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Abstract

Troy Wilson, BComm (Hons 1), MQF Doctor of Philosophy
The University of Sydney June 2017

Adaptive Sampling for Efficient
Online Modelling

This thesis examines methods enabling autonomous systems to make active sampling

and planning decisions in real time. Gaussian Process (GP) regression is chosen as

a framework for its non-parametric approach allowing flexibility in unknown environ-

ments.

The first part of the thesis focuses on depth constrained full coverage bathymetric sur-

veys in unknown environments. Algorithms are developed to find and follow a depth

contour, modelled with a GP, and produce a depth constrained boundary. An extension

to the Boustrophedon Cellular Decomposition, Discrete Monotone Polygonal Partition-

ing is developed allowing efficient planning for coverage within this boundary. Efficient

computational methods such as incremental Cholesky updates are implemented to al-

low online Hyper Parameter optimisation and fitting of the GP’s. This is demonstrated

in simulation and the field on a platform built for the purpose.

The second part of this thesis focuses on modelling the surface salinity profiles of

estuarine tidal fronts. The standard GP model assumes evenly distributed noise, which

does not always hold. This can be handled with Heteroscedastic noise. An efficient new

method, Parametric Heteroscedastic Gaussian Process regression, is proposed. This

is applied to active sample selection on stationary fronts and adaptive planning on

moving fronts where a number of information theoretic methods are compared. The

use of a mean function is shown to increase the accuracy of predictions whilst reducing

optimisation time. These algorithms are validated in simulation.

Algorithmic development is focused on efficient methods allowing deployment on plat-

forms with constrained computational resources. Whilst the application of this thesis

is Autonomous Surface Vessels, it is hoped the issues discussed and solutions provided

have relevance to other applications in robotics and wider fields such as spatial statistics

and machine learning in general.
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Chapter 1

Introduction

1.1 Motivation

Autonomous robotic platforms provide the opportunity to gather data in ways that are

not feasible for surveys conducted with direct human control or participation. Whether

it be the cost of efforts involving large numbers of people, the danger or even complete

inaccessibility for humans in some environments such the deep sea, disaster sites and

exploring the universe, or relieving humans from repetitive tasks such as repeat sur-

veying, autonomous robotic platforms are increasingly being deployed.

The ability to send an autonomous platform to explore an area with limited prior

knowledge for the task of data collection requires the platform to interpret data as it

is collected and adjust its sample selection locations or planned trajectories for both

safety reasons, such as avoiding damage to the platform or the environment it is in,

and to return with data that is most useful for the scientific objective of the mission.

Regardless of the cost savings that an automated mission may provide, there will always

be resource constraints limiting the amount of spatio-temporal coverage that can be

achieved. For missions where the resulting data collected will be used to produce a

model of some variable of interest, best use of the limited resources will be served

by taking into account the quality of the predictions from the model whilst collecting

the data and adjusting the sampling decisions accordingly. Estimating these models

online also introduces the problem of limited computational resources and as such

requires efficient models and algorithms to allow real time estimation and prediction
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on embedded platforms.

Estuaries and tidal bays are important areas of our maritime coasts. They are widely

used for recreational and commercial activities and provide habitats for estuarine ma-

rine life and breeding grounds for ocean marine life. Flows within these basins are

highly dynamic due to the interaction of tides, freshwater outflows, winds and con-

vection. The currents created can move sediment requiring frequent resurveying of

navigational maps for boating and have complex effects on the mixing of salt and fresh

water and the distribution of salinity, dissolved oxygen, pH, temperature and nutrients

which impact marine life. An Autonomous Surface Vessel (ASV) could create naviga-

tional maps of these areas without the high cost of traditional surveying vessels. The

dynamics of estuarine flows are generally modelled with fixed sensors, and occasionally

with towed sensors or autonomous platforms performing fixed surveys. The ability to

autonomously model a follow a dynamic tidal front would provide insights into how

this turbulent process evolved spatio-temporally.

1.2 Problem Statement

This thesis focuses on the problems associated with efficiently using autonomous robotic

platforms to collect data for the purpose of creating models of scalar fields. The focus

is on the case where minimal prior information is available and thus the robots must

build models of the data they are collecting and design sampling plans according to

these models. The framework of Gaussian Process (GP) regression is selected due to

the combination of the non-parametric approach it provides to model the data and

the uncertainty information it produces when making predictions. Whilst the specific

use cases presented are related to ASV’s, the algorithms and methods produced are

applicable to autonomous platforms working in any environment.

The first part of this thesis focuses on the problem of producing a full coverage bathy-

metric (underwater depth) survey within a given boundary subject to a minimum

operating depth constraint for safety. This problem has two distinct parts. Firstly the

ASV must model the bathymetry as it samples to find and follow the intersection of the

depth contour and the boundary to safely create a new depth constrained boundary.
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Secondly it must then efficiently plan and follow a path for coverage within this depth

constrained boundary. The modelling and planning must be feasible to be conducted

in real time on a small embedded CPU.

The second part of this thesis focuses on the problem of efficiently sampling to build

a model of an estuarine tidal front. These fronts display location dependent noise due

to the turbulent mixing process at the interface. Depending on the structure on the

bathymetry and channel width these can either be stationary or moving. The standard

GP framework must be adjusted to account for the location dependent noise, and in a

manner that will be computationally tractable for embedded implementation. Planning

for data collection within this model should be conducted to produce a model which

quickly converges to as low an error as possible to maximise the return on limited

resources.

1.3 Contributions

The main contributions of this thesis are as follows:

• Development of a suite of algorithms to simultaneously estimate a GP of bathymetry,

with incremental Cholesky updates and online Hyper Parameter (HP) estimation,

and find and follow the intersection of a depth contour and a bounding polygon.

Efficient implementation of Gaussian Processes is demonstrated on a small Au-

tonomous surface vessel.

• An extension to the Boustrophedon Cellular Decomposition, the Discrete Mono-

tone Polygonal Partitioning (DMPP) is produced. This allows decomposition

based on desired track width producing more efficient coverage when joining mul-

tiple polygonal areas. The order of joining the cells is decided in parallel with the

cell decomposition producing shorter paths between areas and non-rectangular

boundaries are explicitly dealt with.

• Demonstration of Autonomous depth constrained bathymetric mapping both in

simulation and the field on a small ASV developed for the purpose.

• The case is made for explicitly modelling location dependent noise within a GP.
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An efficient method for modelling location dependent noise with a parametric

distribution is developed, Parametric Heteroscedastic Gaussian Process regres-

sion (PHGP). This is shown to be more computationally efficient than a more

general method, Variational Heteroscedastic Gaussian Process regression. A new

metric for measuring error in the second moment of the predicted distribution is

presented, the Root Mean Square Standard Deviation Error(RMSSDE).

• Formulation of new kernels to model bathymetrically arrested and moving tidal

fronts under PHGP. A parametric mean function is implemented which is simul-

taneously optimised with the HPs of the covariance function. This is shown to

provide faster optimisation and lower prediction errors. The derivatives of the

log marginal likelihood of all kernels w.r.t to the HPs are derived to allow fast

estimation of the HPs through a gradient based solver.

• Comparison of a number of information theoretic measures for adaptive sample

selection on simulated tidal fronts where Mutual Information is shown to pro-

vide superior predictive performance to random sampling or methods based on

Entropy or Fisher Information.

1.4 Outline

This thesis is structured as follows:

Chapter 2 outlines the related literature and background in Coverage Path Planning,

Gaussian Processes, Active Sensing, and Estuarine Tidal Fronts. The methods detailed

here are extended in further chapters.

Chapter 3 presents an improved method for coverage path planning and a suite of

algorithms for conducting autonomous depth constrained bathymetric mapping. These

are tested in simulation and the field.

Chapter 4 establishes the case for explicitly modelling input dependent noise within

Gaussian Processes and develops an efficient method to achieve this. A new metric

for measuring errors in predicted standard deviation is defined. A new kernel and

its analytic derivatives are presented allowing efficient implementation. A number of
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information theoretic methods for adaptive sample selection are compared and Mutual

Information is shown to provide superior predictive performance of the first and second

moments of the distribution under PHGP by initially sampling widely then biasing

sampling near areas of higher noise. This is applied to a simulated bathymetrically

arrested tidal front.

Chapter 5 extends this model to account for moving processes. A Heteroscedastic

extension to the standard squared exponential kernels and its derivatives is again pre-

sented. The use of a parametric mean function which is jointly estimated with the HPs

of the kernel is shown to increase computational efficiency. Adaptive path planning is

implemented and tested across a number of information theoretic models and planning

horizons. An adjustment is made to the standard MI implementation in the temporal

domain to temper the effect of the the curse of dimensionality from the addition of the

time dimension. This is tested in simulation on a moving estuarine tidal front.

Chapter 6 concludes and discusses avenues for future research.
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Chapter 2

Background

This thesis is focused on algorithms which enable efficient online adaptive sampling.

Whilst applied to ASV’s in estuaries, the algorithms developed are relevant to au-

tonomous exploration in any domain. In this Chapter related work on water quality

measures in estuaries, the relationships between them and the methods used to model

them are reviewed. The dynamics of estuaries are presented, focusing on the salt/fresh

water interface, highlighting the spatio-temporal dynamics involved. Turbulence is dis-

cussed, as the driving force behind heteroscedastic noise for which models are developed

in Chapters 4 and 5. Physical models for simulating fluid interactions are examined

highlighting the gap between high spatio-temporal resolution simulations and exper-

iments of fluid mixing and the low spatial-temporal resolution of large scale physics

models of oceans and estuaries. Related work in adaptive sampling is then presented

followed by a review of Gaussian Processes (GPs) which is the modelling framework

upon which this thesis is based.

2.1 Estuaries

Estuaries are important areas for a number of reasons. They provide habitats not only

for estuarine marine life, but also breeding grounds for ocean marine life which is im-

portant both in its own right from a conservation perspective as well as for commercial

and recreational uses. Many nutrients in coastal waters are provided by run-off from

estuaries, driven by the flows from fresh water run-off and tidal mixing of salt and fresh

6



water. The edges of estuaries are highly populated and thus their health is important

for the populations living and visiting these regions. They also provide shelter from

the sea and are thus often used as ports. This heavy use for residential and commercial

purposes puts the health of these areas under risk and as such there have been many

studies on eutrophication (excess nutrient loading), and dissolved oxygen (DO) levels

in estuaries around the world, i.e. [19, 27, 29, 46, 106].

The majority of environmental monitoring that has been undertaken to date in estuaries

have had relatively sparse spatial coverage. There are numerous temporal studies which

have been conducted via a small number of sparse fixed measurement stations, i.e.

[8, 15, 137, 152]. These studies implicitly rely on the ability to extrapolate information

to areas away from the sampling locations. It has been shown that there can be very

significant changes in DO spatially on a transect from shallow water over a macrophyte

bed to deeper water [50], and across a tidal interface [159]. DO has been studied in a bay

in Norway [21]. The combined dynamics with other factors such as temperature and

salinity, let alone tides is not discussed, and the distribution was assumed temporally

static over the survey period (1 - 2 hrs), which would not work in areas subject to

either tidal flux or organic processes measured in estuaries [8, 152, 159].

Salinity can be used to define the interface between salt and fresh water bodies being

moved by tidal forces. These bodies of water may contain different level of nutrients,

oxygen and suspended matter and have different temperatures. Some marine animals

are also sensitive to the salinity levels in the water. The salinity and temperature

levels will also impact the density. Density differences will define how the bodies mix

or stratify. In the case of plumes of freshwater discharge into the ocean salinity has

been shown to change significantly in value and variance on the scale of a few meters

across saltwater/freshwater interchange [108, 109]. Whilst extensive spatial analysis

has not been done on tidal fronts, data from high temporal resolution, but sparse

spatial resolution fixed monitoring stations throughout an estuary show large changes

in salintiy as the tide moves through [153].

There have been a number of studies looking at the density, current and salinity prop-

erties of the salt/fresh water interface of plumes where fresh water is ejected from the

mouth of the estuary into the coastal waters [16, 83, 85, 95, 108, 109]. These have
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not examined the dynamics inside the estuary and have ignored the spatio-temporal

dynamics. Whilst some have measured through the water column, they have gener-

ally ignored the temporal component whilst traversing the scalar field and were more

focused on determining the characteristics of the front in terms of distance from the

front, rather than spatially across the whole regions around the front.

Remote sensing has been used to provide spatial coverage. The resolution of this is

relatively coarse, on the order of 1km for satellites and several meters for aerial surveys

[153]. These also need to be calibrated by field measurements and can have issues in

shallow and clear waters due to optical readings returning information on the seabed

rather than the water column. Aerial surveys are also restricted to providing spatial

and not temporal coverage.

There is thus a need for fine resolution spatio-temporal sampling of environmental

parameters in estuaries to calibrate and validate long term coarse resolution temporal

studies. The highly dynamic nature of tidal fluxes within estuaries is important to

understand due to the effect it has on the mixing of oxygen and nutrients between

fresh and salt-water. High resolution spatial and temporal sampling of this dynamic

front is an ideal candidate for a moving sensing platform. The shallow nature of some

parts of estuaries lends itself to a small platform with minimal draft which can sample

without disturbing the environment (i.e. though stirring up silt). The dynamic nature

of the tidal fronts lends itself to a platform which can simultaneously model and plan

in its environment.

2.1.1 Estuarine Tidal Dynamics

There are a wide range of factors influencing the dynamics of tides in estuaries. Vari-

ous classification schemes have been created to describe the different types of estuaries.

These can be based on Topography, Morphology or Salinity and Circulation Structure

[37, 55]. The Topography classification divides into categories based on the geological

processes that created them, such as Drowned River Valleys, Fjords and Bar Built

estuaries. Morphological classification builds on this adding also the impacts of sedi-

ment, river flow, tides and waves. The Salinity and Circulation structure classifications

instead look at the the distribution of salinity and structure of circulation within an
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estuary. Classification on salinity may be divided into Highly Stratified with a lower

salt water layer and an upper fresh water layer, Partially Mixed where the salinity

gradient slowly decreases with distance from the mouth and Well Mixed with a rela-

tively constant salinity level throughout the estuary. Additionally significant changes in

bathymetry such as deep basins connected by shallow channels can create a number of

abrupt fronts through the estuary as tides and currents push well mixed water through

the channels into the basins, leading to classifications such as Front Dominated estuary

[48].

Whilst these methods provide a general description of the average conditions in an

estuary, they are not as useful in describing the dynamics temporally and spatially

within a given estuary. For instance spatially across an estuary the salinity structure

may transition from being well mixed at the mouth due to waves and tidal currents,

partially mixed through the middle due to tidal action combined with the shape and

roughness of the bathymetry to stratified further upstream where fresh water flows

dominate [37]. Estuaries can also have large temporal differences in salinity structure

if rainfall events significantly alter inflows of fresh water. A study on the Port Hacking

estuary, south of Sydney, Australia [48], noted that the main body of the estuary is

generally well mixed as fresh water inflows are of a similar magnitude to evaporation.

After rainfall events, a large influx of fresh water flushes the upper reaches and leads to

a stratified structure in the main basin. The incoming tide then brings well mixed water

though a shallow channel and results in well defined front as it enters the basin.

In stratified estuaries, the sharp gradients in salinity are known as a Halocline. These

bodies of water often have different temperatures and this temperature gradient is

known as a Thermocline. Higher salinity and lower temperature increase the density of

the water and thus an associated density gradient (Pycnocline) is also observed. The

two bodies of water also have their own velocity structures. The movements of these

bodies of water through an estuary can have biological impacts as in addition to the

impacts of salinity, they are often also associated with changes in pH and dissolved

oxygen. Various marine organisims have threshold levels which may have serious con-

sequences, for instance juvenile weakfish with respect to dissolved oxygen [151] or the

effect of acidity on the spawning of Perch, Smelt and Burbot [65]. Thus it is important
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to model not just the average characteristics of an estuary, but the spatial and temporal

distributions and to examine at the dynamics of individual fronts.

A schematic of a Halocline can be seen in Figure 2.1. This shows a cross section of a

tidal front. Along the Halocline viscous friction is generated. Changing depth, width

and roughness of the estuary can change the velocity ratios between the two water

bodies temporally and spatially. Internal waves can form on the Halocline as the lower

body of water follows the bottom structure. These perturbations in the Halocline due

to internal waves combined with fluctuations in the velocity of the fluid on both sides

lead to changes in the relative velocities of the water bodies.

Figure 2.1: Schematic of the interface between salt and fresh water in a stratified
estuary

Differences in density and velocity are important as they determine whether instabilities

are absorbed or compounded. The Richardson Number Ri is driven by the ratio of

density to velocity shear gradients:

Ri = −g
ρ

∂ρ

∂z

/(
∂u

∂z

)2

(2.1)

where g is the gravitational constant, ρ is density, z is depth and u is velocity.

This number defines whether there is a transition to turbulence. At levels of Ri > 0.25

the stratification is stable, though there is mixing in the form of entrainment where

Holmboe waves form and small amounts of the slower moving fluid are drawn into
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the faster fluid. For Ri < 0.25 a process called turbulent diffusion occurs in the form

of Kelvin-Helmholtz waves [37]. These instabilities initially form large eddies which

then cascade to smaller eddies until they are small enough (at the Kolmogorov length

scale) that the energy can be absorbed by viscous friction [93]. This can be seen in

Figure 2.1 where the size of the turbulent eddies decreases away from the initial large

instability. The changing velocities in time and space lead to Ri oscillating through

the critical 0.25 value. This leads to turbulence randomly forming and dissipating on

the Halocline.

Figure 2.2: Streamwise cross-sectional schematic of tidal untrusion front plunge line.
Based on Figures in [37, 66, 76]

(a) Class I (b) Class II (c) Class III

Figure 2.3: Surface manifestations of tidal front classes. Based on Figures in [76, 139]

A specific type of Halocline often seen in bar built estuaries is the Tidal Intrusion

Front. These often occur on the upstream side of a shallow sandbar or channel where

the incoming denser sea water on a flood tide reaches a deeper bay and plunges below

the less dense estuarine waters. The phenomenon has been noted in estuauries around
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(a)

Figure 2.4: Surface manifestations of a bathymetrically arrested (Class I) tidal front on
an incoming tide at Lilli Pilli Point, Port Hacking, Sydney, Australia, 5th March 2017

the world [76]. Figure 2.2 shows a cross section of this phenomenon. The form that

these fronts take in the cross stream dimension on the surface is a function of the width

of the channel, width of the basin and the depth profile. Three general categories have

been defined [76]. Class I fronts are created when the channel the tidal front progresses

through is not constraining in width. When this front hits the drop in depth of the bay,

the surface manifestation of the interface, the plunge line, follows the contours of the

bathymetry. An example of this can be seen in Figure 2.4. Here the water is exiting a

shallow channel on the left on a rising tide as the sand bar quickly drops away. A sharp

line can be seen from the turbulant interface on the surface. This is the same location

studied in [66]. Class II fronts are caused by a more constraining channel. In this case

the plunge line forms a parabolic shape irrespective of the bathymetry. This is caused

by the friction effects from the sides of the channel causing the front to be further ahead

in the center of the channel. Class III fronts are caused by an even tighter constriction

of the channel. In this case counter-rotating eddies form on either side of the center of

the front causing a ’V’ shaped front. In reality, the complex shapes of estuaries often

mean along and cross stream velocities combine with sharp depth changes to produce

plunge lines exhibiting a combination of the three types. The distance into the bay

that these lines form depends on the combination of density and velocity differences.

In the case of Class I fronts, as they are driven by stable bathymetric features, they

are relatively stable in position throughout the flood tide [66].
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2.1.2 Physical Dynamics Models

Laboratory experiments and CFD models of turbulence in the mixing of stratified

fluids have been conducted for the lock exchanged problem [12]. This can be seen as a

simplified version of mixing at the tidal front of a stratified estuary. These only focus

on producing one realisation of the process. Whilst turbulence can be described by the

deterministic Navier-Stokes equations, it is highly sensitive to non-linear terms. Even in

laboratory environments, repeated experiments will not result in the same velocity field.

Small perturbations in initial or boundary conditions result in different realisations of

the process. If we can only define the initial conditions in probability, this is all we

can hope to predict [7]. When this process is brought into the dynamic estuarine

environment, with complex boundaries, these problems are only compounded.

The field of Uncertainty Quantification (UQ) examines ways of producing probability

distributions from CFD models. Monte Carlo simulation is the simplest method to

implement, where distributions are created for various parameters of the model, from

which random values (potentially correlated) are drawn and the numerical solution

solved. The slow convergence of Monte Carlo at 1/
√
n combined with the slow calcu-

lation of the numerical solutions themselves can often make this infeasible. Spectral

expansions of the CFD model in the form of Karhunen-Loève or Polynomial Chaos

(PC) representations propagate the parameter uncertainty through the model allowing

distributional properties to estimated directly through a single numerical solution [82].

This has been applied to some problems of mixing in density interfaces such as particle

laden flows into a less dense fluid [54] and the Richtmyer-Meshkov instability where

two fluids of different densities are initially at rest through which a shockwave is passed

through twice in [120].

There are a number of large physics based models for modelling the dynamics of oceans,

coastal waters and estuaries, for example the Regional Ocean Modeling System (ROMS)

[99] and the Semi-implicit Eulerian-Lagrangian Finite Element (SELFE) [166]. Due to

the 3D numerical grids required to solve these models, resolution is limited. As such

they will not capture the smaller scale dynamics of turbulent mixing around a front.

These are deterministic models and produce one realisation of output predictions per

run.
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SELFE was originally designed for modelling the Columbia River estuary and plume.

A recent application tested the accuracy of this model to the dynamics of the salt

wedge in the Columbia River Estuary [71]. The fine grid model composed of 109,000

triangles. Due to the scale of the estuary covered at around 60km, with 17-34 vertical

elements this still led to horizontal resolution of 180m. The finest time discretisation

the model was run at was 36s. When predictions from the model were compared to

physical measurements at 4 stations, they found Root Mean Square Error (RMSE) for

bottom salinity ranged from 4.57 to 12.86 psu(practical salinity units, equal to g/Kg of

salt), which for a salinity measure that ranges between 0 and 30, is quite large.

These models designed from solutions to the physical driving equations are also com-

putationally intensive. For the CFD model in [12], whilst no run times are given, even

this model of turbulence between two homogeneous fluids with smooth boundaries in

an area 15cm deep and 30cm long over a time period of 50s, required tens of thousands

of nodes, time steps of 0.01s and and array of computers to run. It is obvious this type

of model will not scale to simulating an estuary. UQ models, as more complex versions

of these, will be slower.

For the SELFE model, a version of the run in [130] with 54000 elements, and 30s

time steps (approximately half the size of the finest grid in [71]), found the optimal

configuration was 20 servers with 4 cores at 1GB RAM per core taking 8 hours of run

time per day simulated.

2.2 Adaptive Sampling

From production line robots that work in relatively deterministic environments through

robots doing simple tasks in dynamic environments like the iRobot Roomba robot

vacuum cleaner to current state of the art robots performing complex tasks in dynamic

environments such as the Mars Exploration Rover, there are various levels of autonomy

in robotic systems. Adaptive sampling is the process where decisions on where, in space

and/or time, to sample are made using information collected from an environment.

Online adaptive sampling is when these decisions are made whilst the data is being

collected from models built in real time. Related literature in which robotic systems
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have been used to adaptively sample is now reviewed.

An early paper on autonomous exploration is [158]. They show how sensor view point

can be planned based on model uncertainty thus driving the exploration behaviour

of a robot to build a more accurate understanding of its environment. They prove

convergence when applied to linear models and experimentally apply to super ellipsoid

models to verify the applicability of local linear approximations. A method for driving

autonomous exploration in robots based on frontiers, which are defined as the boundary

between explored and unexplored space is introduced by [163]. The robot will always

move to the nearest unexplored frontier thus greedily optimising a method to increase

explored space. The authors in [87] look into the issue of robot exploration under

the dual objective of reducing the global uncertainty about the environment and the

uncertainty of the pose of the robot within this environment. They create a weighted

linear combination of the two information metrics which is greedily optimised at each

time step. This is extended in [86] by adding a third element to the mix. Instead of

greedily optimising for the next time step, motion is allowed anywhere on the map but

total utility is reduced by the cost of this travel. The relative weights of the distance

and information costs are empirically tuned. It is not clear that there should be any

stability in the relative weights on these different measures as the survey area changes

in size thus limiting general application.

An adaptive sampling algorithm which uses nested stratified random sampling is intro-

duced by [125]. The environment is sampled first at a coarse resolution. A threshold

variance is defined and any grids with variance above that threshold are split and re-

sampled. This process is iterated until there are no areas with variance above the

threshold. Travel costs are not taken into account which limits this approach to a gen-

eral robotics exploration task. Given a forecast of a moving ocean plume, it has been

shown that an underwater glider can adjust its path online to either head towards the

center or the edges of the plume based on its distance to these estimated locations and

thus collect samples from this moving plume [141]. It has also been shown that when

prospecting for hydrothermal vents, detours of small spirals from a coarse lawnmower

pattern based on redox potential greater than a manually set threshold can increase

sampling in interesting areas [41].
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A simulated study with an AUV with a gimbaled sonar is shown to outperform on

localisation tasks compared with a fixed sensor [128]. A particle filter is used for locali-

sation. This allows for calculation of entropy and this entropy is used to test the sonar

angle at each time step such that it scans at the angle which has the greatest reduction

in expected entropy. A method for active localisation of an AUV using multi-beam

sonar data is presented by [39]. Using a prior bathymetry map, for each 30m segment

they compared straight line continuation, random direction heading and choosing the

most informative straight line segment out of 8 cardinal compass directions. It was

shown that the active approach outperformed the others, especially in the case where

straight line would cover featureless terrain.

A method for autonomous sampling in an AUV was developed by [97]. They use a

Hidden Markov Model (HMM) trained on prior data to determine online whether the

AUV is in an area of interest, in this case an inter-nephoid layer(INL), based on optical

data. If so, a sample is taken. The HMM is also used to examine the probability of

having seen the INL in the previous transact and this information is used to decide the

width of the next transect, thus providing adaptive sampling resolution. A utility based

technique for adaptive sampling is developed by [44]. Their process uses knowledge

of current and past utility combined with awareness of mission parameters such as

remaining mission time to decide when to take a limited number of physical samples

of the environment. The adaptivity is introduced through a sampling trigger which

changes based on distance from previous samples, number of samples taken and time

remaining.

Exploration for underwater hydrothermal vents in an AUV is examined by [41]. Initially

a coarse survey plan is set out. Whilst the AUV is following this path, the detection of

a hydrothermal plume triggers a tight spiral action to better localise the source, before

continuing on the coarse survey plan. An initial trigger level for the anomaly and a

suggested number of spirals is set. The trigger level is adjusted adaptively throughout

the mission by the ratio of samples taken/suggested samples vs. percentage survey

time remaining.

The on-board autonomous science investigation system implemented on the Mars Ex-

ploration Rover is discussed in [18]. Limited bandwidth means on-board analysis must
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be conducted as to which images to send back to earth. When dust devils and clouds

are detected those images are sent back, whereas empty images are not. Rocks are

detected though stereo imaging or on mono images through boundary detection. The

rocks are analysed against a previously determined list of target signatures as well as a

novelty score against other rocks in the regions. Any rocks identified by either of these

two methods are flagged for download and added to the science goals of the mission.

The on-board planner then creates a new plan using the methodology described in [124].

This is compared to the previous plan and the one with the highest optimisation score

is processed. Additionally an online classifier is run which groups rocks into classes

and thus allows a representative sample of images from each class to be returned to

earth.

Using the underwater robot presented in [133], [47] present an online classification

scheme which produces a surprise score which is used the drive the speed of the AUV.

They use Latent Dirichlet Analysis (LDA) to compute topics over a spatio-temporal

neighbourhood. To keep computational time constant to allow online calculation they

use a variation of Gibbs sampling where they draw a constant number of observations

at each iteration from a beta distribution which gives higher probability to recent

observations. They produce summaries of observations based on an extremum summary

which minimises the distance of the worst outlier to the summary. New observations

are then compared to this based on their Hausdorff distance to compute the surprise

score.

The concept of novelty rather than fitness as a utility function for driving search be-

haviour is examined by [24]. Instead of optimising a user defined function, novelty

based search selects features of interest based on how different they are from prior ob-

servations. They found in complex tasks that novelty alone could not be relied upon to

beat fitness based operation, and parameters could always be set to make novelty per-

form badly. When used in combination with fitness, superior outcomes were achieved

over fitness alone. This was tested in simulations on the standard Tartarus problem

[5].

As the complexity of the environments robots operate in increases, it becomes infeasible

for the robot to be programmed with exactly how to respond to every scenario it will
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encounter. Methods for robots to actively learn models of policies of actions that achieve

a given desired effect, called inverse models are examined in [6]. Efficient sampling to

learn these models is difficult due to the high dimensional, continuous non-stationary

nature of the space. They introduce an active learning approach in which the robot

samples novel tasks in the task space which triggers goal directed learning of the action

parameters to solve it. This inverse approach leads to dense sampling only in the area

of action policies that are useful to achieve the desired tasks, as opposed to a forward

model where actions leading to tasks result in sampling being directed in the action

space. Regression is used to infer actions that will be useful to complete a given task

based on previous action/task observations. Level of interest is calculated by the speed

of change in progress towards reaching goals. This interest level is used to direct areas

for new goal creation. New goals are split between areas of highest interest, the whole

space and low interest areas (typical split 70/20/10), chosen randomly within each

area. Additionally they reduce the initial set by defining a rest position that can be

reached without planning. This method is analysed in the context low level actions

(i.e. individual actuators) and the tasks are movements of the robot.

A paradigm for planning based on the stochastic effect of actions is the Markov decision

process(MDP). This assumes that the world is fully observable. MDP’s have been

used for the case of path planning of underwater gliders where the ocean currents

introduce a stochastic effect on control actions [115].This is used to plan paths to

minimise the risk of collision with traffic in shipping lanes and the ocean floor. This

was implemented on field studies where the planner was run on an offline computer

and the plans communicated to the gliders when they resurfaced.

The extension to the more realistic environment that robots face with uncertainty in

perception is the Partially Observable Markov Decision Process (POMDP). To solve

the POMDP problem for robotics a value function must be maximised (possibly dis-

counted) over a given time horizon (finite or infinite), a given a set of states, actions

and observations, a distribution of moving between states given actions, a distribu-

tion of observing states after taking actions, and an initial belief function. This can

be either continuous or discrete. An issue with applying the theoretical framework of

POMDP’s to the field of robotics planning is that an exact solution to the problem
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quickly becomes intractable due to the high dimensionality of the problem [68].

Point Based Value Iteration(PBVI) was introduced as an approximation to th full

POMDP problem [117]. This approximation reduces the dimensionality of the problem

by discretising the belief space and restricting the value function to only those relevant

to those belief points. This compares to the exact method which will solve value the

function for belief spaces that are highly unlikely or even impossible for the robot to

reach. The authors apply it to a real world sized problem (870 states). They prove

that the error introduced by this approximation is bounded. As opposed to the exact

solutions which scale in complexity exponentially with the number of states (curse

of dimensionality) and exponentially within the planning horizon (curse of history),

PVBI is shown to scale only quadratically with the planning horizon. The Monte-Carlo

POMDP framework reduces the dimensionality of the problem compared to the exact

method in continuous belief and state spaces by sampling those continuous distributions

via Monte-Carlo methods [147]. A nearest neighbour approach is used for interpolation

to apply the finitely sampled distribution across states. Mixed observability MDPs

(MOMDP) combine the attributes of MDPs and POMDPs by having some staes fully

observable, and asome states partially observable [111].

There has been some progress on the efficiency of POMDPs. The second version

of Hueuristc Search Value Iteration (HSVI2) advances PBVI methods by maintains

bounds on the optimal value function allowing the use of heuristics for action and ob-

servation selection [143]. Another method, Successive Approximations of the Reachable

Space under Optimal Policies (SARSOP) has shown further improvements in effciecy

[75]. Whilst these and other approximations can speed up the POMDP framework,

they still suffer from a method which is by design very high dimensional in its repre-

sentation of the problem. For example, in the rock sample problem of planning in a

small known grid, which rocks to sample, the planning time to solve under SARSOP

and HSVI2 was 400 and 250s respectively [75]. Thus whilst interesting methods, these

are not applicable to the objective of this thesis of real time online planning.
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2.3 Gaussian Processes

The dynamic spatial and temporal characteristics of tidal fronts lends itself to modelling

through a spatio-temporal Gaussian Process(GP). The use of a spatio-temporal GP for

planning for sensor placement (ie where travel time is not considered) for the monitoring

of environmental processes has been shown by [140]. It has also been demonstrated

in simulation for the case of planning for energy gain and some exploration in the

case of aerial soaring by [79]. An efficent non-stationary spatio-temporal model able

to be learnt online is developed in [45]. In terms of modelling a tidal front, rather

than implicitly characterising it through a non-stationary GP, it may be preferable

for planning purposes to instead use a stationary GP for classification of the location

of the front. This would be a proxy for the full non-stationary GP, which could still

be fit in post-processing of the data to create the model of the scalar field, to allow

faster implementation. Spatial sampling design with stationary Gaussian processes

is analysed by [169]. They propose two algorithms for optimal sample design. GPs

are applied to construct a probabilistic habitat map by [129]. They use Monte Carlo

sampling to identify which mission from a set of potential mission plans would result

in the greatest reduction entropy. Closed form bounds are provided pre-simulation to

prune unlikely missions and thus reduce the number of simulations required. This is

extended by [10] to the case where a fixed trajectory can be placed anywhere on a

GP modelled area. GPs are used to model a wind field whilst simultaneously using

that wind field to provide the energy required for exploration to refine the model by

[80]. For stationary wind fields the three dimensions of the wind field are separately

modelled though the use of a single set of shared HPs utilising a stationary covariance

function. For the modelling of dynamic wind fields both separable and non-separable

spatio-temporal covariance functions were analysed. The more complex non-separable

model was found to be slower and less stable than the simpler separable function. The

insight that wind fields drift over time was used to create a drifting component in the

separable covariance function. At each planning cycle the point of maximum entropy

in the map is located. If the vehicle has enough energy to reach this point, that is the

current goal, otherwise the glider greedily exploits the wind field. GPs are applied to

the case of path planning for an energy constrained solar harvesting robot by [119].
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They estimate the solar field in an environment with shading structures using a GP

and then plan energy efficient paths though this field.

Gaussian process(GP) regression is described in [127]. This is a very powerful method

method for estimating a spatial process. It is a covariance based procedure where

inference is strong close to observed data points, but as the distance from observed data

increases the confidence of the prediction drops. Similar methods are called Kriging in

the geostatistics literature and Least Squares Collocation(LSC) in geodesy. The model

provides both a method for prediction at unknown points and variance information. A

benefit of this method is that these variance or entropy maps can be used to guide robot

path planning. Sparse representations of GPs using a greedy approximation algorithm

to allow their efficient use on large data sets is developed by [23]. The problem of

large data sets can be addressed though the parametrisation of a specific set of sparse

covariance matrices that allows for exact inference [98]. Generally GPs are modelled

with a mean function of zero. Trends or periodic cycles can be fit through the use of a

parametric mean function. The standard covariance function used in GPs is extended

to cover the case where there is Autoregressive Moving Average (ARMA) correlated

noise by [101]. This provides more flexibility than the generally assumed Gaussian

independently and identically distributed (i.i.d) white noise processes. The general

method in the machine learning community is to handle these in a non-parametric

fashion through the covariance function. An additive covariance function could be

created which included a long length scale kernel to capture trends and a periodic

kernel to capture periodicity [112].

The concept of using a combination of stationary GPs to model processes with spatially

varying covariance is introduced by [150]. Kernel convolution is one method to fit non-

stationary covariances. An example of this is provided by [26] for fitting gravity fields.

They segment their data geographically into relatively stationary components and fit

elliptical kernels to each segment. Estimation is conducted with an adjusted covariance

function that combines the local covariances for each point in a pair. A more principled

approach is to use Markov Chain Monte Carlo (MCMC) to optimise the HPs [113]. An

approximation of this approach is to use point approximation rather than full MCMC

integration. It has been shown empirically that this can lead to similar results at
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speeds comparable to a stationary GP. The HPs can be recursively [72] or jointly [118]

estimated. Alternatively, through a transformation of geometric space to a deformed

space, a stationary covariance function can be given the properties of a non-stationary

one [25, 134]. Both of these methods require estimation in high dimensional spaces and

are thus likely to scale poorly. Non-stationarity of the covariance can also be achieved

through a neural network kernel which has spatially varying HPs in each dimension

[107, 155].

Generally GPs only predict independent outputs. Whilst joint prediction of dependent

outputs can be done (called co-kriging in the geostatistics literature), there are issues

with ensuring positive definiteness of the joint covariances. One solution to this problem

is to model the outputs as a multidimensional stable linear filter with gaussian noise.

The result of this is a GP with dependent outputs [13].

The kernels used in GPs need to be Mercer kernels. This requires they are Positive

Semi-Definite(PSD). Apart from this restriction they can be quite flexible. Note that

this restriction allows them to be inverted through the use of Cholesky decomposition,

which is much more efficient than a regular matrix inverse operation. It can be quite

difficult to prove that a given type of covariance matrix will be PSD. There are a

number of ways it can be ensured that the constructed kernel is valid. One is to use

Bochner’s theorem which allows the construction of a kernel from the power spectrum

of a function. Alternatively kernels can be created from combinations of other valid

kernels. There at four methods which are guaranteed to create a valid kernel from com-

binations of valid kernels. Kernels can be input scaled (changing the signal variance),

they can be output scaled (changing the length scale), they can be added (logical OR

similarity) or they can be multiplied(logical AND similarity) [58].

Additive covariance kernels can have very strong predictive power [34]. This predictive

power is also quite dangerous as it is proposing a very strong prior on the model, and

thus must be carefully evaluated. All valid kernels are also reproducing kernel Hilbert

spaces(RKHS). Hilbert spaces allow the used of euclidian geometry in infinite dimen-

sional spaces. This is important for GPs as they are defined in infinitely dimensional

function space. Functional ANOVA analysis can be used to analyse the effects of given

components of a kernel [33].
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The HPs of the GP can be quickly estimated through maximum likelihood estimation.

A full Bayesian treatment here would require marginalising out the HPs. This is not

generally analytically tractable, and thus sampling algorithms are required. Whilst this

can be done with Metropolis Hastings MCMC, it can be quite slow to converge. An

alternative is to use slice sampling [100].

These methods work well for batch processing of data. If conducting inference on

sequentially arriving data, retraining the model from scratch as each new observation

arrives is throwing away a lot of information and thus computationally expensive. If

the previous covariance and inverse covariance matrix are kept, sequential updates to

these objects can be applied at a lower cost of O(n)2 rather than O(n)3 [112].

Rather than using a GP, it is possible to model directly in the RKHS. It has been

shown in [126] that a model of occupancy can be made by using a kernel on the data

directly. They achieve speed by using stochastic gradient descent to optimise over a

logistic function for which the log-likelihood reduces to a sum over the points which is

convex in the parameters. This is done with a purely frequentist approach, and they

mention a fully Bayesian extension whilst possible, would lose some of the properties

which make their solution fast.

Under a Gaussian Process it is assumed that the joint distribution of training points X

with realisations y and test points X∗ with realisations y∗ is jointly normal [127]:

 y

y∗

 ∼ N
m(X),

K(X,X) + σ2
nI K(X,X∗)

K(X∗, X) K(X∗, X∗)


 (2.2)

where m(X) is a mean function (often assumed to be zero), K is the covariance matrix

created by the chosen kernel function, σ2
n is the observation noise and I is the iden-

tity matrix. The formula’s for the expectation and variance of the test points are as

follows:

ŷ∗ = K∗(K + σ2
nI)−1(y −m(X)) + m(X) (2.3)

Σ̂∗ = K∗∗ −K∗(K + σ2
nI)−1KT

∗ (2.4)
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where for compactness K = K(X,X),K∗ = K(X∗, X) and K∗∗ = K(X∗, X∗), and

are using the convention of lower case letters for scalars or vectors and upper case for

matricies.

The simplest kernels used in GPs are stationary. In these the variance of the output

given at a test point is based on the distance between that point and the sample input

points. For example the squared exponential kernel:

K(X,X∗) = σ2
fexp

(
−1

2
||X,X∗||TΣ−1||X,X∗||

)
(2.5)

where Σ is a diagonal matrix populated by the square of the characteristic length scales

on each input dimension. If these length scales are set equal, the kernel is isotropic,

with the same relation across the dimensions. Relationships between observations which

change with movement across an input space can be modelled with a non-stationary

kernel, examples of which can be found in [127].

A fully Bayesian treatment would marginalise out the HPs. For computational speed

Maximum-Likelihood (ML) estimation is often used. To conduct ML estimation a

function for the likelihood of the data given the HPs is required. For computational

stability reasons the log transformation of this number, the Log Marginal Likelihood

(LML) is often used and is defined as:

logp(yadj|X, θ) = −1

2
yadj

TK−1
y yadj −

1

2
log|Ky| −

n

2
log2π (2.6)

where yadj = y −m(X), I is the identity matrix, n is the number of observations and

Ky = K + σ2I.

Cholesky factorisation is generally used instead of the direct matrix inversion required

in Equations 2.3 and 2.4 for both numerical stability and speed. Even with this, the

calculation of K when fitting the GP is O(n3). Once K is calculated, the partial

derivatives of the LML w.r.t θ are relatively inexpensive to calculate which allows fast

numerical gradient descent techniques to be used. For the SE kernel, with a length

scale of l, this is:
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logp(yadj|X, θ) =

1

2
tr

(
(ααT −K−1
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)
(2.7)

∂Ky

∂σ2
f

= exp

(
−‖X,X‖

2

2l2

)
(2.8)

∂Ky

∂l
=
‖X,X‖2

l3
σ2
fexp

(
−‖X,X‖

2

2l2

)
(2.9)

∂Ky

∂σ2
n

= I (2.10)

where α = K−1yadj.

When predictions from the GP are desired with n training points x and m test points

x∗ this would be calculated as a batch and thus be dominated by the calculation of

K,K∗ and K∗∗ which would be O((n+m)3). For computational efficiency, if multiple

predictions are to be made on the same set of test data, care should be taken to design

algorithms such that all predictions are made in one batch. For instance predicting in

a batch would be O((n + m)3) rather than O(m ∗ (n + 1)3) if calculated sequentially,

which in the case of n = 500 and m = 50 would be 38x faster.
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Chapter 3

Adaptive Path Planning for

Depth Constrained Bathymetric

Mapping

3.1 Introduction

Estuaries and tidal bays are valuable resources. They provide shelter from the sea and

are often used as ports. They are also used for the disposal of residential and industrial

waste water and products. The flow of water from tides, run-off and storms can signif-

icantly impact the bathymetry of these areas through the movement of large volumes

of sediment. Anthropomorphic impacts in these areas through land reclamation on the

waters edge, the construction of jetties, drainage impacts from land use change, dams,

break walls and boating traffic impact the flow of water and sediment in these areas

often resulting in large changes to the composition and dynamics of the bathymetry

[92].

Navigational maps are important for the safe passage of recreational and commercial

boating traffic. Traditionally these are created with sonar data collected from sur-

veying vessels. The high cost of conducting these surveys impacts the frequency of

re-surveying [136]. An Autonomous Surface Vessel (ASV) able to conduct these sur-

veys autonomously could significantly reduce this cost and thus enable more frequent
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surveying to occur for a fixed budget due to lower equipment and personnel costs. An

additional benefit arises from the fact that the smaller draught and reduced thrust of

the ASV will allow surveying in shallower waters and create a smaller wake resulting in

less disturbance to the shoreline in sensitive estuarine environments such as mangroves.

To behave in an Autonomous manner in unknown environments requires the ability to

sense and interpret the environment, which requires building a model of the environ-

ment in real time as it is explored, and making decisions based upon projections from

this model. Using a modelling framework which produces uncertainty estimates, such

as Gaussian Process (GP) regression, allows the maps produced to be used knowing

the amount of confidence the model has in its projections across space.

The contributions of this chapter are as follows. A suite of algorithms is developed

to autonomously estimate the bathymetry of bounded area with a minimum depth

constraint. Efficient implementation with incremental Cholesky updates and online

HP estimation is demonstrated with real time operation in the field on an ASV built

for the task. A new method for efficient decomposition of non-convex polygons is

presented, the Discrete Monotone Polygonal Partitioning. Content from this chapter

has been published 1.

The remainder of this Chapter is organised as follows. Section 3.2 presents related

work, reviewing the current state of the art in autonomous route planning. Section 3.3

details the algorithmic suite developed to enable the autonomous bathymetric survey-

ing. Section 3.4 and 3.5 then test these algorithms in simulation and the field. Section

3.6 summarises the work.

3.2 Related Work

Current robotic surveying work often involves pre-planned survey paths which require

prior information on the area to be surveyed and cannot react to information as it

is received [21, 53, 67]. Creating the optimal back and forth path for coverage of

an area whilst staying within the workspace, which is referred to as a lawnmower

path in the robotics literature [43] or an axis parallel solution to the milling problem

1T. Wilson and S. B. Williams, ”Adaptive path planning for depth-constrained bathymetric mapping
with an autonomous surface vessel,” Journal of Field Robotics, vol 00, pp. 1-14, 2017.

27



in computational geometry, has been shown to be related to the Travelling Salesman

Problem (TSP) and thus NP hard in general [4]. By partitioning the complex workspace

into a number of simpler shapes, which can easily be solved, and then joining these

spaces together, it is possible to produce feasible paths for coverage in polynomial time.

The joining together of these cells themselves optimally is also a TSP problem, and

thus approximations must be used here as well for polynomial time solutions.

A polygonal workspace can be spilt into its elemental trapezoids, known as the Trape-

zoidal decomposition [77]. These trapeziods are convex, and thus lawnmower paths

in any direction can cover the space. This method whilst simple to implement, can

result in an excessive number of elemental cells, which can lead to a large number of

inefficient transit paths to join these together. Some of these cells could be merged

back together to create larger elemental convex polygons and then joined. Heuristics

for optimising the orientation of the tracks within each cell can also be implemented

[110]. Alternatively, a sweep direction can be chosen through the polygon, which is then

split into elemental polygons which are monotone to this sweep direction. A polygon

is monotone to a sweep direction if lines orthogonal to this sweep direction cross the

polygon at most twice. This guarantees by construction that these elemental polygons

can be covered by tracks orthogonal to the sweep direction. This also means that all

cells must be covered by tracks in the same orientation. This method was introduced as

the Boustrophedon Cellular Decompostion (BCD), [20]. It results in a smaller number

of elemental cells than even the merged version of the Trapezoidal Decomposition, thus

reducing the number of transit paths between them. This is not guaranteed to reduce

the total transit length, especially if using heuristics to solve the transit paths. Re-

ducing the number of cells is especially important for online implementations given the

optimal solution is NP hard in relation to the number of cells. A graph of the elemen-

tal cells and their neighbours is created during the decomposition, and a simple search

through the graph to the next anti-clockwise cell is conducted to join the cells together.

This approach has been extended to non-polygonal workspaces and non-linear sweep

lines as the Morse Decomposition [2]. The BCD has also been expanded to work online

in unstructured environments [1].

The advantage of adaptively reacting to sensed information has been demonstrated
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[41]. The authors used a chemical sensing threshold based on median differences in a

small moving window compared to a large moving window to trigger a detour from a

coarse survey path into a fine spiral for increasing coverage in areas likely to contain

hydro-thermal vents. Whilst the trigger level was adapted throughout the mission

with both the moving windows and a factor based on percentage of spirals used vs

percentage of mission completed, the absolute level of the trigger was adjusted by a

pre-tuned parameter. It is not clear this parameter would easily be set without extensive

prior surveying and would significantly impact its ability to start spirals in the most

informative regions.

Using sensor data to build and plan within a model in real time offers the potential

for surveying in unknown environments to produce models balancing levels of certainty

and resource use. GPs offer a useful framework to deal with estimation under uncer-

tainty and planning can be conducted on both mean and variance information. There

is a growing literature on planning within GPs, for the problem of sensor placement,

which ignores travel times [73]. Other methods such as Locally Weighted Projection

Regression (LWRP) by [156] could be used. As discussed in [105], this method whilst

potentially faster is more complex to implement and requires manually tuned parame-

ters.

A GP is used to model bathymetry with an Autonomous Underwater Vehicle (AUV)

in [64]. Whilst active planning is implemented based on the model predicted, this

is all conducted offline either between dives or post mission on segments of dives.

The HPs of the GP are optimised once off an initial dive. GPs are fit online, with

HPs optimised off prior data by [144] and [89] to model terrain roughness and light

distribution respectively with a ground vehicle. Greedy adaptive sampling is driven

through a function based on the predicted mean plus uncertainty predictions, adjusted

by a distance function which is useful in situations where maximum values are the

primary interest such as in environmental pollutants. In a simailar vein, Level Set

Estimation uses the mean and uncertainty predictions from a GP to classifiy areas into

above, below or uncertain relative to a desired threshold [51]. This was conducted on

prior data and the HPs were optimised from either a subet or all of the real data.

A GP is modelled to an environmental dataset of 2024 points in a vertical 1D transect of
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Chlorphyll-a measurments in Lake Geneva. From this 10,000 simulated points are cre-

ated, though without any noise re-introduced. These simulated points are then added

either sequentially individually or in batches based on uncertainty and the resulting

prediction performance of classification is compared by both number of samples, and

normalised travel time. It has been shown in [79] that wind fields can be estimated with

a GP and potential paths evaluated on the joint objective of reducing the uncertainty

in the map and retaining enough potential energy to keep a glider aloft. Whilst the HPs

are estimated online, this is done in simulation and the function used highly constrains

the resulting parameters to an area close to a defined prior. Thus whilst GPs have been

implemented online for planning purposes, their HPs are generally learnt off-line and I

am not aware of any studies that demonstrate online learning of HPs in the field.

There have been a number of published studies on the design, development and testing

of small autonomous surface vessels for robotics research in recent years. Twin hull

vessels have the advantage of being relatively stable in roll and have been implemented

by a number of authors [31, 62, 94, 149]. All but the last of which used differential

thrust for increased manoeuvrability, allowing rotation on the spot. Some examples of

larger autonomous surface vessels are the full scale catamaran used for methane sensing

on an inland dam [32], the MIT AutoCat and Kayaks [88], Swordfish [40], Delfim [114]

and the Springer USV [102]. There has also been some commercial development in

ASV’s such as the Wave Glider by Liquid Robotics [60] and the Saildrone [132].

These vehicles are generally underactuated and nonholonomic. This reduced number

of degrees of freedom in their action space requires trade-offs to be made in the control

algorithms. The environments they are deployed in also generally have external forces

in the form of winds and currents acting on the vessel. Station keeping of a vessel

in the presence of external forces has been shown to be possible with thrust control

proportional to distance to target and yaw control using a proportional and integral

controller [94], and a full PID controller has been demonstrated for speed and line

following [61].

In this work it is shown how building a model of the bathymetry and simultaneously

planning within this model allows exploration of the intersection of a depth contour

and a bounding polygon in an unknown environment under uncertainty. The Discrete
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Monotone Polygonal Partitioning algorithm is presented to produce elemental cells that

can be exactly covered by the desired lawnmower path width thus resulting in more

efficient paths than the BCD, and then fit a path through these cells for coverage of

this area to build a model of the bathymetry. Methods for efficient updating of the GP

are implemented to allow online prediction of the bathymetric profile and estimate and

update the HPs as data is collected in real time. This is tested in both in simulation

and in the field with a small low cost ASV built for the purpose.

3.3 Autonomy Suite of Algorithms

The aim of this study is to provide a suite of algorithms to allow an ASV to operate

in an unstructured environment, with minimal prior information, and to autonomously

explore the area and return a map of the bathymetry.

GPs have been chosen to model the bathymetric contours. Initially bivariate splines

were tried as detailed in [30] and implemented in the Fortran routine SURFIT. This

led to large instabilities resulting very quickly at short distances from sampled points.

A zero mean function is set for the GP. This was to both to keep maximum flexibility

by not assuming a parametric model for the mean and simplicity by not introducing

extra parameters to estimate. Specification of a mean function has most impact far from

sampled points when the covariance kernel has little impact. As the algorithm presented

only searches relatively close to currently sampled points this extra complexity would

be unlikely to add much value. The Squared Exponential kernel as defined in Equation

2.5 is used with the same length scale l for both input dimensions (the diagonals of

Σ).

There are three main components to the algorithm. Firstly, the GP which is updated

with data as it is collected by the ASV. For this to run online on a small embedded

CPU care must be taken in how the GP is updated and analytical gradients are used for

efficient estimation of the HPs. Secondly, an algorithm is developed to follow the inter-

section of a bounding polygon and the depth contour as predicted by the GP. Thirdly,

once this has concluded, Discrete Monotone Polygonal Partitioning (DMPP) is pro-

posed as an efficient method to decompose the resultant intersection polygon allowing
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a lawnmower pattern to be planned for coverage which the ASV then follows.

3.3.1 Online Gaussian Process Updates

The main computational load in fitting and predicting from GPs lies in the Cholesky

factorisation of the covariance matrix which is O(n3). When adding data, or predict-

ing m test points, instead of recalculating the entire Cholesky factorisation, the extra

columns and rows related to the new data/test points can be simply calculated, and

then added to the matrix already calculated. This can be done exactly for the case

of additions and approximately for deletions as detailed in [135]. This is applied in

[112] for fitting GPs to sensor data and [105] in using GPs to model control of robotic

joints. Outside of robotics GPs are generally used on a batch of data once it has been

collected. Optimisations in software implementations of GPs focus on sparsifying or

reducing the size of the covariance matrix to reduce computation time on one batch

of data. The author is not aware of any GP packages which implement incremental

data updates and as such this procedure for updating the Cholesky matrix is breifly

described [112].

The positive semi-definite (p.s.d) covariance matrix is K11 and its upper triangular

Cholesky matrix L11. When adding new data points to the end of the covariance

matrix it becomes

K11 K12

KT
12 K22

. The new elements K12, its transpose KT
12 and K22 are

calculated from the new data or test points using Equation 2.5. The resulting Cholesky

Matrix is

S11 S12

0 S22

. For a triangular A backwards substitution can be used to solve

Ax = b, defined as x = A\b. This leads to the following solutions for the elements of

S:

S11 = L11 (3.1)

S12 = LT11\K12 (3.2)

S22 = Chol(K22 − ST12S12) or for d = 1 S22 =
√
K22 (3.3)

where Chol() signifies the Cholesky decomposition and d is the number of dimensions

32



in the inpur space. For m new training/test points this reduces the update step from

O((n+m)3) to the larger of O(n2) or O(m3), due to Equations 3.2 and 3.3 respectively.

The GP is run on its own thread and its covariance and Cholesky matrices are updated

as sonar data arrives using the incremental method described above. When predictions

are required from the GP, the current covariance matrix of training points is taken, the

new covariance for the test points with themselves, K22, and with the training points,

K12, are calculated and then the incremental method is used to update the Cholesky

matrix to solve the GP for y∗. Depending on the amount of data that is collected, there

may still be issues with the size of this matrix. Methods for controlling the size of the

covariance through sparsification are discussed in [123] and the approximate Cholesky

downdate can be used to efficiently achieve this.

The GP also requires determination of its HPs. As stated in Section 2.3, the analytical

gradients calculated in Equations 2.7 - 2.10 are used to maximise the LML of the data

given the parameters. This is run after an initialisation period to collect some data and

then at regular intervals. It is run on a separate thread, and when it returns new HPs

these are then used by the GP. It is important to note that these HPs are used to define

the covariance matrix, and thus when they change, both the covariance matrix and the

Cholesky matrix need to be fully recalculated, before performing any new incremental

data updates or predictions.

3.3.2 Find and Follow the Intersection of a Depth Contour and a

Boundary

The adaptive autonomy of the ASV is provided by the algorithm for finding the desired

depth contour, defined by a target depth zt, and following the intersection of this with

the bounding polygon, which is detailed in Algorithm 1. The depth contour is set at

the maximum of a safe operating depth and a minimum depth of interest for the study.

For a point sensor only sensing directly downwards floating objects such as bouys,

or very steep gradients such as vertical seafloor rises cannot be sensed. The vessel

should be able to both operate safely due to the combination of the bounding polygon

and minimum safe operating depth and obtain the sonar data required to create a

bathymetric map of the area. The bounding polygon will keep the ASV both in an
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Figure 3.1: RoseSolve algorithm. Examples here show the heading resolved based on
differing start points to either follow the minimum depth contour (left), head towards
the minimum depth contour (middle) or leave boundary following to return to contour
following (right) based on target depth of 3.

area of interest and away from obstacles unable to be predicted through modelling of

the bathymetry. Inspired by Bug type algorithms such as DistBug [69], the algorithm

follows the desired depth contour until it hits a boundary. Upon hitting the boundary

it then follows this boundary until it finds the boundary taking it shallower than the

target depth, at which point it leaves the boundary and again begins following the

depth contour. This is continued until a circuit has been completed. A key difference

in this algorithm to the bug algorithms is that it is not aiming for a single goal but

always searching for a desired depth at a distance r, the search radius from the current

position. This search is detailed in Algorithm 2. In addition, the surface upon which the

search is conducted, the GP model of the bathymetry, is changing as data is obtained

and both the HP’s of the model re-estimated and the model re-fit. This model changes

faster in the initial stages when there are small amounts of localised data. This can lead

to the initial path turning back on itself. To counteract this noise, and prevent early

determination of boundary closure, a parameter on the boundary completion test for

loop closure is set to ignore the most recent loopBuffer points. The value of loopBuffer

should be set relative to the expected length of the boundary.

The ASV can only sample depth directly downwards. To find the depth constrained

boundary, from a given staring point not on this boundary, the ASV should follow
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Algorithm 1 Find and follow contour within bounding polygon

1: procedure FFCB(poly, r, zt, loopBuffer, ψadj)
2: mode = Contour, polyDir = ∅
3: repeat at 10Hz
4: Obtain current GP and pose estimate x, y, ψ from separate threads
5: if mode = Contour then
6: ψs, ψe = ψ − ψadj , ψ + ψadj
7: xw, yw = roseSolve(GP, zt, ψ, x, y, r, ψs, ψe)
8: if xw, yw is not in poly then . Crossing boundary
9: mode = Boundary

10: if polyDir = ∅ then
11: Set polyDir to index direction along edge to deeper water

12: Get vertex xw, yw in direction polyDir from edge of poly crossed

13: else
14: Get xw, yw from current vertex in direction polyDir
15: if Distance to xw, yw < r then
16: Get xw, yw from next edge in direction polyDir

17: if Depth predicted at xw, yw < zt then . Leave boundary
18: mode = Contour
19: Set ψs and ψe to the intersection of an arc of radius r centered at x, y

with poly
20: xw, yw = roseSolve(GP, zt, ψ, x, y, r, ψs, ψe)

21: Calculate heading ψd to xw, yw from x, y
22: if boundary or contour has been found then
23: Append x, y to boundaryList

24: Send ψd to heading controller
25: until Boundary overlap greater than loopBuffer
26: return boundaryList

Algorithm 2 Solve for heading to target depth tz

1: procedure roseSolve(GP, zt, ψ, x, y, r, ψs, ψe)
2: Set ψ∗ as a linearly spaced vector from ψs to ψe with 50 increments
3: Predict z∗ at distance r from x, y for headings ψ∗ from GP in a batch
4: for each sequential pair of {z∗, ψ∗} points do
5: Set {ψ̄, z̄} as linearly interpolated based the target depth zt, bounded by the

two ψ∗ headings

6: Set ψd as the ψ̄ with the minimum abs(z̄ − zt), with ties broken by minimum
abs(ψ̄ − ψ)

7: Set xw, yw as the Cartesian coordinates of the ray projected from x, y at ψd for
r

8: return xw, yw
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the contours of the bathymetric predictions from the GP to find the minimum depth

contour and this follow the intersection of this contour with the imposed boundary.

This is achieved by the RoseSolve() algorithm. It searches for the heading leading

to the target depth on the circumference of an arc on the compass rose of radius r

around the current position, as shown in Figure 3.1. Note as discus. Whilst in contour

following mode, this arc is centred around the current heading and bounded by the

start angle, ψs and end angle, ψe. This range, ±ψadj can be chosen to reduce the

search space so computation is not wasted searching where the ASV has just come

from. When exiting boundary following mode, ψs and ψe for the search are set based

on the boundary of the polygon, such that the arc is inside the polygon. Iteratively

querying from a GP is expensive, as discussed in Section 2.3. Thus rather than using

an iterative root finding algorithm such as Muller’s method, the arc is split evenly into

a number of points, queried as a batch and linearly interpolated between the points

with the closest to the target depth. The error from this linear interpolation can be

managed by the number of points chosen and will quickly be smaller than errors in

control, and is reset at each control loop. The best of these solutions is returned with

ties broken based on the distance to the current heading. This behaviour can be seen in

Figure 3.1, where the algorithm is solving for a desired depth of 3. For the position on

the left and near the middle, an arc centered around the current heading is searched,

whilst in the position on the right boundary it can be seen an arc within the boundary

is searched. The depth for all the points on these arcs are queried from the GP, and

then the best segment linearly interpolated to get the solution, indicated by the solid

grey dot. For the positions on the left and right, the algorithm finds the heading which

will lead to the desired depth, whereas the position in the middle returns the heading

which is closest to the desired depth.

Originally this was implemented as a recursive bi-section search on the arc. The com-

putational cost of repeatedly querying the GP for 1 prediction point method led to

implementation of a batch procedure. The number of splits is a design parameter.

With 50 splits, there is a prediction point no more than 1/40π radians apart, which

with a search radius r = 5m equates to test point spacing of approximately 0.4m. The

velocity and sampling frequency on the ASV resulted in spacing of the sampling of

points of around 1m along the path of the vehicle. Thus the combination of this test
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point spacing with linear interpolation, the smooth surface provided by the GP on this

scale given the sampling scale, and the frequency on the control loop speed was found

to be a reasonable compromise for computational load and precision.

A key tunable parameter in this algorithm is the search radius. A number of factors

come into play in the choice of the search radius. The smaller this radius is, the smaller

the area in the GP around the current position of the vessel is searched for the desired

heading. A larger radius will result in a smoother path. This will also result in a larger

tracking error between the desired depth found on this radius, and the depth sensed

directly below the vessel. The expected rate of change of the bathymetry should be

taken into account such that the search radius is set to allow the vessel to follow these

changes. The speed of the vessel and the sampling rate of the sonar should also be

taken into account. As will be shown in the simulated experiments, the algorithms are

robust to sensible choices here.

3.3.3 Discrete Monotone Polygonal Partitioning and Path Genera-

tion

Upon completion of the intersection of the depth contour and the bounding polygon,

a new intersection polygon is created whose boundary has already been sensed and

which now needs to be planned within for coverage. For the purpose of this study the

track width is a design parameter. Similar to the BCD, a method to create elemental

polygons which are monotone to a given sweep direction is implemented. There are

some differences which are have implemented to produce a more optimal path given

the desired path spacing.

Under BCD, a sweep direction is chosen. A line orthogonal to this sweep direction is

traced through the polygon. At any point where the number of crossings of this line

with the polygon changes there is a connectivity event. These events are used to create

the elemental polygons which are monotone to this sweep direction. This can be seen

in Figure 3.2(a), where there are 3 changes in the connectivity count which is used

to create the three elemental polygons (note this is using a horizontal sweep direction

left to right). The union of these three polygons returns the original polygon. These

polygons are then joined in an anti-clockwise order as shown by Figure 3.2(a), with
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Figure 3.2: Comparison of BCD (a,b) with DMPP (c,d,e) showing more efficient cover-
age with DMPP both in terms of number of vertical transects (BCD requiring 1 more
in cells 2 and 3) and distance to join cells.

lawnmower paths then drawn within them as shown by Figure 3.2(b).

The first issue with this partitioning is that the width of these polygons is not necessarily

a multiple of the track width. The result of this can be seen in Figure 3.2(b), where

the last up track in cell 1 is close to the cell boundary. The first vertical tracks in cells

2 and 3 are then closer to this track than the desired spacing which results in longer

total path length and irregular coverage. For the application of a point sensor this

results in some sensed points being closer than required. In the application from [20] of

perfect sensing of a fixed width scanner, this would result in a significant amount of scan

overlap on the cell edges, again a waste of resources. The Discrete Monotone Polygonal

Partitioning(DMPP) method has been developed to explicitly deal with this, which will

be discussed after detailing the other shortcomings of the BCD method.

The second issue with the BCD method is that the transit paths joining the cells are not

optimised. The order of joining is simply conducted through an anti-clockwise search

of the neighbours of the current cell for the first cell that has not yet been covered,

repeated until all cells are covered. It is not until all the transit paths are computed

that the lawnmower path within the cell is computed. This is clearly sub-optimal. As
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can be seen in Figure 3.2(b), lawnmower coverage of cell 1 ends in the top right hand

corner. Clearly the best cell to go to would be the upper right cell. The BCD method

is not aware of this and instructs a transit to the bottom right cell. Which corner

of the cell to join to should also be dependent on which corner of the prior cell was

exited from. The BCD method does not detail how the lawnmower paths within the

cell should be constructed, which in any case are only fit after the order of cell joining is

determined. This second issue is dealt with by calculating the lawnmower path within

the closest cell, then solving an A* search [28] from the exit point of this cell to the

nearest corner of an unexplored cell, and repeating until all cells are covered.

Finally the BCD is designed to handle polygonal objects within its boundary. The

boundary is set up as a simple rectangle. Whilst there is nothing to stop their general

approach being applied to more complex boundaries, they do not mention this case

and how it would be approached. The DMPP algorithm explicitly deals with this

case.

Algorithm 3 details the DMPP. The input parameters for this algorithm are the bound-

ary polygon poly, the desired track width δ and the sweep direction ψsd. By constraining

the sweep direction in the range −π/2 to π/2, without loss off generality, the polygon

can be swept from left to right from the bottom left corner of poly. Lines 4-6 of Algo-

rithm 3 detail this sweeping process of producing a list of crossings of a line orthogonal

to the sweep direction with the polygon which is sorted from the bottom. This discrete

stepping is the key difference to a standard polygon sweeping algorithm which would

sweep in continuous space. This discrete list naturally handles cusp points. These only

have an impact when they result in a change in the number of connectivity events on

one of the discrete sweep lines. Multiple reversing cusp points occurring between two

sweep lines are ignored, with only their resultant impact on the discrete sweep lines con-

sidered. An example of this can also be seen in Figure 3.2(c) where the sweep lines are

shown, and their corresponding crossing count shown on the top of the Figure.

With this list of crossings, changes from one sweep line to the next are identified,

indicating a connectivity change event. When this happens, open cells are closed in

order from bottom to top, before new cells are opened, again ordered from bottom

to top. The co-ordinates of the individual cell corners created are ordered clockwise
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from the bottom left corner. These 4 points define the first and last track lines in the

cell. The boundary is then followed between point 2 to 3 and point 4 to 1 (as the

other two sides are the track lines), to fully define the elemental cell, completing the

DMPP.

Algorithm 3 Discrete Monotone Polygonal Partitioning (DMPP)

1: procedure DMPP(poly, δ, ψd)
2: Set angle of the line ψl to ψd + π/2
3: Set x, y to the minimum values of poly in the x and y directions
4: while x or y inside poly do
5: Project ray from x, y at angle ψl, append sorted list of crossings to
sweepCrossings

6: Adjust x, y in direction ψd by δ

7: for each list of crossing points in sweepCrossings do
8: if there is a change in the number of crossing compared to the prior list

then
9: if there are open cells then

10: for each pair of crossing points in the prior list of sweepCrossings
do

11: Set crossing points as closing corners of associated open cell, ap-
pend cell to cells

12: for each pair of crossing points do
13: Open a new cell, set crossing points as opening corners

14: for each cell in cells do
15: Add additional required points on the edges without track lines to trace the

boundary poly

16: return cells

A path for coverage through the space is now generated. The cell corners returned from

DMPP are shrunk towards the inside of the polygon by δ at a direction orthogonal to

ψd. This gives the corners which are spaced at the desired distance away from the

boundary already traced in Algorithm 1.

The transit path from the current position is then calculated, which is assumed to be on

or inside the polygon, to the closest corner of this list of adjusted corners. This is done

in 2 steps. Firstly the euclidean distance between all corners and the current position

is calculated. The shortest path is then found, and checked to confirm it is inside the

polygon. If so, the best solution has been found and a series of way points is generated

spaced δ apart between the start and end points and set this as the transit path. This

allows transit paths between adjoining cells to be quickly found before resorting to more

computationally intensive searches. If it is not, a series of A* searches are conducted,
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using the euclidean distance as a heuristic, from the current position to all the corners

in the list of adjusted corners. The shortest length path is found and set as the transit

path and appended to the lawnmower path. The cell transited to is popped from this

list and the position of the entry corner is recorded.

Within this current cell a lawnmower path is created by ray tracing lines orthogonal

to the sweep direction, at a spacing of δ, starting at the entry corner position. These

resultant line segments are shrunk by δ from the cell boundary, waypoints created

on them δ apart, and joined together. Once lawnmower path for the current cell is

created, the transit path loop is again run to find the path to the next nearest cell and

continued until all cells are covered. At which point the final path for coverage of the

entire polygon is returned.

It can be proved with modular arithmetic that when planning coverage through DMPP

vs. BCD, the combined path returned has less than or equal to the number of track

lines orthogonal to the sweep direction. The following four terms are defined to aid in

the proof.

NDMPP = Wp div δ

RDMPP = ΣsD (WsD mod δ)

NBCD = ΣsB (WsB div δ)

RBCD = ΣsB (WsB mod δ)

where NDMPP , NBCD are the number of tracklines orthogonal to the sweep direction

due to the DMPP and BCD respectively,RDMPP , RBCD are the sums of the remainders

for each method, Wp is the width of the polygon at its widest point in the given

sweep direction, WsD and WsB are the width of the polygon of the current segment

in direction ψd for the DMPP and BCD methods respectively, where the segement is

defined by connectivity events in the relevant scheme and following [52] A div B =

bA/Bc, A mod B = A−BbA/Bc where b.c is the floor function.

Since DMPP by definition creates cells which are a multiple of the track width δ,
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RDMPP = 0. BCD on the other hand does not consider δ when discretising the cells.

Thus RBCD ≥ 0, and in any realistic scenario in the field RBCD > 0. If RBCD ≥ δ

then BCD will create additional track lines over and above DMPP. Thus:

NDMPP ≤ NBCD with equality iff RBCD < δ

There are then the additional inefficiencies in the BCD method which does not search

for the most efficient way to join the cells and decides how to join the cells before

knowing where the paths exit and enter them. For even the simple example shown in

Figure 3.2 the BCD method results in total within cell path 6% longer and transit paths

98% longer for a total path which is 11% longer than the DMPP and path generation

algorithm. An example for a more complex polygon can be seen in Figure 3.3. Unlike

the BCD in which the union of the cells is the polygon, in the DMPP there are spaces

between the cells. These are designed such that the track lines are exactly upon these

edges and thus even coverage is achieved as desired. This has the additional advantage

that joining adjacent elemental cells is not required as they will be covered efficiently.

This can be seen in Figure 3.3 where the two cells on the bottom left could be combined

into one cell, but it would make no difference in the planned path.
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Path
Transit
Cell

Figure 3.3: DMPP and path generation. A more complex example showing how sep-
aration between adjacent cell boundaries (white space) allows both perfect alignment
of desired track spacing and how it handles additional splits without problems in track
length spacing.

Whilst this is a greedy method in that it is only ever looking ahead one cell, it is superior
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to the BCD, which naively takes the nearest anti-clockwise cell regardless of transit

distance. The resultant path length could be improved at the expense of computation

time by a deeper search, though an exhaustive search would quickly become infeasible

as the number of cells grows due to the NP nature of the problem. The sweep direction

could also be optimised, through running a number of potential rotations similar to

the trapezoidal sweep optimisation in [110], though unlike their method, DMPP must

choose the same track line orientation for all cells as they have been created monotone

to the same sweep line orientation. Whilst the DMPP and path fitting algorithms have

only been shown for polygons without holes, as this was the use case, the algorithms

themselves can easily be adapted to this by recursively running the the boundary

following and DMPP algorithms whenever a internal boundary is encountered whilst

following the lawnmower path.

3.4 Simulation

A simulated bathymetry has been created to demonstrate the algorithms presented in

Sections 3.3.2 and 3.3.3. A vessel with perfect localisation, sensing and control is tested

to focus on validating the performance of the coverage algorithm itself. The parameter

settings can be seen in Table 3.1. From the start point the vehicle is driven in a circle of

radius 5m for 50s to gain some initialisation points for the GP. After this initialisation,

the HPs are estimated, and then again every 30s.

Simulation Field Trial

Velocity (m/s) 1.0 ≈ 1.0
zt (m) 4.5 4.0
r (m) 2.5, 5.0, 7.5 5.0
δ (m) 10.0 5.0
ψd (rad) 0.0 0.0
HP re-estimation interval (s) 30 30
IMU (Hz) 1 50
GPS (Hz) 1 1
Control Loop (Hz) 1Hz 5Hz

Table 3.1: Parameter settings for simulation and field trials

As can be seen in Figure 3.4(a) the vessel follows the contour gradient it has discovered

by searching on its GP model of the bathymetry and follows south until it arrives at

the target depth. It then turns east and follows this contour until it gets to the western
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boundary at (0,237). At this point it follows the boundary south into deeper water

until this boundary following would take it shallower than the target depth at which

point it turns east again and follows the contour. After another boundary and contour

following section it completes tracing the intersection of the boundary and the depth

contour.
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Figure 3.4: Simulated depth constrained bathymetric mapping. Contour found for 3
different values of r, indicating robustness to value chosen, overlaid on truth bathymetry
in (a), coverage path for r = 5 boundary shown in (b).

The algorithm now moves on to partitioning this intersection and creating a path for

coverage. Figure 3.4 (b) shows the result. The intersection is split into 4 cells. From

the start point the closest cell corner, on the south west, cannot be transited to in a

straight line as this would take it out of the polygon. An A* path is generated to transit

to this point. A lawnmower path is then generated to cover this cell to the west. A
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transit path from the end of this cell is then generated transit to the north west corner

of the next cell, which can be done directly as this stays within the polygon. The lawn

mower path is then generated for this cell and the process repeated for the final 2 cells

until a plan for coverage of the entire space is generated.

The main design parameters for these algorithms are the target depth zt, the path

spacing δ and the search radius r. The target depth should be chosen based on a

combination of the safe operating depth of the vehicle and the depths of interest for

the study. The path spacing should be chosen based on the coverage density desired.

The search radius impacts the operation of the algorithm in a number of ways. A larger

search radius expands the search horizon, though if this is too large it may move the

ASV away from where the model has certainty. As this search radius increases the

ability of the vessel to smoothly follow tight turns in the contour is reduced, and a

tracking error between what is directly under the vehicle compared to the depth at the

planning horizon whilst following a curve is introduced. As such this parameter should

be bounded from above based on an expectation of the minimum radius of curves in

the contours it is following. On the lower range of this variable the planning horizon

should be longer than the distance covered by the vessel between planning points (in

the simulation case this is 1m due to a velocity of 1m/s and a control loop of 1Hz).

Empirical testing has shown the solution to be robust to the choice of r as can be seen

in Figure 3.4 (a) where setting r at 2.5m or 7.5m results in a very similar path to r =

5m.

3.5 Field Tests

To demonstrate the robustness of these algorithms to the noise introduced from un-

certainty in sensing and localisation from operating in the field and the computational

limits imposed by an embedded CPU and real time operation, a small autonomous

surface vessel was built. This can be seen in Figure 3.5. Details of the hardware and

software are given in Appendix A.

The area chosen for this task is a secluded part of the Port Hacking river, to the

south of Sydney, Australia, called Cabbage Tree Basin. This in an interesting area
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Figure 3.5: The Autonomous Surface Vessel built and used for the field trials

for a number of reasons. The Port Hacking river was the first estuary in Australia

closed to commercial fishing in the late 19th century. It is bordered on one side by

a residential area, and on the other by the Royal National Park, which is the second

oldest national park in the world (after Yellowstone), established in 1879. Cabbage

Tree Basin itself is a significant area of heritage value with a long history of Aboriginal

occupation. It was the site of the first marine hatchery in Australia in 1900 and is one

of the earliest described estuarine wetland areas in Australia [157]. The long shallow

entrance to the basin also significantly limits access to recreational boating traffic,

enabling unobstructed operation of the ASV.

A bounding polygon 100-150m wide by 40m high was set, as can be seen by the white

trapezoid in figure 3.6. This area encompassed depths from less than 50cm to 8m. The

parameters used can be seen in Table 3.1. The mission starts at the North-East corner

of the white trapezoid which can be seen in Figure 3.6. The vessel was manually driven

south-west for approximately 10m until it reached a depth of 1m. It was then driven

in an arc for 5s (achieving a quarter of a circle). The GP HPs are estimated from these

initial points, and then again every 30s. The FFCB control loop, Algorithm 1, then

started operation. Figure 3.7 shows some snapshots of the GP model, planning and

path travelled during the mission. In each of the 6 pairs of figures the upper figure

shows the path of the vessel overlaid, at a given point in time, on the bathymetry

estimated by the model, whilst the lower figure shows the confidence of the model at

this time point through the standard deviation (in log scale), with 1 data point per

second. A video showing the evolution of the model as each new data point arrives
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Figure 3.6: Boundary, path planned and contour followed overlaid on satellite image
of survey area for field trial in Cabbage Tree Basin, Port Hacking Estuary, Sydney,
Australia

can also be seen online 2 and a video of the ASV executing part of the mission is also

available 3.

To increase the robustness of the algorithm, in the field trials an exponentially smoothed

average of the current estimated heading was used, with a half life of 5s (equivalent

to the time taken to cross the planning horizon). This was used in contour following

mode to center the search space for the roseSolve() algorithm to smooth out the short

term effects of any environmental forcing on the instantaneous heading.

Figure 3.7(a) shows the path and model immediately after the initialisation period and

first HP estimation. At this point the algorithm does not have a very good model to

work with when trying to follow the contour. Due to this the vessel traces a tight circle

between t=30s and t=37s before continuing to follow the contour south until it hits the

desired depth. It then follows this depth contour south east until it gets to the southern

boundary. This boundary is followed along the bottom edge, up the western side and

partially across the top until this would take it too shallow, as can be seen in Figure

3.7(c), at which point it switches back to contour following mode with the vessel then

following the contour back toward where it first found the contour. This is achieved by

t=396s. The intersection of the depth contour and boundary polygon is now used by

the DMPP and path generation algorithm to plan a path. In this case the intersection

is already a monotone polygon with respect to the sweep direction and thus only 1 cell

2https://youtu.be/G88L7FATtKQ
3https://youtu.be/YH2nymgKXws
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Figure 3.7: Scanned points recorded in field trial overlaid on online GP estimated depth
contours (top) and standard deviations (bottom) at t=30,150,270,396,700 and 1033

was created and a lawnmower path was fit to it. The vessel then followed this path for

coverage. As can be seen from the Figures 3.7(d) to 3.7(f), the standard deviation of

the map within the intersection falls to around 3cm after the coverage task has been

completed at point 1033.

The history of the HPs as they were optimised throughout the mission can be seen

in Figure 3.8. The range of the noise standard deviation σn, whilst it looks large,

is on a different scale and 2 orders of magnitude smaller than the model standard

deviation σf , so is irrelevant in terms of its implications for the control algorithm. The

model standard deviation, relatively quickly stabilizes around 3m to 4m by the 3rd

point. The characteristic length scale estimate (l), slowly decreases as more data is
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Figure 3.8: Iterative Hyper Parameter estimation from field trial
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Figure 3.9: Histogram and estimated kernel density of differences between online pre-
dictions of depth and predictions from GP fit to prior data whilst contour following of
waypoints generated by RoseSolve.

collected, though from the 4th point the estimate is in a range of 16.8 to 27.9m. The

final estimated HPs in the contour following phase are σf = 4.07m, l = 18.45m and

σn = 0.103m.

The level of the prior uncertainty and thus the asymptotic level that is approached as

the ASV moves away from observed data points is controlled by σf , whilst σn is the

estimated noise. Neither of these parameters impact the algorithm. Higher noise from

sensors or errors in localisation would show up in an increased σn. The length scale

parameter is the key parameter here as it estimates how far away from a test point to

consider other points. If this were to be solved at a value significantly larger than the

space sampling is conducted in, 1000 for instance, then a flat plane would essentially be

fit through the data points. If it was much smaller then only be using a very local range

of points would be used in prediction. If sampling in an area with rougher bathymetry,
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then it could be expected that a smaller length scale would be required to model this.

No serious issues with instability of the HPs in the field trial or simulation leading to

problems in contour following were experienced. This would be most likely to occur at

the start of the mission with a small number of measurements. If this were to become

an issue, potential solutions would be a longer initialisation period, or to take a more

Bayesian approach and impose prior distributions on the HPs. It can be seen that

with the changes in the HPs throughout the mission, the algorithm showed its ability

to follow an estimated contour, which appears reasonable when compared to the final

estimate of the bathymetry as can be seen in Figure 3.7(f).

To estimate the accuracy of the online contour following algorithms a GP was fit to

3731 data points collected in the area on a number of missions in the 2 hours prior

to the mission shown. Post mission at each point where a sonar reading was taken,

heading that would have been generated by the RoseSolve algorithm given the data

and HPs that were in place at that time is calculated. For each of these headings, the

depth at r is predicted from both the online model and the model generated from prior

data. A histogram of these points overlaid with the estimated kernel density (using a

Gaussian kernel with a bandwidth of 0.05) is shown in Figure 3.9. The mean of these

errors is -0.21m and the standard deviation is 0.23m. This mean bias is likely due

to the fact that the tide was receding and the tidal range that day was 0.74m. The

standard deviation of 0.23m is reasonable given the estimated noise on the prior model

was 0.18m. The largest errors occurred in the north west corner which had the least

coverage in prior data as whilst all missions were conducted in the same boundary,

the final mission pushed slightly outside of that boundary due to increasing winds.

Thus these differences may be due to errors in the prior model rather than the online

model. From these results it can be seen that estimating the HPs and building the GP

online produced a model which was comparable to one produced offline with a larger

set of data. Thus the ability to learn these models and parameters online in unknown

environments with little prior knowledge has been demonstrated in this domain.

On the day of the test there was a moderate breeze from the south east. This resulted

in the vessel straying slightly from the boundary path whilst in boundary following

mode, as can be seen in Figure 3.6, where the path travelled is slightly inside the

50



polygon boundary on the south west corner and slightly outside on the north west

corner. Superior tracking performance in the presence of external forces such as winds

and currents could likely be achieved with a more sophisticated controller than the

proportional controller used on the ASV. Another problem occasionally encountered

in control of the vessel was the presence of floating seaweed becoming tangled in the

propellers, in the worst cases requiring a restart of the mission. Whilst the propellers

do have a cage around them for safety, a finer mesh could perhaps help with deflecting

the seaweed before it becomes entangled around the prop shaft.

The choice of a relatively short range greedy search to decide on the path for the vessel

to take is seen to be justified by the relatively local nature of the information available.

Given the ASV is only sensing directly downwards, there is a limit to how far the model

can confidently project this information. This can be seen by comparing the sequential

plots in Figure 3.7. In Figure 3.7(b) the model believes that the depth starts to rise

about 7m away from the current position, whereas once this area has been sampled,

which can be seen in Figure 3.7(c), it can be seen that it actually stayed constant. If

the ASV had tried to make a plan to follow the whole contour from the data and model

it had at the time of Figure 3.7(b), it would not have achieved the result seen in Figure

3.7(c) by following the contour in a local region.

3.6 Summary

In this Chapter a suite of algorithms for autonomously finding and following the inter-

section of a bathymetric contour and a bounding polygon, and then fitting a path for

coverage within this boundary for the purpose of producing a map of the bathymetry in

an unknown area was presented. A new algorithm for the partitioning of complex polyg-

onal workspaces and the planning of coverage paths within them was developed, which

is more efficient than the BCD method, and explicitly handles the complex boundary

shapes. Computationally efficient methods for the updating of Cholesky matrices used

by the GP were implemented to allow online fitting and prediction of a bathymetric

map, including online optimisation of the HPs of the GP. Code for all algorithms and

the implementation on the ASV are provided on GitHub 4.

4https://zenodo.org/record/47963
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A small autonomous surface vehicle was developed which can test this and other

robotics algorithms and conduct surveys in estuarine water ways. These algorithms

were tesed in simulation and in the field and through these experiments the robustness

of the platform and algorithms to uncertainty introduced by sensor noise and environ-

mental forcing in a dynamic environment combined with the ability to run in real time

on a small embedded system has been demonstrated.
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Chapter 4

Active Sample Selection with

Parametric Heteroscedastic

Gaussian Process Regression

4.1 Introduction

Modelling the structure of random processes is important across a range of disciplines.

In robotics randomness is introduced both through the environments operated within,

as well as through the sensors used to perceive them and the actuators used to interact

with them [3, 142, 148]. If sampling strategies can be adaptively planned from models

built online as data is collected, these sampling strategies can be designed to create

the best possible model of the phenomenon of interest with limited resources. As such

there are two related problems. A model must be selected which can capture the

attributes of the data of interest. It must then be decided how to sample to improve

this model.

The framework of Gaussian Process (GP) regression allows a non-parametric approach

to this modelling. A covariance function, or kernel, is defined which allows the projec-

tion of outputs of both the expectation and uncertainty across the space of potential

inputs based on sampled inputs. Whilst this kernel has parameters itself, called Hyper

Parameters (HPs), these can be learned in a principled manner from the data. The
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standard model for GPs assumes uniform level of noise across the input sapce (Ho-

moscedasticity). There are often fundamental reasons why the process generating the

data of interest has noise which is dependent upon the input dimension [36, 38, 84, 131].

Ignoring this dependence can result in models which are incorrect in their variance pre-

dictions across the input space.

The contributions of this Chapter are as follows. Firstly the fact that prediction noise

should be taken into account in the standard GP model even in the case of Homoscedas-

tic noise is presented. A parametric model for Heteroscedastic noise which allows ana-

lytical gradients of the Log Marginal Likelihood (LML) with respect to the parameters

to be derived facilitating simultaneous optimisation of the kernel and noise HPs in a

single GP model is then described. The fact that using Homoscedastic models with

both stationary and non-stationary kernels in the presence of Heteroscedastic noise

results in predicted variance which has large errors is shown. Two methods to quan-

titatively analyse this are employed. A novel application of Equality of Variance tests

on the normalised errors is implemented and a new measure called the Root Mean

Square Standard Deviation Error (RMSSDE) is proposed. Finally it is shown that un-

der PHGP adaptive sample selection based on Mutual Information outperforms other

methods in the predictive power of the models it produces. Content from this chapter

has been presented as a conference paper 1.

The remainder of this Chapter is organised as follows. Section 4.3 discusses model

noise and predictive variance in GPs, details Heteroscedastic noise and introduces the

PHGP. Section 4.2 presents related work, reviewing literature on heteroscedastic noise

and adaptive sampling. Section 4.4 introduces the simulated environment for arrested

bathymetric fronts and Section 4.5 tests a number of GP models for their ability to fit

this data. Section 4.6 discusses measures which can be used to drive active sampling

decisions. Section 4.7 provides convergence results for PHGP across these methods and

Section 4.8 summarises.

1T. Wilson and S. B. Williams, ”Active sample selection in scalar fields exhibiting non-stationary
noise with parametric heteroscedastic gaussian process regression,” in International Conference on
Robotics and Automation, IEEE, pp. 6455-6462, 2017.
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4.2 Related Work

Heteroscedastic noise processes are widely used in the field of Econometrics with the

Autoregrssive Conditional Heteroscedasticity (ARCH) introduced in [38] and its many

subsequent variants. It has been used to model the relation between pixel intensity and

noise for the purpose of differentiating the cameras used to take the images [145] and to

model the relationship between noise and accumulative irradiation in solar cells [138].

The importance of testing and correcting for Heteroscedasticity in ecological spatial

data has been demonstrated with the abundance of Oribata, or moss mites, exhibiting

spatial Heteroscedasticity [36]. Heteroscedasicity has been found in modelling benthic

macroalgal biomass [84], and is also commonly found in water quality and salinity data

[131], which is the motivating application for this Chapter.

Heteroscedastic noise processes were first used in GPs in [49]. The authors modelled

the noise process with a second GP, and used Markov Chain Monte Carlo (MCMC)

to jointly integrate out the HPs of the model. This fully Bayesian process is quite

computationally demanding. A second GP is similarly used to model the noise process

in [72]. In an Expectations Maximisiation type process, it iterates between estimating

the HPs of the main and noise models until convergence. This can lead to oscillations

and [81] instead propose a variational approach, Variational Heteroscedastic Gaussian

Process (VHGP) regression where they maximise an analytical lower bound on the

maximum likelihood of the parameters given the data at each step. This method is still

quite computationally demanding.

A parametric model is proposed for the noise process and include it in a single GP

model, Parametric Heteroscedastic Gaussian Process (PHGP). The gradients of the

likelihood function w.r.t to the noise parameters in addition to the standard HPs are

derived and thus all the parameters of this single GP model are estimated. This is

compared to two Homoscedastic GP models as well as VHGP. The performance on

a simulated dataset with input dependent noise is examined. All four models show

comparable performance in fitting the mean, whilst only the two Heteroscedastic models

correctly model the variance. Whilst the PHGP and VHGP model are comparable in

predictive performance, the PHGP model does so with significantly less computational

resources.

55



Within the PHGP model an appropriate adaptive sampling strategy must be decided.

Information measures such as Entropy and Mutual Information(MI) are often used to

drive sampling decision as discussed in [73]. Bayesian Optimisation (BO) based on

Upper Confidence Bounds are used by [89] to drive sampling to areas which are more

likely to posses extreme values, which can be of interest in their use case of pollutant

monitoring. BO is compared to sampling based on mean and confidence bound forecasts

in [17]. Fisher Information (FI) can be used to drive sampling decisions by producing

estimates of HP uncertainty. This is applied in [162] on a Homoscedastic Gaussian

process. FI driven sampling is compared to random sampling in terms of convergence

to the known HPs generating the simulation. They do not compare to other Information

theoretic measures, or on the basis of the predictive power of the model.

4.3 Gaussian Processes

The standard model for GPs is discussed in Section 2.3, along with a common stationary

kernel, the Squared Exponential Kernel. Relationships between observations which

change as the input space is traversed can be modelled with a non-stationary kernel,

examples of which can be found in [127].

Augmented Variables have been proposed to introduce non-stationarity into a kernel

in a simple and efficient way [116]. An extra dimension is added to the input space

that is a function of the other input dimensions which induces non-stationarity in the

original dimensions in the model. This is applied with a continuous latent variable in

[64, 146].

There are two important points to note about this standard model. Firstly, the variance

predicted by Equation (2.4) is the noise free prediction. To estimate the expected

uncertainty of sampling at any given point in the sample space, the following should

be used [154]:

Σ̂∗ = K∗∗ −K∗(K + σ2
nI)−1KT

∗ + σ2
nI (4.1)

The second point to note is the form of the noise term which is added to the diagonal
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of the covariance matrix, σ2
nI. The assumption of a constant noise variance makes

this a Homoscedastic regression. In the same way that the relationship between test

locations can vary throughout the input space, thus requiring non-stationary covari-

ance functions, the noise in measurements can also vary throughout the input space.

This case is called Heteroscedastic regression. The general issue with Heteroscedastic

regression is that the analytical solution to the marginal likelihood is no longer simple

and thus estimation of the HPs of this noise variance becomes difficult.

Taking these two points into account the model becomes:

 y

y∗

 ∼ N
0,

K +R K∗

KT
∗ K∗∗ +R∗


 (4.2)

ŷ∗ = K∗(K +R)−1y (4.3)

Σ̂∗ = K∗∗ −K∗(K +R)−1KT
∗ +R∗ (4.4)

where R = R(X) and R∗ = R(X∗) are the input location dependent noise functions for

the observations and predictions.

4.3.1 Heteroscedastic Noise

If the environment is characterised by noise which is independent of input location

then driving planning through Equations (4.1) or (4.4) will give the same results. If

the environment is characterised by Heteroscedastic noise, then the results will be

different.

The first attempt at solving this problem in GPs used a second GP to model the

noise variance (or more specifically its logarithm, to ensure positiveness) and Markov

Chain Monte Carlo(MCMC) in a fully Bayesian approach to integrate out the this

noise variance along with the other parameters of the kernel [49]. A less optimal but

potentially faster technique is to initially model the GP as homoscedastic, then fit

a GP to the errors to model the noise. This is then fed back as the noise model

into a heteroscedastic GP. The errors are again modelled and this process is iterated

until it converges to a process where errors are stationary with respect to the input
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space [72]. This method can be susceptible to oscillations. A variational approach

has been proposed to solve this, whereby an analytically tractable lower bound on the

exact marginal likelihood of the parameters given the data is maximised [81]. All of

these methods are significantly slower than a Homoscedastic GP due to the need to

run multiple GP models and expensive techniques to estimate the parameters of these

models jointly or iteratively.

A GP can be used to model the non-stationary noise R. In this case:

R(X) ∼ N (0, eg(x)) (4.5)

g(X) ∼ GP (µ0,Kg(X,X)) (4.6)

where an exponential function is used to ensure positivity of the variance.

The use of a GP to model non-stationary noise leads to a marginal log likelihood of

the data given the parameters that is not analytically tractable. The VHGP model

[81] provides an approximation to this model that is analytically tractable. In their

model R is a diagonal matrix with [R]ii = e[µ]i−[V ]ii/2, µ = Kg(Λ − 1
2I)1 + µ01, V =

(K−1
g + Λ)−1 and Λ is a diagonal weighting matrix optimised in a conjugate gradient

descent procedure. This leads to:

Σ̂∗ = K∗∗ −K∗K
−1
y KT

∗ + eµ∗+V 2
∗ /2 (4.7)

where µ∗ = Kg∗(Λ− 1
2I)1 + µ01 and V∗ = Kg∗∗ −Kg∗(Kg + Λ−1)−1KT

g∗

This model has HPs for the 2 kernels K and Kg. It also has the diagonal matrix of the

variational weights Λ which has 1 parameter for each data point. Thus in the simplest

case where the squared exponential kernel with a single isotropic length scale lx is used

for both kernels leading to 6 + n HPs. As these variational parameters are tied to

the observation points, there is no easy way to incrementally add data. Whenever new

data is added to the model, the variational parameters must be optimised again.

The use of some prior knowledge of the process generating the distribution can be used

to define a simpler and more computationally efficient parametric model for the noise
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process. The following is proposed:

R = σ2
n1I + σ2

n2diag(D(X)) (4.8)

where σ2
n1 is a constant noise applied across the input space, σ2

n2 is a scaling factor

on the Heteroscedastic noise and diag(D(X)) is a square matrix with the elements

of the vector D(X) on the diagonal. D(X) is a parametric function to represent the

heteroscedastic noise.

In a general setting, the belief that there is a source of noise somewhere in the input

space could be modelled by a Gaussian distribution which diffuses the noise around this

point. This would be represented as the standard multi-variate Gaussian cumulative

density function:

D(X) =
√
det(2πΣ)exp

(
−1

2
(X − P (X))TΣ−1(X − P (X))

)
(4.9)

where Σ is the covariance matrix of the Gaussian distribution, and P (X) is the mean

function specifying the location of the center of the noise across the input dimensions.

Multiple noise point sources could be modelled by a mixture of Gaussians.

In a one dimensional input space where X is the vector x, this collapses to:

D(x) =
1

ld
√

2π
exp

(
−1

2

(
x− µd
ld

)2
)

(4.10)

where µd and ld are the mean and standard deviation of the Gaussian probability

density function.

This allows for efficient estimation of the HPs through gradient descent as the gradients

of the small number of HPs with respect to the LML can be analytically derived.

4.4 Modelling a Salinity Gradient

The motivating problem for this chapter was the modelling of the surface of a salinity

front as it progresses up an estuary with the tide. Where this body of dense salt
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Figure 4.1: Simulated surface salinity. 1D distribution shown in (a), 2D distribution
shown in (b) and (c)

water meets a less dense body of fresh water, a turbulent mixing process ensues as the

salt water flows under the fresh water. There is a mixing layer at the interface and

a turbulent core rotates within the fresh overflow near the front [96]. This physical

process will result in higher noise around the mixing front than on either side where

the salinity and density of the water bodies is more homogenous as can be seen by

the velocity and density isocontours in simulations of gravity-current fronts [56]. Two

simulated environments are created.

Firstly, one input dimension is modelled, representing surface salinity streamwise with

the direction of flow in an estuary. This represents a stationary arrested bathymetric

estuarine front, such as studied in [66]. The mean of this mixing process is modelled

with a deterministic logistic function to which Gaussian noise is added with a standard

deviation of 0.1 evenly across the domain. The use of the logistic function is motivated
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by studies of the salinity change across a river plume in [109]. To approximate the

dependency of noise with distance from the front, Gaussian noise with a standard

deviation of 1 is added to the location of the front which when transformed through

the logistic function results in the source distribution shown in Figure 4.1(a).

Secondly, the surface salinity is modelled in two spatial dimensions. The same distribu-

tion of the salinity across the tidal front as in the first model is used. The cross-stream

location of the front is modelled by a 2nd order polynomial curve. This is motivated by

the Class I bathymetrically arrested fronts as discussed in Section 2.1.1 where incom-

ing tidal dense saline flows plunge under the lighter fresh or brackish estuarine water

resulting in a surface manifestation of the mixing front which follows the shape of the

bathymetry. A time lapse video of this phenomenon at Lilli Pilli Point, on the Port

Hacking River in Sydney, Australia can be seen online 2. This results in the following

weighting function for the Heteroscedastic noise:

D(x1,x2) =
1

ld
√

2π
exp

(
−1

2

(
x1 − p

ld

)2
)

(4.11)

p = p0 + p1x2 + p2x2
2 (4.12)

where p is the location of the midpoint of the logistic function in the x1 dimension

associated with the values contained in x2 and p0, p1, p2 are the polynomial factors up

to degree 2. The streamwise cross section of this curve can be seen in Figure 4.1(a) and

across the 2D surface in Figure 4.1(b) and (c). The Squared Exponential covariance

function from Equation 2.5, with an isotropic length scale (l) is used. The derivatives

of the LML w.r.t the HPs can be analytically derived and are presented in Appendix

B.2.1.

Any other parametric expression could also be used to create the weightings in D.

The key insight here is that by imposing a parametric prior on the noise function,

the time required to estimate the HPs can be significantly reduced, and thus also the

computational and memory requirements in fitting and predicting the GP.

2https://youtu.be/id1YWLujGX8
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1D 2D

Initial Obs 500 10
Planning Obs 100
Test Obs 100 1000
MI X̄ obs 2500
Simulations 500 100
σn1 0.1 0.1
σloc 1 1
Input Space [0,50] [0,0,50,40]
Front Location [25] [[0,5],[25,20],[50,5]]

Table 4.1: Parameters used in one and two dimensional simulations of bathymetrically
arrested tidal fronts.

4.5 Evaluation of Model Fit

The one dimensional simulation is used to compare the models in terms of quality of fit

and computational time required for a batch of data. The simulation parameters used

here and in the later two dimensional simulations are listed in Table 4.1. A test dataset

is created by randomly drawing 500 points in the domain of [0,50] and passing them

through the first simulated environment above. Four models are tested. The HPs of all

4 models are estimated by maximising the likelihood of the data given the parameters.

The first model is a simple GP with a squared exponential kernel (SE GP). Second is

the Augmented Variable model (AV GP) of [116] with an isotropic squared exponential

kernel. The augmented variable is the predicted level from a simple squared exponential

GP. The third model is the Variational Heteroscedastic Gaussian Process (VH GP) of

[81] with a squared exponential kernel used for both the main and noise GPs. The final

model is the Parametric Heteroscedastic GP (PH GP) which uses a squared exponential

kernel and Gaussian weighted noise as described in Equations (4.8) and (4.10).

The mean predictions from all four models are similar, although the Homoscedastic

models SE GP and AV GP perform slightly better as can be seen from Figure 4.2 and

the Root Mean Square Error (RMSE) results in Table 4.2. The models differ largely

in their ability to model the input dependent noise. The Homoscedastic models can

only fit one noise profile across the whole space, as can be seen in Figure 4.2(a) and

4.2(b), and thus overestimate the noise on the side and underestimate it around the

center. In comparison the Heteroscedastic models fit a varying noise profile across the

input space as can be seen in Figure 4.2(c) and 4.2(d). It is important to note that
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Figure 4.2: Model fit (top), normalised errors (bottom) on 500 randomly generated
points from the source distribution in Figure 4.1(a) illustrating Homoscedastic models
(a) SE GP and (b) AV GP underestimate the variance in the center and overestimate
it on either side compared to the Heteroscedastic models (c) VH GP and (d) PH GP

even though all models in this case perform similarly on the mean prediction, the errors

for the Homoscedastic model is significant. It will give a false sense of security in its

predictions around the front, and a lack of confidence in its predictions away from the

front. Decisions often need to be made from models based up on safety margins away

from mean predictions. As discussed in Section 2.1.1, marine organisms have threshold

levels to various water quality measures and thus knowledge of the distribution rather

than just the mean levels is important. Other examples include civil infrastructure

where knowledge of the distribution of potential values allows structures to be build

to withstand extremes. There is no use in a dam which only holds up to an average

rainfall event.
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RMSE RMSSDE Levene Test

SE GP 1.712 1.803 24.86
AV GP 1.700 1.758 21.70
VH GP 1.740 0.963 0.36∗

PH GP 1.735 0.175 0.85∗

Table 4.2: RMSE, RMSSDE and equality of Variance tests on normalised errors pre-
dicted from homoscedastic and heteroscedastic models on simulated sampled from
one dimensional source distribution in Figure 4.1. Statistically significant results at
α = 0.01 level indicated by ∗

As the source distribution is known in this case, Monte Carlo simulation is used to

estimate the distribution of the standard deviation across the input space. This dis-

tribution is sampled 1000 times at each of n = 100 evenly spaced locations across the

input domain and estimate the empirical standard deviation σ̂s(i) at each point. A

new measure called the Root Mean Squared Standard Deviation Error (RMSSDE) is

defined to obtain an estimate of the error in the predicted standard deviation across

the input space as follows:

RMSSDE =

√√√√ 1

n

n∑
i=1

(σ̂s(i)− σ̂p(i))2 (4.13)

where σ̂p(i) is the standard deviation estimate predicted by the GP calculated at the

ith input location. It can be seen from Table 4.2 that the RMSSDE for the first 2

models is relatively similar at around 1.75-1.8, whereas for the Heteroscedastic noise

models it is much lower at 0.963 and 0.175 indicating these models provide a much

closer fit of the second moment of the source distribution across the input space.

If the source distribution was not available, there are still tests which can be conducted

to examine the fit of the second moment of the data. The sample dimension is very

densely covered in this example relative to the estimated characteristic length scales

of the kernel. As such the variance predicted by the model is dominated by the noise

variance. A standard GP model would expect the errors between the observations and

the mean predictions to be white noise. In a Heteroscedastic model it is not expected

these errors will be white noise. A quantitative test that could be used even if the

source distribution of the data is unkown would be useful.

Standard gaussian process regression assumes independently and identically distributed
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50 100 250 500

SE GP 0.02 (0.006) 0.07 (0.014) 0.24 (0.055) 1.39 (0.185)
AV GP 0.05 (0.019) 0.17 (0.046) 0.89 (0.186) 5.16 (0.760)
PH GP 0.24 (0.092) 0.53 (0.167) 1.51 (0.443) 4.75 (1.336)
VH GP 1.39 (0.577) 3.26 (1.820) 23.7 (13.67) 138 (89.03)

Table 4.3: Average time (standard deviation) in seconds for SE GP, AV GP, PH GP
and VH GP models to optimise HPs and calculate their kernels for data sets of size 50,
100, 250 and 500 points from 100 simulations

errors which are distributed N (0,Σ). If the errors are divided by the predicted standard

deviation of the model at each point, these normalised errors should be distributed

N (0, 1). This data can now be split into bins spatially, and a test for equality of the

variance of these normalised errors between the bins applied. It can be seen that these

normalised errors appear to be much closer to white noise for the Heteroscedatic models

in Figure 4.2(c) and 4.2(d) than the Homoscedastic models in Figure 4.2(a) and 4.2(b).

The Levene test [14] compares the null hypothesis of equality of variance across all the

bins. In this case the resulting statistic is compared to a standard F table with k-1

and N-k degrees of freedom. The simulated data is divided into 10 bins. The results

of the Levene can be seen in Table 4.2 where only the Heteroscedastic noise models

match the variance of the data which failing to reject the Null hypothesis of equality

of variance at the 1% level with critical value of 2.15.

The computational resources required for the 4 models were tested on 50, 100, 250

and 500 randomly sampled points. Each model was fit 100 times and the average and

standard deviation of the time taken to estimate the HPs and fit the model are shown

in Table 4.3. All processes were run in python on a single thread of a quad core 3.60Ghz

Intel i7-3820 CPU with 16GB Ram. It can be seen from this that fitting the AV GP

model which requires two separate GPs averages about 3.7x slower than the SE GP

across all data sizes. The PH GP model starts out at 15x the SE GP for 50 data points

but this drops to 3.4x by 500 data points, better than the AV GP. The VH GP on the

other hand starts out at 57x the SE GP for 50 data points and grows up to 138x for 500

data points as the load on optimising the 500 variational parameters grows. The large

run time and standard deviation for the VH GP, which increases with the data set,

make it an unlikely candidate for real time adaptive sampling in an embedded CPU,

which is the future direction this work is motivated by.
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(a) (b)

Figure 4.3: Samples paths drawn from the 1D source distribution shown in Figure 4.1
(a), predicted mean and 2 standard deviations bounds for SE GP and PH GP models
(b)

The SE GP and the PH GP model are now compared to examine the model produced

and the potential paths generated for a given set of observations. Using the same noise

characteristics as in the 1D example above, though this time with the domain set at

[0,20] and the front located at [10], 6 sets of 50 observations are drawn evenly spaced

through the domain. This can be seen in Figure 4.3 (a). This is to simulate sampling

across the front 6 times and receiving different observations each time from the same

generating function. Both the standard SE GP and the PH GP have HPs optimised to

this data. The resulting mean and ±2σ bounds of the resulting models can be seen in

Figure 4.3 (b).

With these HPs, 4, 7 and 10 observations are now drawn from the same generating

distribution. Figure 4.4 shows the resulting GP mean and 2 standard deviation bounds

that result from these observations as well as overlaying 4 possible realisations of the

process which could have generated these points under the two models. As seen in

Figure 4.2, the SE GP model fits a flat noise across the domain, whereas the PH GP

model fits a higher noise in around the front. The possible paths show another aspect

of this. It can be seen in the SE GP paths in Figure 4.4 (a)-(c) that the paths show

a similar level of noise throughout the sample space due as would be expected from

a standard Weiner process. The PH GP model in comparison shows much smoother

paths away from the front, whilst increasing in noise around the front.

In summary, for data that exhibits Heteroscedastic noise, Homoscedastic models may
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(a) SE GP 4 obs (b) SE GP 7 obs (c) SE GP 10 obs

(d) PH GP 4 obs (e) PH GP 7 obs (f) PH GP 10 obs

Figure 4.4: Possible paths overlaid on observations, mean and 2 standard deviation
bounds for SE GP and PH GP models with HPs optimised from training set in Figure
4.3 for 4, 7 and 10 observations

be adequate for modelling the mean of the distribution but they fail in modelling

the distribution of the variance across the input space. As producing a model of the

uncertainty is a key benefit of Gaussian Processes, if it is suspected that the data may

exhibit this property, then a model should be chosen which can cater to this. This can

be handled flexibly with VHGP. If prior knowledge can allow the noise to be modelled

with a parametric function, both the complexity of the model and the computational

resources required can be reduced. Higher instability was seen in the models resulting

from fitting the VHGP, likely due to the excessive flexibility in the model which has

more HPs than data points. It was also noted that the resulting kernel HPs in the

VHGP model were highly dependent on the initial values given, even with a very

similar resulting model. This was possibly due to the flexibility in the model provided

by the variational weight parameters. This leads to the issues that compared to the

other 3 models examined, the values of the kernel parameters in the VHGP cannot be

used to describe the behaviour of the data, as it is only when combined with the vary

large number of variational weight parameters that they have any meaning. Finally the

VHGP does not allow for easy addition of new observations or transfer of the model

to a new data set as the variational weights are tied to the observations in the model
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and re-optimisation of HPs to calculate the new variational weights must be conducted

in both cases. This is in contrast to the other models where the data relationships are

controlled solely by a small number of HPs which can be used directly on additional

data, or a new data set, without running a new gradient descent optimisation of the

LML w.r.t the HPs.

4.6 Adaptive Sampling Theory

One key benefit of GPs is that they provide both mean and variance information.

The expected variance Σ̂∗ at a test point X∗, given the samples X, and the HPs θ,

is based on the location of that point. Two measures which use this information to

drive sampling decisions and one which instead considers the uncertainty in the HPs

themselves will now be discussed.

4.6.1 Entropy

Entropy provides a measure of information content. In the context of GPs the entropy

of locations in the input space can be calculated from the predicted variance. The

differential entropy in d dimensions is:

H(X∗|X, θ) =
1

2
log|Σ̂∗|+

d

2
(log2πe)) (4.14)

adaptive sampling decisions are then made according to:

XE
∗ = arg max

X∗⊂X̄
H(X∗|X, θ) (4.15)

where X̄ is the set of potential sampling points.

4.6.2 Mutual Information

An alternative measure is based on MI [73]. The authors use the following greedy

approximation:
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XMI
∗ = arg max

X∗⊂X̄
H(X∗|X)−H(X∗|X̄\X+) (4.16)

where X+ = X∪X∗ and for simplicity of exposition it is assumed the potential sampling

points X̄ are also the locations at wish it is desired to predict. By taking account of

the areas at which there is interest to predict, predictive power is concentrated in these

areas. Whilst this method does not explicitly deal with uncertainty in the HPs, as

discussed in [73], MI is robust to HP uncertainty.

4.6.3 Fisher Information

A key flaw with entropy and MI as normally used is they do not take into account

uncertainty in the HPs. Generally θ is not known, only its estimate, θ̂. The Fisher

Information (FI) matrix measures the information the observations give about the

parameter estimates. Its elements are defined as [91]:

[F (X+, θ̂)]ij =
1

2
tr

(
K−1
R+

∂KR+

∂θ̂i
K−1
R+

∂KR+

∂θ̂j

)
(4.17)

where tr(.) is the trace operator, KR+ = K(X+, X+) + R and the partial derivatives

are those derived in Appendix B.2.1, taking into account the potential sample point.

Its inverse gives the Cramér Rao inequality:

Σθ̂(X+, θ̂) ≥ F (X+, θ̂)
−1 (4.18)

which is an asymptotic lower bound on the variance of the parameters. It has been

shown empirically in [170] that this asymptotic bound is a reasonable predictor of the

ranking of actual parameter variance in small samples. The Fisher Information matrix

has been used in a number of ways to guide sample selection. The trace of its inverse

is used in [162] which considers the sum of the variances, whilst the determinant used

in [168] also considers the covariances and leads to the following metric.

XFI
∗ = arg max

X∗⊂X̄
ln|F (X+, θ̂)| (4.19)
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Figure 4.5: Model fit (a) and comparison information measures from which the maxi-
mum points should be sampled (b) for 10 points (top), 80 points (bottom) drawn from
distribution in Figure 4.1(a).

The effect of these information measures on samples drawn from the one dimensional

distribution shown in Figure 4.1(a) can be seen in Figure 4.5. Two sets of samples

with 10 and 80 points are chosen to highlight some of the typical differences observed.

It can be seen that in the top sub-figure, Entropy has a maximum near the center of

the distribution, which is where its estimate of the front lies. It also has some lower

peaks located in the spaces between observations. FI also shows a maximum in the

center on the top sub-figure, though with some peaks located near other observations,

as this can help in determining the HPs related to noise. Both of these measures quickly

converge to a maximum near their estimate of the center of the heteroscedastic noise,

as shown in the bottom sub-figure, and then do not sample elsewhere in the space. In

the case of Entropy this is due to the heteroscedastic noise quickly dominating the total

uncertainty. For FI, the HPs relating to the covariance are equally measured across the

input space, whilst those relating to the location of the front require sampling near the

estimate of the front. The combination of these is thus dominated by input locations

near the front estimate. This leads to issues of both poor predictive performance away

from the front and the potential of becoming stuck in local maximums if the estimate

of the front location is wrong. An animation of this across a larger number of timesteps

can also be seen online 3.

In comparison, MI initially has local maxima away from the estimated front location,

as can be seen in the top sub-figure. After this area is sampled, the maximum MI tends

3urlhttps://youtu.be/zR4abnICCjM
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to move around the whole input space, though with a bias towards sampling in the area

around the front. An example of this is seen in the bottom sub-figure. This behaviour

is further examined in the next section on a two dimensional example.

4.7 Adaptive Sampling Results

Numerical simulations are now run to show the impact of adaptive sampling with these

different measures on the predictive power of the model. Adaptive sampling is tested

based on the following methods: Random, Entropy, MI, and FI. The two dimensional

simulation of an arrested bathymetric front shown in Figure 4.1(b) and (c) is used.

For all the methods except random planning, the relevant measure at a number of points

at each time step is evaluated to decide which points to sample. To cover the input

space with a uniform discretisation, especially as the dimensionality of the problem

increases, becomes computationally expensive. It may also be beneficial to sample with

non-uniform spacing as discussed w.r.t. FI in [170]. In relation to the PHGP model,

some parts of the input space have more relevance for HP uncertainty than others, i.e.

around the heteroscedastic noise center. Instead of a uniform discretisation, standard

techniques in Monte Carlo numerical integration are followed and 100 independently

and identically distributed points are randomly drawn at each step to be evaluated,

from which one is chosen for each model. These are drawn from a uniform distribution

across the input space and thus all locations are equally likely to be sampled. This

allows each model over the course of each simulation to choose the spacing required

between the sampling locations that best optimises its measure as detailed in Equations

(4.15), (4.16) and (4.19).

Note for the MI models the X̄ points are evenly distributed across the dimensions of the

input space. To handle sampling points X+ which are offset from the grid locations of

these uniformly discretised X̄ points, in evaluating X̄\X+, the X+ points are rounded

to the nearest X̄ location.

For computational expediency, whilst the HPs are optimised and the models evaluated

at every step for the choice of the next sampling location, RMSE and RMSSDE are

tested only every 5 steps, at which 1000 random points are drawn from a uniform
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Figure 4.6: Convergence results from 100 simulations as the number of observations
increase with Random sampling compared to adaptive sampling based on sequentially
choosing the points which maximise Entropy, Mutual Information or Fisher Information
for the mean (top) and standard deviation (bottom) of RMSE (left) and RMSSDE
(right)

distribution across the input space against which each model’s predictive power is

evaluated. The results averaged across 100 simulations can be seen in Figure 4.6 with

the mean in the top half and the standard deviation on the bottom.

It can be seen that planning based purely on Fisher Information does poorly in terms

of the predictive power of the first two moments of the distribution across the input

space. Random, Entropy and MI all do much better. MI clearly outperforms on both

measures being around equal with Entropy for the first half and then outperforming

in the second half. The reasons for this can be seen in Figure 4.7 which shows the

sampling locations for one simulation for each of the 4 methods at 3 points in time,

after 100, 200 and all adaptively sampled points and associated predicted standard

deviation. As expected random sampling relatively evenly covers the entire space. MI

based sampling also results in the lowest standard deviation across the simulations.

This is important as it gives confidence that the mean results shown in the top half

of Figure 4.6 will actually be achieved when conducted in the field. FI in comparison,

is only driven by sampling at points to reduce the uncertainty in the HPs, as can be
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Figure 4.7: Sample locations (black dots) for one run for the first 100 (top), 200 (middle)
and all (bottom) samples for different adaptive sampling methods. Source location of
front indicated by the blue line, predicted standard deviation as surface plot.

seen in Figure 4.7(b). Under PHGP the locations which are most relevant to reducing

HP uncertainty are those relating to the location of the heteroscedastic noise and thus

sampling is focused around the area that will help the current estimate. This leads

to two problems. Firstly points away from the current estimate of the front are not

sampled resulting in poor predictive performance there, as can be seen by the predicted

standard deviation. Secondly, if the estimate of the location of the front is wrong, the

model can get stuck in a local minimum and not find the correct location.

Entropy based sampling initially explores the input space relatively evenly until it

produces a compact estimate of the heteroscedastic noise. Once achieved, this noise

overpowers the uncertainty from the kernel due to sparsity of observations and sampling

is very tightly focused around the estimate of the front location. This can be seen by

the sample points close to the blue line in Figure 4.7(c). Note also in the bottom

panel of Figure 4.7(c) that there is an arc of points further across from the true mean

where the model converged on some incorrect parameters for the location of the front

for a while. Whilst sampling directly on the middle of the predicted front will help in

optimising the HPs relating to the location of the front m, it doesn’t particularly help

in evaluating the width of the noise around the front as determined by l2d and σ2
n2. This

can be seen in the top panel of 4.7(c) where even with the tight sampling around the

front, the noise estimate is not tight around the front (compared for instance with the

top panel in 4.7(d)) as the model has been unable to correctly estimate the width of

the heteroscedastic noise. By sampling so locally to the predicted front location it also
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can get caught in a local maximum around an incorrect estimate, though the wider

initial sampling than FI helps to counter this.

From the sampling locations shown in Figure 4.7(d), it can be seen why MI outperforms

the other methods in its predictive performance. As with entropy it initially samples

widely across the input space. The uncertainty due to the heteroscedastic noise which

overpowers sample selection in Entropy is tempered in MI as it occurs in both the first

and second component of Equation (4.16). Sampling is biased around the estimate of

the location of the front, but not as closely as in pure Entropy driven sampling. This

aids in estimating l2d and σ2
n2, as can be seen in the standard deviation prediction in

the top panel of Figure 4.7(d). In addition, as it is not sampling as close to its current

estimate, it can be seen can see in the bottom panel of Figure 4.7(d), MI based sampling

continues to place some points away from the front, thus improving predictive power

here. An animation of this process can also be seen online 4.

4.8 Summary

It has been shown in this chapter that when modelling processes exhibiting non-

stationary noise, Heteroscedastic GPs provide superior predictions. A standard Ho-

moscedastic GP with a stationary covariance function and the addition of Augmented

Variables were shown to be able to match the mean but not the variance of these

distributions.

Heteroscedastic GPs were shown in simulation to be able to model the mean and the

standard deviation of a simulated salinity gradient across the input space. Equality of

variance tests were applied in a novel manner on the normalised errors showing they

converged to white noise only in the case of the Heteroscedastic models. Additionally a

new measure, the Root Mean Square Standard Deviation Error (RMSSDE) was defined

and used to show that only the Heteroscedastic models converged towards the spatial

distribution of the variance predicted from the source distribution.

By placing a parametric prior on the distribution of the noise function it is possible

to jointly estimate the HPs for a simple kernel and the noise function simultaneously.

4https://youtu.be/lwyaeyZOR-M
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This compares to the Variational Heteroscedastic GP which whilst able to be jointly

estimated, required a second GP for the noise and a diagonal matrix of variational

parameters with one entry for each observation. The proposed parametric model was

shown to match the predictive performance of this more complicated model with lower

computational resources. The small number of parameters of the model also allows

their influence to be directly understood whereas the VHGP model kernel parameters

can be offset by the variational parameters and thus have no direct interpretation.

The kernel parameters of PHGP allow new data to be added or the parameters to be

applied to a new data set directly, whilst VHGP requires re-optimisation of the HPs to

calculate the variational parameters.

Numerical simulations are presented which show MI driven sample selection under

PHGP is superior to Entropy, FI or Random sampling. It is shown to provide conver-

gence to lower levels of error in the estimates of the first and second moments of the

the distribution of interest. This is due to MI driven sampling covering the input space

with a bias towards the areas of higher noise. In the next Chapter this work is extended

to path planning with holonomic constraints and model dynamic salinity fronts.
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Chapter 5

Adaptive Path Planning to

Model a Dynamic Estuarine

Tidal Front

5.1 Introduction

In Chapter 4 the problem of efficiently sampling within a scalar field exhibiting input

location dependent noise was examined. The scalar field in question was assumed to

be stationary, representing the surface salinity observed in a bathymetrically arrested

Tidal Front as discussed in [66] and shown in Figure 2.3 (a). This is now extended

to deal with a scalar field where the noise process is dependent on a location that

slowly moves with time. This type of process would be observed in the surface salinity

manifestations of a Class II tidal front as discussed in [76, 139] and shown in Figure 2.3

(b). The analysis from sample selection is also extended to online path planning for a

holonomically constrained simulated Autonomous Surface Vessel, such as that used in

Chapter 3.

The contributions of this chapter are as follows. The work in the previous chapter

on Parametric Heteroscedastic Gaussian Processes is extended to handle a moving

uncertainty front. Path planning with holonomic constraints is applied under this model

and Entropy, Mutual Information (MI) and Random path planning are compared on
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the accuracy of the first and second moments of the models produced. An adjustment

to MI is suggested to reduce the dimensionality introduced by the time domain. It

is shown how defining a parametric mean function, the parameters of which are fit

online jointly with the kernel HPs, increases both the speed of computation and the

accuracy of models produced. Analytical derivatives of the Log Marginal Likelihoods

are derived to enable the use of fast gradient descent solvers. A number of path depths

are compared to show the trade-offs between exploiting the current best model and

re-optimising the model.

This chapter proceeds as follows. Section 5.2 presents related work in the areas of

spatio-temporal GPs and path planning. Section 5.3 discusses GPs, the spatio-temporal

kernel and mean functions to be used and provides analytical expressions for the LML

gradients of this model. Section 5.4 briefly outlines the information theoretic measures

which will be used to evaluate paths for path planning. Experiments on simulated

moving salinity fronts are presented in Section 5.5. Section 5.6 provides a summary of

the Chapter.

5.2 Related Work

Moving processes can be handled under GPs by modelling time in addition to spatial

dimensions. The creation of valid spatio-temporal stationary covariance kernels is dis-

cussed in [22]. A separable covariance function with a drift term is used in [79] to model

moving wind fields and in [90] to model a simulated moving hotspot. Both separable

and non-separable non-stationary covariance kernels are used in [140] and non-separable

non-stationary covariance kernels in [45] for sample selection in environmental moni-

toring. Whilst non-separable kernels theoretically allow for more complex relationships

between the spatial and temporal dimensions [22], to do so requires additional complex-

ity and does not neccesarily result in more accurate predictions. Analysis in [140] com-

paring combinations of stationary/non-stationary and separable/non-separable kernels

on two experiments found varying results in terms of RMSE, though in both tests the

simpler stationary non-separable kernel converged to the best results either equalling

or outperforming the more complex and computationally demanding kernels.
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Unlike the sample selection problem in which the submodularity of Entropy and MI

can be relied upon to provide guarantees on the optimality of a greedy strategy for

planning [73], moving to path planning where successive sample points are restricted

by the sampling frequency of the sensors and the holonomic constraints on the platform

can lead to a greedy strategy becoming trapped in local minima. Integrating the value

of longer paths allows the planner to escape from these minima. It has been shown

in [104] that deeper planning can produce more optimal outcomes. The HP’s of the

model are learned as sampling progresses, which dictates the information of a given

path. Thus planning horizon depth is a trade off between escaping local minima and

planning under an incorrect model. Note that finding the optimal path is NP-hard.

For online implementation we can only expect to find an approximate solution.

Rapidly-exploring Random Trees (RRT) are a sampling based method where a tree is

randomly grown from the start position until a path is found to the goal [78]. The

path can also be grown from both ends. Probabilistically it is guaranteed to eventually

find a path if one exists as the sample space is filled [74], with an exponential rate of

decay in the probability of failure as the sample size increases [42]. RRT* is introduced

as an asymptotically optimal variant, further enhancing the theoretical support [70].

This is shown to easily incorporate ordinary differential constraints of the vehicle in

planning.

Potential methods for path creation such as Rapidly-exploring Information Gathering

(RIG) [63] and forms of MCTS such as implemented by [79, 104] which generate paths

from discrete distributions could also be used. The MCTS results in computational

complexity which is exponential relative to the depth examined. This exponential cost

is countered in [79] by evaluating the paths at each depth and only propagating the

highest ranked paths. This provides no guarantee that optimal paths are not pruned

early. The early pruning of paths they use to reduce the search space can also inhibit the

ability of the planner to produce paths which escape local minima by pruning initially

suboptimal plans. It does not appear these methods scale to real time planning in

the field. The example implementation of RIG in the field of an ASV relied on offline

planning then uploaded to the vehicle with an aggressive pruning strategy consuming

1 minute of planning time. These methods also require iterative querying of the GP,
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and thus for the same computational budget are unlikely to be able to sample as

densely.

Pure random walks can be used for each planning cycle allowing a relatively large

number of paths generated in continuous space to be evaluated quickly [103]. A pure

random walk is probabilistically complete, in that it is guaranteed to cover the search

space within the horizon as the number of paths increases. At each step a heading

change is drawn from a uniform distribution within the turn rate limits, and a new

sampling position is chosen by progressing at a constant velocity for the time step

determined by the sampling frequency, constrained such that the heading chosen does

not take the path outside the mission boundary. As the potential paths can be generated

independently of their evaluation, the GP can be queried as a batch. As the control

actions are chosen from a continuous space, the paths are not restricted to a discretised

set of control actions or sampling locations as in Monte Carlo Tree Search (MCTS)

algorithms. In this study, potential paths to a given horizon are generated by a pure

random walk considering holonomic constraints and a boundary area.

5.3 Gaussian Processes

5.3.1 Time Dependent Heteroscedastic Noise

The general framework for Gaussian Processes was outlined in Section 2.3 and extended

to the case of Heteroscedastic noise in Section 4.3.1. A 2D front was modelled with

the noise across the front (streamwise) in the x1 dimension approximated by a Gaus-

sian distribution and the center of this Gaussian in the x2 dimension (cross-stream)

approximated by a 2nd degree polynomial, as shown in Figure 4.1. Time was ignored

as it was assumed this process was stationary. Extending the results to a moving front

with constant velocity, the following parametric noise function D(x) is proposed:

D(x1,x2, t) =
1

ld
√

2π
exp

(
−1

2

(
x1 − p

ld

)2
)

(5.1)

p = pdtt + p0 + p1x2 + p2x2
2 (5.2)
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where p is the location of the midpoint of the noise in the x1 dimension associated

with the values contained in x2 and t, pdt is the drift w.r.t t and p0, p1, p2 are the

polynomial factors up to degree 2.

5.3.2 Mean Functions

The framework for GPs easily handles mean functions. These are often implemented as

zero [79, 89, 140], and sometimes without even mentioning this is being done [9, 11, 64,

144, 164]. Prediction close to observed points is dominated by the covariance function,

so in cases of high density of data and prediction close to these observations relative to

the estimated length scales, use of a mean function will have little impact. Prediction

further away from observations, and/or in case of low observation density reverts to the

mean function, which if set at zero may result in large prediction errors. In cases where

the GPs are only being used to produce uncertainty information, for instance to drive

planning in [11], it may seem that since the predicted covariance function as shown in

Equation 2.4 does not depend on the mean function, this assumption would have no

impact. This will only hold in the case of known HPs. If the HPs are to be estimated

from the data, then the use of a different mean function may impact the HPs which

are estimated. It is shown in Appendix B.2.2, that the observations adjusted by the

mean function, yadj, explicitly appear in the Log Marginal Likelihood function, which

is maximized to determine the HPs which are most likely for the chosen model given

the data.

This leaves the question of how to choose a functional form for the mean function. If

some prior knowledge of a parametric mean function which may suit the data can be

applied, this can be included in the LML functions and its parameters can be fit along

with the HPs in the model.

It is known that downstream of the tidal front salinity should be high and upstream

it should be lower. Using this knowledge it is proposed to model the mean of this

transition with a logistic function to the x1 dimension. The midpoint of this function

is the associated with the midpoint of the noise function, as driven by the underlying

physical processes. This will reduce the number of parameters to estimate in the model

and allows the optimisation of these parameters to use both the level and noise of the

80



Y observations. The location of this midpoint in the x2 dimension is thus determined

by the same polynomial function as in the noise process, i.e Equation 5.2. The adjusted

salinity value defined by the Logistic Polynomial mean function is:

m =

(
a+

b

(1 + e−f(p−x1))

)
(5.3)

where a, b and f define the minimum value, range and slope of the logistic function.

The predicted mean from the adjusted model is:

ŷ∗ = K∗K
−1
y yadj + m (5.4)

where yadj = y−m. The derivatives of the LML w.r.t the HPs of this model can again

be analytically derived and are presented in Appendix B.2.2.

This can be demonstrated in a simple 1D example with homoscedastic noise where

p is just a scalar representing the midpoint of the logistic function as seen in Figure

5.1. Samples are drawn from a logistic function with homoscedastic noise. Figure 5.1

(a) shows a standard homoscedastic GP with a squared exponential kernel with HPs

optimised by maximising the Log Marginal Likelihood fit to 10 observations. This

displays a number of issues. With the mean function set to zero, movement away

from the data to either side results in the predicted mean value Ŷ tending to zero.

The uncertainty also expands to a very large number as shown by the ±2σ bands as

the learned σf is large. This also leads to large uncertainties within the range of the

data where there are some spaces between the data points. This last characteristic of

the model can be addressed with increased data as seen in Figure 5.1 (d). There are

still issues with the predicted mean reverting to zero outside the prediction area and

the large uncertainty bounds here. Figure 5.1 (b) shows the adjusted data after the

mean function has been removed (in this case the exact source function is used). In

the next section, LML gradients are provided so this can be jointly optimised, and the

resulting predicted mean and ±2σ bands. Figure 5.1 (c) shows the resulting predictions

with the mean function added back in. It can be seen that with the addition of the

mean function the model no longer reverts to zero outside the predicted area and also
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(a) Zero Mean (b) Adjusted observations (c) Logistic mean

(d) Zero Mean (e) Adjusted observations (f) Logistic mean

Figure 5.1: Simple 1D example of the impact of a mean function on GP predicted mean
and variance for 10 (a,b,c) and 50 (d,e,f) sample points drawn from a logistic function
with homosecdastic noise. This shows the impact of using a mean function with the
zero mean model (left) requiring more observations to accurately predict near observed
points and still reverting to the arbitrary level of zero with wide uncertainty away from
them due to the short length scale learnt.

the large increase in predicted variance disappears. The less well the mean function

matches the data, the more work the GP has to do in fitting the adjusted observations.

It can also be seen that the model fits the data very will with even the 10 data points

as after the mean function was taken out, the resulting adjusted observations produced

a much simpler surface. An animation of this figure can also be seen online 1.

5.4 Adaptive Path Planning

Metrics for comparing the informativeness of potential sampling points were presented

in Section 4.6. The greedy approximation to MI presented by [73] required discretisation

of the sampling space for the calculation of X̄\X+. As the input dimensions increase

the curse of dimensionality presents itself. It is proposed to calculate this only for

coverage in the spatial domain. As the phenomenon of interest is moving, the location

of the observed points is adjusted relative to this front. Thus X+ = Xadj ∪X∗ where

1https://youtu.be/VHouvMOa9Cs
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Initial Obs 15
Planning Obs 1000
Test Obs 1000
Random Paths 100
MI X̄ obs 2500
Simulations 25
σn1 (g/Kg) 0.1
σloc (m) 1
∆t (s) 1
Front Velocity (m/s) 0.05
Input Space (m) [0,0,100,40]
Front Location (m) [[0,5],[25,20],[50,5]]
Start position (m) [15,20]
Start Heading (rad) 0
Turn Limit (rad/s) π/2
ASV Velocity (m/s) 1.0

Table 5.1: Parameter settings for simulation of dynamic tidal front and ASV dynamics

the previously sampled locations are adjusted in the x1 dimension by the estimated

drift pdt multiplied by the time difference between the observation time and the current

period.

5.5 Experiments

The ability to produce an accurate model of a moving scalar process under the PHGP

model is now tested using a simulation of the surface salinity of a moving tidal front.

Similar to the simulation used in Chapter 4, a front is defined in two spatial dimensions

with heteroscedastic noise centered around the front. In this case a front velocity

parameter is also defined to simulate a slowly moving Class II tidal front as discussed

in Chapter 2 and detailed in Figure 2.3 (b). The parameters of the simulation are listed

in Table 5.1.

5.5.1 Impact of Mean Function

The impact of using the Logistic Polynomial Mean Function as described in Section

5.3.2 is now tested. As in Chapter 4, the Root Mean Square Error (RMSE) and Root

Mean Squared Standard Deviation Error (RMSSDE) are used to estimate accuracy

of the models in predicting the first 2 moment of the source distribution. A set of
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(a) Mean

(b) Standard Deviation

Figure 5.2: Simulated dynamic tidal front distribution of salinity. Mean (a) and stan-
dard deviation (b) overlaid with example paths, start point, initial scan and distance
front has moved over the initial window

1000 random points are drawn from a uniform distribution across the 2 spatial and

1 time dimensions. The mean and standard deviation of these points are estimated

from the source distribution, and these are compared to the predictions for the model.

A random sample of 1000 observations in batches of 20 are drawn. After each re-

sample, two PHGP models are fit, one with zero mean and the other with the Logistic

Polynomial mean function with 10 restarts on the optimisation with the initial HPs

drawn from the distributions shown in Appendix B, Table B.1. After the first step,

one of these restarts will be seeded with the results from the previous optimisation.

The GPs are then fit and the time taken for optimisation and fitting in both models,

and the predictive power of the generated models in terms of RMSE and RMSSDE for
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1000 randomly drawn points across the 2 spatial and 1 time dimensions is calculated.

The results of this can be seen in Figure 5.3. Fitting time between the two models is

relatively similar, the large difference in time is due to the HP optimisation. It can be

seen that including the mean function, even though it introduces 3 more parameters,

reduces the average time required to converge on a result. It also results in a lower

standard deviation in the time. This is due to the mean and noise process using the

same polynomial function parameters, which allows information from both the signal

and the noise of the observations to drive the HP optimisation. It can also be seen

that using the mean function also significantly reduces the RMSE and RMSSDE, and

in the case of the RMSSDE also results in a much lower standard deviation of this

value. One of the main reasons for this is that the GP with the mean function learns a

longer characteristic length scale in the spatial dimension lx. This allows information

from the sampled data points to be projected over a larger area which improves the

predictive performance. It also does not suffer from mean predictions reverting to an

arbitrary zero as test points move away from sampled areas.

5.5.2 Path Planning Results

Whilst planning for sample selection is interesting, of greater relevance to sampling

strategies for moving platforms is to analyse path planning taking into account the

holonomic constraints in terms of velocities and turn rates. An ASV similar to that

used in Chapter 3 is simulated. As such a velocity of 1m/s and limit the tun rate to π/2

rad/s is set. Sampling is conducted at 1Hz and the other relevant parameters defining

the environment are shown in Table 5.1, and the salinity distribution i shown in Figure

5.2. An animation of the simulated tidal front can also be seen online 2. The ASV is

driven in a straight line for 15s from the starting position across the front to gather

some initial data points, as shown in Figure 5.2. The HPs are then optimised and the

GP model fit.

A set of 100 random paths are generated by sampling a heading change uniformly

within the turn rate limits specified in Table 5.1 at each time step ∆t and applying

these to a vehicle moving at the constant velocity of 1m/s. These random paths are

2https://youtu.be/MiPZ8Aa7oR4
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Figure 5.3: Comparison from 25 simulations of sequential sample selection in batches
of 20 points for PHGP model on moving front for zero mean vs logistic mean function
in terms of optimisation + fitting time (top), RMSE (middle) RMSSDE (bottom).

then evaluated by Entropy and MI as discussed in Section 5.4, the best path under each

metric is chosen for the given model and one is randomly chosen for the random model.

Three planning horizons of 10, 20 and 50s are tested. In each scenario the full path is

followed and samples collected after which the HPs are re-optimised, model refit and

path re-planned. Additionally for the horizon of 20 steps, the PHGP zero mean model

is analysed. The majority of the time required to run these simulations comes from the

HP optimisation step. Multiple random starts are implemented in the HP optimisation

to help avoid converging on local minimums. The assumptions made in setting these

random starting values are discussed in Appendix B. To keep the computational load
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Mean Function Horizon Steps Opt Restarts Adaptive Obs Simulations

Zero 20 50 10 1000 50
Logistic Polynomial 10 100 5 1000 50
Logistic Polynomial 20 50 10 1000 50
Logistic Polynomial 50 20 25 1000 50

Table 5.2: Path planning depth and model variations tested in simulation

Mean Function Method Horizon RMSE RMSSDE

Zero Entropy 20 9.50 (4.16) 6.73 (5.11)
Zero MI 20 6.86 (3.66) 3.76 (2.57)
Zero Random 20 10.39 (2.83) 9.07 (5.25)

Logistic Polynomial Entropy 10 2.33 (4.48) 2.79 (5.33)
Logistic Polynomial MI 10 1.30 (1.75) 1.22 (1.89)
Logistic Polynomial Random 10 2.75 (3.06) 1.67 (1.73)

Logistic Polynomial Entropy 20 2.30 (2.53) 2.21 (1.79)
Logistic Polynomial MI 20 1.42 (1.13) 1.00 (1.00)
Logistic Polynomial Random 20 2.71 (2.66) 1.62 (1.65)

Logistic Polynomial Entropy 50 1.47 (1.21) 1.27 (1.08)
Logistic Polynomial MI 50 2.14 (2.27) 1.65 (2.61)
Logistic Polynomial Random 50 3.89 (3.32) 2.64 (2.93)

Table 5.3: End of mission prediction errors, Mean (Standard Deviation), for RMSE
and RMSSDE from 50 simulations for varying planning horizons and path evaluation
methods.

relatively constant and allow the differing scenarios to have the same number of HP

optimisation restarts across the mission the number of optimisation restarts for the

different planning horizons is adjusted as shown in Table 5.2.

Table 5.3 shows the prediction errors after all samples have been collected in a mission

comparing planning horizon, planning method and the mean function used. It is clear

that the zero mean model with a horizon of 20 steps performs poorly in prediction of

both RMSE and RMSSDE across all planning methods. Thus is was not further tested

at other planning horizons due to this poor performance combined with the much longer

computational time required. Under the logistic polynomial mean model, random path

selection performs poorly for RMSE, though is competitive in RMSSDE for some hori-

zons. MI for the 20 step horizon arguably produces the best predictions across RMSE

and RMSSDE, with lower standard deviations than the 10 step MI scenario. Entropy

over 50 steps also performs to a similar level.

Examining the evolution of these values across the mission time in Figures 5.4 and 5.5

it becomes clear that the predictions from the models produced through MI planning
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with the 20 step horizon are the most stable. The 50 step horizon entropy model which

from Table 5.3 produced competitive results, show a large jump in standard deviation

of both RMSE and RMSSDE around 600-800 samples, whilst the Horizon 20 MI driven

model converges smoothly in both mean and standard deviation from a few hundred

samples. The standard deviation of the results is important as whilst these results

are aggregated over 50 simulations, the objective is to develop algorithms which can

be deployed in the field producing accurate models from a single mission. The large

standard deviation shown in the Entropy driven planning missions could lead to poor

results when conducted in field tests which may be expensive to conduct.

For the longer Horizon of 50 steps the MI driven model likely performs worse than

in the shorter horizons as it wastes time exploring an incorrect model. Whereas the

Entropy model performs better the longer 50 step horizon, a larger number of points are

sampled before the model is refit resulting in more samples away from the front before

front following behaviour dominates. This allows a more accurate estimation of the

parameters relating to the mean function away from the front. Whilst this might work

for this simulation, it would be dangerous to rely on the exploration of an incorrect

model to provide adequate sampling away from the peak of the heteroscedastic noise in

general and could easily break in another application. MI based planning would thus

be expected to be a more robust exploration method.

(a) Horizon 10 (b) Horizon 20 (c) Horizon 50

Figure 5.4: Comparison of mean and standard deviations of errors in RMSE under
the Logistic Polynomial Mean model across planning horizon and adaptive planning
criteria.

Analysis of a representative run for each of these methods for the 20 step horizon is

shown in Figure 5.6. An animation can be seen online which also shows the predicted
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(a) Horizon 10 (b) Horizon 20 (c) Horizon 50

Figure 5.5: Comparison of mean and standard deviations of errors in RMSSDE under
the Logistic Polynomial Mean model across planning horizon and adaptive planning
criteria.

Figure 5.6: Example paths for the Logistic Polynomial Mean model with a planning
horizon of 20 comparing Entropy, MI and Random path selection. Streamwise position
shown relative to true front position to show spatial coverage of space relative to the
front. Time indicated with shading of path.

standard deviation and the path vs the moving front 3. The input space has been

adjusted in the streamwise direction relative to the position of the tidal front at each

time step. The colour of the path is graded with time, becoming dark as time progresses.

Here it can be seen that under the entropy measure, the model relatively quickly finds

the front and explores exclusively around it. This leads to a lack of observations in

the area away from the front which impacts predictive power there. This may explain

the poor performance of the Entropy measure on small horizons as it quickly finds the

front and conducts little sampling away from it. This lack of breadth of coverage away

from the front also explains the jumps in standard deviation seen in Figures 5.4 and

5.5 as this leads to a lack of diversity of samples resulting in unstable HP optimisation

solutions. Random planning as expected wanders around the space with no direction.

3https://youtu.be/8YvU-QkCdVo
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MI on the other hand relatively evenly covers the entire space, with slightly more

coverage around the areas of the front. This agrees with the findings in Chapter 4 for

a stationary front with sample selection.

The evolution of the mean values of the HPs for the 20 step planning horizon is shown

in Figure 5.7. It can be seen that for the MI driven planning, the solved HP values tend

to settle down by around 500 observations. This is not the case with the Entropy based

planning which can have some large changes near the end of the period. This is due to

the fact that the entropy based planning quickly focuses on sampling very near to the

heteroscedastic noise. The resulting lack of samples away from the front can lead to

instability in these HP values which are calculated from data points very close to the

estimated center of the front. Instability in the HP estimates then leads to the large

changes in model predictions which explains the jumps seen for MI based planning in

the standard deviation of the RMSE and RMSSDE in figures 5.4 and 5.5.

5.6 Summary

In this chapter the work from Chapter 4 on Parametric Heteroscedastic Gaussian Pro-

cesses has been extended to moving processes. A new kernel and its gradients are

presented allowing fast optimisation of HPs with a gradient based solver. It has been

shown how the use of a mean function in a GP can significantly increase the predictive

power of the model and with the mean function sharing parameters with the kernel re-

duce the time required for HP optimisation. Adaptive planning is extended from sample

selection to path planning on a simulated ASV and a number of planning horizons are

compared in simulation of the surface salinity of a moving tidal front.

It has been shown that using MI to drive path selection produces the most accurate

predictions of the first two moments of the simulated moving salinity field by sampling

relatively evenly across the front, though the planning horizon must be set frequently

enough, 20 steps in this case, to avoid spending resources minimising predicted MI on

a model with incorrect HPs.
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Figure 5.7: Mean HP evolution as number of observations increases under Entropy,
Mutual Information and random planning for all 13 HPs from 50 Simulations for 20
step planning horizon for the logistic polynomial mean function PHGP
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Chapter 6

Conclusion

The purpose of this thesis is to address problems which arise in using autonomous

vehicles explore and collect data. To return the most useful data from a mission given

limited time constraints these vehicles should be analysing the data they receive in

real time and making planning or sampling decisions online in regards to the most

informative samples to collect. Algorithms must be designed and implemented which

can operate in real time with limited computational resources.

Two specific applications are considered. Firstly, this thesis examines the problem of

planning for coverage to conduct bathymetric surveying in an unknown environment

subject to minimum depth constraints and a bounding area. Secondly, this thesis

addresses issues in planning sampling to model the surface salinity profile of a dynamic

tidal front in an estuary. Whilst the focus is on Autonomous Surface Vessels, the

issues which arise and solutions provided have applications to wider areas of robotic

exploration and statistical modelling in general.

6.1 Summary of Contributions

6.1.1 Discrete Monotone Polygonal Partitioning

In planning for coverage, efficient methods are required to plan within a bounding

region. Chapter 3 introduces Discrete Monotone Polygonal Partitioning (DMPP). This

algorithm is an extension to the Boustrophedon Cellular Decomposition (BCD) [20].
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Given a desired scanning path spacing and sweep direction, this algorithm allows a

bounding non-convex polygon to be efficiently partitioned into cells which are monotone

to that sweep direction. The resulting path length planned through these cells are

shown to be shorter than that produced by the BCD. This is achieved by reducing the

path overlap on adjacent polygons and planning coverage within each cell and transits

between cells sequentially cell by cell.

6.1.2 Autonomous Depth Bounded Bathymetric Modelling

In Chapter 3 a suite of algorithms was presented to efficiently produce a full coverage

bathymetric survey within a defined non-convex polygon whilst also subject to mini-

mum depth constraint. With limited prior information it is shown in simulation and in

the field that this implementation can in real time find and follow the intersection of

a boundary and a bathymetric contour modelled as a Gaussian Process (GP). A path

for coverage is planned using DMPP within the traced boundary and the batyhmetry

is modelled. The Hyper Parameters (HPs) of the GP are optimised online. This is

demonstrated both in simulation and on a platform built for the task in the field. In-

cremental Cholesky updates are implemented to allow fast fitting and prediction from

the GP online as new data is collected. Analytical gradients of the Log Marginal Like-

lihood (LML) of the covariance kernel are used to enable fast estimation of the HPs

with gradient descent solvers. Multi-threading is utilised to allow real time operation

with control, planning and HP optimisation run on independent threads.

6.1.3 Parametric Heteroscedastic Gaussian Process regression

Standard GP regression assumes a noise process which is distributed uniformly across

the input space. This assumption is not necessarily valid in all circumstances. It would

be expected in the case of the turbulent interface between fluids of differring densities,

as shown in [120] for this noise to be location dependent. Variational Heteroscedastic

Gaussian Process regression addresses this problem by specifically modelling this noise

as its own GP. It is shown how this method does not scale well with increasing data as

the number of parameters grows with the number of observations and discuss how it is

also not amenable to an incremental modelling approach as these variational parameters
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are not transferable to new data points. In Chapter 4 it was proposed to model the

noise as a parametric process, Parametric Heteroscedastic Gaussian Process regression

(PHGP). Comparable performance was shown in terms of the first and second moments

of the predicted distribution with lower computational cost and allowing incremental

implementation.

6.1.4 Mean Functions in GPs

A GP is fully defined by its mean and covariance function. Generally the mean func-

tion is set at zero, sometimes explicitly, though often implicitly without discussion. In

Chapter 5 it is shown that using a mean function can allow improved predictive perfor-

mance. It is relatively obvious this will result in improved predictive performance with

movement away from observed points as the prediction will now revert to the mean

function rather than to the arbitrarily set zero value. It can also result in increasing

the range of the predictive power of the observed points through increasing the length

scale learnt in the covariance kernel due to the mean adjusted observations being more

related to each other. The HPs of these mean functions can be learnt with the HPs of

the covariance kernel and it is shown that this can actually result in faster HP optimi-

sation. This is likely due to the simpler relationship between the observations once the

mean is removed.

6.1.5 Active Sampling and Path Planning of Tidal Fronts

Covariance kernels are presented for modelling both bathymetrically arrested (Chapter

4) and moving (Chapter 5) tidal fronts. Analytical gradients to the LMLs are derived

allowing efficient optimisation of the HPs. A number of information theoretic measures

are implemented under these kernels for active sampling and active path planning. In

Chapter 4 it is shown that Mutual Information (MI) is the optimal metric for planning

for sample selection of a bathymetrically arrested tidal front modelled with PHGP to

produce the model with the best predictive accuracy in terms of the first and second

moments of the distribution. In Chapter 5 a moving tidal front is examined. Holonom-

ically constrained pure random walks are generated to a given horizon and information

theoretic measured used to decide the the most informative path segment. A number

94



of different planning horizons are also compared. To enable efficient application of MI

with this extra time dimension an amendment is proposed whereby sampling locations

are only considered in the spatial domain and prior observations for this purpose are

considered in a space relative to their position to the estimate of the front.

6.2 Future Work

6.2.1 Field Work

The work on adaptive depth constrained bathymetric mapping in Chapter 3 was im-

plemented on an ASV in the field. The work on tidal fronts presented in Chapters 4

and 5 was intended to study the phenomenon shown in Figure 2.4. Unfortunately it

was decided that the platform which was intended to use for the purpose, a Clearpath

Robotics Kingfisher ASV required redesign to allow it to be used. The vessel is only

designed for use in fresh water and the technical staff decided that the connections

for cables into the box were not rated highly enough to safely withstand exposure to

small surface chop in saline environments. This is currently under way but the time

frame for its completion did not allow it to be used for this thesis. As future work it

would be interesting to implement the algorithms presented in Chapters 4 and 5 in the

field.

6.2.2 Scalability

GPs in their standard from are known to suffer scalability issues. The main constraint

is the size of the covariance matrix. Some measures were implemented to combat

this in Chapter 3 in the form of incremental Cholesky matricies, batch prediction and

multi-threaded HP optimisation. However there will still be issues as the size of the

covariance matrix continues to grow. Implementing Chapters 4 and 5 in the field

may encounter these issue depending on the sampling frequency of the sensor and the

mission time. The solutions to this involve either sparseifying this covariance matrix

[23] or reducing the number of points kept in the matrix. A simple way to do this

is with a moving window [155]. This however throws away information which may

be useful. A more principled approach would be to use representative points that
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summarise the information in the real data such as that proposed in [59]. In Chapter

5 the most computationally intensive part of the algorithms is the optimisation of the

HPs. Whilst for real time implementation this can be run in a separate thread as done

in Chapter 3, and thus not impede the real time control and planning loops, it would be

useful to examine methods to reduce the computational burden of this step. It would

be interesting to investigate when HP optimisation should be conducted and/or how

many random restarts should be used. The optimisation takes longer with more data

points, but this also coincides with increased mission time when more optimisations

have already been run and the HP optimisation may already be close to optimal. Local

measures of HP uncertainty such as Fisher Information or analysis of the changes in

HPs over the mission could potentially be used as a heuristics to control the amount

of computational resources devoted to HP optimisation.

6.2.3 Hyper Parameter Uncertainty

As briefly discussed in Section 6.2.2 with reference to scalabiltiy, HP uncertainty is

something to consider. In Chapter 4 the effect of using Fisher Information was analysed,

which represents the local uncertainty of the HPs as a metric for active sampling. It

was shown this was not useful in producing models with high predictive accuracy. An

interesting avenue for future research is to combine a measure of HP uncertainty into

the measure of kernel uncertainty. A linearised version of this has been used in [170]

for sample selection based on the work in [57], though no analysis was done showing its

performance against other measures. Some preliminary work was done for this thesis

on the simulations in Chapter 4. Whilst in 1D some positive results were found, in 2D

the magnitude of the effect on total uncertainty from parameter uncertainty quickly

became negligible as the number of observations grew. It is suspected this may be due

to the loss of information in the linearisation but further research is required.

6.2.4 Incorporating Other Sensors

The modelling of tidal fronts in Chapters 4 and 5 focused on surface salinity. It would

be interesting to use more information to assist in modelling this phenomenon. For

instance for a bathymetrically arrested tidal front, the surface, and subsurface mani-

96



festations are in part driven by the bathymetry itself. Thus sonar readings could be

used to build a model of the bathymetry and use this information to help build a model

of the salinity front. An Acoustic Doppler Current Profiler (ADCP) could be used to

measure the currents or densities as various depths below the surface to build a 3D

spatial model of the front. Finally it would also be interesting to include an Underwa-

ter Autonomous Vehicle (UAV) and jointly plan and sample the salinity on the surface

and underwater.

6.2.5 Parametric Heteroscedastic Noise Functions

This thesis presented one main version of a parametric form for heteroscedastic noise.

This was Gaussian weighted in one dimension. When extended to two spatial dimen-

sions a polynomial was fit to model the mean of this Gaussian in the second spatial

dimension, which was also then extended to a moving front by adding a drift term with

constant velocity to this polynomial. For Longer time frames, a constant drift would

not be appropriate. In the case of diurnal tides, it may be useful to model the velocity

of this front with a periodic function such as a sine wave. In a different application the

heteroscedastic noise associated with a point source of turbulence could be modelled by

a Gaussian function in 2 spatial dimensions. The parametric noise itself may exhibit

perodicity and hence be usefully modelled as a sinewave. A simple linear relation may

be appropriate in some domains. For instance the linear relation between pixel inten-

sity and noise has been used in [145] to differentiate camera models whilst [138] show

a linear relation between noise in and accumulative irradiation in solar cells. Thus the

framework of approximating the Heteroscedastic noise with a parametric function has

wider uses than the application examined in this thesis. Use of these parametric func-

tions if appropriately chosen produces computational efficiencies over the more general

variational methods whilst also enabling the noise model to be simply applied to new

data.
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Appendix A

Development of a Small

Autonomous Surface Vessel

This Appendix describes a small low cost Autonomous Surface Vessel (ASV) which

was developed for Chapter 3 of this thesis. This craft has the advantage of being able

to conduct estuarine surveys for lower cost than manual surveys and is also able to

access shallower areas and with less disturbance than a larger vehicle due to reduced

displacement and thrust. It has the advantage of being easy to deploy allowing rapid

of testing of algorithms in real world environments. Being on the surface allows high

bandwidth electronic communications to be maintained with the vessel, and access to

a Global Navigation Satellite Systems (GNSS) for localisation facilitates algorithmic

development and computational resources to focus on other tasks such as planning.

Working on the sea-air interface it can also act as a useful bridge with underwater

vehicles.

A.1 Hardware

The Autonomous Surface Vessel (ASV) is a twin hull differential thrust design. The

vessel has a footprint of 1.2m x 0.85m and in its current set up weighs approximately

10kg. The twin hulls are made of medium density Polyurethane foam with a resin

coating. The hulls are joined by 2 aluminium crossbars. There are 2 waterproof elec-

tronics enclosures, one mounted in each hull. One box contains the batteries, battery
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Figure A.1: Autonomous Surface Vessel

controller and leak sensor. The rest of the electronics are in the other box, as can be

seen in Fig. A.2. Propulsion is provided by 2 Seabotix BTD150 thrusters each able to

continuously output 21.5 N of force, at 19V and drawing 4.25A. Each of these thrusters

is controlled by a Pololu 18v7 simple motor controller, which can handle 24V at 7A. An

ADLN2000PC from Embedded solutions which contains an Intel Atom N2600 1.6Ghz

dual core processor with 2GB RAM provides computational capabilities. A VN-100

Rugged IMU from VectorNav Technologies provides attitude, velocity and acceleration

data at 50Hz, and a Flex-pac G6 GPS from Novatel provides localisation capability at

1Hz. An Airmar D800 Single Beam Sonar running at 1Hz with a 12◦ beam width pro-

vides bathymetric sensing capability. Power is supplied via an Ocean server BBDC-02R

dual battery controller connected to 2 BA-95HC 6.6Ah Li-Ion battery packs providing

6hrs of operational time. The 12 volt output is used to power the GPS, Single Beam

Sonar and the thrusters (thus they are not able to reach their maximum designed out-

put) via the motor controllers utilising pulse width modulation (PWM), with the 5V

output powering the other electronics. The battery controller also relays information on

battery status and temperature over a serial port to the CPU in the main box. There

is a leak sensor in each box, and a temperature sensor in the main box connected to an

Arduino Nano which relays this information to the main CPU. A USB Wi-Fi dongle

is used at close range to interface with the CPU. Long range manual control and data

transfer is provided by an XBee Pro 2.4GHz RF module with an external aerial, with

a similar XBee module attached to a laptop on-shore.
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Figure A.2: ASV layout

A.2 Software

A.2.1 ROS

The framework used for the code running the ASV is Robot Operating System (ROS)

Indigo [122], installed on Ubuntu(14.04). ROS inherently supports multi-process op-

eration with a single launch file initiating the various modules called nodes. Commu-

nication between the processes is handled by both a parameter server to read/write

global variables (which can be initiated from the launch file), and a publish/subscribe

messaging system.

The main nodes can be seen in Fig. A.3. The Kalman filter node combines data

Figure A.3: ROS nodes, messages and data flow
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Figure A.4: Graphical User Interface on remote machine

from individual threads reading data from the IMU and the GPS and publishes a pose.

There are individual nodes for publishing battery data, Sonar data and leak and internal

temperature data. The Navigation module subscribes to the pose and sonar messages

and reads mission settings from the parameter server. It publishes steering and thrust

information for autonomous control. The RosToSerial node subscribes to all published

data broadcasts a subset of it over the XBee network for monitoring purposes on the

remote machine. It also listens to the XBee network, publishes a heartbeat and any

manual controls given and sets a flag in the parameter server setting the motor state to

manual or autonomous control. The motor controller node subscribes to both steering

and thrust data published by both the navigation module for autonomous control and

the RosToSerial node which publishes manual control data. It is overridden by a leak

detected in either box or loss of a heartbeat over the XBee network via the parameter

server. Additionally the motor controllers will switch off power to the thruster after 2

seconds of not receiving any commands.

A separate Graphical User Interface has been written in Python and QT which runs

on a laptop (currently running OSX, but it is platform independent) and interfaces

with the ASV over the Xbee link. This provides both information on the ASV, a map

of the ASV path/way points and manual control of the ASV (see Fig. A.4 for an

example). The ROS processes are launched from the laptop over the WiFi network via

a tmux SSH session to ensure persistence of the processes in the case of Wi-Fi dropout.

Whilst some debugging information is returned over this connection, it is not required

for autonomous or manual operation of the ASV once the processes are started.

101



A.2.2 Heading Control and Sensor Fusion

It was determined that due to the high maneuverability of the vessel in yaw, for the

purposes of this work a simple proportional controller was sufficient for heading control.

This is detailed below:

sd = Kp ∗ δθ/π (A.1)

tp = clamp(t− sd) (A.2)

ts = clamp(t+ sd) (A.3)

where t is percentage average thrust, tp and ts are percentage thrust for the port

and starboard motors respectively, δθ is heading change in radians, sd is the steering

differential,Kp is the proportional gain coefficient and clamp(x) enforces -1 6 x 6

1.

The proportional gain coefficient was set at 6 and the average thrust level set at 75%.

This results in the thrust response shown in Fig. A.5.

A Kalman filter has been implemented to fuse the data coming from the GPS and

the IMU. As per [121], the GPS and IMU data are pre-processed internally on their

respective units and then this data is fed to Kalman filter to fuse it together. The

GPS data arrives at 1Hz, the IMU data at 50hz. With the update rate of the IMU

being significantly higher than the GPS, we have followed the methodology of [121]

Figure A.5: Controller thrust response, Kp = 6, t = 75%
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in updating on the time cycles of the IMU, rather than interpolating between these

when a GPS measurement arrives. A constant acceleration model has been chosen for

the Kalman filter. As such we are estimating position, velocity and acceleration in 3

dimensions, leading to 9 states, X̂ = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈)T .

The Novatel GPS unit publishes variance numbers in real time, which are used as input

to the Kalman filter. The VectorNav IMU does not. The variance of this unit has been

estimated experimentally at σ̂2
i = 0.2m/s2.

Whenever we wish an estimate of the state of the Kalman filter X̂ we run the prediction

step. When a new IMU data point arrives we first run the prediction then the update

step. When a new GPS data point arrives we wait until the next IMU data point arrives

and run the prediction and updates steps for both data at once (using Rig, Zig and

Hig). In addition to the state of the filer we can also return the current uncertainty of

this state from the variable P. The variance of the process is σ2
q . The equations below

are based on those contained in [35, 165].

Prediction Step:

X̂−
t = FtX̂

+
t−1

P−
t = FtP

+
t−1F

T
t +Qt

Update Step:

Kt = P−
t H

T (HP−
t H

T +R)−1

X̂+
t = X̂−

t−1 +K(Z − (HX̂−
t ))

P+
t = (I −KH)P−

t−1
where:

F =


F0 03x3 03x3

03x3 F0 03x3

03x3 03x3 F0

 F0 =


1 dt dt2

0 1 dt

0 0 1



Q =


Q0 03x3 03x3

03x3 Q0 03x3

03x3 03x3 Q0

σ2
q Q0 =


dt5/20 dt4/8 dt3/6

dt4/8 dt3/3 dt2/2

dt3/6 dt2/2 dt


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Hi =


0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

 Hig =



1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1



Ri = I3x3σi Rig = diag(σ2
gx, σ̂

2
i , σ

2
gy, σ̂

2
i , σ

2
gz, σ̂

2
i )

Zi = (ẍ, ÿ, z̈)T Zig = (ẋ, ẍ, ẏ, ÿ, ż, z̈)T
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Appendix B

Hyper Parameter Optimisation

This Appendix presents some information relevant to HPs in as applied in this thesis.

The prior distributions used and bounding constraints used when solving the HPs with

gradient descent are also discussed. The analytical derivatives of the LML w.r.t the

HPs for the heteroscedastic models in Chapters 4 and 5 are presented. These allow

efficient gradient descent algorithms to be implemented.

B.1 Priors

Hyper Parameter (HP) optimisation requires starting values. Choosing these as distri-

butions rather than scalars helps the optimisation cover the potential parameter space

and avoid converging on local minimums. Whilst these prior distributions are purely

for the starting values for the gradient descent optimiser, and thus the results are not

highly sensitive to choices here, starting values in the correct order of magnitude to

the results will result in faster convergence whilst local minimums in the LML surface

could result in some solutions not being found if the entire range of possible values i

snot covered. Gradient based solvers such as L BFGS B [167] also allow hard bounds

to be added. If limits can be set on the bounds of any HPs, implementing this prior

knowledge will increase convergence speed by restricting the optimiser from searching

outside these areas. This can also be a useful way to stop unrealistic solutions which

may occur early in a mission with a small amount of data. Care should be taken to

analyse the resulting HP evolution. If any of the HPs are converging hard on these lim-

105



HP Distribution Parameters bounds

σ2
f exponential 100 [1e−1, 1e4]

lx exponential range(X) [1e−1,∞]
lt exponential max(T) [1e−1,∞]
σ2
n1 exponential 0.01 [1e−8, 0.25]
σ2
n2 exponential 100 [1e−8, 1e4]
ld exponential range(X)/5 [1e−8,∞]
pdt gaussian [0,0.5] [−1, 1]
p0 exponential min(X1)+range(X1)/4 [1e−8, 75]
p1 gaussian [2,1] [1e−8, 5]
p2 exponential.(−1) [1] [−0.5,−1e−4]

a∗ gaussian [min(Y),1] [1e−8, 30]
b∗ gaussian [range(Y),1] [1e−8, 30]
f∗ exponential 1 [1e−8, 100]

Table B.1: Hyper Parameter prior distributions. Exponential distribution have 1 scale
parameter, gaussian distribution has 2 parameters mean and variance. The starting
value for m2 is drawn from an exponential distribution and then multiplied by -1 to
convert it to a negative bounded value. ∗ not used for Zero mean PHGP.

its, especially as the number of observations increases, this could indicate these bounds

have been set too tightly.

The HP prior distributions and boundary values chosen in Chapter 5 and shown in Table

B.1 will now be justified. To keep the number of parameters down the single parameter

exponential distribution is chosen for most HP prior distributions. The scale parameter

of the exponential distribution equals the mean of this distribution as well as controlling

the dispersion. As there is no separate control of the variance of this distribution and

it is bounded between 0 and ∞ this does not work for all the parameters which may

require negative values or mean values away from zero with a tight dispersion around

this value. As such for a number of HPs, a Gaussian distribution which is defined by a

mean and variance is used, and for p2 the negative value of the exponential distribution

is taken to gain a single parameter distribution of negative values. Kernel uncertainty is

controlled by σ2
f , which also controls the uncertainty predicted as the distance between

the prediction point and the observations, divided by the relevant length scales (lx, lt),

increases. The uncertainty from the heteroscedastic noise process is controlled by σ2
n2.

The mean and bounds of these have been set based on observation of prior experiments.

The lower bound of σ2
f is higher than that of σ2

n2 as a value close to zero for σ2
f would

indicate the kernel has no predictive power, whereas for σ2
n2, it would indicate the model

sees no heteroscedastic noise, which should be allowed. The characteristic length scales
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in the spatial and time domains are set by lx and lt. The mean values are set at the

maximum distance that could be seen between points. The upper bound as infinity

reflects no bound in the optimiser as large values in either of these indicate fitting

a flat plane through the data. The lower bounds have been set at 1e − 1 based on

physical bounds of the sensing platform. If the process being sensed requires length

scales smaller than this then it would not be possible to model it accurately with a

platform moving at 1m/s and sensing at 1Hz. The characteristic length scale of the

heteroscedastic noise is represented by ld. This has been given a lower mean value at

20% of the range in the spatial scale as it is expected the noise process will be more

localised. Noise which is evenly distributed across the input space is represented by

σ2
n1. Physically this could manifest itself though inaccuracies in the physical sensor and

localisation. This is upper bounded at 0.25 which equates to a standard deviation of

0.5 on measurements of an underlying process which can range from 0 to 30 g/Kg of

salt for fresh to ocean water. Bounding this value relatively low forces the GP to model

the data not just as noise which can sometime be a problem with a small number of

observations. pdt controls the velocity of the tidal front and its parameters are set in

ranges expected to be seen from physical observations. Again if it were outside the

bounds given the ASV would not be able to follow it. The position of the polynomial

is determined by p0, p1 and p2, and the parameters are again set by the expectations of

possible curves which could be seen. Bounding p2 negative causes the curve to be bent

with the center further to the right than the top and bottom as would be expected on

an incoming tide for a class II tidal front where the tide is flowing from left to right.

The minimum value and range of the logistic mean function, a and b, and are bounded

by the physical water properties and the scale parameter is set by the minimum value

observed. The slope of the curve, f , is bounded both positive to reflect the expectation

of the fresh water being upstream to the right of the sea water as the experiment is

designed. The upper bound and mean were set based on prior experiments. It can

be seen from Figure 5.7 that the bounds chosen were not constraining the average HP

values in that case.
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B.2 Analytical Derivatives of Log Marginal Likelihood

The derivatives for the LML w.r.t the HPs in the GP models in Chapters 4 and 5 can

be calculated analytically. Whilst it can result in a large number of parameters, they

are relatively straight forward to derive and the results are presented here with minimal

working for completeness.

The Log Marginal Likelihood (LML) of the observations y given the sampling locations

X and HPs θ is:

logp(y|X, θ) = −1

2
yadj

TK−1
R yadj −

1

2
log|KR| −

n

2
log2π (B.1)

The partial derivatives of this LML are:

∂

∂θi
logp(y|X, θ) =

1

2
tr

(
(ααT −K−1

R )
∂KR

∂θi

)
(B.2)

where KR = K +R, yadj = y −m and α = K−1yadj.

For each model there is a given mean, kernel and noise function, leading to a different

set of partial derivatives. The squared exponential function is used for the kernel in

both cases:

K(X,X∗) = σ2
fexp

(
−1

2
||X,X∗||TΣ−1||X,X∗||

)
(B.3)

where Σ is a diagonal matrix populated by the square of the characteristic length scale

on each input dimension.

B.2.1 Stationary Logistic Polynomial Heteroscedastic Noise Gaussian

Process with Zero Mean

The analytical derivatives of the LML w.r.t the HPs for the heteroscedastic GP model

in Chapter 4 are now presented. As this model has a zero mean function yadj = y.

The heteroscedastic noise function R is defined by the following equations:
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R = σ2
n1I + σ2

n2diag(D(X)) (B.4)

D(x1,x2) =
1

ld
√

2π
exp

(
−1

2

(
x1 − p

ld

)2
)

(B.5)

where p = p0 + p1x2 + p2x2
2. The Kernel in this case becomes:

K∗ = σ2
fexp

(
−1

2
||X,X∗||T (l2xI)−1||X,X∗||

)
(B.6)

where the same length scale lx is used for both spatial dimensions. The following HPs

need to be optimised:

θ = [σ2
f , lx, σ

2
n1, σ

2
n2, l

2
d, p0, p1, p2] (B.7)

This leads to the following partial derivatives of the kernel + noise function KR, which

have been simplified where possible:

∂KR

∂σ2
f

= exp

(
−1

2
||X,X∗||T (l2xI)−1||X,X∗||

)
=
K

σ2
f

∂KR

∂lx
=

(x1 − x1∗)
2 + (x2 − x2∗)

2

l3x
K

∂KR

∂σ2
n1

= I
∂KR

∂σ2
n2

= diag(D(x1,x2))

∂KR

∂l2d
= diag

σ2
n2

(
(x1 − p)2 − l2d

)
2l4d

D(x1,x2)



∂KR

∂p0
=
σ2
n2(x1 − p)

l2d
diag(D(x1,x2))
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∂KR

∂pdt
= t

∂KR

∂p0

∂KR

∂p1
= x2

∂KR

∂p0

∂KR

∂p2
= x2

2

∂KR

∂p0

B.2.2 Drifting Logistic Polynomial Heteroscedastic Noise Gaussian

Process with Parametric Mean

The analytical derivatives of the LML w.r.t the HPs for the heteroscedastic GP model

in Chapter 5 are now presented. The two main differences with the model in Chapter 4

are the introduction of a mean function which share parameters with the noise function,

and the addition of the time domain. This time domain both appears in the Kernel and

in the noise and mean functions though the drift term which controls the location of the

front in the time dimension. The heteroscedastic noise function now becomes:

D(x1,x2, t) =
1

ld
√

2π
exp

(
−1

2

(
x1 − p

ld

)2
)

(B.8)

where p = pdtt + p0 + p1x2 + p2x2
2.

The mean function is defined as:

m =

(
a+

b

(1 + e−f(p−x1))

)
(B.9)

where a, b and f define the minimum value, range and slope of the logistic function.

The Kernel in this case becomes:

K∗ = σ2
fexp

(
−1

2
||X,X∗||TΣ−1||X,X∗||

)
(B.10)

where Σ = diag(l2x, l
2
x, l

2
t ). Here the length scales on the spatial domain are controlled

by one parameter lx, and the time domain by a second length scale lt. The following

HPs need to be optimised:

θ = [σ2
f , lx, lt, σ

2
n1, σ

2
n2, l

2
d, a, b, f, pdt, p0, p1, p2] (B.11)

This leads to the following partial derivatives of the kernel + noise function KR, which
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have been simplified where possible:

∂KR

∂σ2
f

= exp

(
−1

2
||X,X∗||TΣ−1||X,X∗||

)
=
K

σ2
f

∂KR

∂lx
=

(x1 − x1∗)
2 + (x2 − x2∗)

2

l3x
K

∂KR

∂lt
=

(t− t∗)
2

l3t
K

∂KR

∂σ2
n1

= I

∂KR

∂σ2
n2

= diag(D(x1,x2, t))

∂KR

∂l2d
= diag

σ2
n2

(
(x1 − p)2 − l2d

)
2l4d

D(x1,x2, t)



∂KR

∂p0
= −σ

2
n2(p− x1)

l2d
diag(D(x1,x2, t))

∂KR

∂pdt
= t

∂KR

∂p0

∂KR

∂p1
= x2

∂KR

∂p0

∂KR

∂p2
= x2

2

∂KR

∂p0

∂KR

∂a
= 0

∂KR

∂b
= 0

∂KR

∂f
= 0

∂yadj

∂a
= −1

∂yadj

∂b
= − 1

1 + exp(−f(p− x))

∂yadj

∂f
= −b(p− x)exp(−f(p− x)

(1 + exp(−f(p− x)))2
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∂yadj

∂p0
= − (p− x)exp(−f(p− x)

(1 + exp(−f(p− x)))2
= f

∂yadj

∂f

∂yadj

∂pdt
= ft

∂yadj

∂f

∂yadj

∂p1
= fx2

∂yadj

∂f

∂yadj

∂p2
= fx2

2

∂yadj

∂f

∂yadj

∂σ2
f

= 0
∂yadj

∂lx
= 0

∂yadj

∂lt
= 0

∂yadj

∂σ2
n1

= 0
∂yadj

∂σ2
n2

= 0
∂yadj

∂l2d
= 0
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Appendix C

Films and Animations

A number of animated figures and videos have been referenced in the text. These are

listed here for convenience.

• A short video of the ASV conducting the field trial

https://youtu.be/YH2nymgKXws

• An animation of the data behind Figure 3.7 of the GP predictions and path

planning whilst conducting the field trial for autonomous bathymetric mapping

https://youtu.be/G88L7FATtKQ

• A timelaspe film of a bathymetrically arrested tidal front at Lilli Pilli Point, Port

Hacking river, Sydney, Australia

https://youtu.be/id1YWLujGX8

• An animation of the data behind Figure 4.5 showing the evolution of the different

information metrics as more data is randomly sampled from the 1D bathymetri-

cally arrested salinity front

https://youtu.be/zR4abnICCjM

• An animation an examples simulation of the evolution of the predicted standard

deviation under sample selection driven by different information metrics, similar

to Figure 4.7

https://youtu.be/lwyaeyZOR-M

• An animation of Figure 5.1 showing the impact of including a mean function in
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GPs on their predictive power

https://youtu.be/VHouvMOa9Cs

• An animation of the simulated dynamic tidal front used in Chapter 5

https://youtu.be/MiPZ8Aa7oR4

• An animation of an example simulation of the path taken under Entropy vs

Mutual Information. Similar to Figure 5.6, however also showing the moving

front and the predicted standard deviation of the model

https://youtu.be/8YvU-QkCdVo
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[82] O. Le Mâıtre and O. M. Knio. Spectral methods for uncertainty quantification:
With applications to computational fluid dynamics. Springer Science & Business
Media, 2010.

[83] E. R. Levine, L. Goodman, and J. O’Donnell. Turbulence in coastal fronts near
the mouths of Block Island and Long Island Sounds. Journal of Marine
Systems, 78(3):476–488, 2009.

[84] B. R. Light and J. Beardall. Distribution and spatial variation of benthic
microalgal biomass in a temperate, shallow-water marine system. Aquatic
Botany, 61(1):39–54, 1998.

[85] D. G. MacDonald, L. Goodman, and R. D. Hetland. Turbulent dissipation in a
near-field river plume: A comparison of control volume and microstructure
observations with a numerical model. Journal of Geophysical Research: Oceans,
112(7):1–13, 2007.

[86] A. A. Makarenko, S. B. Williams, F. Bourgault, and H. F. Durrant-whyte. An
experiment in integrated exploration. In International Conference on Intelligent
Robots and Systems, 2002., pages 534–539, 2002.

[87] A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F. Durrant-whyte.
Information based adaptive robotic exploration. In International Conference on
Intelligent Robots and Systems, 2002., pages 540–545, 2002.

[88] J. E. Manley, A. Marsh, W. Cornforth, and C. Wiseman. Evolution of the
autonomous surface craft AutoCat. In Oceans, volume 1, pages 403–408. IEEE,
2000.

[89] R. Marchant and F. Ramos. Bayesian optimisation for intelligent environmental
monitoring. In International Conference on Intelligent Robots and Systems,
pages 2242–2249. IEEE, 2012.

[90] R. Marchant, F. Ramos, S. Sanner, et al. Sequential bayesian optimisation for
spatial-temporal monitoring. In UAI, pages 553–562, 2014.

[91] K. V. Mardia and R. Marshall. Maximum likelihood estimation of models for
residual covariance in spatial regression. Biometrika, 71(1):135–146, 1984.

[92] M. Mart́ınez, A. Intralawan, G. Vázquez, O. Pérez-Maqueo, P. Sutton, and
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