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Abstract

Mobile robots and autonomous sensors have seen increasing use in scientific appli-
cations, from planetary rovers surveying for signs of life on Mars, to environmental
buoys measuring and logging oceanographic conditions in coastal regions. This thesis
makes contributions in both planning algorithms and model design for autonomous
scientific information gathering, demonstrating how theory from machine learning,
decision theory, theory of optimal experimental design, and statistical inference can
be used to develop online algorithms for robotic information gathering that are robust
to modeling errors, account for spatiotemporal structure in scientific data, and have
probabilistic performance guarantees.

This thesis first introduces a novel sample selection algorithm for online, irrevoca-
ble sampling in data streams that have spatiotemporal structure, such as those that
commonly arise in robotics and environmental monitoring. Given a limited sampling
capacity, the proposed periodic secretary algorithm uses an information-theoretic re-
ward function to select samples in real-time that maximally reduce posterior uncer-
tainty in a given scientific model. Additionally, we provide a lower bound on the
quality of samples selected by the periodic secretary algorithm by leveraging the sub-
modularity of the information-theoretic reward function. Finally, we demonstrate the
robustness of the proposed approach by employing the periodic secretary algorithm
to select samples irrevocably from a seven-year oceanographic data stream collected
at the Martha’s Vineyard Coastal Observatory off the coast of Cape Cod, USA.

Secondly, we consider how scientific models can be specified in environments –
such as the deep sea or deep space – where domain scientists may not have enough
a priori knowledge to formulate a formal scientific model and hypothesis. These
domains require scientific models that start with very little prior information and
construct a model of the environment online as observations are gathered. We propose
unsupervised machine learning as a technique for science model-learning in these
environments. To this end, we introduce a hybrid Bayesian-deep learning model that
learns a nonparametric topic model of a visual environment. We use this semantic
visual model to identify observations that are poorly explained in the current model,
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and show experimentally that these highly perplexing observations often correspond
to scientifically interesting phenomena. On a marine dataset collected by the SeaBED
AUV on the Hannibal Sea Mount, images of high perplexity in the learned model
corresponded, for example, to a scientifically novel crab congregation in the deep sea.

The approaches presented in this thesis capture the depth and breadth of the
problems facing the field of autonomous science. Developing robust autonomous
systems that enhance our ability to perform exploratory science in environments
such as the oceans, deep space, agricultural and disaster-relief zones will require
insight and techniques from classical areas of robotics, such as motion and path
planning, mapping, and localization, and from other domains, including machine
learning, spatial statistics, optimization, and theory of experimental design. This
thesis demonstrates how theory and practice from these diverse disciplines can be
unified to address problems in autonomous scientific information gathering.

Thesis Supervisor: Yogesh Girdhar
Title: Assistant Scientist of Applied Ocean Physics and Engineering, WHOI

Thesis Supervisor: Nicholas Roy
Title: Professor of Aeronautics and Astronautics, MIT
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Chapter 1

Introduction

Mobile robots and autonomous sensors are emerging as valuable tools in the hu-

man scientific endeavor, from planetary rovers surveying for signs of life on Mars,

to environmental buoys measuring and logging oceanographic conditions in coastal

regions. The use of autonomous agents for scientific information gathering requires

consideration of the following questions:

∙ How should scientific models be formalized for use by autonomous agents?

∙ How should scientific objectives be specified for autonomous agents?

∙ How should autonomous agents evaluate the utility or reward of potential

actions with respect to a scientific model and objective?

∙ How should autonomous agents plan to take high-reward actions in partially-

observable environments by levering problem structure?

The first two questions relate to modeling; the second two relate to planning and

decision-making. This thesis addresses the problem of scientific information gathering

from both a modeling and planning perspective. The subsequent chapters demon-

strate how theory from machine learning, decision theory, theory of optimal exper-

imental design, and statistical inference can be used to develop online algorithms

for scientific information gathering that are robust to modeling errors, account for

the spatiotemporal structure in scientific data, and have probabilistic performance
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guarantees. This chapter introduces the problem of scientific information gathering

for mobile robots and autonomous sensors from both a modeling and planning per-

spective (Sections 1.1 and 1.2 respectively), followed by a detailed overview of the

contributions presented in this thesis (Section 1.3).

1.1 Models for Scientific Information Gathering

When deploying robots or autonomous sensors on scientific missions, these autonomous

agents must generally operate in partially-observable, stochastic environments. Ef-

fective decision-making in these environments requires a model of the underlying

environment, describing how sensor observations relate to the latent scientific phe-

nomenon of interest. We take a probabilistic perspective on the modeling problem,

modeling the environmental phenomenon of interest as a stochastic process.

Definition 1. (Stochastic process) A stochastic process is a collection of random

variables indexed by a set of integers, often associated with time or space [28].

Within this statistical model of the environment, one potential way to define a

“scientific objective” is to denote a subset of the random variables in the environment

as being of of scientific interest. The following applications exemplify how statistical

models of environmental phenomena and scientific objectives can be formulated within

the context of scientific information gathering missions:

Example 1: A chemical oceanographer is studying the structure of a methane

plume in a coastal estuary. If the methane concentration throughout the estuary

can be modeled using a Gaussian process, one scientific objective may be to uni-

formly reduce model uncertainty throughout the estuary, while another scientific

objective may be to reduce model uncertainty only in a specific region of interest

corresponding to the methane plume source.

Example 2: An astrogeologist is studying the geology in a Martian crater, as

in Arora et al. [3]. A discrete grid may be used to represent the environment

of interest,where hyper-spectral camera observations can be taken in each grid
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cell to infer the geologic type of that cell. Given a geologic feature of interest,

the scientific objective may be gather information about cells in the environment

that are likely to contain this geologic feature.

In each example, the scientific phenomenon of interest is modeled as a stochastic

process and scientific objective is defined by specifying properties of the environment

that are of scientific interest e.g., methane plume source, containing a geologic feature.

1.2 Planning for Scientific Information Gathering

Once a scientific information gathering model and objective have been defined, the

planning challenge is to understand the constraints of the autonomous robot or sen-

sor and develop planning algorithms to sequentially select high-utility actions with

respect to this mission objective in partially-observable environments. This section

summarizes several canonical planning problems that appear in applications of au-

tonomy to scientific problems.

Planning for scientific information gathering problems requires an autonomous

agent to take actions sequentially in a partially-observable environment in order to

satisfy an overall mission objective. The utility of potential actions with respect to

a scientific objective can be quantified using a reward function. Chapters 2 and 3

demonstrate how information-theoretic reward functions can be applied to scientific

information gathering to select actions that explicitly reduce the posterior model

uncertainty of variables of interest. For a specific choice of reward function, many

scientific information gathering planning problems can be classified into the following

three canonical problem structures: sample selection, informative path planning, and

secretary hiring or sampling.

Given a (discrete or continuous) 𝑑-dimensional environmental domain of interest

𝒱 ⊆ R𝑑 and a set of potential sensing locations 𝒮 ⊆ 𝒱 :

Sample Selection: Sample selection problems require an autonomous agent to

choose a discrete set of locations 𝒜 ⊆ 𝑆 to sample or place sensors [62, 63, 60,

104, 30]. These locations should be selected to maximize some scientific objective,
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while satisfying a cost requirement. For example, a policy maker may wish to infer

pollutant flow throughout a water body but only spend a limited budget on water

sensors. Choosing where to place these sensors to optimally infer the pollutant flow

is a sample selection problem.

Informative Path Planning: Informative path planning problems require a mobile

autonomous agent to plan a trajectory contained within 𝒮, such that the obser-

vations collected along the trajectory maximize some scientific objective, while

satisfying a trajectory length or time/energy budget [122, 50, 52, 88, 48, 110, 74,

37, 121, 66, 49, 83, 76]. For example, an autonomous drone may need to survey the

surface of a lake to estimate the size of a harmful algae bloom with a finite battery

capacity. Planning a global trajectory that covers the bloom and gathers obser-

vations in regions of high plankton concentration is an informative path planning

problem.

Secretary Sampling Problems: Like sample selection problems, secretary sam-

pling problems [73, 26, 72] require an autonomous agent to choose a discrete set of

locations 𝒜 ⊆ 𝒮 in order to maximize some scientific objective. However, secretary

sampling problems are constrained to operate on streams of data and furthermore

impose the constraint that the agent must decide in real-time whether to collect

a sample at a potential location in the data stream and cannot collect a sample

at a location that was passed-over earlier in the stream. Additionally, sampling

decisions are restricted to be irrevocable. If the sampling process is expensive (e.g.,

placing a physical sensor) or destructive (e.g., deploying a single-use water filter),

the agent can only sample a finite number of times over the course of the mis-

sion, even if a previously collected sample is later revealed to be of low reward.

For example, a static marine buoy may need to deploy 100 single-use water filters

throughout the course of a year, such that the collected samples have the highest

concentration of a harmful algae species. Selecting at which times to irrevocably

deploy the water filters in real-time is a secretary sampling problem.

Although sample selection, informative path planning, and secretary sampling

problems all commonly arise in scientific information gathering applications, the con-
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tent of this thesis is focused on secretary sampling for scientific information gathering.

The interested reader is referred to the aforementioned citations, which represent a

small and incomplete subset of many contributions in these fields, for work in sample

selection and informative path planning.

1.3 Thesis Contributions

The previous sections illustrate the sufficient components of a scientific information

gathering mission: (1) a statistical model of the environment of interest as a collection

of random variables, (2) a scientific objective that defines a subset of these random

variables of scientific interest, (3) a reward function that quantifies the value of actions

with respect to the scientific objective, and (4) a planning algorithm for choosing

high-utility actions with respect to this reward function.

This thesis makes contributions in both planning algorithms and model design

for scientific information gathering. First, Chapter 3 introduces a novel secretary

sampling algorithm for irrevocable sampling in data streams that have spatiotemporal

structure, such as those commonly arising in robotics and environmental monitoring.

We demonstrate that information-theoretic reward functions can be used to select

samples that maximally reduce model posterior uncertainty, and provide performance

guarantees by leveraging the submodularity of the these information-theoretic reward

functions. Second, Chapter 4 considers how to construct scientific models in domains

such as the deep sea or deep space, when domain scientists may not have enough

a priori knowledge to formulate a scientific model and hypothesis. These domains

require scientific models that are provided with no or very little prior information,

and construct a model of the environment as observations are gathered. To this

end, Chapter 4 introduces a hybrid Bayesian-deep learning model for constructing

nonparametric science models of unstructured visual environments.
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1.3.1 Irrevocable sampling in periodic data streams

Chapter 3 considers the task of monitoring spatiotemporal phenomena in real-time by

deploying limited sampling resources at locations of interest irrevocably and without

knowledge of future observations. This task can be modeled as an instance of the

classical secretary problem. Although this problem has been studied extensively in

theoretical domains, existing algorithms require that data arrive in random order to

provide performance guarantees. These algorithms will perform arbitrarily poorly on

data streams such as those encountered in robotics and environmental monitoring

domains, which tend to have complex spatiotemporal structure.

This chapter focuses on the problem of selecting representative samples from phe-

nomena with periodic structure and introduces the periodic secretary algorithm that

recovers a near-optimal sample set according to any monotone submodular reward

function. The algorithm is evaluated on a seven-year environmental dataset collected

at the Martha’s Vineyard Coastal Observatory. We show that the periodic secre-

tary algorithm selects phytoplankton sample locations that are nearly optimal in an

information-theoretic sense for predicting phytoplankton concentrations in locations

that were not directly sampled. The proposed periodic secretary algorithm can be

used with theoretical performance guarantees in many real-time sensing and robotics

applications for streaming, irrevocable sample selection from periodic data streams.

1.3.2 Hybrid Bayesian-deep models for visual terrains

Certain environments of scientific interest – such as those in the deep sea, on the

surface of extraterrestrial planets, and in hazardous terrestrial environments – may

be only coarsely understood a priori by scientific domain experts. For scientific infor-

mation gathering problems in these domains, the appropriate choice of environmental

model and scientific objective may be unclear. However, the emergence of low-cost

cameras as a ubiquitous sensor on autonomous robots and sensing platforms provides

a potential source of semantically rich information about an unfamiliar environment.

Some of the most successful previous approaches to uncover latent semantic structure
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directly from data have used probabilistic topic models [9, 45]. Despite the success of

these models on textual data, they have not generalized as well to image data, in part

because of the spatial and temporal structure that may exist in an image stream.

Chapter 4 introduces a hybrid Bayesian-deep unsupervised machine learning frame-

work for learning environmental model structure directly from high-dimensional vi-

sual percepts. The proposed hybrid model incorporates the ability of convolutional

autoencoders to discover features from images that directly encode spatial informa-

tion, within a Bayesian nonparametric topic model that discovers meaningful latent

patterns within visual data. By using this hybrid framework, this model overcomes

the fundamental dependency of traditional topic models on rigidly hand-coded data

representations, while simultaneously encoding spatial dependency in topics without

additional model complexity. This model could be used in combination with an in-

formative path planning algorithm to enable exploratory science missions, given no

prior information about an environment. Experiments on a seafloor dataset collected

by the SeaBED AUV marine robot show that the proposed hybrid framework outper-

forms current state-of-the-art approaches on the task of unsupervised seafloor terrain

characterization.

1.4 Thesis Outline

The remainder of the thesis is organized as follows:

Chapter 2 introduces the technical background and foundational related work

used throughout the thesis. The periodic secretary algorithm is presented in Chap-

ter 3, along with a specification of the environmental model, scientific objective,

and reward function used in this secretary sampling problem. Chapter 4 introduces

a hybrid Bayesian-deep model for visual science understanding, and motivates this

model with the problem of high-level scene understanding and mission summariza-

tion for exploratory marine robots. Finally, Chapter 5 concludes with a summary of

the methods presented and suggests directions for future research within the field of

autonomous scientific information gathering.
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Chapter 2

Technical Background and

Foundational Related Work

This chapter presents the technical background, notation, and concepts used through-

out the thesis. The focus of this thesis is on scientific information gathering, with

specific emphasis on modeling and planning problems. This chapter contains back-

ground on a variety of topics, including statistical models, decision-making under

uncertainty, information-theoretic reward functions, and submodular optimization.

The focus of this chapter is on high-level technical concepts and foundational re-

lated work; Chapters 3 and 4 additionally contain problem-specific related work and

technical concepts.

Section 2.1 introduces strategies from statistics and machine learning for learning

probabilistic models of scientific phenomena, focusing on two classes of Bayesian non-

parametric models: the hierarchical Dirichlet process and the Gaussian process. Fol-

lowing this discussion of modeling strategies, common frameworks for planning and

sequential decision-making under uncertainty are presented; Section 2.2 introduces

Markov decision processes (MDPs) and partially-observable MDPs (POMDPs). Fi-

nally, Sections 2.3 and 2.4 discuss common technical challenges and solutions that

arise when representing a scientific information-gathering problem as a POMDP. Sec-

tion 2.3 introduces several reward functions appropriate for information-gathering

problems and Section 2.4 describes planning strategies for approximately solving
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MPDs and POMDPs with information reward, presenting several scenarios in which

problem structure can be used to avoid the full complexity of planning under uncer-

tainty, while maintaining performance guarantees.

Throughout this chapter, capital letters are used to denote random variables and

corresponding lowercase letters are used to denote a specific value taken by the random

variable from its alphabet or a non-random quantity. Boldface represents quantities

which are explicitly vector-valued.

2.1 Probabilistic Science Models

Within robotics and autonomous sensing, there are two primary modeling challenges:

modeling robot motion and dynamics, and modeling the environment the robot acts

within. In the field of scientific robotics, the robot is often be assumed to have simple

dynamics; however, the environment is generally complex, stochastic, dynamic, and

otherwise challenging to model. Perhaps the most canonical environmental model

used in robotics is the occupancy grid or voxel grid [115, 29], used to represent the 2D

or 3D obstacle structure of an environment respectively. However, scientific problems

often require an autonomous agent to infer properties of the environment other than

occupancy. This section focuses on models that can be used to represent complex,

partially observable scientific phenomena in scientific information gathering problems.

A variety of models exist for representing scientific phenomena within domain

sciences and spatial statistics [22, 2, 24]. This thesis takes a probabilistic perspec-

tive on problem of modeling scientific phenomena, and focuses on Bayesian models

from machine learning that allow for model learning from observed data and have

explicit representations of uncertainty, which can be used to evaluate the utility of

information-gathering actions with respect to their effect on model uncertainty. We

utilize two nonparametric models to represent scientific phenomena: Gaussian pro-

cesses (GPs) and hierarchical Dirichlet processes (HDPs). These models allow prior

scientific knowledge to be incorporated into the model in the form of high-level struc-

ture, but use training data collected online to determine model complexity and refine
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the model throughout the course of a mission as sensory information is collected. This

mix of domain-specified prior structure and online in situ model refinement is desir-

able in many scientific applications. Section 2.1.1 first introduces a common class of

causal probabilistic models known as Bayesian networks (BN). Section 2.1.2 expands

upon general BN models and presents Bayesian nonparametric models by describing

the GP and HDP models.

2.1.1 Bayesian networks

In general inference problems, we have a set of random variables 𝒳 = {𝑋0, . . . , 𝑋𝑁−1}

that are related via a joint probability distribution Pr(𝑋0, . . . , 𝑋𝑁−1). The objective

of Bayesian inference is to observe the values of some subset of these random variables

𝒳𝑜𝑏𝑠 and infer the likely values of unobserved, latent random variables 𝒳𝑙𝑎𝑡 = 𝒳 ∖𝒳𝑜𝑏𝑠.

By applying the rules of probability, this can be written as:

Pr(𝒳𝑙𝑎𝑡 | 𝒳𝑜𝑏𝑠) =
Pr(𝒳𝑙𝑎𝑡,𝒳𝑜𝑏𝑠)

Pr(𝒳𝑜𝑏𝑠)
=

Pr(𝒳𝑙𝑎𝑡,𝒳𝑜𝑏𝑠)∑︀
𝒳𝑙𝑎𝑡

Pr(𝒳𝑙𝑎𝑡,𝒳𝑜𝑏𝑠)
. (2.1)

For general models, the computational complexity of exact inference is exponential

in the number of latent random variables due to the summation in the normalization

constant. This section explores probabilistic models that exploit conditional indepen-

dence and conjugacy structure to reduce the complexity of inference and learning.

Probabilistic graphical models (PGMs) provide a general inference and estimation

framework for modeling dependencies between random variables [8]. PGMs employ

a graph structure of nodes and vertices to represent dependencies between random

variables, where dependencies are represented by conditional probability distribu-

tions, factor tables, joint potentials, etc. As stated in the previous paragraph, in

the general case inference in fully-connected PGMs – where every random variable

is dependent on every other random variable – is exponentially difficult. However,

prior knowledge about structure in a problem can be used to omit edges from the de-

pendency graph (i.e., assuming conditional independence between random variables);

efficient inference is possible in sparsely connected PGMs.
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Bayesian networks (BNs) are a type of PGM in which the dependency structure

is represented by a directed, acyclic graph. A BN consists of a graph 𝒢 consisting of

a set 𝑉 of nodes or vertices such that |𝑉 | = 𝑁 and a set of edges ℰ ⊆ 𝑁 ×𝑁 . Each

vertex represents a random variable (or a group of random variables) 𝑋𝑖 ∈ 𝑉 and

edges represent directed dependencies between random variables as an ordered tuple

(𝑖, 𝑗), such that (𝑖, 𝑗) ∈ ℰ if random variable 𝑋𝑗 depends directly on 𝑋𝑖. This graph

captures how the joint probability distribution over the random variables in 𝑉 can

be decomposed. In a BN, the joint probability of random variables 𝑉 is:

Pr(𝑋0, . . . , 𝑋𝑁−1) =
𝑁−1∏︁
𝑖=0

Pr(𝑋𝑖 | parents(𝑋𝑖)), (2.2)

where the parents of a node 𝑋𝑖 in the graph are nodes 𝑋𝑗 for which (𝑗, 𝑖) ∈ ℰ . Exact

inference is possible for certain BNs using inference algorithms that employ message

passing such as the sum-product/max-sum algorithm [8]. However, for many models,

exact inference is computationally intractable even for sparsely connected dependency

structures. Approximate inference techniques, such as Monte Carlo techniques and

variational inference, are discussed and employed in Chapter 4 .

Bayesian networks have seen adoption in scientific sensing problems, as they allow

for a very flexible environmental model and directly encode causal structure between

the random variables in the environment using the dependency graph. Arora et al.

[3] model the environment for scientific information gathering as a discrete grid and

use a tree-structured BN to represent the geologic type of a cell based on nearby cells

and environmental sensor measurements. Candela et al. [14] use a BN for hypothesis-

driven geologic mapping using a mobile robot in a space-based exploration application.

Active SLAM and object localization and tracking information gathering problems

often employ filtering-based probabilistic models [66, 59, 17, 18, 15, 16].

2.1.2 Bayesian nonparametric models

One of the most challenging aspects of scientific model design is managing the trade-

off between model complexity and model generalization. More complex models with
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more free parameters will generally fit observed data better then simpler models.

However, these highly flexible models will tend to overfit the observed data and have

worse generalization performance when presented with new data. On the other hand,

models that are too simple will be unable to capture variation in the dataset; this is

known as underfitting.

One popular strategy for model selection is to fit parametric models with a fixed

number of parameters to a portion of the observed data, and quantify inference ac-

curacy on the other portion of the data. This technique is known as cross-validation.

By fitting parametric models with varying complexity (different numbers of parame-

ters) and comparing the cross-validation performance of each, a model designer can

choose a model that balances the underfit-overfit trade-off and performs well when

presented with new data in a deployment setting. Another option is Bayesian model

selection, in which a prior is placed over the different classes of models, or explicit

regularization, in which more complex models incur a complexity penalty.

In this thesis, we consider an alternative approach to model design and managing

model complexity known as Bayesian nonparametrics (BNP). Rather than explic-

itly considering parametric models of differing complexity, BNP models allow model

complexity to grow as more data is observed. For example, in clustering problems,

instead of explicitly defining a number of clusters, a BNP approach allows the number

of inferred clusters to grow as more data points are observed. In problems for which

model growth is an accurate assumption, BNPs are a powerful way to manage model

complexity. In many scientific contexts, model growth is desirable: the more of an

environment a robot explores or the more of a phenomenon a sensor observes, the

more complex the inferred model will generally be.

The hierarchical Dirichlet process

The hierarchical Dirichlet process (HDP) is a Bayesian nonparametric latent variable

model that models clustering problems in which data are partitioned into multiple

groups and cluster parameters are shared between groups. The HDP is considered a

nonparametric Bayesian model because the number of clusters is not fixed and can
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grow with the number of data points observed.

The most canonical application of the HDP is to the problem of topic modeling.

In topic modeling problems, the observed data are a set of words divided amongst

a fixed number of documents in a text corpora. The words in each document are

assumed to represent exchangeable samples from a document-specific mixture over

global topics or categories, such as sports, economics, or politics; this mixture is

denoted 𝜃𝑗 for document 𝑗. Within each document, words are generated from these

document-topic mixture weights as follows: for every word 𝑤𝑖𝑗 in document 𝑗, a

topic-label 𝑧𝑖𝑗 is generated from 𝜃𝑗, and word 𝑤𝑖𝑗 is generated from the corresponding

topic-word distribution represented by 𝑧𝑖𝑗. Topic models, including the HDP and the

original parametric latent Dirichlet allocation, are discussed in much further detail in

Blei et al. [9], Griffiths and Steyvers [45], and Teh et al. [113].

The generative model described by the HDP for text corpora is as follows:

1. Sample a global measure over topics/mixture weights: 𝐺0 | 𝛾,𝐻 ∼ DP(𝛾,𝐻).

2. For each document 𝑗:

(a) Sample a measure over document-specific topic weights:

𝜃𝑗 | 𝛼0, 𝐺0 ∼ DP(𝛼0, 𝐺0).

(b) For each word 𝑖 ∈ {1, . . . , 𝑁 (𝑗)} :

i. Sample a word-topic distribution: 𝑧𝑖𝑗 | 𝜃𝑗 ∼ 𝜃𝑗.

ii. Sample a word: 𝑤𝑖𝑗 ∼ Mult(𝑧𝑖𝑗).

The generative model for the HDP relies on the stick-breaking construction of the

Dirichlet process (DP), which generates a countably infinite number of cluster pa-

rameters 𝜑 and mixture weights 𝛽, 𝜋 for which the cluster weights sum to one, i.e.,

the cluster weights form a proper probability distribution:

𝐺0 =
∞∑︁
𝑘=1

𝛽𝑘𝛿𝜑𝑘
, and, (2.3)

𝜃𝑗 =
∞∑︁
𝑘=1

𝜋𝑗𝑘𝛿𝜑𝑘
, (2.4)
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where the 𝜋𝑗𝑘 are the document-specific mixture weights (generally, 𝛽𝑘 ̸= 𝜋𝑗𝑘) and 𝜑 =

(𝜑𝑘)∞𝑘=1 are drawn from the base distribution 𝐻 which is assumed to be a symmetric

Dirichlet over the vocabulary simplex i.e., each 𝜑𝑘 is a “topic”.

The nonparametric nature of the hierarchical Dirichlet process allows for infinitely

many topics to be inferred in the limit as infinitely many words are observed. How-

ever, for a dataset with finitely many words, only a finite number of these topics

will ever be instantiated. Due to the conjugacy of the HDP model, as well as the

conditional independencies encoded by the generative model (see also the graphical

model representation of the HDP in Chapter 4, Figure 4-3), approximate inference

of latent topics and mixing proportions given a set of observed words partitioned

into documents is possible using variational inference or MCMC methods. Chapter 4

applies a collapsed Gibbs sampling approach to infer latent parameters from a set of

scientific images.

The hierarchical Dirichlet process has many desirable properties for scientific prob-

lems due to the ability to instantiate an unlimited number of semantic topics as more

data is observed and because the HDP requires no supervision other then the segmen-

tation of data into “documents” or partitions, which often arises naturally for specific

problems. The HDP and Dirichlet process mixtures models have been used to perform

unsupervised robotic exploration and terrain classification in a variety of scientific

contexts, especially in the domain of marine robotics [105, 108, 36, 107, 42, 41, 40].

Gaussian process models

Whereas the hierarchical Dirichlet process is a nonparametric Bayesian model for

discrete data such as text corpora, Gaussian processes (GPs) [90] are a versatile

nonparametric model, often used to perform continuous regression in a variety of

applications and contexts [63, 101, 25, 69, 78]. Let the 𝑑-dimensional environmental

domain of interest be represented as a compact subset 𝒱 ⊂ R𝑑 and let 𝑓 : 𝒱 → R𝑚

be an unknown function representing an 𝑚-dimensional continuous environmental

phenomenon of interest. For the remainder of this chapter, we assume that 𝑚 = 1

for simplicity of notation.
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A robot or autonomous sensor can collect a noisy observation of the function 𝑓

at location x by deploying the appropriate sensor. The observation 𝑌 collected at

location x is assumed to is a random variable with the following form: 𝑌 = 𝑓(x) + 𝜖,

where 𝜖 ∼ 𝒩 (0, 𝜎2
𝑛) and 𝜎2

𝑛 is specified by a sensor noise model.

We model the function 𝑓 using a Gaussian process with isometric process noise

𝜎2
𝑛. A Gaussian process describes a distribution over functions, where function values

at any finite number of points are restricted to have a joint Gaussian distribution:

Definition 2. (Gaussian process [90]) A Gaussian process is an infinite collection

of random variables, any finite number of which have a joint Gaussian distribution.

The form of this joint Gaussian distribution is specified by the GP mean 𝑚(x)

and covariance 𝑘(x,x′) functions:

𝑚(x) = E[𝑓(x)], (2.5)

𝑘(x,x′) = E[(𝑓(x)−𝑚(x))(𝑓(x′)−𝑚(x′))]. (2.6)

The resulting Gaussian process places a prior over functions 𝑓 and is written 𝑓(x) ∼

𝒢𝒫(𝑚(x), 𝑘(x,x′)). This predictive mean and variance are visualized in Figure 2-1.

Figure 2-1: Predictive mean and variance of a GP conditioned on varying
amounts of training data: In the left plot, the predictive mean and variance
are visualized after observing two paired samples {x𝑖, 𝑦𝑖} (shown as black x’s) with a
squared exponential kernel. Predictive variance is shown as blue shading, representing
a 95% confidence interval for functions drawn from this conditioned GP. In the right
plot, more training examples have been observed (22 points). Note that the 95%
confidence interval has shrunk near previous sample locations and the predictive mean
is close to the observed samples. Figure created using GPy [44].
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Given a training dataset of 𝑁 data points, consisting of locations x ∈ 𝒱 and

process observations 𝑦 ∈ R, such that 𝒟𝑁 = {(x𝑖, 𝑦𝑖) | 𝑖 = 0, . . . , 𝑁 − 1}, the

posterior distribution at a new location x′ ∈ 𝒱 can be computed as:

𝑓(x′) | 𝒟𝑁 ∼ 𝒩 (𝜇𝑁(x′), 𝜎2
𝑁(x′)),where (2.7)

𝜇𝑁(x′) = 𝜅𝑁(x′)𝑇 (K𝑁 + 𝜎2
𝑛I)

−1y𝑁 , (2.8)

𝜎2
𝑁(x′) = 𝜅(x′,x′)− 𝜅𝑁(x′)𝑇 (K𝑁 + 𝜎2

𝑛I)
−1𝜅𝑁(x′), (2.9)

where y𝑁 = [𝑦0, . . . , 𝑦𝑁−1]
𝑇 , K𝑁 is the positive definite kernel matrix with K𝑁 [𝑖, 𝑗] =

𝜅(x𝑖,x𝑗) for all x𝑖,x𝑗 ∈ 𝒟𝑁 , and 𝜅𝑁(x′) = [𝜅(x0,x
′), . . . , 𝜅(x𝑁−1,x

′)].

Generally, a zero or constant-valued mean function is used; non-constant mean

functions can represent time- or space-varying offsets in a regression problem. The

squared-exponential and Matérn covariance functions are frequently used to model

continuous environmental phenomenon with varying degrees of prior smoothness:

𝑘SE(x,x′) = 𝜎2exp
(︁
− ‖x− x′‖2

𝑙2

)︁
, (2.10)

𝑘Matérn(x,x′) =
21−𝜈

Γ(𝜈)

(︁√2𝜈 ‖x− x′‖
𝑙

)︁𝜈
𝐾𝜈

(︁√2𝜈 ‖x− x′‖
𝑙

)︁
, (2.11)

with positive hyperparameters 𝜎, 𝑙, 𝜈, where 𝐾𝜈 is a modified Bessel function [1].

These hyperparameters specify properties such as smoothness, function value range,

and strength of correlation between points in the resulting GP prior over functions.

For certain problems, it is possible to rely directly on scientific prior knowledge to set

the values of these hyperparameters; more often, cross-validation or online optimiza-

tion are employed to learn appropriate values [90].

Gaussian process have been applied widely in scientific sensing problems to model

continuous environmental phenomena [62, 7, 46, 63, 48, 122, 114]. GPs are a pow-

erful nonparametric model, are easy to train and perform inference with, and admit

closed form solutions for a variety of useful information-theoretic measures (see Sec-

tion 2.3). However, there are several limitations when using GPs to model complex

environmental phenomena, including the cubic growth of training and inference time
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with the number of observations and the relative difficulty encoding causal scientific

structure in an intuitive manner using only the covariance and mean function.

2.2 Robot Models for Planning under Uncertainty

Although environmental modeling is often the primary modeling focus in scientific

information-gathering problems, selecting and executing information-gathering ac-

tions in a real environment requires a scientific agent to reason about the actions

available to it, as well as the immediate and long-term effect of these actions over

the course of a mission. Planning for scientific missions additionally requires a model

of robot dynamics and the reward of candidate actions. This section reviews stan-

dard approaches for modeling sequential decision-making problems. The environ-

mental model and robot model are both contained within the decision-state of the

autonomous agent and are connected via the reward function, through which the value

of candidate actions can be evaluated with respect to both the perceived state of the

robot and the state of the environment. Different specifications of reward function can

induce a variety of desirable behaviors e.g., information gathering, maxima-seeking,

target tracking and localization.

Many scientific information-gathering problems can be formulated as sequential

decision-making problems under uncertainty. When this decision-making process has

a Markovian structure, i.e., the optimal decision is independent of previous observa-

tions and actions, conditioned on the current decision-state (or belief), the most gen-

eral problem formulation is a partially observable Markov decision process (POMDP).

We first introduce the Markov decision process, which is a sequential decision-making

framework used when the decision state is fully observable, and then show how this

model changes when state uncertainty is incorporated.

2.2.1 Markov decision processes

A Markov decision process (MDP) is a general framework for representing sequential

decision-making problems. An MDP can be represented as a tuple (𝑆,𝐴, 𝑇,𝑅, 𝑠0),
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where:

∙ 𝑆: The set of possible decision states {𝑠1, 𝑠2, 𝑠3, . . . }. Can generally be finite

or infinite, as in the case of continuous state spaces. The decision state is a

sufficient statistic for the history of actions taken by the agent i.e., the sequence

of states form Markov process, where future states are independent of past

states conditioned on the current state.

∙ 𝐴: The set of actions {𝑎1, 𝑎2, 𝑎3, . . . } available to the agent. Can generally

be finite or infinite, but often assumed to be finite. The action set can be

time-varying, state-dependent, or static.

∙ 𝑇 : 𝑆 × 𝐴 × 𝑆 → R The transition function, representing the probability

density of being in state 𝑠′ ∈ 𝑆 after executing action 𝑎 ∈ 𝐴 from state 𝑠 ∈ 𝑆

i.e., 𝑇 (𝑠, 𝑎, 𝑠′) = Pr(𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎). The transition function can

model imperfect robot control and dynamic environments.

∙ 𝑅 : 𝑆 × 𝐴 → R The reward function, representing reward of performing

action 𝑎 ∈ 𝐴 from state 𝑠 ∈ 𝑆.

∙ 𝑠0: The initial state 𝑠0, such that Pr(𝑆0) = 𝛿𝑆0=𝑠0 .

The solution to an MDP is a policy 𝜋 : 𝑆 → 𝐴, a function mapping from states

to actions. The optimal policy 𝜋* determines the optimal action to take from any

given decision-state. The optimal policy over an infinite horizon will maximize total

discounted reward for discount factor 𝛾:

𝜋* = argmax
𝜋

E
[︁ ∞∑︁

𝑡=0

𝛾𝑡 ·𝑅(𝑠𝑡, 𝑎𝑡) | 𝑠0, 𝜋
]︁
, (2.12)

2.2.2 POMDPs

The MDP formulation assumes that the decision-state of the agent is fully observable

at each time step. However, in many scientific information gathering problems, either

the state of the robot or the state or the environment or both could be uncertain.
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Uncertainty in decision-making for mobile robots or autonomous sensors presents a

serious challenge. Developing robust, efficient algorithms in uncertain environments

is an active area of research in robotics and decision-making. The partially observ-

able Markov decision process (POMDP) framework extends the MDP framework to

situations where the decision-state is only partially observable, and provides a prin-

cipled and general framework to model an autonomous agent acting in a partially

observable, stochastic environment [54]. The POMDP framework is represented as a

tuple (𝑆,𝐴, 𝑇,𝑅, 𝑍,𝑂, 𝑏0), where 𝑆, 𝐴, and 𝑇 are identical to the MDP definition in

Section 2.2.1, but additionally including:

∙ 𝑍: The set of possible observations {𝑧1, 𝑧2, 𝑧3, . . . }. Can generally be finite or

infinite, as in the case of continuous observation spaces.

∙ 𝑂 : 𝑆 × 𝐴 × 𝑍 → R The observation function, representing the probability

density of observing 𝑜 after executing action 𝑎 from state 𝑠 i.e., 𝑂(𝑠, 𝑎, 𝑜) =

Pr(𝑂𝑡 = 𝑜 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎). The observation function can model imperfect

perception and sensor noise.

∙ 𝑏0: The prior distribution on the initial state 𝑆0 i.e., 𝑏0(𝑠) = Pr(𝑆0 = 𝑠).

In a POMDP, the optimal policy for the autonomous agent can no longer depend

only on the current state of the model, because this state is uncertain; by including

uncertainty in the model state, we have lost the Markov property of MDPs. However,

this Markov property can be restored by considering the current belief over the state

in place of the state. Importantly, in a POMDP, the optimal action depends only

on the agent’s current belief state. In other words, the belief state summarizes all

relevant information in the history of actions and observations.

The following sections discuss two important components of defining and solv-

ing a POMDP for scientific information gathering problems: Section 2.3 discusses

information-theoretic reward functions and Section 2.4 discusses approximate plan-

ning strategies for solving sequential decision-making problems once they have been

formulated as an MDP or POMDP.
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2.3 Information Measures as Reward Functions

Formulating a sequential decision-making problem as a POMDP can be straightfor-

ward. Often, the appropriate choice of state space, action space, transition function,

and observation function are obvious from the properties of the physical autonomous

agent. Depending on the task considered, the appropriate choice of reward function

may be obvious or, as in the case of scientific missions, can be less clear. Reward

shaping and design of reward signals has received considerable attention in fields such

as reinforcement learning [111].

For example, if the objective of the autonomous agent is to move from a start lo-

cation to a goal state while minimizing distance traveled, an appropriate reward func-

tion is fairly straightforward to specify: the agent receives some reward for reaching

the goal state and receives some negative reward for every unit of distance traveled.

However, if the objective of the autonomous agent is to learn a scientific model of the

environment, the reward function must somehow reflect this “information reward”.

This section presents several metrics from literature that quantify the information

content of a set of actions or measurements.

2.3.1 Theory of optimal experimental design

Information measures have been considered extensively in the field of optimal ex-

perimental design [86]. The field of experimental design considers the problem of

estimating a vector z ∈ R𝑑 from a set of measurements or “experiments” and out-

comes:

𝑦𝑖 = x𝑇
𝑖 z + 𝑤𝑖, 𝑖 = 0, . . . , 𝑁 − 1 (2.13)

where 𝑤𝑖 is measurement noise, often assumed to be drawn independently from a

Gaussian with zero mean and unit variance.

The maximum likelihood estimate of z is given by the standard least square solu-

tion:

ẑ =
(︁𝑁−1∑︁

𝑖=0

x𝑖x
𝑇
𝑖

)︁−1
𝑁−1∑︁
𝑖=0

𝑦𝑖x𝑖. (2.14)
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For this estimator, the estimation error E = ẑ−z is unbiased with covariance matrix:

E =
(︁𝑁−1∑︁

𝑖=0

x𝑖x
𝑇
𝑖

)︁−2

. (2.15)

This matrix E characterizes the variance of the MLE estimator and therefore charac-

terizes the “informativeness” of the selected measurements x0, . . . ,x𝑁−1 by quantifying

how effectively these measurements reduce the error variance of estimator ẑ.

The goal of experimental design is to select the set of measurement x0, . . . ,x𝑁−1

from the set of possible measurements 𝒱 ⊆ R𝑑 to make some function of the error

covariance small. The “size” of the error covariance can be measured in a variety of

ways, giving rise to the so-called “alphabet-soup of experimental design criteria”:

∙ 𝐷-optimal design: Perhaps the most widely used experimental design cri-

teria. Minimizes the determinant or of the error covariance matrix E or the

volume of the resulting confidence ellipsoid for a fixed confidence level.

∙ 𝐸-optimal design: Minimizes the norm of the error covariance matrix or

the maximum eigenvlaue of E. Geometrically, corresponds to minimizing the

diameter of the confidence ellipsoid.

∙ 𝐴-optimal design: Minimizes the trace of the error covariance matrix.

The interested reader is referred to Boyd and Vandenberghe [12] for a more detailed

treatment of experimental design, additional design criteria, and a discussion of meth-

ods for optimizing these experimental design criteria.

A number of works have used these optimal design criteria to select measurements

that maximally reduce the error variance in the maximum likelihood estimator. The

active SLAM community has explored a variety of design criteria for selecting mea-

surements that are the most informative about the state of the robot [98, 59, 17, 18].

These criteria have also been applied for informative sensor selection [53, 21].
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2.3.2 Fisher Information

Another perspective on how selected measurements or actions can affect an esti-

mator’s variance arises from considering Fisher information. We again consider the

problem of estimating a vector z ∈ R𝑑 from a set of observations Y = [𝑌0, . . . , 𝑌𝑁−1]
𝑇 ,

related by an observation likelihood. An estimator ẑ maps from observations Y to

a value of z. This estimator can have several properties, and Section 2.3.1 describes

how to select measurements that minimize the error variance when the maximum

likelihood estimator is used.

In this section, we consider general admissible estimators. An admissible estimator

depends only on the observed data Y and not on the unknown value of z i.e., the

estimator is valid, and additionally constrained to be unbiased. Within the class

of admissible estimators, the Cramér-Rao bound gives a lower bound on the error

covariance E of any estimator ẑ:

E = EY

[︀
(ẑ(Y)− z)(ẑ(Y)− z)𝑇

]︀
≥ 𝐽Y(z)−1. (2.16)

Here, 𝐽Y(z) is known as the Fisher information in Y about z, and is a quantity deter-

mined by the latent vector of interest z and the selected measurements Y. The Fisher

information can be interpreted as a measure of “peaky-ness” of the likelihood of the

measurements as a function of the latent quantity z. The more peaky the likelihood

function, the better an estimator can determine the value of z from observations Y.

For any admissible estimator, choosing measurements Y that maximize the Fisher

information reduces the lower bound on the best achievable error variance.

Fisher information has been used as an information measure in robotic informative

path planning and static target localization [109, 75]. Fisher information has also been

used in conjunction with an RRT path planner to allow robots with complex dynamics

to plan trajectories that are informative for static target localization [66, 67].
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2.3.3 Information-theoretic reward

The final class of information measures commonly used in scientific information gath-

ering applications are the information-theoretic reward functions, which include mu-

tual information and conditional entropy. Unlike the experimental design criteria and

the Fisher information metric, the information-theoretic measures assume a “soft” es-

timate of an unknown random variable Z, i.e., a distribution Pr(Z | Y), instead of a

“hard” estimate ẑ(Y).

Conditional entropy measures the average log-loss of this inferred distribution

Pr(Z | Y) with respect to random variable Z. In other words, conditional entropy

measures the average uncertainty or randomness in a random variable Z after observ-

ing another random variable Y:

𝐻(Z | Y) , −
∑︁
𝑎,𝑏

Pr(Z = 𝑎,Y = 𝑏) log Pr(Z = 𝑎 | Y = 𝑏). (2.17)

Mutual information measures the average change in log-loss/entropy achieved by

observing Y, i.e., mutual information quantifies how much Y tells us about Z.

𝐼(Z;Y) , 𝐻(Z)−𝐻(Z | Y)

=
∑︁
𝑎,𝑏

Pr(Z = 𝑎,Y = 𝑏) log
Pr(Z = 𝑎,Y = 𝑏)

Pr(Z = 𝑎)Pr(Y = 𝑏)
.

(2.18)

For models in which these information-theoretic measures are computable, choos-

ing observations Y that minimize the conditional entropy of Z or maximize the mutual

information between Y and Z will allow for soft estimators that minimize expected

log-loss and reduce uncertainty/randomness in the resulting posterior distribution

over Z. Results such as Fano’s inequality [23] relate the probability of error in guess-

ing a discrete random variable Z to its conditional entropy 𝐻(Z | Y).

For this reason, information-theoretic measures have been employed as reward

functions in a variety of information planning and scientific applications. Krause et

al. [62, 7, 46, 63] have used mutual information and conditional entropy to select max-

imally informative locations for sensor placement and to plan informative trajectories
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for robots. Mutual information has been applied for target tracking [93] and unknown

map exploration [94]. Other work uses generalized entropy or mutual information for

the problem of unknown map exploration and pose estimation [91, 15, 16].

Many applications of information-theoretic reward functions assume an environ-

mental model for which information-theoretic measures are computable in closed form

or easy to approximate. For general environmental models, mutual information and

conditional entropy do not have closed form, because of dependence on the posterior

predictive distribution. Zheng et al. [123] derive a sampling-based method for esti-

mating mutual information in general models with performance guarantees. Arora et

al. [3] apply a Monte Carlo sampling approach to estimate mutual information with-

out performance guarantees in general Bayesian network environmental models. The

utility of information-theoretic reward measures is evidenced by their widespread

adoption in these diverse application areas. Chapter 3 will discuss information-

theoretic reward functions and their application to scientific information-gathering

missions in detail.

2.4 Approximate Planning Strategies

Once a sequential decision-making problem is formulated as a POMDP or MDP,

solving this POMDP or MDP involves finding the optimal policy or plan, and is

often nontrivial. There are a variety of planning approaches that differ in how online

information about the decision-state of the autonomous agent is incorporated into

planning decisions. In closed loop control, the agent computes a full policy and uses

the new information gathered during execution about the state as it become available

to select the optimal action in the current state. In contrast, in open loop control the

agent computes a single plan instead of a full policy, consisting of a set of actions, and

executes this plan regardless of what information about state is revealed to the agent

online during execution. The middle ground between these extremes is open loop

feedback control. As in open loop control, a plan is constructed over a finite horizon.

However, it is only partially executed. After executing one or more steps of the initial
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plan, the agent incorporates information received during execution into its decision

state and replans. Like closed loop control, open loop feedback control is able to use

new information received online during plan execution to improve performance.

Generally, closed loop control can provide optimal decision-making; however, find-

ing the optimal closed loop policy can be computationally intractable [10, 85]. Open

loop control is a computationally simpler alternative, but the performance gap be-

tween the solution of the optimal closed loop and open loop control problem can be

arbitrarily large [120]. Open loop feedback control represents a compromise between

the two extremes. Interestingly, for certain problems, it can be shown that open loop

and closed loop solutions are equivalent, as will be seen in the following section and

in Chapter 3.

Despite the difficulty of solving for the optimal closed loop policy, an exten-

sive body of literature has explored both exact and approximate solvers for gen-

eral POMDP and MDP frameworks. For MDPs, there are a variety of approaches

based on dynamic programming and the optimal Bellman recursion, which solve for

optimal or near optimal policies [70]. For POMDPs, offline POMDP solvers have

shown promising results in closed loop control for small problems [54], and online

solvers, such as those based on random Monte Carlo forward simulation [97], have

recently seen compelling success by applying open loop feedback control to larger

problems. These solvers are powerful tools for solving general purpose sequential

decision-making problems. However, the planning problems considered in this thesis

have special structure that allows for simpler approximation algorithms. In the fol-

lowing section, we discuss several common scenarios in which full, closed loop control

can be avoided, while maintaining strong performance guarantees.

2.4.1 Open loop planning in Linear-Gaussian models

Although the difference in plan reward between open and closed loop controllers is

generally unbounded, there are certain models for which these two planning strategies

are, perhaps surprisingly, equivalent. The most canonical example of this problem

structure is Linear-Gaussian systems, such as those employed in Kalman filtering [65]
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and information-theoretic sampling [63]. In these Linear-Gaussian systems, when an

autonomous agent collects observations and updates its belief on the decision-state,

the posterior distribution is also Gaussian with a mean vector that depends on the

realized observations but covariance matrix that only depends on the location of the

observations, not on their realized values. This property of Linear-Gaussian models is

exemplified in Eq. 2.9 (the posterior covariance of a Gaussian process); the posterior

covariance depends on pairwise evaluations of the covariance function, which in turn

depends only on the location of sample points.

For information-theoretic reward functions that depend only on the posterior co-

variance (information gain, entropy, uncertainty reduction, etc.), this property of

Linear-Gaussian systems implies that the reward function does not depend on ob-

servations gathered online. For these problems, closed loop planners can perform no

better than open loop planners [120]. A variety of previous works have utilized this

property to plan optimal or near-optimal actions in Linear-Gaussian systems [63, 101].

2.4.2 Greedy algorithms with submodular reward

Even for Linear-Gaussian systems, solving open loop control problems can be ex-

ponentially difficult. Therefore, further work has sought approximate solutions to

control problems, with performance that can be bounded with respect to the optimal

open or closed loop solution. Perhaps the simplest approximate planner is a greedy,

myopic planner. At each discrete time, this greedy planner selects the action that has

the highest immediate reward or utility according to a reward function 𝑅. For most

problems, the performance of this greedy algorithm is unbounded; it can be arbitrar-

ily worse than the optimal, nonmyopic planner. However, certain reward functions

have special structure which allows the greedy algorithm to be applied with bounded

suboptimality guarantees. This structure is submodularity [82].

Definition 1 (Submodularity) A set function 𝑅 : 2𝒱 → R is submodular if for every

𝐴 ⊆ 𝐵 ⊆ 𝒱 and 𝑒 ∈ 𝒱 ∖𝐵, 𝑅(𝐴 ∪ {𝑒})−𝑅(𝐴) ≥ 𝑅(𝐵 ∪ {𝑒})−𝑅(𝐵).

Submodularity formalizes the intuitive notion of diminishing returns: the benefit
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you get from adding a new sample to a large set is less than the benefit you get

from adding that new sample to a smaller subset. Another important property of set

functions is monotonicity.

Definition 2 (Monotonicity) A set function 𝑅 : 2𝒱 → R is monotone if for every

𝐴 ⊆ 𝐵 ⊆ 𝒱 , 𝑅(𝐵) ≥ 𝑅(𝐴) i.e., adding elements to a set will not decrease reward.

Monotone submodular reward functions have many beneficial properties: they

can be minimized efficiently and near-optimal constrained maximization is possible

in polynomial time. For example, sampling applications often require an algorithm

to select a set of sampling points 𝒜 from the full set of possible points 𝒮, such that

|𝒜| = 𝐾 and the reward 𝑅(𝒜) is maximized, where in general |𝒮| ≫ 𝐾. Finding the

optimal subset of points may require trying all 𝒪
(︁(︀|𝑆|

𝐾

)︀)︁
possible subsets of size 𝐾.

This problem can be shown to be NP𝑃𝑃 -complete [61]. However, the simple iterative,

greedy approximation algorithm in Algorithm 1 can be shown to choose a sample set

𝒜 such that 𝑅(𝒜) ≥ (1 − 1/𝑒) · 𝑅(𝒜*), where 𝒜* is the optimal set for monotone,

submodular reward function 𝑅.

Algorithm 1 Greedy set selection algorithm
Input: Reward function 𝑅, possible sampling locs 𝒮 = {x𝑖}, sampling capacity 𝐾
Output: Sample set 𝒜 ⊆ 𝒮
1: procedure greedy set selection
2: 𝒜 ← ∅
3: while |𝒜| ≤ 𝐾 do
4: x* = argmaxx∈𝒮∖𝒜 𝑅𝒜(x)
5: 𝒜 ← 𝒜∪ x*

6: return 𝒜

Property 1. Let 𝑅 : 2𝒮 → R be a be a monotone submodular set function, defined

on subsets of domain 𝒮. Define the greedy set selection algorithm as in Algorithm

1. The set 𝒜 returned by a greedy set selection algorithm will have reward 𝑅(𝒜) ≥

(1− 1/𝑒) ·𝑅(𝒜*), where 𝒜* is the optimal set for reward function 𝑅.

Proof. Let 𝒜* = argmax𝒜:|𝒜|≤𝐾 𝑅(𝒜). Let 𝒜𝐺 be the set returned by Algorithm 1

and 𝒜𝑘 ⊆ 𝒜𝐺 be the current set of 𝑘 observations sampled by the greedy algorithm
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after 𝑘 iterations. Additionally, let 𝑅𝒜𝑘
(x) be the marginal gain of adding sample x

to a set 𝒜𝑘 i.e., 𝑅(𝒜𝑘 ∪ x)−𝑅(𝒜𝑘).

Following the general proof in [51]:

𝑅(𝒜*) ≤ 𝑅(𝒜𝑘−1) +
∑︁

x∈𝒜*∖𝒜𝑘−1

𝑅𝒜𝑘−1
(x) (2.19)

≤ 𝑅(𝒜𝑘−1) +
∑︁

x∈𝒜*∖𝒜𝑘−1

𝑅(𝒜𝑘)−𝑅(𝒜𝑘−1) (2.20)

≤ 𝑅(𝒜𝑘−1) + 𝐾 · (𝑅(𝒜𝑘)−𝑅(𝒜𝑘−1)). (2.21)

The first line (2.19) follows directly from 𝑅(·) being a monotone submodular set

function [51], the second (2.20) from the greedy property of Algorithm 1, and the

third (2.21) because |𝒜*| ≤ 𝐾. Subtracting 𝐾 ·𝑅(𝒜*) from both sides:

𝑅(𝒜𝑘)−𝑅(𝒜*) ≥ 𝐾 − 1

𝐾
(𝑅(𝒜𝑘−1)−𝑅(𝒜*)), (2.22)

which implies by induction, with 𝑅(∅) = 0:

𝑅(𝒜𝑘) ≥
(︁

1−
(︂

1− 1

𝐾

)︂𝑖 )︁
𝑅(𝒜*). (2.23)

The proof is achieved by setting 𝑘 = 𝐾, and using the identity (1− 1
𝐾

)𝐾 ≤ 1
𝑒
.

This example demonstrates the power of submodular reward functions: by run-

ning a simple𝒪(𝐾 ·|𝒮|) greedy algorithm, the recovered sample set has reward at least

(1 − 1/𝑒) the reward of the optimal set, which requires solving an NP𝑃𝑃 -complete

combinatorial optimization problem to identify. Chapter 3 exploits this submodu-

lar structure to provide performance guarantees for informative secretary sampling

problems in a similar context.
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Chapter 3

Irrevocable Information Gathering in

Periodic Data Streams

Chapter 1 introduced the problem of scientific information gathering from both a

modeling and planning perspective and provided several diverse examples of scientific

information gathering applications. This chapter focuses on the secretary sampling

problem, as introduced in Chapter 1. We consider secretary sampling problems where

the scientific phenomenon of interest can be modeled as a smooth, continuous func-

tion over a bounded domain and present a complete framework for environment and

information-theoretic reward modeling in Section 3.3. Given this model, Section 3.5

introduces the periodic secretary algorithm for secretary sampling in spatiotemporally

periodic data streams. By formulating an information-theoretic reward function and

exploiting the submodular structure of this reward function, the periodic secretary

algorithm performs irrevocable sample selection with performance guarantees in spa-

tiotemporally correlated data streams, a domain in which previous secretary sampling

approaches perform arbitrarily poorly.

The remainder of this chapter introduces the problem of secretary sampling in

periodic data steams and provides several motivating applications (Section 3.1). Re-

lated work in secretary sampling problems is reviewed in Section 3.2. The specific

scientific information gathering problem considered in this chapter is presented in Sec-

tion 3.3, followed by an discussion of the appropriate choice of environmental model
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and reward function. The planning problem is formalized in Section 3.4 and the pro-

posed secretary sampling algorithm is presented in Section 3.5. Finally, this chapter

concludes with theoretical analysis (Section 3.6) and experimental validation of the

proposed method (Section 3.7). The work presented in this chapter has previously

appeared in abbreviated form in Flaspohler et al. [35].

3.1 Introduction

Many interesting phenomena vary on spatial and temporal scales that are too large to

monitor in their entirety. Attempting to gather information about these phenomena

using limited representative samples is known as sample selection or experimental

design [80]. In most problem formulations, samples are chosen to maximize some

reward function while satisfying a fixed cost requirement: an autonomous underwater

vehicle (AUV) may need to maximize the amount of phytoplankton in 10 collected

water samples; a planetary rover may need to collect a maximally diverse set of rock

samples that weigh less than 5 kg ; a policy maker may wish to infer pollutant flow

throughout a water body but only spend $10, 000 on water samples. Constrained

sample selection problems arise in many real-world contexts, spanning domains from

robotics to data mining to online auctions.

Sample selection problems can be divided into offline and streaming problems. In

offline problems, potential sample locations are known ahead of time and an algo-

rithm can make arbitrarily many passes through these locations to find the optimal

placement of samples. In streaming problems, potential sample locations are revealed

to the algorithm sequentially, and the algorithm must choose to collect or not collect

a sample in real-time. Both the offline and streaming constrained sample selection

problems are known to be at least NP-hard, but polynomial time approximation

schemes exist for a variety of problem formulations [82].

One important variant of the streaming sample selection problem is the secretary

sampling problem, which arises when an autonomous agent must choose to collect

samples irrevocably in a data stream, i.e., the agent must decide in real-time whether
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to collect a sample, cannot return to collect a sample at a previously rejected location,

and cannot later reject a collected sample. This streaming, irrevocable-choice variant

of the constrained sample selection problem arises frequently in real-time domains

and is known as the secretary sampling problem because of parallels to the problem

of hiring the best secretarial candidate from a stream of applicants [32].

Figure 3-1: Streaming irrevocable sample selection: (1) In an example of
streaming, irrevocable sample selection, an autonomous underwater vehicle must irre-
vocably collect representative water samples along a fixed trajectory at locations that
are the most informative about a latent quantity of interest (q.o.i.), e.g. plankton
concentrations. After observing the value of the quantity of interest at the sample
locations (2), we can infer a mapping between environmental observations and the
latent q.o.i. for later use (3).

For example, an AUV following a fixed trajectory through a marine environment

may be equipped with 𝐾 single-use water samplers and need to collect the set of water

samples that are the most informative about the distribution of a quantity of interest

(q.o.i.) e.g. plankton species (Figure 3-1). The AUV can measure the surrounding

environmental conditions and must decide to collect a plankton sample based on

these environmental percepts, given a model relating these observable quantities to

the latent plankton distribution. Finding the optimal set of locations to sample at

along its trajectory without a prior map of the partially-observable environment is a

hard problem: if the AUV collects samples too early, it will not be able to sample
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the interesting locations it discovers later in the mission; if the AUV passes over

interesting locations at the start of the mission, it may not see enough high quality

locations later in the mission at which to collect samples.

The secretary problem has a long history and a variety of near-optimal solutions

for different problem domains have been developed [32]. However, solutions to the

secretary problem nearly always require that data are seen in random order. This

stringent requirement is rarely met in robotics and real-time sensing domains, which

produce spatially and temporally correlated data streams. In this work, we focus on

data streams with periodic spatiotemporal structure. Periodic data arise commonly in

environmental monitoring datasets due to natural cycles on a daily, lunar, and annual

basis and in robotics tasks such as repetitive surveying. While it is easy to imagine

adversarial data orderings for which a streaming, irrevocable-choice algorithm would

perform arbitrarily badly, given data with known spatial or temporal structure, a

carefully-designed algorithm may be able to provide performance guarantees. In this

work, we introduce the periodic secretary algorithm to choose 𝐾 samples irrevocably

from a data stream with periodic structure and provide a lower bound on the reward

of the selected samples.

The contributions of this chapter include:

∙ We introduce the periodic secretary algorithm, which leverages spatiotemporal

structure to choose samples from a periodic data stream according to any mono-

tone submodular reward function with probabilistic performance guarantees.

∙ We demonstrate how information-theoretic reward functions can be leveraged

for multiple-choice secretary sampling algorithms, in order to select samples

that reduce posterior model uncertainty of a latent quantity of interest, as well

as provide lower-bounds on sampling algorithm performance.

∙ We demonstrate the robustness of the periodic secretary algorithm on a data

stream containing plankton observations from January 2009 to January 2016,

and show that the plankton samples selected by the periodic secretary algorithm

construct the most predictive model of the overall plankton concentrations.
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3.2 Related Work

The problem of constrained sample selection has been given a thorough treatment

in both the offline and streaming settings. In offline settings, previous work has

explored using information-theoretic reward functions in spatiotemporally correlated

data domains to select high utility samples. Nemhauser et al. [82] show that for

submodular reward functions, a simple iterative greedy algorithm where the highest-

reward sample given previous samples is selected at each iteration will produce a set

with reward greater than (1−1/𝑒) times the reward of the optimal set (see Algorithm

1 in Chapter 2). Other works use this greedy algorithm along with Gaussian process

(GP) models and information-theoretic reward functions to do offline sample selection

[63] and to plan information-rich exploration paths for robots [7]. There is a rich body

of literature in the spatial statistics community discussing optimal sensor placement

in an offline setting [80] for a variety of reward functions and information measures.

On the other hand, secretary sampling algorithms remain largely constrained to

simple reward functions and random arrival order assumptions. The secretary prob-

lem is a classical problem in stopping theory. In the standard problem formulation,

a company wants to hire the most qualified secretarial candidate. The company in-

terviews a stream of 𝑁 candidates and has to choose irrevocably after each interview

whether or not to hire the candidate. When selecting a single maximal candidate,

Lindley [68] provides a well known result: by observing the maximum reward sample

in the first 1/𝑒 fraction of the stream and picking the first sample with higher reward,

the highest reward sample will be selected in 1/𝑒 fraction of cases. It can be shown

that this single secretary algorithm is the optimal strategy for this problem, given

that the stream of candidates arrives in random order and a static reward function:

Single secretary algorithm: Given a stream of 𝑁 candidates, observe but do not

accept the first ⌊𝑁/𝑒⌋ candidates. Keep track of the maximum-reward sample

for reward function 𝑅: x* = argmaxx∈x0,...,x⌊𝑁/𝑒⌋−1
𝑅(x) in the observation period.

After the observation period, hire the first candidate x′ whose score 𝑅(x′) ≥ 𝑅(x*).

This single secretary problem can be expanded to the case of hiring the 𝐾 most
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qualified candidates, known as the multiple-choice secretary problem. In this case,

the reward function must now score sets of secretarial candidates. The optimal set

𝒜* for any arbitrary set function is generally NP-hard to find [58]. Babaioff et al. [4]

introduce an 𝑒-competitive algorithm for the multiple-choice secretary problem and

an alternative approach introduced by Kleinberg provides a 1/(1−5/
√
𝑘)-competitive

algorithm [57]. However, both algorithms require that data arrive in random order

and “static” reward functions (i.e. the reward of a data point in the stream cannot

change as new samples are selected).

For the special case of monotone submodular reward functions, Bateni et al. [5]

provide a 7/(1−1/𝑒)-competitive algorithm known as the submodular secretary algo-

rithm. The submodular secretary algorithm splits the data into 𝐾 segments of equal

length (the last segment can be padded with “filler secretaries” if necessary) and runs

the single secretary algorithm on each segment:

Submodular secretary algorithm: Given a stream of 𝑁 potential candidates, split

the stream into 𝐾 equal length segments. In each of the 𝐾 segments, choose a single

secretary using the single secretary algorithm, where the reward 𝑅(·) of a secretarial

candidate is calculated with respect to the previously selected candidates.

The submodular secretary algorithm is applied by Luo et al. with an information-

theoretic reward function to select samples irrevocably from an environmental data

stream [72]. The use of information-theoretic reward functions for irrevocable sample

selection was developed concurrently and independently in this work and by Luo et

al. However, despite allowing flexibility in reward function, the submodular secretary

algorithm and its application by Luo et al. require that data arrive in random order,

a restriction that is relaxed in this work.

Kesselheim et al. [56] attempt to relax the assumption that data arrive in random

order and define a class of distributions for which the assumption is violated but the

performance of the standard secretary algorithm remains bounded. However, many

spatiotemporally correlated data streams, including periodic data, do not satisfy even

these relaxed constraints. Vardi [33] proposes a secretary algorithm for quasi-periodic

data which arrive in random order. This algorithm requires that each observation
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will appear exactly 𝑚 times in the data stream, an often unrealistic assumption in

noisy data streams; indeed, this event occurs with probability zero in the continuous

observation domains considered in this chapter.

Streaming, irrevocable-choice algorithms have been applied to select samples in

environmental monitoring and robotics applications, even when the data streams vio-

late random arrival order assumptions. Das et al. [26] apply the submodular secretary

algorithm on-board an AUV to select 𝐾 water samples with the highest concentration

of phytoplankton and use a GP model to predict these concentrations. However, they

directly apply the submodular secretary algorithm, despite their data being spatially

correlated, which could lead to arbitrarily poor sampling performance. Girdhar et al.

[38] also deploy a modified multiple-choice secretary algorithm on an AUV to choose

the most informative images to send back to a ground station. However, this approach

is incompatible with the use of information-theoretic reward functions and requires

that data arrive in random order. Recently, Manjanna et al. [73] used the submodu-

lar secretary algorithm to perform irrevocable sampling using a heterogeneous robot

team, again despite the data stream having strong spatiotemporal correlation.

3.3 Scientific Model and Objective

In the general constrained sample selection problem, we must choose a set 𝒜 consist-

ing of 𝐾 sample locations from a finite set of possible locations in a 𝑑-dimensional

environmental state space 𝒱 ⊆ R𝑑, such that a reward set function 𝑅 : 2𝒱 → R is

maximized:

𝒜* = argmax𝒜⊆𝒮:|𝒜|=𝐾𝑅(𝒜) (3.1)

The full state space 𝒱 is split into a set of locations where it is possible to collect

samples 𝒮 and a set where no samples can be collected 𝒰 = 𝒱 ∖ 𝒮. The state space

𝒱 can consist of geographic locations or locations in an environmental sensor space,

e.g. temperature, salinity. In the offline setting, 𝒮 and 𝒰 are defined by accessibility,

price, or other concerns. In the streaming setting, 𝒮 consists of states encountered

in the data stream, which are generally a priori unknown, necessitating algorithms
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that choose sample locations reactively in the observed data stream.

3.3.1 Gaussian process environmental model

Our sampling objective is to select a set of 𝐾 sampling locations 𝒜 ⊆ 𝒮 that contain

the most information about a latent scientific quantity of interest that takes values in

𝒱 . Evaluating the information value of potential sampling locations requires a model

of how a latent quantity of interest is correlated with environmental state. Given that

the physical sensors in robotics and environmental monitoring domains are noisy, this

model would ideally be probabilistic. Following [63], we use a Gaussian process model

(GP), a nonparametric generalization of the multivariate Gaussian distribution (see

Chapter 2). A GP model learns a regression model for the q.o.i. at new states in the

data stream 𝒮 based on a set of noisy q.o.i. samples at known states, and explicitly

quantifies the uncertainty in these predictions.

Let 𝑓 : 𝒱 → R be an unknown function representing the value of a continuous

environmental phenomenon of interest e.g. plankton concentration, as a function

of current state x ∈ 𝒱 , where x can be the physical location of a robot or the

current environmental conditions such as temperature, salinity as perceived by a

static sensor. Noisy observations 𝑦 of the function value at state x can be obtained by

irrevocably choosing to sample in state x, such that 𝑦𝑖 = 𝑓(x)+𝜖𝑖 with 𝜖𝑖
𝑖.𝑖.𝑑.∼ 𝒩 (0, 𝜎2

𝑛),

where 𝜎2
𝑛 is determined by noise model of the environmental sensor. We represent

belief on 𝑓 as a GP with mean 𝜇(x) and covariance function 𝜅(x,x′), such that

𝑓 ∼ 𝒢𝒫(𝜇(x), 𝜅(x,x′)). Given a set of 𝑡 samples and their corresponding locations in

observation space 𝒟𝑡 = {x𝑖, 𝑦𝑖}𝑡−1
𝑖=0, the posterior belief at a new state x′ ∈ 𝒱 can be

computed:

𝑓(x′) | 𝒟𝑡 ∼ 𝒩 (𝜇𝑡(x
′), 𝜎2

𝑡 (x′)),where (3.2)

𝜇𝑡(x
′) = 𝜅𝑡(x

′)𝑇 (K𝑡 + 𝜎2
𝑛I)

−1y𝑡, (3.3)

𝜎2
𝑡 (x′) = 𝜅(x′,x′)− 𝜅𝑡(x

′)𝑇 (K𝑡 + 𝜎2
𝑛I)

−1𝜅𝑡(x
′), (3.4)

where y𝑡 = [𝑦0, . . . , 𝑦𝑡−1]
𝑇 , K𝑡 is the positive definite kernel matrix with K𝑡[𝑖, 𝑗] =

52



𝜅(x𝑖,x𝑗) for all x𝑖,x𝑗 ∈ 𝒟𝑡, and 𝜅𝑡(x
′) = [𝜅(x0,x

′), . . . , 𝜅(x𝑡−1,x
′)]. Our experiments

use a squared-exponential covariance function (Eq. 2.11) and a zero mean function;

however our results hold for any covariance function.

3.3.2 Reward functions and tradeoffs

A variety of reward functions appear in the sample selection literature, including

maximizing the sum of utilities of the collected samples [4], maximizing the minimum

distance between samples [38, 124], maximizing the reduction in entropy 𝐻(·) over

𝒱 , known as the entropy criterion [63]:

𝑅𝐻(𝒜) = −𝐻(𝒱 ∖ 𝒜 | 𝒜) = 𝐻(𝒜)−𝐻(𝒱), (3.5)

or maximizing the mutual information 𝐼(·; ·) between sampled locations and the rest

of the observation space, known as the mutual information criterion [63]:

𝑅𝐼(𝒜) = 𝐼(𝒱 ∖ 𝒜;𝒜) = 𝐻(𝒱 ∖ 𝒜)−𝐻(𝒱 ∖ 𝒜 | 𝒜). (3.6)

The entropy and mutual information reward functions directly quantify how use-

ful a sample will be for the task of inference about a quantity of interest that is

distributed across the observation space. These information-theoretic reward func-

tions have been widely used to decide optimal placements of sensors in the kriging

and spatial statistics literature [80]. The mutual information criterion seeks to maxi-

mize the mutual information between a set of sampled locations 𝒜 and the rest of the

observation space 𝒱 ∖ 𝒜. Intuitively, the mutual information criterion reflects how

informative the sampled locations are about the rest of the space. However, calculat-

ing the mutual information criterion requires a model of the entire observation space

𝒱 and generally requires 𝑂(|𝒱|3) operations to compute a single time. This can be

challenging or impossible to compute in streaming contexts.

The entropy criterion seeks simply to maximize the reduction in entropy over the

observation space by maximizing the entropy of the selected sample set 𝒜. The en-
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tropy criterion does not depend on knowledge of the entire observation space and can

be calculated in 𝑂(𝐾3) operations, where 𝐾 is maximum cardinality of the selected

sample set 𝒜. For Gaussian process models, maximizing the entropy criteria can be

shown to be equivalent to maximizing the information gain of a set of sample locations

with respect to the latent quantity of interest 𝑓 [101]:

𝑅IG(𝒜) = 𝐼(𝒜; 𝑓) = 𝐻(𝒜)−𝐻(𝒜 | 𝑓). (3.7)

Despite recent use of the mutual information criteria for offline sensor selection [63],

for streaming applications run on computationally constrained devices, the entropy

or information gain criterion remain a computationally efficient alternative.

3.3.3 Submodular set functions

For an arbitrary sample set reward function 𝑅 : 2𝒱 → R, the maximization problem

in Eq. (3.1) is NP-hard for both the offline and streaming scenarios [58]. Fortunately,

many commonly used reward functions, including the entropy criterion [102, 95], have

special structure that allows near-optimal polynomial time approximation schemes.

This structure is submodularity:

Definition 1 (Submodularity) A set function 𝑅 : 2𝒱 → R is submodular if for every

𝐴 ⊆ 𝐵 ⊆ 𝒱 and 𝑒 ∈ 𝒱 ∖𝐵, 𝑅(𝐴 ∪ {𝑒})−𝑅(𝐴) ≥ 𝑅(𝐵 ∪ {𝑒})−𝑅(𝐵).

Submodularity formalizes the intuitive notion of diminishing returns: the benefit

from adding a new sample to a large set is less than the benefit from adding that new

sample to a smaller subset.

Another important property of set functions is monotonicity:

Definition 2 (Monotonicity) A set function 𝑅 : 2𝒱 → R is monotone if for every

𝐴 ⊆ 𝐵 ⊆ 𝒱 , 𝑅(𝐵) ≥ 𝑅(𝐴), i.e. adding elements to a set will not decrease reward.

Monotone submodular reward functions have many beneficial properties: they

can be minimized efficiently and near-optimal constrained maximization is possible

in polynomial time. We will exploit this structure to provide performance guarantees

for periodic irrevocable sample selection using the entropy criterion.
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3.4 Secretary Sampling Problem Formulation

3.4.1 Periodic data streams

Let the dataset 𝒮 = {x𝑖} ⊆ 𝒱 be a stream of potential sampling states, such that the

sensor is at state in observation space x𝑖 ∈ 𝒱 at time step 𝑖. We assume the robot

or autonomous sensor is passive, such that the sensing agent has little or no control

over the states visited in the data stream. Many sensing platforms operate within

this domain: static sensors are completely stationary and many mobile scientific

robots have a very restricted set of motion primitives or are restricted to follow a

preset trajectory due to safety constraints or lack of localization/planning capabilities.

Additionally, even fully mobile scientific robots are often restricted to motions given

by a primary sensing objective; any secondary objectives can only be satisfied by

passively choosing when to collect samples.

For a state X𝑖, let 𝑌𝑖 be the corresponding latent quantity of interest (q.o.i.)

value at time step 𝑖, which cannot be measured in vivo but can be sampled for offline

analysis. We define a state data stream 𝒮 to be approximately periodic with period

𝑇 and noise Σ𝑑 if the (possibly vector-valued) state X𝑖 at index 𝑖 is drawn i.i.d. from

a Gaussian distribution with mean equal to the state x𝑖 mod 𝑇 and covariance Σ𝑑 i.e.,

X𝑖 ∼ 𝒩 (x𝑖 mod 𝑇 ,Σ𝑑) for 𝑖 ≥ 𝑇 (Figure 3-2). This model of periodic data formalizes

the intuition that states visited by a robot or autnomous sensor in a periodic data

stream will be noisy copies of states visited in the initial period. Importantly, the

reward, e.g. entropy, of approximately periodic states will also be approximately

periodic with scalar reward noise 𝜎2
𝑢 and the same period 𝑇 .

Observation 1. If a stream of visited states are approximately periodic with period 𝑇

and noise Σ𝑑, then the reward of these states will also be approximately periodic with

period 𝑇 and some reward noise 𝜎2
𝑢. This follows directly because x𝑖 = x𝑗 implies

𝑅(x𝑖) = 𝑅(x𝑗) for all x𝑖,x𝑗 ∈ 𝒱 and any deterministic function 𝑅(·). Generally,

Σ𝑑 ̸= 𝜎2
𝑢, but 𝜎2

𝑢 is a function of Σ𝑑. This is visualized in Figure 3-3.
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Figure 3-2: Approximately periodic data: Our algorithm assumes the stream of
visited states are approximately periodic with period 𝑇 and noise Σ𝑑, where the state
X𝑖 at index 𝑖 is drawn i.i.d. from a Gaussian distribution with mean equal to the
state x𝑖 mod 𝑇 and covariance Σ𝑑 i.e., X𝑖 ∼ 𝒩 (x𝑖 mod 𝑇 ,Σ𝑑)

3.4.2 Secretary sampling problem

Let 𝒜𝑚 ⊆ 𝒮𝑖 be the set of 𝑚 states we have sampled at, from the first 𝑖 possible states

in the data stream. At time step 𝑖 + 1, we must irrevocably decide whether to add

a sample in that state to the sample set 𝒜𝑚 based on the value of the entropy crite-

rion/reward function at that state. To calculate the entropy criterion at a potential

sampling location x𝑖+1, we must calculate the conditional entropy of the posterior

distribution on the latent quantity of interest in that state, given the locations in

the state space of previously collected samples. In a GP model, we can calculate the

differential entropy at state x𝑖+1 in closed form:

ℎ(x𝑖+1 | 𝒜𝑚) =
𝑑

2
ln(2𝜋𝑒) +

1

2
ln(𝜎2

x𝑖+1
| 𝒜𝑚) (3.8)

where 𝑑 is the dimension of 𝒱 and 𝜎2
x𝑖+1

| 𝒜𝑚 is the conditional variance of the

GP model at point x𝑖+1 (Eq. 3.4). Crucially, 𝜎2
x𝑖+1

| 𝒜𝑚 depends solely on the

covariance function used in the GP model and the locations of the samples 𝒜𝑚 in the

state space, not on the sampled quantity of interest values at these locations. This

important property of GPs allows us to do streaming entropy calculations even if we

are unable to observe the value 𝑦𝑖+1 of a sample at state x𝑖+1 until post-processing.

For our model, we use a squared exponential (SE) covariance function with maximum
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likelihood parameters estimated from a previous deployment. Although our data are

periodic, we do not use a periodic covariance function [74]. The periodic covariance

function is used in data domains where the latent q.o.i. is periodic but the set of

visited states are not; the SE covariance function is sufficient for our model because

both the trajectory through state space and the latent q.o.i are assumed to be periodic

with the same period.

After a sampling mission is completed and samples have been collected at various

locations in state space we can, for example, use the resulting dataset 𝒟 = {(x𝑖, 𝑦𝑖) |

x𝑖 ∈ 𝒮}, |𝒟| = 𝐾, consisting of states x𝑖 and noisy quantity of interest samples

at those states 𝑦𝑖, to predict the distribution of the latent quantity of interest at

unsampled locations in the state space (Figure 3-1), using the analytical solution for

the conditional predictive mean and variance of a GP.

3.5 Periodic Secretary Sampling Algorithm

Periodic phenomena occur ubiquitously in biological domains due to natural cycles on

a daily, monthly, and annual basis and in repetitive robotics tasks. Given a Gaussian

process model that allows us to compute the entropy reward function for states in our

data stream, we propose a novel variant of the multiple-choice secretary algorithm

for data with approximately periodic structure.

Assuming that the period 𝑇 of an approximately periodic data stream is known

or can be estimated, the proposed periodic secretary algorithm consists of two stages.

During the initial observation period, the first 𝑇 visited states in the data stream are

saved into a reference set 𝑈𝑅 but no samples are collected. Then, for the remainder

of the data stream, the algorithm attempts to iteratively collect a sample at the next

state in the stream with the highest reward given previously selected samples. This

is difficult to achieve without knowledge of the future states that will be visited in

the data stream. However, for approximately periodic data streams as defined in

Section 3.4, our algorithm can exploit the information it gathers during the initial

observation period to make informed decisions about when to sample in the remainder
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of the stream.

To select the next state from which to sample, the periodic secretary algorithm

computes the reward of each previously visited state in the reference set 𝑈𝑅 and finds

the state(s) with the highest reward in the reference set given previously selected

samples. Then, the algorithm collects a sample at the next state in the data stream

with reward greater than the maximum reward state in the reference set, minus some

constant threshold parameter 𝜆 that accounts for noise in the periodic function. In a

sense that we derive explicitly in Section 3.6, we can expect to see an state of sufficient

reward with high probability because our data are approximately periodic. Given this

new sample, the reward of states in the reference set may have changed. We find the

new maximum reward state in the reference set conditioned on the new sample set,

and select to sample at the next state observed in the data stream with reward within

some 𝜆 of this maximum. This procedure repeats until 𝐾 samples have been collected

or the end of the data stream is reached. The procedure is formalized in Algorithm 2

and depicted visually in Figure 3-3. We discuss the effect of the parameter 𝜆 on the

algorithm’s performance in Section 3.7.

Algorithm 2 Periodic secretary algorithm
Input: Reward function 𝑅, data stream 𝒮 = {x𝑖}, sampling capacity 𝐾, data period
𝑇 , parameter 𝜆 ∈ R
Output: Sample set 𝒜 ⊆ 𝒮
1: procedure periodic secretary algorithm
2: 𝒜 ← ∅
3: 𝑈𝑅 ← {𝑅({x𝑖}), for 𝑖 ∈ [0, 𝑇 )
4: threshold← max(𝑈𝑅)− 𝜆
5: for each 𝑖 ∈ [𝑇, . . . , 𝑁 ] do
6: if 𝑅({x𝑖} ∪ 𝒜) ≥ threshold then
7: 𝒜 ← 𝒜∪ x𝑖

8: if |𝒜| = 𝐾 then return 𝒜
9: 𝑈𝑅 ← {𝑅({x𝑖} ∪ 𝒜)}, for 𝑖 ∈ [0, 𝑇 )

10: threshold← max(𝑈𝑅)− 𝜆

11: return 𝒜
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Figure 3-3: Periodic secretary algorithm with threshold parameter 𝜆: (a) An
approximately periodic data stream with known period. Three samples are selected
using the periodic secretary algorithm; the sample selection process is visualized in
(b-d). (b) Previous states are in black; unknown future states are in grey. When
the algorithm begins and before any samples have been selected, every subsequent
state has equal entropy [reward], hence the algorithm chooses the first state after the
reference set 𝑈𝑅 as the first location to sample. (c) Given the first sample (1), the
reward function is approximately periodic. The algorithm then samples in the first
state with entropy [reward] ≥ the maximum entropy state in the reference set 𝑈𝑅

minus 𝜆 (2). (d) Given samples at (1,2), the next state with entropy [reward] ≥ the
maximum entropy state in 𝑈𝑅 minus 𝜆 occurs at (3).

3.6 Analysis of Algorithm Performance

In this section, we analyze the performance of the periodic secretary algorithm as a

function of the variables in our model: the reward noise 𝜎2
𝑢, the number of periods

in the data ⌊𝑁/𝑇 ⌋, the number of samples selected 𝐾, and threshold parameter 𝜆.

We show that when the number of periods in the dataset is large compared to the
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number of samples selected, the gap between the performance of the periodic secre-

tary algorithm and the optimal solution grows slowly with the length of the dataset

as 𝑂(
√︀

log ⌊𝑁/𝑇 ⌋). When the number of samples is much larger then the number of

periods, however, our lower bound decreases quickly as 𝐾 grows, as 𝑂(⌊𝑁/𝑇 ⌋ /𝐾).

Although the algorithm will likely outperform this bound for specific reward func-

tions, this is the tightest bound we could derive for general reward functions and is

commensurate with bounds provided by e.g. the submodular secretary algorithm [5].

These conclusions follow directly from Theorem 1, proven at the end of this section.

However, we first provide the following three useful lemmas.

Let 𝒜* be the optimal sample set according to Eq. (3.1) and 𝒜 be the set returned

by the periodic secretary algorithm. We refer to the first 𝑇 states visited in the stream

as the reference set 𝑈𝑅. Let 𝒜𝑚 ⊆ 𝒮 be the current set of 𝑚 states where samples

have been collected by the algorithm and 𝑅𝒜𝑚(x) be the marginal gain of adding a

sample at state x to set 𝒜𝑚, i.e., 𝑅(𝒜𝑚 ∪ x)−𝑅(𝒜𝑚).

Lemma 1. In each iteration of the periodic secretary algorithm, the reward of the

sampling state selected by the periodic secretary algorithm x*
𝑠 from approximately

periodic data of length 𝑁 with period 𝑇 and reward noise 𝜎2
𝑢, given a previously

selected sample set 𝒜𝑚, is lower bounded by:

𝑅𝒜𝑚(x*
𝑠) ≥ E[𝑅𝒜𝑚(X*)]−

(︁
𝜆 +

√︃
2𝜎2

𝑢𝑇
2 log

⌊︂
𝑁

𝑇

⌋︂)︁
, (3.9)

where X* is the state with globally maximum reward.

Lemma 1 bounds how suboptimal the sampling location selected by the periodic

secretary algorithm can be compared to the globally optimal sampling location, given

the current sample set 𝒜𝑚.

Proof of Lemma 1. Given that the maximum reward state in the reference set x*
𝑟

occurs at index 𝑖, we compute the expected difference in reward between x*
𝑟 and the

maximum reward sample in the entire data stream X* when X* occurs at index 𝑖+𝑛𝑇

for some 𝑛, 0 ≥ 𝑛 ≥
⌊︀
𝑁
𝑇

⌋︀
. Because our data are approximately periodic, we know

that 𝑅𝒜𝑚(X𝑖+𝑛𝑇 ) ∼ 𝒩 (𝑅𝒜𝑚(x*
𝑟), 𝜎

2
𝑢) for 𝑛 = {0, . . . ,

⌊︀
𝑁
𝑇

⌋︀
} and the global maximum
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X* = max {X𝑖+𝑛𝑇 | 𝑛 = 0, . . . ,
⌊︀
𝑁
𝑇

⌋︀
} i.e., the maximum of

⌊︀
𝑁
𝑇

⌋︀
i.i.d. draws from a

normal distribution with mean 𝑅𝒜𝑚(x*
𝑟) and variance 𝜎2

𝑢. Therefore, the expected

difference between 𝑅𝒜𝑚(X*) and 𝑅𝒜𝑚(x*
𝑟) conditioned on the event that X* occurs

at index 𝑖 + 𝑛𝑇 is no larger than the expectation of the maximum of
⌊︀
𝑁
𝑇

⌋︀
samples

drawn from a mean-zero Gaussian [55]:

E[𝑅𝒜𝑚(X*)−𝑅𝒜𝑚(x*
𝑟)] ≤

√︃
2𝜎2

𝑢 log
⌊︂
𝑁

𝑇

⌋︂
. (3.10)

The expected difference between the global maximum value in the stream and the

maximum in the reference set will be maximized when the maximum occurs at index

𝑖 + 𝑛𝑇 . Therefore, we can bound the unconditional expected difference between the

global maximum and the maximum in the reference set as 𝑇 times Eq. 3.10. The final

form of Lemma 1 arises from the observation that the sample the algorithm selects

x*
𝑠 will have expected reward 𝑅𝒜𝑚(x*

𝑠) = 𝑅𝒜𝑚(x*
𝑟)− 𝜆.

Lemma 2. A set𝒜 of 𝐾 samples chosen according to the periodic secretary algorithm

will have reward:

E[𝑅(𝒜)] ≥
(︂

1− 1

𝑒

)︂(︃
𝑅(𝒜*)−𝐾 ·

(︁
𝜆 +

√︃
2𝜎2

𝑢 log
⌊︂
𝑁

𝑇

⌋︂)︁)︃
. (3.11)

Lemma 2 states that a set of 𝐾 samples chosen with suboptimality bounded as

in Lemma 1 also has bounded suboptimality.

Proof of Lemma 2. Following the general proof in [51]:

𝑅(𝒜*) ≤ 𝑅(𝒜𝑚−1) +
∑︁

x∈𝒜*∖𝒜𝑚−1

𝑅𝒜𝑚−1(x) (3.12)

≤ 𝑅(𝒜𝑚−1) +
∑︁

x∈𝒜*∖𝒜𝑚−1

𝑅(𝒜𝑚)−𝑅(𝒜𝑚−1) + 𝑐 (3.13)

≤ 𝑅(𝒜𝑚−1) + 𝑘 · (𝑅(𝒜𝑚)−𝑅(𝒜𝑚−1) + 𝑐), (3.14)

where 𝑐 = 𝜆 +
√︁

2𝜎2
𝑢 log

⌊︀
𝑁
𝑇

⌋︀
. The first line (3.12) follows directly from 𝑅(·) being

a monotone submodular set function [51], the second (3.13) from Lemma 1, and the
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third (3.14) because |𝒜*| ≤ 𝐾. Subtracting 𝐾 ·𝑅(𝒜*) from both sides:

𝑅(𝒜𝑚)−𝑅(𝒜*) ≥ 𝐾 − 1

𝐾
(𝑅(𝒜𝑚−1)−𝑅(𝒜*))− 𝑐, (3.15)

which implies by induction, with 𝑅(∅) = 0:

𝑅(𝒜𝑚) ≥
(︂

1−
(︂

1− 1

𝐾

)︂𝑚)︂(︁
𝑅(𝒜*)−𝐾 · 𝑐

)︁
. (3.16)

Lemma 2 is achieved by setting 𝑚 = 𝐾, and using the identity (1− 1
𝐾

)𝐾 ≤ 1
𝑒
.

Lemma 2 assumes that the periodic secretary algorithm succeeds in sampling 𝐾

times, as will be the case when the reward noise 𝜎2
𝑢 is small and the length of the

data stream is large. However, given a finite data stream of length 𝑁 , it is possible

to fail to select all 𝐾 samples.

Lemma 3. In an approximately periodic data stream with period 𝑇 and reward noise

𝜎2
𝑢 of length 𝑁 , the expected number of samples selected by the periodic secretary

algorithm is:

E[#𝑆𝑢𝑐𝑐𝑒𝑠𝑠] ≥ min
(︂
𝐾,𝑄(−𝜆/𝜎2

𝑢)

⌊︂
𝑁

𝑇

⌋︂)︂
. (3.17)

Proof of Lemma 3. The probability of encountering a state in period 𝑛 of the

data which meets or exceeds the reward threshold for a given iteration of the periodic

secretary algorithm and is therefore sampled is:

Pr(𝑆𝑢𝑐𝑐𝑒𝑠𝑠) ≥Pr
(︁
𝑅(X𝑖+𝑛𝑇 ) ≥ 𝑅(x*

𝑟)− 𝜆
)︁

≥𝑄(−𝜆/𝜎2
𝑢),

(3.18)

where 𝑄(·) is the standard Gaussian tail probability. In a data stream of length 𝑁 ,

there are
⌊︀
𝑁
𝑇

⌋︀
total periods and the expected number of successes is the number of

periods multiplied by the probability of success in each period.

Theorem 1. Given a sample set 𝒜 selected by the periodic secretary algorithm from

a data stream of length 𝑁 that is approximately periodic with period 𝑇 and reward
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noise 𝜎2
𝑢, the expected reward of 𝒜 is less than the reward of the optimal set 𝒜* by

a factor which depends the number of samples selected 𝐾 and parameter 𝜆:

E[𝑅(𝒜)] ≥
min(𝑘, 𝑄(−𝜆/𝜎2

𝑢)
⌊︀
𝑁
𝑇

⌋︀
)

𝐾
·
(︂

1− 1

𝑒

)︂
(︃
𝑅(𝒜*)−𝐾 ·

(︃
𝜆 +

√︃
2𝜎2

𝑢𝑇
2 log

⌊︂
𝑁

𝑇

⌋︂)︃)︃
,

(3.19)

where 𝑄(·) is the standard Gaussian tail probability.

Proof. In Lemma 2, we showed that a set of 𝐾 samples selected using the periodic

secretary algorithm has bounded suboptimality. In practice, for finite data streams,

it is possible successfully sample less than 𝐾 times. Lemma 3 derives the expected

number of samples the periodic secretary algorithm will select in a data stream of

length 𝑁 . Combining Lemma 2 and 3 with the observation that for a monotone

submodular function, the value of the first 𝑎 samples of 𝒜 have reward of at least⌊︀
𝑎
𝐾

⌋︀
𝑅(𝒜), 𝑎 ≤ 𝐾, the expected reward of set 𝒜 is given by Theorem 1.

3.7 Experiments

3.7.1 Using simulation to tune algorithm parameter 𝜆

The submodular secretary algorithm has one tunable parameter 𝜆 that mediates the

trade-off between selecting more, lower quality samples and selecting fewer, higher

quality samples in a noisy data stream. Generally, for large 𝜆, the expected number of

samples selected will grow to 𝐾, but the reward of the selected samples will decrease.

Smaller 𝜆 will cause the samples in 𝒜 to be closer to their optimal reward values,

but the algorithm may fail to select all 𝐾 samples in a noisy, short data stream.

Generally, 𝜆 should be tuned to maximize Eq. (3.19) based on the noise parameters

of the periodic phenomena and the length of the data stream. We believe that it may

be possible to do this maximization in closed form, but leave this as an open question

for future work. It is also possible to tune 𝜆 empirically by simulating data drawn

from the periodic phenomena using the known period and periodic noise values and
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then selecting the 𝜆 which produces the largest average reward across these simulated

data streams. We demonstrate this process using samples drawn from an arbitrary

approximately periodic function for nine different values of 𝜆 in Figure 3-4.

Figure 3-4: Tuning parameter 𝜆: The reward and resulting model quality – as
measured by prediction mean-squared error on a held-out test set – of samples sets
selected using the periodic secretary algorithm on the data stream x𝑡 = sin(2𝜋𝑡) +
sin(3𝜋𝑡) and periodic noise 𝜎2

𝑑 = 0.35 for nine different values of 𝜆, ⌊𝑁/𝑇 ⌋ = 10, and
𝐾 = 75 with the entropy criterion. For small 𝜆, the algorithm chooses high reward
samples, but is unable to successfully sample 𝐾 times. For medium 𝜆, the algorithm
selects 𝐾 samples with reward very near that of the offline upper bound. For large 𝜆
the algorithm successfully samples 𝐾 times, but the samples are of low reward. For
this dataset, 𝜆 should be set to 0.50 for best performance.

3.7.2 MVCO experiments

We apply the periodic secretary algorithm with the entropy reward function to select

water samples from a stream of potential sampling states observed by a marine sensor

on the Martha’s Vineyard Coastal Observatory from January 2009 to January 2016

[84]. This stationary marine sensor is equipped with 𝐾 single-use water samplers.

The scientific objective is to collect water samples in environmental states that give

the best understanding of the seasonal dynamics of the plankton species Guinardia

flaccida.

The prevalence of this plankton species is known to vary with time of year (it

is a winter blooming plankton) and water temperature (during warm winters, the

species tends to be more numerous than during cold winters). However, the sensor is

unable to measure the plankton present in the water stream in real-time. Instead, the
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Figure 3-5: MVCO environmental dataset: The environmental dataset collected
on the Martha’s Vineyard Coastal Observatory from 01 January 2009 to 01 January
2016, averaged over half-day segments. The platform was equipped with the IFCB
device [84], which allowed ground truth Guinardia flaccida concentrations to be mea-
sured (red). Only the periodic environmental data (blue) are available to the sample
selection algorithms.

sensor can measure the temperature of the surrounding water and the day of year,

and must decide to collect a sample based on these environmental covariates. In this

stationary setting, the sensor is not choosing sample locations in geographic space.

Instead, throughout its deployment, the sensor will observe a stream of points in this

environmental space, and must choose to take water samples in the environmental

conditions which are the most informative about the plankton species of interest.

This seven-year dataset and ground truth Guinardia flaccida counts (unknown to the

algorithm) are shown in Figure 3-5.

Given that these environmental data are known to be periodic on an annual basis,

we apply the periodic secretary algorithm to select 84 samples (equivalent to 12

samples per year for seven years using a scheduled sampler) from the data stream

using the entropy criterion with a GP model. We also select sample locations using the

submodular secretary algorithm [5], a scheduled sampling algorithm commonly used

in practical sensing deployments (sampling every 𝑁
𝑘

samples), and random sampling

as baselines. We use the offline greedy algorithm [82] to provide an upper bound.
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3.7.3 MVCO sampling results

The selected samples for the periodic secretary algorithm and baseline algorithms are

shown in Figure 3-6 along with the complete dataset colored by the ground-truth

plankton counts. The periodic secretary algorithm selects samples which provide

the most dense coverage of the observation space. The quality of plankton count

predictions in unknown environmental conditions will depend on having sampled a

nearby point in {temperature, cos(fraction of year)} space. Large gaps in the sampled

locations will cause lower entropy reduction and poorer predictions at those locations;

these gaps are evident in the submodular, scheduled and random sampling strategies.

Figure 3-6: Samples selected from the MVCO dataset: The {temperature,
cos(fraction of year)} samples selected from the full dataset (upper left, colored by
the ground-truth plankton counts). The periodic secretary algorithm chooses sam-
ples which provide the most dense coverage of the environmental observation space.
The quality of predictions in unknown environmental conditions will depend on hav-
ing sampled a nearby point in {temperature, cos(fraction of year)} space. Gaps in
the sample coverage, such as those seen in the bottom three plots, will cause large
uncertainty and poor predictions of plankton counts in those regions.

To quantify this result, we compare the entropy reduction achieved by samples

selected using the periodic secretary algorithm to samples selected by the baselines

and the offline upper bound (the entropy reduction should be maximized). The mean

reward and one standard deviation values for each algorithm are shown in Figure

3-7(a) for 50 random permutations of the yearly data in the MVCO dataset. For
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small sample sets, all six algorithms produce similar results. After selecting around

30 samples, the periodic secretary algorithms begin to surpass the other streaming

algorithms. The submodular secretary algorithm, which represents the current state-

of-the-art in streaming, irrevocable sample selection for information-theoretic reward

functions, never does significantly better than a scheduled algorithm. After selecting

70 samples, the periodic secretary algorithm with poorly tuned 𝜆 reaches the end of

the stream without selecting all 𝐾 = 84 samples. The periodic secretary algorithm

with well-tuned 𝜆 stays close to the upper bound set by the offline algorithm.

Figure 3-7: Quantitative results on the MVCO dataset: The mean value and
standard deviation across the 50 runs of the periodic secretary algorithm on random
permutations of the yearly data in the MVCO dataset. (a) The entropy reduction
achieved as each of the 𝐾 = 84 total samples are selected. The periodic secretary
algorithm achieves the highest entropy reduction among the streaming algorithms.
However, the algorithm with poorly tuned 𝜆 reaches the end of the stream without
selecting all samples. The periodic secretary algorithm with well-tuned 𝜆 stays very
close to the upper bound set by the offline greedy algorithm. (b) Using the selected
samples, plankton counts at unknown locations are predicted on a held-out test set.
The prediction mean-squared error decrease as samples are selected and is minimized
using the periodic secretary algorithm with well tuned 𝜆.

Figure 3-7(a) demonstrates that samples selected by the periodic secretary al-

gorithm achieve the highest entropy reduction across the environmental observation

space. Intuitively, this means that we can use these samples to do inference about

plankton concentrations in unknown environmental conditions. To test this assump-

tion, we quantify how well the representative samples selected by each algorithm

can be used to predict Guinardia flaccida concentrations on a held out test set of
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{temperature, cos(fraction of year)} environmental conditions (the prediction mean-

squared error should be minimized). Figure 3-7(b) shows that on average the model

learned using sample sets selected by the periodic secretary algorithm produce more

accurate predictions of plankton counts then all other streaming algorithms. Note

that choosing points according to the entropy criterion is a good strategy from an

information-theoretic perspective when trying to reduce prediction error, but higher

entropy reduction will not necessary directly equate to lower mean-squared prediction

error for a specific dataset. This is why there are places in Figure 3-7(b) where an

algorithm with lower entropy reduction achieves lower prediction mean-squared error.

3.8 Discussion

The periodic secretary algorithm is a robust and versatile tool that can be applied in

a variety of applications. Many real-world periodic data streams can be considered

approximately periodic, given that the period-to-period variation is Gaussian dis-

tributed. The algorithm is robust to noisy estimates of the period length, requiring

only that the algorithm observes one full period of the data, and does not depend

on knowledge of the data stream length, making it suitable for continuous monitor-

ing. Our work extends previous results in information-theoretic sample selection and

adapts secretary algorithms to data domains that produce periodic spatially and/or

temporally correlated data streams, such as robotics and environmental monitoring.

Although we focus on periodic phenomena, techniques similar to those presented here

could be used to provide performance bounds for irrevocable sample selection from

data streams with other types of spatiotemporal structure. We hope that this work

will serve as a foundation for developing secretary algorithms that can be applied to

these interesting data domains.
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Chapter 4

Hybrid Bayesian-Deep Topic Models

for Terrain Characterization

Chapter 3 presented a full formulation – including a model, scientific objective, re-

ward function, and planning algorithm – for secretary sampling problems in periodic

data streams. The periodic secretary algorithm used a Gaussian process to perform

regression between between sensory percepts and a latent quantity of scientific in-

terest. This environmental model allowed an autonomous science agent to select

sampling actions that explicitly reduced uncertainty in this model by optimizing the

entropy criterion. In Chapter 3, the scientific model and objective were assumed to be

fairly straightforward to specify; the challenging aspects of the scientific information-

gathering problem were specifying a reward function given the scientific objective and

performing irrevocable sampling in a streaming setting.

In this chapter, we consider problems for which the specification of a good scien-

tific model and objective is in itself challenging. The modeling problem presented in

Chapter 3 was to directly learn a mapping between low dimensional environmental

percepts and a low dimensional latent quantity of interest. This is a supervised learn-

ing problem: given a set of paired training examples of environmental percepts and

quantity of interest samples, learn a Gaussian process regression model that relates

the two. However, science missions in environments where domain scientists have lit-

tle a priori knowledge about the environment – such as the surface of extraterrestrial

69



planets or the deep sea – often do not permit the formulation of a straightforward

supervised learning problem. In these domains, the scientific objective may be in-

stead to explore an unknown environment and to discover new phenomena, based only

on sensory percepts about the environment. We consider the scientific information-

gathering problem in these scenarios, in which the modeling problem is challenging

for two primary reasons:

∙ The environmental percepts are high-dimensional image data. Cameras are

emerging as a ubiquitous, low-cost sensor on a variety of autonomous plat-

forms such as autonomous underwater vesicles (AUVs). Images are information

rich and contain valuable semantic and scientific information. However, the di-

mensionality and complexity of image data can cause significant challenges for

traditional modeling approaches.

∙ Little or no prior information is available about the environment, making it in-

feasible to directly specify a scientific quantity of interest and supervised learn-

ing problem. Instead, the scientific objective is one of exploration and discovery:

learn about the environment online directly from perceptual information.

The remainder of this chapter introduces a hybrid deep-Bayesian model for unsu-

pervised visual scene understanding and terrain characterization for scientific robots.

This hybrid method uses deep convolutional autoencoders to learn low-dimensional

feature embeddings for complex image data and unsupervised Bayesian nonparamet-

ric models to learn an environment’s semantic structure directly from visual data.

Although this chapter does not explore how this model can be used within a scien-

tific planning framework, we propose the use of model perplexity as a measure of the

information content of a scene and evaluate how well measures of perplexity map to

human intuition about scientifically interesting scenes.

The modeling problem is introduced within the context of autonomous deep sea

exploration in Section 4.1, followed by a review of related literature in Section 4.2.

The hybrid approach employing Bayesian topic models and deep convolutional au-

toencoders is presented in Section 4.3. Finally, the combined hybrid approach is
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evaluated on imagery from two different marine missions collected by the SeaBED

AUV at the Hannibal Sea Mount off the coast of Panama (Section 4.4), followed

by a discussion of the results (Section 4.5). The work presented in this chapter has

appeared in abbreviated form in Flaspohler et al. [34].

4.1 Introduction

The benthic deep sea, the largest two-dimensional habitat on earth, is difficult to

study and vastly unexplored. Autonomous underwater vehicles (AUVs) are filling ob-

servational gaps by collecting large datasets consisting of multiple sensor modalities,

including seafloor imagery. This chapter presents a novel unsupervised machine learn-

ing technique to discover and visualize structure in image datasets, enabling concise

mission summarization and equipping exploratory robots with the capacity to de-

scribe their environment semantically, a precursor to adaptive real-time exploration.

Although the focus of this chapter is the underwater domain, the proposed approach

is applicable to any domain where there exists large volumes of unstructured image

sequence data that would typically require human analysis, such as remote sensing

and long term monitoring.

Some of the most successful models for discovering structure within discrete data

without supervision are Bayesian topic models, such as the latent Dirichlet allocation

(LDA) [9] and its non-parametric extension, the Hierarchical Dirichlet process (HDP)

[112]. Initially applied to text corpora, the modeling assumptions made by LDA and

HDP allow them to discover useful latent structure that often corresponds to cohesive,

human-understandable topics [19]. This property of topic models led to impressive

results in areas such as text clustering [9], corpora summarization, and recommender

systems [64].

The success of Bayesian topic models for semantic understanding of text doc-

uments led to their adaptation to computer vision applications; this application is

visualized in Figure 4-1. By replacing text words with discrete visual features, LDA

and HDP models can be applied directly to image data [11, 31, 119]. The most pop-
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ular discretization of an image into visual words employs standard features such as

SIFT [71], SURF [6], or Oriented BRIEF (ORB) [92]. Visual topic models have been

used successfully in robotics applications for for unsupervised scene understanding

[106] and adaptive mission planning [42].

Figure 4-1: Visual topic models: Topic models can be applied directly to visual
corpora by considering each image to be a “document”, which is a collection of “visual
words”. In the LDA model, given observed visual words that are separated into
documents, inference techniques can be used to recover the topic-word distribution 𝜑
and the topic-image distributions 𝜃, as well as the per-word topic assignments 𝑧. The
graphical model representation of the LDA is presented on the bottom of the figure.

However, the modeling capacity of topic models is fundamentally limited by the

expressive power of the observed “words”. Hand-crafted image features capture low-

level patterns based on local image gradients. In contrast, deep neural models are

often able to learn more complex, domain-specific features. Several papers have lever-

aged this property of neural networks to build more expressive models of textual data

[79], [96]. In this chapter, we make the natural extension to unsupervised feature

discovery for image data; the proposed model architecture is visualized in Figure 4-2.

Much like textual data, image data show strong spatial correlations. These cor-

relations are ignored by the simplifying bag of words (BOW) assumption made in

most Bayesian topic models. Ideally, data features could encode these spatial correla-

tions directly. Convolutional autoencoders (CAE) [77] preserve spatial relationships
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Figure 4-2: Architecture of visual scene understanding models: The two scene
modeling techniques evaluated in this chapter are depicted. Here 𝑠𝑡 is the image
label, and 𝑧 is the topic label of a visual word 𝑤 in the input image. (a) A baseline
spatiotemporal topic model using standard computer vision features as input. (b) The
proposed spatiotemporal topic model using convolutional autoencoder-based features.

in data and hence are a powerful method for discovering useful features for image

data. However, these features have not yet been incorporated into a topic modeling

framework, in part because of the challenges of designing a CAE network architecture

that produces useful features within a topic modeling context.

This work presents a CAE architecture that discovers feature representations di-

rectly from an image dataset and applies those features within an HDP-based topic

modeling framework to discover cohesive visual topics. We explore the performance

of this hybrid HDP-CAE model on the motivating application of autonomy and mis-

sion summarization for exploratory marine robots. We evaluate how well the topics

discovered by the hybrid HDP-CAE model correspond to biologically distinct seafloor

terrains and compare the hybrid HDP-CAE model to an HDP model using standard
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image features. Finally, we quantify the performance of the hybrid model on the

secondary task of identifying anomalous images within a dataset. The probabilis-

tic anomaly detection enabled by Bayesian topic models can inform more effective

mission planning for exploratory marine robots and is more broadly useful for data

summarization and visualization.

All models are evaluated on a realistic dataset that an individual biologist or data

scientist could collect and wish to analyze, consisting of less than 4,000 seafloor images

collected in-situ by a marine robot. Even in this small-data domain, we demonstrate

that state-of-the-art performance can be achieved by applying neural feature discov-

ery and nonparametric topic modeling to the task of unsupervised seafloor terrain

characterization.

4.2 Related Work

Recent efforts have leveraged the power of neural models to discover data features

within the context of topic modeling. Many, however, continue to rely on predefined

data features at some level. Frameworks that overcome this dependence have diffi-

culty incorporating custom features within a completely unsupervised Bayesian topic

model.

For textual data, Mikolvo et al. [79] propose the reverse of the architecture we

present here; an LDA model is used to produce a contextual feature vector that

is input into a recurrent neural network for contextually-aware language modeling.

While powerful, this model does not address the model’s dependence on standard

word features and employs a BOW assumption. In [96], the BOW assumption is

relaxed. Instead, a convolution operation maps variable length text sequences into a

low-dimensional latent space. Unlike the work presented here, simple distance-based

clustering is applied to discover semantically similar documents in place of a Bayesian

topic model.

For image data, Wan et al. [118] introduce a hybrid neural-Bayesian topic model

based on a Deep Boltzmann Machine (DBM). As in this work, the feature represen-
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tation discovered by the DBM is fed directly into an HDP topic model to discover

visual topics. However, instead of discovering features directly from image data,

SIFT features are extracted from the image and the neural network learns an im-

age representation based on these features, thereby not reducing the dependence on

human-designed features.

The work most similar to our own is presented in [116]. The Hierarchical-Deep

model introduced uses an HDP to learn priors over the activations of a DBM. In this

way, the model is able to learn generic features from image data that enable learning

image classes from very few examples. Each image in the model is annotated with a

lower level class and the HDP discovers a hierarchy over these low-level classes. While

suitable for the goal of one-shot learning, this supervision limits the generality of the

Hierarchical-Deep model to a purely unsupervised problem. The model is also not

convolutional, limiting the utility of the learned features. Convolutional autoencoders

are directly able to model spatial correlations in image data and therefore are more

suited to discover useful image representations.

Additionally, none of the aforementioned works evaluate their models on the small

or medium-sized datasets that are prevalent in unsupervised learning applications.

Instead, they use large (4 million+) standard image datasets [116] or 2D toy, simulated

images [118].

Other works have incorporated neural feature learning for robotics applications

outside of a topic modeling context. Naseer et al. [81] use up-convolutional networks

to discover latent feature representations for the task of segmenting images. Rao

et al. [89] use an autoencoder to learn features for classification of marine images.

However, both of these works require human annotation and thus are not applicable

in an unsupervised setting.

4.3 Methods

In the following sections, we provide a brief review of topic models and then discuss the

two major components of the proposed hybrid HDP-CAE model: 1) a spatiotemporal
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HDP topic model and 2) a pipeline for discretizing an image into visual words using

a convolutional autoencoder.

4.3.1 Bayesian topic models

Topic models [9, 45] seek to uncover semantic structure in a corpus of discrete data,

segmented into documents. Topic models propose that each observed word in a

document is generated by a latent topic and each document in a corpus has its

own probability distribution over topics. Using word co-occurrences and distribution

sparsity priors, the distribution over topics 𝑍𝑖 for each word 𝑊𝑖 can be inferred.

Under this model, the probability of the 𝑖th word 𝑊𝑖 in document 𝑑 can computed

by marginalizing over the latent topics:

Pr(𝑊𝑖 = 𝑤𝑖 | 𝑑) =
𝐾∑︁
𝑘=1

Pr(𝑊𝑖 = 𝑤𝑖|𝑍𝑖 = 𝑘)Pr(𝑍𝑖 = 𝑘|𝑑), (4.1)

where 𝐾 is total number of topics, Pr(𝑊𝑖 = 𝑤𝑖|𝑍𝑖 = 𝑘) is the probability of word 𝑖

under topic 𝑘, and Pr(𝑍𝑖 = 𝑘|𝑑) is the probability of topic 𝑘 in document 𝑑.

4.3.2 Realtime spatiotemporal HDP model

Traditional topic modeling frameworks treat each word in a document as exchange-

able. We instead adapt the ROST HDP model presented in [42], which relaxes the

BOW assumption and explicitly models the correlation between spatiotemporal neigh-

borhoods in a continuous image stream. ROST uses a Dirichlet process to model the

growth in number of topics with the size and complexity of the data. A biased Gibbs

sampler [39] enables online computation of the posterior distribution over topics for

observed visual words.

The ROST model factors the probability of observing the visual word 𝑊𝑖 at lo-

cation 𝑥 and time 𝑡 in terms of the topic label variables 𝑍𝑖. This factorization is
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Figure 4-3: Graphical model representation of ROST: The graphical model
representing the Realtime Online Spatiotemporal topic modeling framework (ROST).
In this unsupervised Bayesian nonparametric model, visual words 𝑤 are observed
at spatiotemporal location {𝑥, 𝑡} and Gibbs sampling is used to approximate the
distribution over the latent parameters 𝜃, 𝜑, and 𝑧 for given hyperparameters 𝛼, 𝛽.

visualized in the ROST graphical model in Figure 4-3

Pr(𝑊𝑖 = 𝑤𝑖|𝑥, 𝑡) =
𝐾∑︁
𝑘=1

Pr(𝑊𝑖𝑤𝑖|𝑍𝑖 = 𝑘)Pr(𝑍𝑖 = 𝑘|𝑥, 𝑡). (4.2)

The distribution Pr(𝑊𝑖 = 𝑤𝑖|𝑍𝑖 = 𝑘) is invariant to the spatiotemporal location

of the observation, while Pr(𝑍𝑖 = 𝑘|𝑥, 𝑡) models the distribution of topic labels in the

spatiotemporal neighborhood of location (𝑥, 𝑡). 𝐾 is total number of topics that have

at least at least one or more words assigned to them, plus one more to encode the

possibility of creating a new topic for word 𝑤𝑖. ROST uses the Dirichlet distribution

to model Pr(𝑊 |𝑍), allowing for control of the sparseness of the topic model, whereas

Pr(𝑍|𝑥, 𝑡) is modeled using the Chinese Restaurant Process [113], removing the need

to predetermine the total number of unique topics. We refer the reader to Girdhar et

al. [42] for a full description of the ROST topic model and inference procedure used

to recover topic assignments.
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4.3.3 Convolutional autoencoder architecture and training

To extract a discrete list of words from an image, we exploit the ability of neural

models to discover useful abstract representations of data without supervision. We

train a CAE architecture following the encoder/decoder paradigm described in [77].

The input image is first transformed into a lower dimensional bottleneck layer using

successive convolution operations and rectified linear unit (ReLU) activations and

then expanded back to its original size using a deconvolution operation with tied

weight matrices. We call the channels in the bottleneck layer the latent channel

activations (LCA). This network architecture is visualized in Figure 4-4.

400 x 400 x 3

200 x 200 x 3

100 x 100 x 3

50 x 50 x 5

25 x 25 x 5

50 x 50 x 5

100 x 100 x 3

200 x 200 x 3

400 x 400 x 3

Encoder DecoderLatent Channel 
Activations

Feature vector

Figure 4-4: Network architecture for the convolutional autoencoder (CAE)
used to extract low level visual features from the image datasets: Network
specific parameters were set as: training epochs (400 epochs), output channels (or-
dered by encoding layer 3-3-3-5-5 channels), stride (2), and convolutional filter size
(ordered by encoding layer 10-10-3-3 pixels),

The squared error between the original image and the image reconstruction pro-

vides an unsupervised loss function which allows the weight matrices for each layer to

be learned. The network is trained using stochastic gradient descent with L2 regular-

ization on the weight matrices. Because our goal is to treat the nodes in the bottleneck

layer as non-overlapping features of the image, the neuron redundancy encouraged

by dropout regularization is actually undesirable [103], so we do not include dropout.

In this unsupervised setting, the entire dataset is used to train and test the model,
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so generalization is much less of a concern then in supervised learning problems. In

this chapter, all models are also trained without max-pooling/unpooling layers; di-

mensionality reduction is achieved using a stride greater than one and overlapping

convolutional filter windows. During experimentation, we found that the inclusion of

max-pooling and unpooling layers decreased the expressive power of the LCA, con-

trary to [77], so the final models were purely convolutional with ReLU nonlinearity.

The CAE network architecture used to produce the results in this chapter is shown

in Figure 4-4. The network consists of four encoding layers and four associated decod-

ing layers. Each sequential encoding layer increases the number of output channels

while decreasing the height and width of each individual channel, following a pyramid

architecture. The architecture-specific parameters, such as number of training epochs

(400 epochs), output channels (ordered by encoding layer 3-3-3-5-5 channels), stride

(2), and convolutional filter size (ordered by encoding layer 10-10-3-3 pixels), were

determined empirically. After training, we remove the decoding layers of the network

and use the LCA to generate low dimensional image features.

4.3.4 Generating a visual vocabulary for topic models

HDPs require discrete data drawn from a vocabulary 𝒱 . To produce a vocabulary

for CAE features, the CAE is trained on several example ocean mission datasets and

the LCA for each image are extracted as described in Section 4.3.3. This 25× 25× 5

tensor is segmented into 625 feature vectors of length 5 by taking slices across LCA

channels, as shown in Figure 4-4. These features are then clustered using the 𝑘-

means algorithm into |𝒱| clusters, where |𝒱| is the desired vocabulary size. The

centroid of each cluster represents a visual vocabulary word. Because the LCA are

low dimensional (5 × 1 pixels using the architecture in Figure 4-4), as compared to

128-dimensional SIFT/SURF features, this clustering is relatively efficient.

Given a new image, visual features are extracted and mapped to the visual word

𝑣𝑖 ∈ 𝒱 corresponding to the nearest neighbor in the space of cluster centroids.
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4.3.5 CAE feature visualization

The LCA discovered by the CAE model correspond to a low-dimensional, abstract

representation of the image. In later sections we will apply these features within

a topic modeling framework and attempt to visualize the properties of the latent

channels constructed in this manner.

To quantify the strength of a latent channel’s response to a particular input image,

we consider the magnitude of each latent channel at a particular pixel location 𝑝𝑖𝑗 in

the LCA. For each of the 5× 5 pixels, we assign the pixel 𝑝𝑖𝑗 to the channel with the

maximum activation at location (𝑖, 𝑗). The magnitude of a latent channel M is equal

to number of pixels for which it had the maximal value. This approach produces

a clearer segmentation between channels than directly plotting channel magnitudes.

Different channels have different baseline activations. To compare between channels,

we normalize each channel’s activation between their minimum value and maximum

value before plotting.

4.4 Experiments

We evaluate our hybrid HDP-CAE model against a ROST HDP baseline using SURF

[6] and ORB [92] features. The two models are visualized in Figure 4-2. We apply

each model to image streams from two marine robot missions collected by the SeaBED

AUV at the Hannibal Sea Mount, Panama [87] and present experimental results.

Mission I contains 1,117 images sampled every four seconds from a downwards

facing camera mounted to the bottom of the robot. During Mission I, the robot

passes over several seafloor terrains, including images of the water column, a rocky

seafloor, and a porous sandy seafloor. This mission tests the model’s ability to discover

visually distinct terrain types.

Mission II consists of 2,296 images sampled in a similar manner. Mission II con-

tains mostly images of a sandy seafloor, interrupted several times by large, biologically

interesting phenomena, such as crab congregations, seafloor carnage, and geothermal

vents. In addition to terrain discovery, this mission also tests the model’s ability
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to accurately identify anomalous, scientifically interesting images within a mission

dataset.

To evaluate how well the image topic labels discovered by the unsupervised HDP-

CAE model correspond to visually meaningful seafloor terrains, we hand-labeled each

image in both missions with one of thirteen possible terrain labels, including: ‘water

column’, ‘sparse boulders’, ‘smooth sand’, ‘biological congregation’, etc. These labels

are used exclusively for model evaluation.

We apply the HDP-ROST model described in Section 4.3.2 to the two mis-

sion datasets, using standard image features and CAE-derived LCA features for

the standard HDP model and the hybrid HDP-CAE model respectively. New im-

ages are incorporated into the model in a streaming fashion; visual words are ex-

tracted from a new image and added to the model at regular intervals (200 ms).

The ROST hyperparameters for Mission I and Mission II respectively were set to

maximize mutual information between discovered topics and hand annotated labels:

𝛼 = 0.1, 0.1; 𝛽 = 25, 50; 𝛾 = 10−7, 10−7. After Gibbs sampling, we have an approxi-

mation of the posterior over topics 𝑧𝑖 for an observed visual world 𝑤𝑖, 𝑃 (𝑧𝑖|𝑤𝑖 = 𝑣).

The predicted topic label for each visual word is assigned as the maximum a posteriori

(MAP) topic label given by the posterior, and the predicted scene label 𝑠𝑡 for each

image is calculated as the majority consensus of the visual words in the image.

Taking the MAP is a standard way of reducing a probabilistic distribution over a

latent variable to a single point estimate. However, by using only the MAP topic label

for each image, we are not allowing for important visual constructs to be represented

by a mixture of topics. This approximation may be suitable for our experimental do-

main. The majority of images in our marine datasets consist of a homogeneous visual

terrain, and an ideal topic model would discover topics rich enough to have nearly

a one-to-one correspondence with semantically distinct visual constructs. Having to

build a heuristic on top of a topic model to extract meaningful topics from mixtures

of the discovered topics adds an unnecessary layer of complication to the model.
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4.5 Results

To quantify the accuracy of the topic labels discovered by each of our models, we

use normalized mutual information between the annotated topic distribution and the

computed topic distribution. Mutual information captures the reduction in entropy

of a random variable X after observing random variable Y (Eq. 4.3). A normalized

mutual information score of one indicates that X and Y are completely dependent

(i.e. the discovered topics are completely correlated with the true labels), whereas a

mutual information score of zero indicates independence (i.e. the discovered topics

are unrelated to the true labels).

𝐼(𝑋, 𝑌 ) = 𝐻(𝑋)−𝐻(𝑋|𝑌 ),

=
∑︁
𝑥,𝑦

𝑃 (𝑥, 𝑦) log
𝑃 (𝑥, 𝑦)

𝑃 (𝑥)𝑃 (𝑦)
.

(4.3)

4.5.1 Mission I - seafloor terrain discovery

Mission I tests the model’s ability to uncover topics corresponding to meaningful

visual terrains. Table 4.1 shows that the topics discovered by the hybrid HDP-CAE

model are highly predictive of the ground-truth seafloor terrains. The raw topic

distribution (before MAP reduction) for the two models is plotted in Figure 4-5 along

with example images from the major terrain types. To generate the plots in Figure

4-5, visual words are extracted from an image at time 𝑡 and assigned a topic label 𝑧𝑖

as described in Section 4.3. The proportion of words in the image at time 𝑡 assigned

to each topic label is shown on the y-axis, where different topics are represented by

colors. Colors are unrelated across plots.

Although the hybrid HDP-CAE model differs from the human annotated terrains

by, for example, not modeling the transient topic at (3), the major terrain transitions

are captured faithfully. The rocky seafloor terrain that dominates at (4) and then

partially appears again at (6) is assigned to the same topic. The moment that the

robot first observes the seafloor through the water column in (3) is captured as a
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Figure 4-5: Results for unsupervised topic models versus hand-annotated
terrain labels (b) for the Mission I dataset: Example images from the dataset
are shown in (a). To generate plots (c,d), visual words are extracted from an image at
time 𝑡 and assigned a topic label 𝑧𝑖 as described in the text. The proportion of words in
the image at time 𝑡 assigned to each topic label is shown on the y-axis, where different
topics are represented by colors. Colors are unrelated across plots. The hybrid HDP-
CAE model (c), using more abstract features, is able to define topics that correspond
more directly to useful visual phenomena than the HDP model using standard image
features (d). The learned feature representation is visualized as described in (e).

mixture of the ‘water column’ topic (indigo) and the ‘rocky seafloor’ topic (green).

The consistency of the hybrid HDP-CAE topic model with human annotated terrain

labels is quantified using mutual information between topics and annotated terrains

as described in Section 4.5; results are shown in Table 4.1.

Despite its low mutual information scores, the standard HDP models does capture

some of the major terrain transitions as changes in the topic distributions. However,

it is not clear how to distill this information into meaningful topics. Because the

hybrid HDP-CAE model uses much fewer, more abstract features, it is able to define

83



Model 𝐼(𝑋, 𝑌 )

Mission I Standard HDP 0.185
Hybrid HDP-CAE 0.535

Mission II Standard HDP 0.123
Hybrid HDP-CAE 0.441

Table 4.1: Mutual information between discovered topics and annotations

topics that correspond more directly to useful visual phenomena.

4.5.2 Mission II - biological anomaly detection

Characterizing seafloor terrains is a vital task for an exploratory marine robot. An-

other complementary skill is the ability to identify images that are anomalous under

the robot’s current model of the world and flag these as interesting, one of the be-

haviors demonstrated by the standard HDP model presented in [42]. The Mission II

dataset was designed to test both of these abilities.

Comparing mutual information between terrain labels in Table 4.1, the hybrid

HDP-CAE model again outperforms the baseline model. Figure 4-6 shows the raw

topic distribution for the two models, along with example images from the major

terrain types. Mission II is a more visually homogeneous dataset, consisting almost

entirely of sandy seafloor images. The hybrid HDP-CAE model discovers segmenta-

tions within the sandy seafloor topic that the human annotators do not, but otherwise

captures major terrain transitions. However, the hybrid HDP-CAE model does not

capture some of the more transient topics, such as the crustaceans at (7).

To quantify this result further, we introduce the notion of perplexity. Because

HDP is a probabilistic model, it is straightforward to quantify the average word

perplexity (Eq. 4.4) of a new image 𝑋𝑡 under the model.

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑋𝑡) = exp

(︂
−
∑︀

𝑤∈𝑊𝑡
log 𝑝(𝑤|𝑋𝑡)

|𝑊𝑡|

)︂
, (4.4)

where the set 𝑊𝑡 consists of the visual words in 𝑋𝑡. High perplexity indicates that

the image is not well modeled by the topic model, whereas low perplexity indicates an
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Figure 4-6: Results for two unsupervised topic models versus annotated
labels (b) in for the Mission II dataset: Example images from the dataset are
shown in (a). The hybrid HDP-CAE model (c) again outperforms the HDP model
using standard image features (d). However, the hybrid model fails recognize some of
the more transient topics, such as the crustacean swarm at (7). The learned feature
representation is visualized as described in the text in (e).

image that is well explained by the topic model. Figure 4-7 compares the perplexity

response of each model when presented with biologically interesting images; the hybrid

model does not have an obvious increase in perplexity when presented with the images

of seafloor carnage (2), crab congregations (3), or submerged tree (4).

To compute how well each model’s perplexity score corresponds to some interesting

visual phenomena, we annotated each image in the dataset as either high, medium, or

low ‘scientific interest’ and computed the mutual information between the annotated

and computed perplexity. Although perplexity scores do not necessarily correspond

well with human intuition about semantic coherency [19], perplexity has been used

successfully for anomaly detection in previous work [42]. The CAE is not a proba-
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Figure 4-7: Correlation of perplexity score of the models (c,d,e) with anno-
tated biological anomalies (b) for the Mission II dataset: Example images of
biological anomalies are shown in (a). Each image in the dataset was labeled with
high, medium, or low perplexity (b). Although all three models do have differential
responses in areas of high perplexity, the HDP model using standard features (d)
outperforms the hybrid HDP-CAE model (c) and raw reconstruction error from the
CAE (e).

bilistic model, so there is no well-defined operation to compute perplexity. We instead

use squared image reconstruction error as a proxy for perplexity. The mean 𝜇 and

standard deviation 𝜎2 of each model’s positive perplexity distribution are used to bin

the perplexity into low (0 ≤ 𝑥 ≤ 𝜇 + 𝜎2), medium(𝜇 + 𝜎2 ≤ 𝑥 ≤ 𝜇 + 2𝜎2), and

high (𝑥 > 𝜇 + 2𝜎2) perplexity. The results of this analysis are shown in Table 4.5.2.

Although all three models do have differential responses in areas of high annotated

perplexity, the standard HDP model’s perplexity has higher mutual information with

annotated perplexity. We will address this discrepancy in Section 4.6.
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Model 𝐼(𝑋, 𝑌 )

Mission II Standard HDP 0.153
Hybrid HDP-CAE 0.006
Raw CAE 0.033

Table 4.2: Mutual information between perplexity and annotations

4.6 Discussion

The proposed hybrid HDP-CAE model significantly outperformed alternative models

on the task of seafloor terrain discovery. The hybrid model, however, did not perform

as well on the secondary task of anomaly detection, as quantified by image perplexity.

Our hypothesis is that this limitation stems from the inherently imbalanced nature

of anomalies within a dataset. In our anomaly detection experiments, the CAE was

trained on over 2000 images of sandy seafloor and only 80 images of crab congrega-

tions. Many other anomalous events, such as the seafloor carnage in Figure 4-7(a)

appear for even shorter spans. Neural models have been shown to struggle when

presented with imbalanced training data [20]. There may not be enough images of

anomalous biological events for the CAE to learn a meaningful feature representation.

Although the CAE image reconstruction error, plotted in Figure 4-7(d), does capture

the inability of the features to represent the anomalous images, our current hybrid

HDP-CAE model does not incorporate this uncertainty within the topic modeling

stage. An interesting extension of this work would be to use image reconstruction

error directly as a metric of feature quality. Alternatively, there are methods within

the machine learning community for dealing with imbalanced datasets that could

improve CAE training [47, 13].

For the specific biological anomalies tested here, such as the crab congregations or

seafloor carnage, it may be difficult to outperform standard image features, which are

designed to detect areas of high image gradient. However, there are other reasons to

prefer a CAE-based anomaly detector. Interesting anomalies may not always manifest

themselves as complex visual structure; a smooth sandy seafloor is anomalous within

a rocky mission. Standard image features may struggle to represent these visually
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simple anomalies. Additionally, CAE-based anomaly detectors can use reconstruction

error to not only detect when an image is anomalous, but also which part of the image

is particularly difficult to resolve. The ability to spatially localize anomalies could be

very useful in robot scene understanding and real-time planning.

Another important extension to the hybrid HDP-CAE model presented in this

work is the adaptation of convolutional feature discovery for realtime, streaming ap-

plications. Bayesian nonparametric models are well suited for the life-long learning

required in streaming and robotics applications; this is one compelling reason to use

them over purely neural models. However, for simplicity, the CAE-based feature dis-

covery training in this work was done offline on complete datasets. Exploring methods

for efficient, life-long training of convolutional models is an important area of future

work for applying hybrid HDP-CAE models to realtime applications.
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Chapter 5

Conclusion

The preceding chapters have presented novel approaches to both planning and en-

vironmental modeling within scientific-information gathering problems. First, the

problem of secretary sampling in periodic data streams was explored. A novel sensor

planning algorithm was introduced that utilized standard environmental modeling

techniques and information-theoretic reward functions to perform secretary sampling

with bounded suboptimality. Second, the problem of environmental modeling was

addressed for data domains with high-dimensional discrete structure, such as images,

and for which very little information was available a priori about the structure of the

data stream. For these environments, a novel unsupervised learning model was intro-

duced that combined deep convolutional autoencoders to learn feature embeddings

directly from camera percepts, with a Bayesian nonparametric model of semantic

structure in a visual data stream.

5.1 Summary of Contributions

The following sections summarize the planning and modeling approaches introduced

in this thesis, towards the goal of enabling autonomous science missions using robots

and autonomous sensors.
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5.1.1 Periodic secretary sampling with information reward

Chapter 3 presented a novel algorithm for online, irrevocable sample selection from

periodic phenomena. The proposed periodic secretary algorithm was shown to se-

lect sample sets according to any monotone submodular set function with bounded

suboptimality. The periodic secretary algorithm is a robust and versatile tool that

can be applied in a variety of applications. This work extended previous results

in information-theoretic sample selection and adapted secretary algorithms to data

domains that produce periodic spatially and/or temporally correlated data streams,

such as robotics and environmental monitoring. Although the focus of Chapter 3 was

on periodic phenomena, techniques similar to those presented here could be used to

provide performance bounds for irrevocable sample selection from data streams with

other types of spatiotemporal structure. We hope that this work will serve as a foun-

dation for developing secretary algorithms that can be applied to these interesting

data domains.

5.1.2 Hybrid deep-Bayesian environmental models

Bayesian topic models have achieved impressive performance by learning both model

parameters and useful structure directly from data. However, these nonparametric

models still fundamentally rely on predefined feature representations of data. Chapter

4 presented a novel model that overcame this limitation using convolutional autoen-

coders, allowing unsupervised discovery of both a feature representation and thematic

structure in image data. The proposed hybrid model incorporated a convolutional

autoencoder for data-driven feature discovery within a Bayesian topic modeling frame-

work. Chapter 4 applied this model to the problem of high-level scene understand-

ing and mission visualization for exploratory marine robots. On complex mission

datasets, the hybrid model discovered a rich latent visual structure that has over four

times the mutual information with biologically meaningful seafloor terrains when

compared to a Bayesian nonparametric topic model with standard, hand-designed

features. This work defined a paradigm for including the ability of unsupervised neu-
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ral models to discover useful, low-dimensional data representations within a Bayesian

nonparametric topic modeling framework and demonstrated state-of-the art perfor-

mance on a challenging problem from the marine robotics community.

5.2 Directions for Future Work

This section outlines several promising directions for future work and potential ex-

tensions of the work presented in the preceding chapters.

5.2.1 Secretary sampling problems

Chapter 3 presented a modeling and planning framework for secretary sampling in

periodic data streams. Several extensions immediately suggest themselves to improve

the flexibly and robustness of the algorithm in a variety of scientific information

gathering problems, as outlined in the following sections.

Motion planning for secretary sampling problems

The secretary sampling algorithm presented in Chapter 3 focused on reactive, oppor-

tunistic sampling. This is the only planning strategy available for some autonomous

platforms, such as static sensing nodes that can only make sampling decisions by

reacting to the observed data stream. However, other autonomous platforms such as

mobile robots have the ability to plan trajectories and thereby modify the observed

data stream. Although the problem of trajectory and motion planning for reward

maximization has been studied extensively, the secretary-style constraint of online,

irrevocable sample selection changes the paradigm and will require solutions that

explicitly consider these new constraints in the path planning problem. Some pre-

liminary work has studied this problem in the context of heterogeneous multi-robot

teams [73]. Dividing the problem into separate path planning and secretary sam-

pling modules is a promising method that allows techniques from both informative

path planning and secretary sampling literature to be applied directly, at the cost of

requiring two robots to perform a sampling task.
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Incorporating flexible spatiotemporal structure

In general, the random arrival order assumption made in many secretary sampling

applications is overly-restrictive, and very rarely holds in robotics and environmental

monitoring domains. Initial work by Kesselheim et al. [56] is an interesting step

towards considering how much structure can exist in a data stream such that stan-

dard secretary algorithms can be applied with performance guarantees. However, in

robotics and environmental monitoring, the amount of structure in a data stream

is often a problem constraint. Chapter 3 therefore took an alternative perspective:

given a data stream with known spatiotemporal structure, we consider how secretary-

style algorithms can be adapted to perform sampling with performance guarantees.

However, given the difficulty of considering data streams with arbitrary spatiotem-

poral structure, Chapter 3 was constrained to consider only periodic spatiotemporal

structure with known period and noise parameters.

One immediate extension to the work presented here would be learn parameters

of the periodic data stream directly from an observed data stream, which would make

the periodic secretary algorithm more flexible and robust in real data domains. On

the other hand, many applications of secretary sampling in robotics or environmental

monitoring will require consideration of data streams with non-periodic spatiotem-

poral structure. For these problems, it is interesting to understand what structure

in the data stream can be modeled, and for which kinds of structure secretary sam-

pling algorithms will perform well. If nothing is known about the data stream and

a random arrival order assumption cannot be made, designing secretary sampling

algorithms that perform better than random sampling may be impossible. However,

modeling data streams with non-periodic spatiotemporal structure and designing ef-

fective, general purpose frameworks for secretary sampling and algorithm analysis is

an interesting and essential area of future work for this problem area.
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5.2.2 Hybrid deep-Bayesian environmental models

Chapter 4 explored hybrid deep learning-Bayesian models for visual scene under-

standing in unknown, unstructured environemnts. The approach leveraged recent

progress in deep feature learning with convoluational autoencoders and spatiotem-

poral topic models and demonstrated the effectiveness of the technique on real data

from a marine robot mission in the deep sea. Potential extensions to this preliminary

implementation are detailed in the following sections.

Motion planning for perplexity maximization

The approach presented in Chapter 4 is concerned with how unsupervised learning

can be used to discover latent thematic structure in image data streams from robotic

missions. Unlike Chapter 3, the work in this chapter did not provide an integrated

modeling and planning approach to robotic scientific information gathering. In order

to apply this model within a scientific mission, the hybrid HDP-CAE model must

first be incorporated within a POMDP or decision-making framework that considers

the physical constraints of the autonomous agent and allows for planning. Chapter

4 introduced image or word perplexity as an interesting reward function for encour-

aging information-seeking behavior when using hybrid HDP-CAE to model a visual

environment. Alternative information-theoretic reward functions are possible for this

Bayesian model, such as those discussed for information planning in supervised topic

models [99].

Alternative feature learning methods

Although Chapter 4 employs a convoluational autoencoder to learn feature embed-

dings for the discrete words in a topic modeling framework, it would be easy to swap

an alternative feature learner into the pipeline. There has been interesting recent

work in feature learning with variational autoencoders (VAEs) [100] and generative

adversarial networks (GANs) [43]. An exploration of the efficacy of these techniques

for the problem of feature learning for topic models could be enlightening. Generally,
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the approach outlined in Chapter 4 learned a real-valued feature embedding for image

data, which then had to be clustered to provide a set of discrete vocabulary words

that are input into a topic modeling pipeline. Other methods have been considered

for directly learning categorical labels or discrete embeddings [117], which could be

effective when applied to this class of problem.

Multi-robot scene understanding

Multi-robot exploration is an very active area of research within the scientific robot

community. In many application domains, such as marine robotics, transmitting

high-dimensional raw percepts such as images between robots on a multi-robot team

may be impossible. Topic models and other high-level semantic science models pro-

vide a potential mechanism for representing and sharing the information available in

the raw sensory stream using a more abstract, compressed data representation. Pre-

liminary studies have explored some immediate issues that arise when distributing

unsupervised models, in which the lack of labels for topics or categories makes com-

ing to model consensus challenging [27]. Forming and maintaining a global model of

an unknown environment for exploration by a multi-robot team is a challenging open

problem, and will likely require consideration from both a modeling and planning

perspective.

5.3 Final Remarks

This thesis aims to provide a holistic perspective on scientific information gather-

ing for autonomous robots and sensors. Chapter 1 began by formulating four key

questions involved in enabling autonomous science, reiterated here: 1) How should

scientific models be formalized for use by autonomous agents? 2) How should sci-

entific objectives be specified for autonomous agents? 3) How should autonomous

agents evaluate the utility of potential actions with respect to a scientific model and

objective?, and 4) How should autonomous agents plan to take high-utility actions

in a partially observable environment by levering problem structure? Although these
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questions are difficult to answer universally, the preceding chapters proposed a suffi-

cient set of answers that allowed for increased robustness, flexibility, and performance

of scientific information gathering techniques in challenging environments.

Chapters 1 and 2 provided a high-level framework for formalizing the four ques-

tions related to scientific information-gathering by introducing probabilistic environ-

mental models, general models for planning under uncertainty, and discussing the

interplay between environmental models and planning problems via the specification

of an information-theoretic reward function. Then, Chapter 3 provided a complete

framework for scientific information gathering in secretary sampling problems, from

the specification of an environmental model and reward function, to the develop-

ment of a novel secretary sampling algorithm and algorithmic analysis for planning

informative actions within this environmental model. Finally, Chapter 4 considered

problems for which environmental modeling can be challenging: the percepts are

high-dimensional image data and very little or nothing is known about the structure

of the data stream a priori.

The approaches in Chapters 3 and 4 illustrate the depth and breadth of the prob-

lems facing the field of autonomous science. The directions for future work outlined in

Section 5.2 further expose how classical problems in robotics – e.g., motion and path

planning, multi-robot coordination, map building and localization – and problems

from other related areas – e.g., machine learning, spatial statistics, optimization, and

theory of experimental design – can play a role in addressing aspects of autonomous

scientific information gathering. Developing robust autonomous systems that enhance

our ability to perform exploratory science in diverse application areas, such as the

oceans, the surface of extraterrestrial planets, and in agricultural and disaster-relief

zones, will require insight and techniques such as those presented in this thesis, which

unify theory and practice from these diverse disciplines.
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