653 research outputs found

    Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR

    Get PDF
    This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstaclesUnión Europea Marie Sklodowska-Curie 64215Unión Europea MULTIDRONE (H2020-ICT-731667)Uniión Europea HYFLIERS (H2020-ICT-779411

    Adaptive Sampling For Efficient Online Modelling

    Get PDF
    This thesis examines methods enabling autonomous systems to make active sampling and planning decisions in real time. Gaussian Process (GP) regression is chosen as a framework for its non-parametric approach allowing flexibility in unknown environments. The first part of the thesis focuses on depth constrained full coverage bathymetric surveys in unknown environments. Algorithms are developed to find and follow a depth contour, modelled with a GP, and produce a depth constrained boundary. An extension to the Boustrophedon Cellular Decomposition, Discrete Monotone Polygonal Partitioning is developed allowing efficient planning for coverage within this boundary. Efficient computational methods such as incremental Cholesky updates are implemented to allow online Hyper Parameter optimisation and fitting of the GP's. This is demonstrated in simulation and the field on a platform built for the purpose. The second part of this thesis focuses on modelling the surface salinity profiles of estuarine tidal fronts. The standard GP model assumes evenly distributed noise, which does not always hold. This can be handled with Heteroscedastic noise. An efficient new method, Parametric Heteroscedastic Gaussian Process regression, is proposed. This is applied to active sample selection on stationary fronts and adaptive planning on moving fronts where a number of information theoretic methods are compared. The use of a mean function is shown to increase the accuracy of predictions whilst reducing optimisation time. These algorithms are validated in simulation. Algorithmic development is focused on efficient methods allowing deployment on platforms with constrained computational resources. Whilst the application of this thesis is Autonomous Surface Vessels, it is hoped the issues discussed and solutions provided have relevance to other applications in robotics and wider fields such as spatial statistics and machine learning in general

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    Path Planning and Performance Evaluation Strategies for Marine Robotic Systems

    Get PDF
    The field of marine robotics offers many new capabilities for completing dangerous missions such as deep-sea exploration and underwater demining. The harshness of marine environments, however, means that without effective onboard decision-making, vehicle loss or mission failure are likely. Thus, to enable more autonomous operation while building trust that these systems will perform as expected, this thesis develops improved path planning and testing strategies for two different types of marine robotic platforms. The first portion of the research focuses on improved environmental data collection with an autonomous underwater vehicle (AUV). Gaussian process-based modeling is combined with informative path planning to explore an environment, while preferentially collecting data in regions of interest that exhibit extreme sensory measurements. The performance of this adaptive data sampling framework with a torpedo-style AUV is studied in both simulation and field experiments. Results show that the proposed methodology is able to be fielded on an operational platform and collect measurements in regions of interest without sacrificing overall model fidelity of the full sampling area. The second portion of the research then focuses on autonomous surface vessel (ASV) navigation that must comply with international collision avoidance standards and basic ship handling principles. The approach introduces a novel quantification of good seamanship that is used within an ASV path planner to minimize the collision risk with other vessels. This approach generalizes well to both single-vessel and multi-vessel encounters by avoiding rule-based conditions. The performance of this ASV planning strategy is evaluated in simulation against other baseline planners, and the results of on-water testing with a 29-ft ASV demonstrate that the approach is scalable to real systems. Beyond developing improved path planning frameworks, this research also explores methods for improved testing and evaluation of black-box autonomous systems. Statistical learning techniques such as adaptive scenario generation and unsupervised clustering are used to extract the failure modes of the autonomy from large-scale simulation datasets. Subsequently, changes in these failure modes are tracked in a novel form of performance-based regression testing. The effectiveness of this testing framework is demonstrated on the aforementioned ASV planner by discovering several types of unexpected failures

    Statistical models and decision making for robotic scientific information gathering

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2018.Mobile robots and autonomous sensors have seen increasing use in scientific applications, from planetary rovers surveying for signs of life on Mars, to environmental buoys measuring and logging oceanographic conditions in coastal regions. This thesis makes contributions in both planning algorithms and model design for autonomous scientific information gathering, demonstrating how theory from machine learning, decision theory, theory of optimal experimental design, and statistical inference can be used to develop online algorithms for robotic information gathering that are robust to modeling errors, account for spatiotemporal structure in scientific data, and have probabilistic performance guarantees. This thesis first introduces a novel sample selection algorithm for online, irrevocable sampling in data streams that have spatiotemporal structure, such as those that commonly arise in robotics and environmental monitoring. Given a limited sampling capacity, the proposed periodic secretary algorithm uses an information-theoretic reward function to select samples in real-time that maximally reduce posterior uncertainty in a given scientific model. Additionally, we provide a lower bound on the quality of samples selected by the periodic secretary algorithm by leveraging the submodularity of the information-theoretic reward function. Finally, we demonstrate the robustness of the proposed approach by employing the periodic secretary algorithm to select samples irrevocably from a seven-year oceanographic data stream collected at the Martha’s Vineyard Coastal Observatory off the coast of Cape Cod, USA. Secondly, we consider how scientific models can be specified in environments – such as the deep sea or deep space – where domain scientists may not have enough a priori knowledge to formulate a formal scientific model and hypothesis. These domains require scientific models that start with very little prior information and construct a model of the environment online as observations are gathered. We propose unsupervised machine learning as a technique for science model-learning in these environments. To this end, we introduce a hybrid Bayesian-deep learning model that learns a nonparametric topic model of a visual environment. We use this semantic visual model to identify observations that are poorly explained in the current model, and show experimentally that these highly perplexing observations often correspond to scientifically interesting phenomena. On a marine dataset collected by the SeaBED AUV on the Hannibal Sea Mount, images of high perplexity in the learned model corresponded, for example, to a scientifically novel crab congregation in the deep sea. The approaches presented in this thesis capture the depth and breadth of the problems facing the field of autonomous science. Developing robust autonomous systems that enhance our ability to perform exploratory science in environments such as the oceans, deep space, agricultural and disaster-relief zones will require insight and techniques from classical areas of robotics, such as motion and path planning, mapping, and localization, and from other domains, including machine learning, spatial statistics, optimization, and theory of experimental design. This thesis demonstrates how theory and practice from these diverse disciplines can be unified to address problems in autonomous scientific information gathering

    Statistical models and decision making for robotic scientific information gathering

    Get PDF
    Thesis: S.M., Joint Program in Applied Ocean Physics and Engineering (Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 97-107).Mobile robots and autonomous sensors have seen increasing use in scientific applications, from planetary rovers surveying for signs of life on Mars, to environmental buoys measuring and logging oceanographic conditions in coastal regions. This thesis makes contributions in both planning algorithms and model design for autonomous scientific information gathering, demonstrating how theory from machine learning, decision theory, theory of optimal experimental design, and statistical inference can be used to develop online algorithms for robotic information gathering that are robust to modeling errors, account for spatiotemporal structure in scientific data, and have probabilistic performance guarantees. This thesis first introduces a novel sample selection algorithm for online, irrevocable sampling in data streams that have spatiotemporal structure, such as those that commonly arise in robotics and environmental monitoring. Given a limited sampling capacity, the proposed periodic secretary algorithm uses an information-theoretic reward function to select samples in real-time that maximally reduce posterior uncertainty in a given scientific model. Additionally, we provide a lower bound on the quality of samples selected by the periodic secretary algorithm by leveraging the submodularity of the information-theoretic reward function. Finally, we demonstrate the robustness of the proposed approach by employing the periodic secretary algorithm to select samples irrevocably from a seven-year oceanographic data stream collected at the Martha's Vineyard Coastal Observatory off the coast of Cape Cod, USA. Secondly, we consider how scientific models can be specified in environments - such as the deep sea or deep space - where domain scientists may not have enough a priori knowledge to formulate a formal scientific model and hypothesis. These domains require scientific models that start with very little prior information and construct a model of the environment online as observations are gathered. We propose unsupervised machine learning as a technique for science model-learning in these environments. To this end, we introduce a hybrid Bayesian-deep learning model that learns a nonparametric topic model of a visual environment. We use this semantic visual model to identify observations that are poorly explained in the current model, and show experimentally that these highly perplexing observations often correspond to scientifically interesting phenomena. On a marine dataset collected by the SeaBED AUV on the Hannibal Sea Mount, images of high perplexity in the learned model corresponded, for example, to a scientifically novel crab congregation in the deep sea. The approaches presented in this thesis capture the depth and breadth of the problems facing the field of autonomous science. Developing robust autonomous systems that enhance our ability to perform exploratory science in environments such as the oceans, deep space, agricultural and disaster-relief zones will require insight and techniques from classical areas of robotics, such as motion and path planning, mapping, and localization, and from other domains, including machine learning, spatial statistics, optimization, and theory of experimental design. This thesis demonstrates how theory and practice from these diverse disciplines can be unified to address problems in autonomous scientific information gathering.by Genevieve Elaine Flaspohler.S.M

    Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling

    Full text link
    Improving and optimizing oceanographic sampling is a crucial task for marine science and maritime resource management. Faced with limited resources in understanding processes in the water-column, the combination of statistics and autonomous systems provide new opportunities for experimental design. In this work we develop efficient spatial sampling methods for characterizing regions defined by simultaneous exceedances above prescribed thresholds of several responses, with an application focus on mapping coastal ocean phenomena based on temperature and salinity measurements. Specifically, we define a design criterion based on uncertainty in the excursions of vector-valued Gaussian random fields, and derive tractable expressions for the expected integrated Bernoulli variance reduction in such a framework. We demonstrate how this criterion can be used to prioritize sampling efforts at locations that are ambiguous, making exploration more effective. We use simulations to study and compare properties of the considered approaches, followed by results from field deployments with an autonomous underwater vehicle as part of a study mapping the boundary of a river plume. The results demonstrate the potential of combining statistical methods and robotic platforms to effectively inform and execute data-driven environmental sampling

    Autonomous Planning and Mapping for the Characterization of Gamma Contaminated Environments

    Get PDF
    The past 100100 years of research and development in the fields of nuclear power, weapons, and industrial radiation applications have imbibed regions across the world with facilities and terrain which is contaminated with radioactive material. Such locations can pose significant hazards to human health, thus requiring vigilant monitoring and mitigation efforts. The use of autonomous robots is well suited to this task. Motivated by this fact, this work contributes a holistic perspective on the deployment, design, and use of autonomous robots for the characterization of radioactively contaminated environments. The set of developments presented in this dissertation incorporate principles of gamma radiation detection and measurement, techniques for mapping and localizing a variety of radioactive sources, path planning strategies tailored to both ground and aerial platforms, as well as prototype systems implementing methods for perception and navigation in dirty, dangerous, and degraded conditions. Specifically, Chapter \ref{chap:intro} presents the motivation behind this work, including its practical application, as well as a brief description of the approach utilized to accomplish environmental radiation characterization. Chapter \ref{chap:contrib} presents a detailed overview of the presented radiation mapping contributions and associated publications in addition to a brief note on other synergistic contributions made towards enabling autonomy in the perceptually degraded environments associated in particular with waste decommissioning facilities. Subsequently the core contributions of this thesis are presented in detail. Chapter \ref{chap:single_source} presents a method for autonomous single source localization using an aerial robot, alongside details regarding principles of radiation measurement and detection. Chapter \ref{chap:radbot} describes a technique developed to map distributed radiation fields in 2D using a ground platform, while Chapter \ref{chap:radmf} extends the work to perform the mapping task in 3D using a collision tolerant micro aerial vehicle. Subsequently, Chapter \ref{chap:auro} presents autonomous distributed 3D radiation mapping coupled with an intelligent path planning algorithm tailored to source seeking behaviors in confined environments. Finally, conclusions and an outlook for future research are discussed in Chapter \ref{chap:conclusions}.Overall, this dissertation contributes a body of work enabling autonomous radiological surveying in challenging conditions, demonstrating robust functionality through a series of field experiments using real radiation sources. Each of the presented methods is associated with a tested and reliable robotic system purpose-built for its designated task. This combination of performance robotic hardware demonstrating novel autonomous functionality in realistic use-case scenarios showcases the applicability and dependability of the presented systems and methods
    corecore