

and different driving styles of electric vehicles to widen the range of use of the proposed model.  

The identification of the proposed model and the estimation of its parameters must be determined 

using an algorithm that does not require multiple iterations, which implies a reduced identification time. 

Therefore, this paper compares two algorithms (Trust-Region-Reflective and Levenberg-Marquardt) using 

the criteria of the mean squared error (MSE) and the number of iterations. The results show that the 

Levenberg-Marquardt algorithm performs better in terms of the number of iterations. 

The model was validated using different driving cycles that represent different conditions and 

driving styles of an electric vehicle on a highway, a rural and an urban road as described in section 4 (UDDS, 

LA-92, US06, neural network and HWFET) based on the mean squared error (MSE) as model performance 

criteria. The phase of model validation offers interesting results mostly for the LA-92 and UDDS drive 

cycles. This paper is divided into seven parts. After an introduction in the first part, the second part presents a 

bibliographic modeling of lithium batteries. The third part demonstrates the electrical modeling through 

equivalent electrical circuits. In the fourth part, we focus on parameter identification and experimental data 

used for estimation and validation of the equivalent electrical circuit model proposed for the NCR18650PF 

Panasonic lithium-ion battery cell. The fifth part presents a battery cell parameter identification procedure 

using the parameter estimation toolbox and a battery cell second order equivalent electrical circuit model. 

The sixth part presents the results of parameter identification of the battery cell electrical equivalent model. 

Thereafter, we present the model validation results and their interpretation. Finally, a conclusion summarizes 

the work. 

 

 

2. ELECTRICAL MODELING BY EQUIVALENT ELECTRICAL CIRCUITS 

The simulation is essential to study the accumulator's behavior in the context of a defined use, such 

as that of electric and hybrid vehicles. The relevance of the results obtained depends on the quality and 

choice of the model. The modeling challenge is, therefore, to develop models that offer both low calculation 

time and accuracy levels that are relative to the application requirements. If obtaining a summary 

representation of the behavior of batteries is easy, accounting for the true electrochemical mechanisms in 

extreme conditions is very complex and is obtained at the expense of simplicity and the calculation time of 

the model. A good choice is not necessarily based on the accuracy of the model, but rather on a compromise 

between accuracy, simplicity, computation time, or ease of integration into a global system. Different 

modeling approaches exist: physicochemical modeling [17, 18], "black box" modeling [19-21], energy 

modeling, electrical modeling, and through the use of equivalent electrical circuits. 

Modeling by equivalent electrical circuit is widely used in the field of electrical engineering because 

it focuses on a description of the battery’s electrical behavior. This type of modeling has been selected for 

this work for several reasons. First, it is relatively simple to implement, does not require a substantial 

calculation for the simulations, and the level of precision is acceptable. Furthermore, the identification of the 

parameters is not too restrictive. For example, in the time domain, several characteristic tests make it possible 
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to determine all the model parameters. Finally, this type of model is easily integrable into a global model of 

battery management systems [22, 23]. 

The models that take the form of equivalent electrical circuits can be classified into two groups, 

depending on whether they use electrochemical impedance elements. In this part, the models consist only of 

electrical elements, which include the source of voltage, resistances, and capacitances. The convention 

adopted to define the sign of the current of the battery (Ib) is that of a battery discharge. 

The simple electric model see in Figure 1 consists of two elements: a voltage source Uoc, which 

represents the voltage at rest, and a resistor R0, which indicates the ohmic voltage drop of the battery cell. 

The values of these elements can be modified according to other parameters, such as the state of charge, the 

current value (or its direction), the temperature, and the lifetime. This model is widely used for quick 

dimensioning or to offer an initial view of simulations. However, many phenomena are overshadowed, which 

makes it difficult to achieve acceptable accuracy for many applications. 

To improve this model, an RC dipole is inserted, which leads to a first order model [24-27] of  

Figure 2. It comprises an ideal source voltage Uoc, an internal resistance R0, a capacitor C1, which represents 

the polarization of the metal plates of the accumulator, and an overvoltage resistor R1 that is due to the 

contact of the plates with the electrolyte [28, 29]. In this model, the elements of the circuit are often 

considered constant, but in reality, their values vary according to the state of charge, the temperature, and the 

rate of discharge [30].  

 

 

  
 

Figure 1. Simple model of a battery 

 

Figure 2. First order model of a battery 

 

 

To take into account the dynamic polarization and electric double phenomenon response, the second 

order Thevenin model is introduced [31, 32] Figure 3. This model consists of an ideal voltage source Uoc in 

series with an internal resistance R0 and two RC dipoles; the first one consists of C1 and R1, which 

successively represent the capacitance and the resistance of electrochemical polarization, while the second 

dipole includes elements C2 and R2, which successively represent the capacitance and the concentration 

resistance [33, 34]. This model is adopted for this study. 

 

 

 
 

Figure 3. Second order model of a battery 

 

 

3. PARAMETER IDENTIFICATION AND EXPERIMENTAL DATA 

The electrochemical behavior of lithium-ion cells is influenced by the temperature variation [35] 

and the state of charge (SOC). As this work only addresses the electrical model, the temperature of the 

battery cell is maintained constant at an ambient temperature of 25 ºC. It is then possible to study the 

dependence of the parameters of the battery cell model on the state of charge. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An electric circuit model for a lithium-ion battery cell based on… (Jaouad Khalfi) 

2801 

The parameters to be identified are the voltage Uoc, the resistors R0, R1, R2 and the capacitors C1 

and C2. To identify these parameters, we used the Simscape language integrated with the 

MATLAB/Simulink environment. Using this language, we realized the model presented as shown in Figure 4 

based on the initial conditions of the battery, the temperature, the current profile, and the evolution of the 

voltage. Indeed, the SOC can be calculated using its initial value and the current value, which is, in turn, used 

in the blocks of capacities and resistances. 

 

 

 
 

Figure 4. Battery cell model (second order) 

 

 

The parameters of the model are identified by applying the nonlinear least squares method with the 

Levenberg-Marquardt and Trust-Region-Reflective algorithms to measurements. In the context of this article, 

experimental tests on the battery cell aim to identify the model of the chosen battery, to estimate its 

parameters, and to validate the model and the battery estimated parameters. Moreover, to perform 

measurements, we focus on the specific case of electric vehicles exclusively powered by a battery.  

Identification procedures are applied to the elements tested under different conditions to allow 

modeling the battery over the entire zone of use. The identification is based on the exploitation of the data 

measured and recorded during a driving cycle process of an electric vehicle, as they are more representative 

of the real conditions of use experienced by lithium-ion cells in an electric vehicle. This expands the range of 

use of the proposed model in electric vehicles on highways and rural and urban roads. To our knowledge, this 

approach is rarely adopted in this type of problem. A driving cycle is a series of data representing the speed 

of the electric vehicle as a function of time. It aims to simulate the battery cell to predict its performance 

when used in an electric vehicle. The driving cycles used for measurements are defined as [36]: 

 LA-92: The California Unified cycle, also known as the unified cycle driving schedule (UCDS). LA-92 is 

a chassis-dynamometer driving schedule for light-duty vehicles; it was developed in 1992 by the 

California air resources board (CARB). 

 US06: It addresses the need for aggressive, high-acceleration and/or high-speed driving behavior, rapid 

speed fluctuations, and driving behavior following startup. 

 UDDS: The urban dynamo driving schedule (UDDS) is the standard driving cycle for the certification of 

passenger vehicles and light-duty trucks.  

 HWFET: The highway fuel economy test simulates interstate rural and highway driving conditions. 

 Neural network: This drive cycle consists of a combination of portions of LA92 and US06 drive cycles, 

and it was designed to provide additional dynamics that may be useful for training neural networks. 

In our case, the battery cell under test is a Panasonic 18650 battery cell with a lithium nickel cobalt 

aluminum oxide (LiNiCoAlO2 or NCA) chemistry [37, 38] and the electric vehicle is a Ford F150 truck [39] 

with a 35-kWh battery pack scaled for a single 18650PF cell. These choices are dictated by the fact that 

measurements on the same battery and the same vehicle are performed and made available by Dr. Phillip 

Kollmeyer at the Wisconsin-Madison University [40, 41]. All testing was performed in a thermal chamber, 

the characteristics of which are presented in [42, 43]. 
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Measurements correspond to a random mix of five driving cycles: UDDS, LA92, US06, HWFET, 

and neural network. This makes it possible to simulate real driving cycles. The drive cycle tests are 

terminated when the voltage reaches 2.5 V. During the experiment, the following are measured: 

 The measured voltage at the terminal of the battery cell in (V). The sense leads are welded directly into 

battery terminals. 

 The measured current applied to the battery cell in (A). 

 The time of the test measured in (s), which starts at zero at the beginning of each data set. 

 The ambient temperature of the test chamber (where the battery cell is located) in degrees Celsius, which 

is maintained at 25 ºC during the experiment. 

These data will be used to identify the internal parameters of the battery cell. 

 

 

4. IDENTIFICATION PROCEDURE OF BATTERY CELL PARAMETER  

In this article, we adopt the second-order Thevenin model with six parameters to be identified as 

shown in Figure 3. For the adjustment of these parameters, we used a set of experiences on the battery cell 

during different driving cycles, and we applied the least-squares nonlinear algorithm using MATLAB’s 

parameter estimation toolbox. The estimation process of the parameters of the battery cell model is shown in 

Figure 5. 

 

 

 
 

Figure 5. Flowchart of the estimation of battery cell model parameters  
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The estimation process of the parameters of the battery cell model is consists of seven steps: 

Step 1: Acquire experimental data sampled from the actual battery cell during a driving cycle of an electric 

vehicle to estimate the model parameter. For this step, we used data from experimental tests 

performed by Kollmeyer [40]. 

Step 2: Select and build a battery cell equivalent circuit model (second-order) created in Simscape language 

integrated with the MATLAB/Simulink environment. 

Step 3: Specify the experimental data in MATLAB toolbox "Parameter Estimation" and simulate the model 

with the current profile used for parameter estimation and the initial intuitive parameters. 

Step 4: Select the model parameters and set the maximum value and the minimum value of each parameter 

to reduce the estimation time. 

Step 5: Specify optimization options using nonlinear least squares as an optimization method and the 

Levenberg-Marquardt or Trust-Region-Reflective as an optimization algorithm (A).  

Step 6: Specify the sum squared error as cost function (a function that estimation methods minimize) and 

initiate the parameter estimation process. If the error is not small enough to the tolerance value and 

the number of iterations is less than or equal to the maximum allowed value IT_MAX, update the 

model parameters and move to the next iteration. Otherwise, the battery cell model is not suitable. 

Step 7: Validate the identified model with the estimated parameter by comparing the model response with 

the measured response of the battery cell. To validate the estimated model, it is necessary to use a 

data set different from that used to estimate the model parameters. For this step, we used data from 

other experimental tests available in [41]. If the error is not acceptable, the battery cell model is not 

suitable. 

 

 

5. RESULTS AND DISCUSSION 

5.1.  Model identification 

For the identification of the parameters of the battery cell model, namely Uoc, R0, R1, R2, C1, and 

C2, we used the MATLAB toolbox "Parameter Estimation". The first step defines the experimental data: the 

desired input (the current profile during the driving cycle process (Ib)) and the desired output (the battery 

voltage across terminals during the driving cycle process Ub) as a function of time in an Excel file (matrix of 

two columns). 

For this step, we used the measurements performed by Kollmeyer [40]. Thereafter, we intuitively 

introduced the initial values of the parameters to be identified: Uoc, R0, R1, R2, C1, and C2. Then we set the 

minimum value and the maximum value of each parameter to limit the parameter search interval and to 

reduce the identification time. Once the chosen estimation algorithm finishes its execution, it provides the 

new values of the model parameters. 

The results of nonlinear least squares method for the Trust-Region-Reflective and the Levenberg-

Marquardt algorithms are given in Table 1. We note that the Levenberg-Marquardt algorithm gives a mean 

square error (MSE) of 0.0013 in 3 iterations when Trust-Region-Reflective algorithm requires 8 iterations to 

estimate the model parameters for the same mean square error. 

 

 

Table 1. Results of estimation algorithms 
Algorithm Levenberg-Marquardt Trust-Region-Reflective 

MSE 0.0013 0.0013 

Number of iterations 3 8 

 

 

In this work, we choose to present the results given by the estimated model using the Levenberg-

Marquardt algorithm, which offers better results in terms of number of iterations compared to the Trust-

Region-Reflective algorithm. The current variation and the terminals’ voltage variation of the battery cell are 

obtained by lithium-ion cell tests during the driving cycle process of an electric vehicle until the battery cell 

is discharged. Figure 6 presents simulated and measured data. The two responses are different at the 

beginning of the simulation, which is normal because the initial parameters are chosen intuitively, and these 

values change as the identification process progresses. The current profile resulting from this cycle [40] is 

shown in Figure 7. 

Once the identification process is complete, responses become similar, as shown in Figure 8, which 

indicates that the parameters are well estimated and that this method of identification has taken into account 

the dynamics of the accumulator in the time domain. Figure 9 illustrates the error between simulated and 

measured responses. 
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Figure 6. Initial measured and estimated response 

 

 

 
 

Figure 7. Current profile of driving cycle process 

 

 

 
 

Figure 8. Voltage measured and voltage estimated during a driving cycle process 
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Figure 9. Voltage error between measured and estimated response 

 

 

Figure 10 shows the variation of the internal parameters of the battery cell as a function of the state 

of charge SOC during the driving cycle process. This figure indicates that at interval between 100% and 30% 

of the SOC, the resistance values of R0 are around 0.03 Ω to simulate the voltage drop observed at the output 

of the battery cell. In the same zone, the capacitance values C1 and C2 vary to simulate the decay of the 

voltage, up to the last driving cycle process interval (interval between 30% and 0% of the SOC) where the 

values of the resistors R0, R1, and R2 change substantially to simulate the sudden voltage drop observed at 

the output of the battery cell. 

 

 

 
 

Figure 10. Evolution of the battery cell parameters according to the state of charge 

 

 

5.2.  Model validation 

To validate the model based on its identified parameters, as illustrated previously see in Figure 3, 

and the algorithm used for identification (Levenberg-Marquardt), we used data that are different from those 

used in the model estimation phase. Our data consist of the driving cycles described in section 4: UDDS, LA-

92, US06, NN, and HWFET. Table 2 presents the results obtained in terms of performance for the model 

identified based on mean squared error (MSE) criteria. 
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Table 2. The performance of the model in terms of MSE for the different driving cycles 
DRIVE CYCLE TYPE MSE 

NN 0.001 

LA-92 6.2674E-04 
UDDS 3.8260E-04 

US06 0.0023 

HWFET 0.0016 

 

 

All the cycles tested, as shown in Table 2, provide important results in terms of precision using 

MSE, especially when testing this model with the UDDS driving cycle, which gives interesting results: 

(MSE=3.8260e-04) and the LA-92 driving cycle (MSE=6.2674e-04). Hereafter, we only present the results 

of the UDDS driving cycles since they demonstrate better performance in term of MSE. 

Figure 11 represents the current profile measured for the UDDS drive cycle, which is applied to our 

model to compare its response to that of MATLAB Simulink's battery, which is regarded as real (and not a 

simulation). Figure 12 presents the voltage measured during this driving cycle and the voltage estimated by 

our model. The error between the two responses is presented in Figure 13. 

 

 

 
 

Figure 11. Current profile for UDDS drive cycle 

 

 

 
 

Figure 12. Voltage error between measured and estimated response for UDDS drive cycle 
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Figure 13. Voltage error between measured and estimated response for UDDS drive cycle 

 

 

5.3.  DISCUSSION 

Through this work, we present a solution to predict the state of the battery cell used in different 

driving cycles of an electric vehicle; we have particularly focused our efforts on the prediction of the voltage. 

To validate the proposed model and the algorithm used to estimate its parameters during all phases of the use 

in electric vehicles, on the basis of the plotted objectives, model choice was made (a second order Thevenin 

model) and the adequate algorithm was selected (Levenberg-Marquardt). As a result, we were able to 

develop a model and estimate of its parameters. Moreover, to ensure the efficiency of the proposed model, a 

validation phase was established for different drive cycles that are described in section 4 (UDDS, LA-92, 

US06, NN and HWFET) and which represent different conditions and driving styles of an electric vehicle on 

highways and rural and urban roads. 

From the results obtained in Table 2 and from Figure 11 to Figure 13, we note the correspondence 

between the simulation and experimental curves for the different drive cycles. This indicates that the adopted 

model and the associated method based on experimental data for parameter identification have made it 

possible to reproduce the actual behavior of our battery cell in an electric vehicle. 

In addition, the mean square error was 0.0013 for the model estimation data, 3.8260e-04 for 

validation data using UDDS drive cycle, and 6.2674e-04 for validation data using LA-92 drive cycle. This 

demonstrates that the estimated model with identified parameters using the Levenberg-Marquardt algorithm 

successfully models the dynamic behavior of the battery cell during different driving cycles of an electric 

vehicle and interesting performance in terms of MSE. This is based on the results given in Table 2. 

Furthermore, we can conclude that the Levenberg-Marquardt algorithm can estimate the parameters 

of the battery cell model in fewer iterations than with a Trust-Region-Reflective algorithm. This is based on 

the results presented in Table 1. The estimated model of the Levenberg-Marquardt algorithm makes it 

possible to successfully estimate battery cell behavior and is an excellent candidate for use in a battery 

management system in an electric vehicle. 

 

 

6. CONCLUSION 

Accurate battery simulation models are essential when analyzing and designing complex systems 

using this component in the electric vehicle. In this article, we proposed a model for a lithium-ion battery cell 

that takes into account the dynamic behavior of the battery cell in different conditions and driving styles of an 

electric vehicle on the highway and rural and urban roads. The model consists of a second order Thevenin 

model with six parameters. Experimentally measured data performed on an electric vehicle powered 

exclusively by a battery were used to estimate the parameters of the model. The model was validated using 

different driving cycles (UDDS, LA-92, US06, NN, and HWFET) based on MSE as model performance 

criteria. The step of model validation provided interesting results mostly for the UDDS drive cycle 

(MSE=3.8260e-04) and for the LA-92 drive cycle (MSE=6.2674e-04). 

We used two different algorithms (Trust-Region-Reflective and Levenberg-Marquardt) with a 

nonlinear least squares method to estimate the battery cell parameters. The algorithms were compared to 

determine their suitability for the estimated battery cell voltage using the mean square error (MSE). The 
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Levenberg Marquardt algorithm gave the best parameter estimation results with the same MSE in fewer 

iterations compared to the Trust-Region-Reflective, which requires more iterations to estimate the parameters 

of the battery cell model. 

In conclusion, for an integrated battery management system in an electric vehicle, the best choice is 

the model using the Levenberg Marquardt algorithm, as it requires fewer iterations than the other model 

algorithm does. Moreover, it offers an interesting result for different drive cycles of an electric vehicle 

(UDDS, LA-92, US06, NN, and HWFET), which represents different conditions and driving styles of an 

electric vehicle on the highway and rural and urban roads.  
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