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Abstract

The field of marine robotics offers many new capabilities for completing

dangerous missions such as deep-sea exploration and underwater demining.

The harshness of marine environments, however, means that without effective

onboard decision-making, vehicle loss or mission failure are likely. Thus, to

enable more autonomous operation while building trust that these systems

will perform as expected, this thesis develops improved path planning and

testing strategies for two different types of marine robotic platforms.

The first portion of the research focuses on improved environmental data

collection with an autonomous underwater vehicle (AUV). Gaussian process-

based modeling is combined with informative path planning to explore an

environment, while preferentially collecting data in regions of interest that

exhibit extreme sensory measurements. The performance of this adaptive data

sampling framework with a torpedo-style AUV is studied in both simulation

and field experiments. Results show that the proposed methodology is able to

be fielded on an operational platform and collect measurements in regions of

interest without sacrificing overall model fidelity of the full sampling area.

The second portion of the research then focuses on autonomous surface
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vessel (ASV) navigation that must comply with international collision avoid-

ance standards and basic ship handling principles. The approach introduces

a novel quantification of good seamanship that is used within an ASV path

planner to minimize the collision risk with other vessels. This approach gen-

eralizes well to both single-vessel and multi-vessel encounters by avoiding

rule-based conditions. The performance of this ASV planning strategy is

evaluated in simulation against other baseline planners, and the results of

on-water testing with a 29-ft ASV demonstrate that the approach is scalable to

real systems.

Beyond developing improved path planning frameworks, this research

also explores methods for improved testing and evaluation of black-box au-

tonomous systems. Statistical learning techniques such as adaptive scenario

generation and unsupervised clustering are used to extract the failure modes

of the autonomy from large-scale simulation datasets. Subsequently, changes

in these failure modes are tracked in a novel form of performance-based regres-

sion testing. The effectiveness of this testing framework is demonstrated on

the aforementioned ASV planner by discovering several types of unexpected

failures.
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Chapter 1

Introduction

This chapter gives the reader a brief introduction into some of the main themes

of this thesis, primarily marine robotics path planning and the associated

challenges of ensuring the system’s performance. The organization of the

thesis and its contributions are then summarized.

1.1 Marine Robotic Systems

The past several decades have seen robotic system development rapidly ac-

celerate beyond use in traditional factory settings to now solve challenging

real-world problems. Marine environments are one domain where these

advancements have been invaluable, opening up the possibility for applica-

tions that were previously not achievable. Autonomous underwater vehicles

(AUVs), a class of mobile robot designed to operate sub-surface, offer the

promise and capability to explore underwater worlds for scientific data col-

lection that humans cannot safely access. The Sentry AUV shown in Fig. 1.1,

designed by the Woods Hole Oceanographic Institution, is one example that
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Image credit: Woods Hole Oceanographic Institution Image credit: L3Harris

Figure 1.1: Two examples of existing marine robotic platforms: the Sentry AUV (left),
operated by Woods Hole Oceanographic Institution, and the C-Worker 7 ASV (right),
operated by L3Harris.

can operate at depths of 6,000 meters and has been used to autonomously

survey the seafloor to create bathymetric maps, locate hydrothermal vents,

and explore shipwrecks.

Another class of system within marine robotics is autonomous surface

vessels (ASVs), which can essentially be thought of as self-driving boats.

ASVs offer a complementary line of capabilities to that of AUVs, including

environmental monitoring tasks, opportunities in commercial shipping, and

various defense applications such as harbor patrol and mine countermeasures.

Figure 1.1 also shows an example of an existing ASV platform: the C-Worker

7, designed by L3Harris. This platform is capable of operating offshore and

deploying its own underwater vehicle for infrastructure inspection.

While the promise of marine robotics is enormous, there are many chal-

lenges that remain in the development of these systems due to the harsh,

unpredictable environment in which they operate. From a mechanical design

perspective, marine robotics must contend with corrosive seawater, the ex-

treme pressures seen in the deep sea, and the constant wear from wind and
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waves. Limited communication bandwidth in the the open ocean (and even

more so in underwater applications) also means that these systems must make

decisions with very little operator interaction. AUVs must be able to localize

both themselves and their mission objectives with little sensor information,

while ASVs have their own navigation challenges in needing to safely avoid

obstacles and other vessels on the water. These requirements demand highly

robust systems, especially given their high cost and safety-critical nature.

Additionally, unlike traditional marine systems, AUVs and ASVs (as well

as other autonomous systems more generally) must not only achieve robust-

ness in their hardware components, but also in their decision-making software

components. Properly verifying that these platforms will behave as expected

is crucial to gaining the trust needed for their full adoption. In essence, it

becomes necessary to test the “brain” of the system in addition to its struc-

ture, even when many competing requirements may result in unpredictable

emergent behavior from the decision-making logic. Thus, it becomes crucial

to pursue improved testing and evaluation (T&E) technologies for marine

robotics in lockstep with development of the system’s algorithmic capabilities.

1.2 Organization & Contributions

The challenges described above highlight some of the main themes tackled by

this thesis: improving high-level planning strategies within marine robotics,

and also improving the testing methods used to evaluate their performance.

The remaining text is broken up into two distinct parts based on applications

to different marine robotic platforms.
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1.2.1 Part I Overview

The first part of the thesis focuses on the problem of AUV path planning that

optimizes data collection for improved environmental monitoring. Specifi-

cally, the AUV is tasked with using in situ measurements of the surrounding

environment to locate and collect data from environmental regions of interest,

e.g., hypoxic zones. Much of the text in Part I was originally published by the

author [122] in collaboration with Yew Teck Tan and Marin Kobilarov, and

includes the following novel contributions.

• Receding-horizon informative planning. An adaptive sampling frame-

work is proposed in conjunction with two informative path planning

strategies for generating high-information trajectories (from a data qual-

ity perspective). The first informative path planner is based on branch-

and-bound techniques and the second is based on cross-entropy op-

timization. Both of these planning techniques explicitly consider the

motion constraints of an underactuated AUV operating within a con-

strained environment. This is in contrast to much of the environmental

sampling research in the marine domain [114, 72, 22], which focuses

on large-scale, low-resolution environmental monitoring where motion

constraints need not be prioritized.

• Constrained 3D environments. Applications of AUV adaptive sam-

pling are explored where the complete 3D environmental area is consid-

ered for collecting data samples. To date, most studies have focused on

environmental sampling in 2D environments. While a handful of studies
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collect data in 3D, the depth component is typically only controlled via

predefined yo-yo patterns [23, 114]. These approaches simply generate

and utilize 2D models of the environment for planning as opposed to

considering the added depth component. The methodology presented in

Part I allows for dense data collection near the seafloor, which would be

difficult for underwater gliders or surface vessels. Further, this work also

considers environmental constraints, such as bathymetry and bottom

structure, and operational constraints, such as limited communication

and navigation capabilities, that require the AUV to periodically surface.

• Simulations and real-world deployments. Monte Carlo simulation ex-

periments are used to measure the performance of the proposed methods

over a large set of auto-generated 3D environments. Additionally, sev-

eral field experiments with an AUV show the capability of the proposed

algorithms to be implemented on operational platforms for real-time

identification of regions of interest in a 3D sampling environment.

Chapter 2 motivates the need for improved marine sampling mechanisms

and reviews related work in the area of adaptive data collection. Chapter

3 introduces the problem formulation and proposes the methodology for

adaptive trajectory planning that maximizes information collection. Results

from both simulation studies and field experiments with an AUV are then

used to demonstrate the efficacy of the approach in Chapter 4.
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1.2.2 Part II Overview

The second part of the thesis then focuses on a different problem within marine

robotics: improved path planning strategies for ASVs. Navigation on the open

ocean is challenging because not only must ASVs perform standard obstacle

avoidance, they must also adhere to protocols that are expected of all ships (i.e.,

the “rules of the road” for marine surface craft). Additionally, a performance-

based continuous integration framework is proposed for improved autonomy

T&E that is applied to the ASV navigation problem. Much of the content

in Part II was originally published by the author [121, 118, 120, 119] in col-

laboration with Galen Mullins, Michael Heistand, and Marin Kobilarov, and

contains the following novel contributions.

• Quantification of good seamanship principles. Good seamanship1 is

an important requirement of maritime navigation; however, the exact

principles that embody good seamanship are notoriously vague. This

research proposes a novel quantification of good seamanship principles

in complicated multi-vessel scenarios. The basis of this quantification

comes from using ship domain and ship arena concepts to derive future

collision risk indices based on maximum mutual ship domain violation.

The combination of both ship domain and ship arena gives a more com-

plete picture of the overall risk rather than only considering penetration

within a single safety zone [28].

1The term “seamanship” is used throughout this thesis because it is explicitly referenced
in international maritime protocols [41] and contains intrinsic concepts that are understood
by the practicing community. In an effort to avoid gender-biased language, however, terms
such as seamanship should begin to be phased out and replaced with neutral terms (e.g., ship
handling) in the future.
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• Receding horizon good seamanship planning. This research then of-

fers a multi-layer planning approach for ASVs that incorporates the

aforementioned good seamanship quantification into metrics leveraged

for path planning. The approach combines novel situational awareness

logic with motion primitive-based planners in a receding horizon frame-

work. By relying on metrics-driven motion planning as opposed to rule-

based conditions, the proposed framework scales naturally to non-trivial

single-vessel and multi-vessel situations when compared to more stan-

dard approaches based on closest point of approach [113, 123, 137, 57].

• Holistic performance-based autonomy evaluation. A series of improve-

ments to autonomy T&E methods are also proposed. While the perfor-

mance evaluation is applied to the ASV navigation problem, the general

formulation is applicable to testing autonomous systems in any domain.

1. Adaptive scenario generation. A methodology for adaptive simulation-

based testing is proposed to statistically measure system perfor-

mance. The framework uses adaptive scenario generation to hone

in on the failure modes of the system, thus giving greater resolution

of these failures when compared to one-off analysis on handcrafted

scenarios or random Monte Carlo methods. Additionally, these

failure modes are automatically grouped into explainable clusters

from large, high-dimensional datasets using unsupervised learning

techniques.

2. Identifying performance regression in autonomy. Further, this research
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presents one of the first frameworks specifically designed to iden-

tify whether/how a black-box autonomous system has regressed

in performance when compared to previous versions. The ap-

proach analyzes multiple performance datasets (typically gathered

through the type of simulation-based testing describe above) and

again applies statistical learning techniques to determine regions

of predicted performance regression between the datasets. This

capability is proposed in the context of an augmented continu-

ous integration pipeline that automatically checks for new failure

modes in the decision-making components of the system.

3. On-water field testing. A variety of field experiments are described

that test the good seamanship planner with a 29-ft ASV on the

Chesapeake Bay. These experiments test the planner in single-

vessel and multi-vessel collision encounters, where each scenario

prescribes a different collision geometry in order to demonstrate

how the planner generalizes to realistic conditions.

The challenge of developing ASVs to operate within existing maritime

navigation conventions is first posed in Chapter 5. The good seamanship

quantification and its adaptation for use in path planning are then described

in Chapter 6. Chapter 7 details a simulation-based evaluation framework for

autonomous systems geared around failure-seeking scenario generation and

performance regression testing that compares previous versions of the system

against the current iteration. This evaluation framework is then applied to

the proposed ASV planner in Chapter 8 to analyze its performance against
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baseline approaches and perform an introspection of its failure modes. Field

testing is also presented that validates these results with on-water data.

1.3 Model-based Optimal Motion Planning

Before jumping to each of the two applications described above, there are

some commonalities in the motion planning problems that can be generally

stated. There is a distinction within robotics between global path planning,

which considers the high-level action sequence of the system over mission-

length timescales, and local path planning, which considers the immediate

actions that are both feasible and follow desired states at a much shorter

timescale. Both of the applications in this thesis fall more into the former

category, focusing on high-level path generation that satisfies mission criteria

on a timescale longer than the system’s dynamics. We can formalize this path

planning problem for use in both parts of the thesis.

1.3.1 General Problem Setup

Consider a vehicle trajectory evolving according to an ordinary differential

equation, ẋ(t) = f (x(t), u(t), t), where the state and control at time t > 0

are denoted by x(t) ∈ X and u(t) ∈ U, respectively, with X = Rn and

U ⊂ Rm denoting the state space of dimensionality n and control space of

dimensionality m. Letting t f be the final time of the trajectory (i.e., the allotted

mission time), a given control curve u : [0, t f ]→ U determines a unique state

trajectory x : [0, t f ]→ X by evolving the dynamics from an initial state x0 ∈ X.

We would like to compute the optimal controls u∗(·) that maximize a given
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acquisition function L : U×X→ R while driving the system from its initial

state x0 until the final time t f , i.e.,

maximize
u

ϕ(x(t f ), t f ) +
∫ t f

0
L(x(t), u(t), t) dt

subject to ẋ(t) = f (x(t), u(t), t),

x(0) = x0,

g(x(t), u(t), t) ≤ 0,

(1.1)

for all t ∈ [0, t f ]. Here, g(x(t), u(t), t) ≤ 0 are constraints on the state and

input arising from actuator bounds and obstacles in the environment, and

ϕ(x(t f ), t f ) is a reward placed on the terminal state of the trajectory. Next, we

can convert the problem of Eq. (1.1) into a numerically convenient form that

serves as the basis for the proposed planning algorithms presented in Part I

and Part II.

1.3.2 Finite-dimensional Optimization through Vehicle Mo-
tion Parameterization

The infinite-dimensional trajectory optimization problem of Eq. (1.1) can be

converted into a finite-dimensional optimization by parameterizing vehicle

trajectories as sequences of motion primitives. Let π represent a particular

trajectory, with the space of all trajectories originating at point x0 and satisfying

the dynamics of the ODE denoted by

P = {π : t ∈ [0, t f ]→ {u(t), x(t)} | ẋ(t) = f (x(t), u(t), t), x(0) = x0, t f > 0}.

(1.2)

10



Trajectories are parameterized with a function φ : Z → P according to:

π = φ(z) ≡ φz, (1.3)

where z ∈ Z ⊂ Rz is the parameter space. Let Γ : U×X→ X project onto the

state component, i.e., Γ(u, x) = x. The constrained parameter space Zcon ⊂ Z

is the set of parameters satisfying the boundary conditions and constraints,

defined by

Zcon = {z ∈ Z | g(Γ(φz(t))) ≤ 0, t ∈ [0, t f ]}. (1.4)

Define the reward γ and the reward function J : Z → R according to:

γ = J(z) =
∫ t f

0
L(φz(t)) dt. (1.5)

Equation (1.1) can now be solved approximately by finding {x∗, u∗} = φ(z∗)

such that

z∗ = argmax
z∈Zcon

J(z). (1.6)

Similarly, we let γ∗ be the reward function optimum over the space Zcon:

γ∗ = max
z∈Zcon

J(z). (1.7)

Planning in the parameter space Z offers a means to efficiently generate

trajectories that consider the constraints of the system through closed-form

motion primitives, as opposed to requiring expensive integration of the full

system dynamics. The instantiations of X, U, Z , φ, and L for the AUV and

ASV planning problems of this thesis are each defined in their respective parts.
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Part I

Adaptive Sampling With an
Autonomous Underwater Vehicle

in Static Marine Environments
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Chapter 2

Background on Environmental
Monitoring with Marine Robotics

2.1 Motivation

One of the most practical and influential applications of the recent advances

in autonomous systems is in marine environmental monitoring. For a given

measurement of interest, e.g., salinity, dissolved oxygen, etc., a natural goal is

to use collected data to create an environmental model for further study. These

models can be used to localize areas that contain either high measurement vari-

ability or extreme values to help authorities identify potential abnormalities

and address the problem.

As a specific use case, consider the study of hypoxia in a large estuary such

as the Chesapeake Bay (Fig. 2.1), that in last few decades has become increas-

ingly sensitive to pollution from agricultural and wastewater discharge, urban

runoffs, and atmospheric deposition [105]. To establish effective treatment

and prevention practices, it is necessary to monitor and assess the complex
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Figure 2.1: Hypoxic dead zone formation in the Chesapeake Bay.

dynamic processes affecting water quality. The standard approach is to sup-

plement networks of fixed sampling stations with manual sampling from

ships, and perform data integration and analysis in the lab. This approach

has several limitations that could hinder water management: short timescale

events such as rapid rainstorm runoffs cannot be captured at sufficient reso-

lution; diffusive pollution sources are difficult to track from sparse samples;

critical locations such as shallow and obstacle-cluttered areas as well as creeks

are difficult to access by ship and require additional infrastructure, integration,

and manpower. Additionally, simply interpolating between stations has the

potential to miss critical regions of interest (ROIs), i.e., regions that exhibit

extreme sensory measurements and high spatially-correlated variability when

compared to the surrounding area.

More recently, autonomous underwater vehicles (AUVs) and autonomous

surface vessels (ASVs) have begun to be used in these data collection opera-

tions; however, they are typically constrained to area coverage objectives and

thus follow predefined sampling trajectories such as a lawnmower pattern
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[36]. These strategies are highly inefficient when the overall goal is to detect

and localize ROIs within a larger area. Marine environments exacerbate this

problem (particularly for AUVs) because it is difficult for an operator to up-

date the vehicle trajectory due to communication limitations. The result is that

the data collected by the system is still only available to provide insights in a

post-processed fashion.

Rather, autonomous systems now have the capability to adapt their trajec-

tories based on in situ data processing to focus sampling efforts on higher-level

goals such as localizing ROIs. Recent researchers have made use of the spatial

correlation structure of these ROIs to design adaptive sampling strategies for

robotic environmental monitoring [70, 97]. In these informative path planning

strategies, the sensor information observed along the vehicle trajectory is

assimilated into an environmental model, which is then used to guide future

sampling locations. The ability to adapt the sampling paths using in situ

sensor information has shown to be a more effective method for sensing and

localizing ROIs in a given environment.

This work aims to overcome some of the challenges in marine monitor-

ing through adaptive sampling with robotic vehicles guided by real-time

information-seeking algorithms, which autonomously decide sampling loca-

tions to optimize a given task such as pollution source localization. Specifically,

we focus on single-vehicle planning in a 3D environment for collecting a dense

set of measurements within highly localized ROIs, e.g., channels with varying

bathymetry in a large estuary. This research extends upon previous work

[128], which was limited to 2D environments and applied to surface vehicles.
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2.2 Limitations

While the application and use of AUV sampling platforms allows increased

data resolution in constrained environments, these systems typically have

limited on-board computational resources. This constraint results in some

limitations of the proposed approach that must be acknowledged. In order

to facilitate real-time planning and model-building for a 3D environment,

trajectory generation is performed in a receding horizon fashion. This ap-

proach, while precluding a globally optimal solution over the full mission

profile, is able to generate high-information trajectories in a local sense up

to the planning horizon of the sampling platform. The optimality of these

solutions is then also dependent on approximations of both the platform’s

dynamics and reachable space over the local planning horizon.

An additional assumption within this research is that the environmen-

tal field is static with respect to time. In other words, we assume that the

temporal dynamics of the environment are much slower than the duration

of the sampling mission (typical AUV deployments within the application

of interest only last on the order of hours). Generalization of the proposed

framework for long-term monitoring that considers a dynamic environment

is left to future work, perhaps leveraging concepts from the non-dimensional

approach of Leonard et al. [62]. In spite of these limitations, the proposed

approach provides significantly improved data collection when compared to

traditional methods.
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2.3 Related Work

The use of robotics for environmental monitoring has become a significant

research effort, with a survey of applications provided by Dunbabin and Mar-

ques [26]. For example, applications have been studied in diverse domains

including volcanic environments [96], data collection in severe weather [34],

forest fire mapping [97], and acoustic predictions in ocean fields [133]. A

typical approach to this application is to use sensor information to build a

model of the environment. Predictions from this model and their associated

uncertainties are then taken into account when planning sampling paths.

When performing sensing in an unknown environment, balancing a trade-off

between exploration and exploitation [106] is crucial. Exploration refers to col-

lecting samples that fully survey the environmental area, whereas exploitation

refers to collecting samples in areas that contain the desired measurements,

i.e., in ROIs. Thus, care must be taken to design algorithms that balance these

two competing objectives when selecting sampling paths.

A commonly used model for representing environmental phenomena is the

Gaussian process (GP) [101, 23, 39]. A Gaussian process is a non-parametric

regression model that allows estimation and prediction of the spatial corre-

lation structure of an environmental field. Sensor data, as it is acquired, is

used to learn the GP by estimating the model’s hyperparameters. In turn,

the mean and variance predictions of the model are used to guide future

sampling locations. This iterative, sequential model update and prediction

is well-suited for adaptive sampling missions where sensing platforms must
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repeatedly select the the best sampling path. Such a problem can be formu-

lated as Bayesian optimization by using the GP to maintain a probabilistic

belief about the environmental distribution while using its predictions to de-

sign an appropriate acquisition function [51, 135, 13]. For example, Marchant

and Ramos use a multi-layered Bayesian optimization approach to generate

maximum information sampling paths [79], a field known as informative path

planning.

The problem of informative path planning is known to be NP-hard and

there are many algorithms aimed at efficiently finding paths that maximize

information gain subject to budget constraints (e.g., time, distance, etc.). Ran-

domized approaches were explored in the work of Hollinger [48] by adapting

sampling-based motion planning such as RRT* and PRM* [50] to include ex-

pected information gain in the cost of each path segment. Extensions to reduce

planning time for real-time operation can be achieved by restricting the space

from which paths are sampled [3]. To avoid discretization of the environment,

Hitz et al. use evolutionary techniques to optimize a parameterized B-spline

in continuous space [47]. Further, Reid et al. explore hierarchical informative

planning with applications to sampling using reconfigurable systems such as

a planetary rover [109]. Additional approaches to informative path planning

based on hypothesis testing [67], fast marching methods [59], and orienteering

[10] have also been proposed.

The idea of model-based informative planning has been applied exten-

sively in the marine domain, a recent example of which uses partially-observable

Markov decision processes for coral reef localization [32]. Adaptive sampling
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in marine environments is a natural application due to operational constraints

such as limited communication bandwidth. In these instances, it is preferred

to design planning methods that allow the system to adapt without human

interaction. A series of studies by Manjanna et al. applied adaptive sampling

to surface vessels focusing on policy search [77], multi-scale resolution [74],

and integration with static sensor nodes [75]. A second series of studies by

Das et al. provide sampling strategies for environmental monitoring off the

California coast. Initial work in this series used a combination of Lagrangian

drifters and AUVs to track and sample algal blooms, where drifters are used

to identify a region of interest that is then sent to the AUV for further sampling

[24]. Subsequent work proposed an approach that uses observable environ-

mental features (e.g., salinity or temperature) to inform where unobservable

features (e.g., organism abundance) should be collected to reduce uncertainty

in a combined environmental model [22]. In addition, Das et al. employ prior

sampling campaigns to inform the collection of a very limited number of

plankton samples [23].

An outstanding challenge in the area of marine monitoring is measure-

ment collection over a sustained period of time to understand the temporal

dynamics of the environment. Initial work in this area by Leonard et al. [61]

used coordinated control of a fleet of underwater gliders to intelligently collect

samples over several months, while the work of Smith et al. [114] improved

long-term monitoring for gliders by developing planning techniques that

considered both information gain and regions of undesirable ocean currents.
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Further work by Ma et al. [73, 72] specifically includes dynamics of the envi-

ronment to capture temporal effects when planning sampling paths.

Teaming approaches as conceptualized in Fig. 2.2 have also gained popular-

ity due to the challenges of long-term monitoring in large areas [89, 24, 70, 63].

A key advantage of robot teaming is that the strengths of each individual

vehicle can be exploited to improve the overall system performance. For ex-

ample, the mobility advantage of aerial vehicles can be used to collect sparse

samples over large distances that identify general areas for further examina-

tion. Subsequently, an AUV could be deployed to these areas to collect dense

measurements on a smaller scale near the seafloor to localize ROIs. Addition-

ally, surface vessels can operate as a charging station and communication hub

between vehicles. Manjanna et al. [76] employ this concept by using a team of

surface vessels to coordinate both exploring the environment and collecting

physical water samples. Similarly, work by Munafo [94] uses AUV teams to

minimize the uncertainty in the estimated GP model while staying within

communication range, whereas other methods examine the performance of

decentralized coordination as a function of the number of agents in the team

[101]. Alternative planning methods proposed for AUV teams use RRT* and a

selective basis Kalman filter [21].

Of particular importance in adaptive sampling methods is the choice of

the acquisition function for evaluating candidate sample locations. Common

approaches for this optimization criteria are based on entropy [70], mutual

information [56], or the combination of the predictive mean and information

gain [69]. Additionally, work by Cao et al. [15] compares the effectiveness of
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Figure 2.2: Concept of environmental sampling using a heterogeneous robot team.
High-mobility vehicles such as UAVs and ASVs collect sparse samples over a large
area, whereas AUVs provide focused samples in a region of interest (this paper
focuses on the latter).

entropy and mutual information criteria. In this work, we adopt the Gaussian

process upper confidence bound (GP-UCB) algorithm [117] as the criteria

for choosing future sampling locations. The GP-UCB algorithm calculates

the utility of future sampling locations according to a weighted combination

of both their predictive mean and variance, thus allowing control over the

exploration-exploitation trade-off at different stages of the sampling mission.

The following sections introduce the problem formulation and detail both the

Gaussian process model estimation as well as the formulation of the GP-UCB

as a sequential stochastic optimization problem.
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Chapter 3

Methodology for
Information-Seeking Path
Planning

3.1 Problem Setup

The informative path planning problem takes on the form given by Eq. (1.1),

where we would like to maximize the collective information over the planned

trajectory. Next, we define the specific vehicle dynamics, their parameter-

ization through motion primitives, and the acquisition function over the

environment as a specific application of this problem statement.

3.1.1 Vehicle Dynamic Model

The robotic sampling platform employed in this problem formulation is

a torpedo-style AUV. Specifically, the Johns Hopkins University (JHU) L3

OceanServer Iver3 (Fig. 3.1) is used as the testbed. This AUV is actuated by

a rear propeller for thrust, a pair of rudder fins for yaw control, and a pair

of diving planes for pitch control. Because this system is underactuated, it is
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(a) Performing sampling mission (b) JHU hydrodynamics lab

(c) Deployment from vessel

Figure 3.1: Johns Hopkins University L3 OceanServer Iver3 AUV.

particularly important to consider the motion constraints of the vehicle during

sample collection.

The hydrodynamic model used for this vehicle is a simplified version of

the equations of motion provided by Gertler and Hagen [37]. The 4-DOF

model presented here captures realistic vehicle motion while minimizing the

number of required model coefficients. Thus, sufficient fidelity is captured for

simulating high-level motion planning while low-level control (such as roll

stability) is assumed to be controlled by the vehicle’s on-board autopilot.

The state x = (px, py, pz, θ, ψ, u, w, q, r) includes the position p = (px, py, pz) ∈

R3, pitch θ, yaw ψ, surge velocity u, heave velocity w, pitch rate q, and yaw
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rate r. The control inputs u = (δu, δq, δr) define the normalized thrust input,

normalized pitch rate input, and normalized yaw rate input, respectively.

These control inputs are scaled and constrained in order to produce high-level

motion characteristics at steady-state. The normalized thrust input δu ∈ [0, 1]

represents the range between zero and maximum propeller speed, the nor-

malized pitch rate input δq ∈ [−1, 1] represents the range between maximal

deflections of the vehicle diving planes, and the normalized yaw rate input

δr ∈ [−1, 1] represents the range between maximal deflections of the vehicle

rudder fins.

Assuming negligible effects in the sway and roll dynamics, the equations
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of motion ẋ = f (x, u) are given as the following:

ṗx = u cos ψ cos θ + w cos ψ sin θ, (3.1a)

ṗy = u sin ψ cos θ + w sin ψ sin θ, (3.1b)

ṗz = w cos θ − u sin θ, (3.1c)

θ̇ = q, (3.1d)

ψ̇ = r/ cos θ, (3.1e)

u̇ = Xuuu2 + kδu, (3.1f)

ẇ = Zw|w|w|w|+ WB cos θ, (3.1g)

q̇ = Muquq + Mqq− BzB sin θ + bu2δq, (3.1h)

ṙ = Nurur + cu2δr, (3.1i)

where (·) indicates that the hydrodynamic coefficients have been made in-

dependent of the vehicle’s mass and inertia. Further, WB represents an out-

of-ballast term based on the vehicle’s weight and buoyancy ratio, and BzB

represents a buoyancy term that accounts for the center of buoyancy vertical

offset from the center of gravity.

The coefficient values for the JHU Iver3 were determined using nonlinear

gray-box model estimation (available in MATLAB [81]) that minimizes the

normalized root-mean-square error between the model response and exper-

imental data. The experimental data used to fit the model consisted of the
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Table 3.1: Hydrodynamic model coefficients for the Johns Hopkins University Iver3
AUV.

Coefficient Value Units

Xuu -0.179 1/m

k 0.519 m/s2

Zw|w| 0.098 1/m

WB -2.452 m/s2

Muq -3.519 1/m

Mq -0.748 1/s

BzB 8.947 1/s2

b 3.096 1/m2

Nur -0.441 1/m

c 0.065 1/m2

Iver3 executing a series of undulating lawnmower trajectories under calm

conditions. The final values of these coefficients are listed in Table 3.1.

3.1.2 AUV Motion Parameterization

We now define the parameterization given in Section 1.3.2 for the hydrody-

namic model of Eq. (3.1). For our specific setting, a trajectory is parameterized

using a sequence of H motion primitives, where in this context a primitive

is defined as a section of a helix with constant horizontal forward velocity

vx, depth rate vz, and turn rate ωz. More formally, the trajectory parameter is

z = {(vx, vz, ωz)j}H
j=1. During a time interval, t ∈ [tj, tj+1], the trajectory state
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x(t) = φz(t) takes the form

θ(t) = arctan(vz/vx), (3.2a)

ψ(t) = ψ(tj) + δtjωz, (3.2b)

u(t) =
√

v2
x + v2

z, (3.2c)

w(t) =
(
vz + u(t) sin θ(t)

)
/ cos θ(t), (3.2d)

q(t) = 0, (3.2e)

r(t) = ωz cos θ(t), (3.2f)

px(t) = px(tj) + δtj
(
u(t) cos ψ(t) cos θ(t) + w(t) cos ψ(t) sin θ(t)

)
, (3.2g)

py(t) = py(tj) + δtj
(
u(t) sin ψ(t) cos θ(t) + w(t) sin ψ(t) sin θ(t)

)
, (3.2h)

pz(t) = max{pz(tj) + δtjvz, 0}, (3.2i)

where δtj = t− tj. In other words, we have established a mapping between

the simple and geometrically intuitive parameters z and trajectory in the full

state space X. A visualization of three example trajectories using different

parameter values of z is shown in Fig. 3.2.

3.1.3 Environmental Modeling and Prediction as a Gaussian
Process

The field of interest is defined as a continuous function h :W → R that maps

locations p ∈ W in the environment workspace of interest W ⊂ R3 to the
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Figure 3.2: Visualizations of three trajectories generated from different values of z
over a period of 20 sec. Units for vx, ωz, and vz are m/s, rad/s, and m/s, respectively.

scalar environmental phenomena under study. Each measurement of this

phenomena, denoted by y ∈ R is assumed to have some spatial regularity

(i.e., measurements at nearby points have a physically meaningful correlation)

and in addition is assumed to be corrupted by Gaussian noise: y = h(p) +

N (0, σ(p)2). These assumptions allow the environment to be modeled as a

Gaussian process (GP): a collection of dependent random variables, one for

each p ∈ W , every finite subset of which is multivariate Gaussian-distributed

[108]. A GP can be fully specified by its mean function µ(p) = E[h(p)]

and covariance function κ(pi, pj) = cov(pi, pj|θ) for all pi, pj ∈ W , where θ

parameterizes the covariance function that models the spatial correlation of

the environmental phenomena. A popular form for the covariance function is
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the squared exponential function [108]:

κ(pi, pj) = σ2
f exp

(
−1

2

d

∑
k=1

(pi,k − pj,k)
2

l2
k

)
+ δ(pi, pj)σ

2
w. (3.3)

The squared exponential covariance function for this 3D application has a

hyperparameter vector θ = [lx, ly, lz, σf , σw]T, where σf and σw are the variance

of the signal and noise, respectively. The parameters l are the length-scales in

each dimension, which determine the level of correlation between measure-

ments. δ(pi, pj) is the Kronecker delta function, which is one if and only if

pi = pj and zero otherwise.

Let P = {p1, . . . , pN} ⊂ W be a set of N observed locations with recorded

measurements Y = {y1, . . . , yN}. The GP representation allows us to predict

measurements Y∗ at a finite set of unobserved locations P∗ ⊂ W by defining

the joint distribution of measurements at observed and unobserved locations

[108]: [
Y
Y∗

]
∼ N

(
0,
[

K + σ2
w I KT

∗
K∗ K∗∗

])
, (3.4)

where K∗ = K(P∗, P) contains the pairwise covariances between unobserved

and observed points, with analogous definition of K = K(P, P) and K∗∗ =

K(P∗, P∗). Conditioning on the known data [108], the unobserved measure-

ments take the form Y∗ ∼ N (Ŷ∗, Σ̂∗) with

Ŷ∗ = K∗(Ky)
−1Y, (3.5)

Σ̂∗ = K∗∗ − K∗(Ky)
−1KT

∗ , (3.6)

where Ky = K + σ2
w I.
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3.1.4 Hyperparameter Adaptation

The GP model accuracy is highly dependent on the hyperparameter vector

θ that is used on the covariance function. When operating in an unknown

environment, it is unlikely that the correct hyperparameters for a given envi-

ronmental distribution will be known a priori. Thus, a common approach is

to learn the hyperparameter vector over time as measurements are collected.

In this work, we employ the maximization of the log of the marginal likeli-

hood [95] to obtain the best estimate of the hyperparameter vector θ∗ after the

collection of n samples:

θ∗ = argmax
θ

log p(Y|P), (3.7)

where

log p(Y|P) = −1
2

YTK−1
y Y− 1

2
log |Ky| −

n
2

log 2π,

with the optimization performed using the gradient

∂

∂θi
log p(Y|P) = 1

2
tr
(((

K−1Y
) (

K−1Y
)T
− K−1

y

)
∂Ky

∂θi

)
.

The hyperparameter vector is initialized based on expert knowledge of the

environmental area and is then periodically re-estimated every ℓ samples (this

work applies ℓ = 1).

3.1.5 Acquisition Function

For a robotic system that collects environmental data sequentially, it is impor-

tant to balance data collection between exploration and exploitation, i.e., sam-

pling at locations with high uncertainty against locations with high predicted
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reward. Concentrating the sensing efforts within a specific area prematurely

may miss ROIs in other areas of the environment, whereas aimlessly explor-

ing the environment would forgo opportunities to collect important samples

around the ROIs. The goal is to develop a policy that determines the optimal

sequence of future sampling locations, taking into account both the GP model

mean (predicted reward) through Eq. (3.5) and the GP model variance (pre-

dicted uncertainty) through Eq. (3.6), both of which are calculated using the

current best estimate of the hyperparameter vector.

In this work, we adopt the GP upper confidence bound (GP-UCB) [117, 23]

criteria for guiding sample selection. While entropy-based methods tend

to reduce uncertainty over the full sampling area, UCB-based acquisition

functions have been shown to provide better resolution of ROIs [79]. From a

GP optimization perspective, the GP-UCB algorithm is designed to minimize

the cumulative regret over the collection of N samples, i.e., the loss in reward

from not selecting the optimal set of N samples. While sensor data can

typically be collected at high rates, it becomes computationally infeasible to

train the GP model on the entire dataset from the sensor feed. Downselecting

this data to the optimal N samples makes the training process tractable. This

strategy applies the principle of optimism in the face of uncertainty, where

the selection of a sample position pn ∈ W at sampling step n is evaluated

according to

L(xn, un) = µn−1(pn) +
√

βnσn−1(pn)  
sampling reward

− q(xn)  
navigation cost

, (3.8)

where µ = Ŷ∗ and σ2 = Σ̂∗ as described in Section 3.1.3. All sampling points
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along a trajectory are treated equally, meaning that the terminal reward is set

to ϕ(xn(t f )) = 0.

The first component of the acquisition function is the sampling reward,

which encourages the collection of informative samples. This reward depends

only on the sampling locations and is based on the trade-off between poten-

tially maximizing the GP model mean (choosing locations within ROIs charac-

terized by maximal sensory measurements) and maximizing the GP model

variance (exploring uncertain and/or unobserved areas of the environment

workspace). Alternatively, if an ROI is described by minimal measurement

values, as would be the case for detecting hypoxic zones, one would simply

maximize the negative of the GP model mean, −µ, to encourage sample col-

lection within ROIs. The term βn employed in Eq. (3.8) is the mean-variance

trade-off parameter at sampling step n [117]:

βn = 2 log
(
|d|n2π2

6δ

)
, (3.9)

where d is the dimensionality ofW and δ ∈ [0, 1] is a parameter that defines

the probability that the regret bound is satisfied after N sampling steps, for

n = 1 . . . N [117].

The second component of Eq. (3.8) is a standard non-negative navigation

cost, which heavily penalizes trajectories that exit the environment workspace

or approach a forbidden state set O (e.g., known obstacles or shorelines from

nautical charts, the seafloor, etc.). Here, an infinite step function is applied to
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undesirable states as such:

q(xn) =

{
∞ if pn ̸∈ W or xn ∈ O
0 otherwise.

(3.10)

While this work does not consider real-time obstacle detection, future work

could extend the navigation cost by augmenting O with detected obstacles.

3.2 Adaptive Trajectory Planning

This section now proposes an algorithmic approach for adaptive environ-

mental sampling and explores two informative path planning methods for

solving the optimization of Eq. (1.6) and (1.7). Algorithm 1 details the overall

framework of the proposed GP adaptive sampling (GPAS) method. In this

framework the GP is initialized to a known prior or, if no known prior is

available, it is set to a uniform constant field with a given variance. The

first measurement y0 at the starting location p0 is then added to the model,

and subsequent sampling points pn at each iteration are selected through the

PATHPLANNING subroutine of Alg. 1.

For a realistic sampling mission duration, planning a trajectory over a

long horizon is often intractable. Real-time computation can be achieved,

however, by calculating a sub-optimal approximation of the full trajectory

over a local planning horizon T. A receding horizon strategy is implemented

here such that at every sampling step n (i.e., after each collected measure-

ment), a trajectory x∗([t, t+ T]) is generated containing a sequence of H future

sampling points {p∗i }
n+H
i=n , so that T = Hδt where δt is a fixed sampling time

step. Once sampling is performed at p∗n, the corresponding measurement yn
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Algorithm 1 GAUSSIAN PROCESS ADAPTIVE SAMPLING (GPAS)
1: procedure GPAS(GP, x0, t f )
2: ▷ Collect measurement at starting location
3: y0 ← MEASUREMENT(p0)

4: ▷ Add starting location and measurement to the GP
5: GP0 ← GP_INITIALIZE(GP, p0, y0)

6: Let t← 0; n← 0
7: repeat
8: Set t← t + δt; n← n + 1

9: ▷ Plan a sampling path up to planning horizon T
10: x∗([t, t + T])← PATHPLANNING(GPn−1, x(t))
11: ▷ Collect measurement at first sampling location along path
12: yn ← MEASUREMENT(p∗n)

13: ▷ Add sampling location and measurement to the GP
14: GPn ← GP_ASSIMILATE(GPn−1, p∗n, yn)

15: ▷ Estimate GP hyperparameters with updated GP
16: θ∗n ← ESTIMATEHYPERPARAM(GPn) ▷ Eq. (3.7)

17: until t = t f
18: end procedure

is assimilated into the GP model and the hyperparameters are updated. This

process is repeated until the final mission time t f . While this receding-horizon

strategy is not globally optimal, it permits real-time execution and in situ field

estimation on-board the sampling platform, which is our main objective.

Two approaches are presented to generate the sampling trajectory in the

PATHPLANNING subroutine of Alg. 1. The first method is a modified branch-

and-bound informative path planner (Section 3.2.1) and the second method is

a cross-entropy informative path planner (Section 3.2.2). These two planning

algorithms are presented and compared because of their respective strengths

and weaknesses in different applications. The foundations of branch-and-

bound techniques are well-suited for efficient informative path planning

[9, 83], particularly on low-cost platforms with limited computational re-

sources. However, generation of the candidate planning tree is often depen-

dent on sub-optimal heuristics. Alternatively, cross-entropy-based methods,
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while more computationally demanding, are commonly used in reinforcement

learning frameworks due to the desirable quality that they need not make any

assumptions about the underlying (potentially black box) system. Thus, both

algorithms offer value during informative path planning and the utility of

each is analyzed in the following sections.

It should also be noted that the scale of the environmental distributions

under study requires that the motion constraints of the sensing platform be

taken into consideration during planning. More specifically, the objective is

to capture scalar fields that exhibit variability with resolution on the scale of

the vehicle’s turning radius. In contrast to other methods [114, 72, 22] where

planning is performed within a sampling grid of several miles, both of the

methods presented here explicitly consider vehicle motion constraints with

the intention of sampling highly localized ROIs in a 3D environment.

3.2.1 Branch & Bound Informative Path Planning (BB-IPP)

The computation time of a finite-horizon planner is exponential in the length

of the horizon. Thus, exhaustive search methods that evaluate the reward

function for every possible sampling path are only feasible for short planning

horizons. Branch-and-bound algorithms offer an efficient alternative by prun-

ing large portions of the search tree that are unlikely to contain the optimal

solution based on an upper bound on the estimated reward.

Binney [9] explored branch and bound for informative path planning

between two points on a coarsely discretized 2D sampling grid. There are three

ways in which the method presented here differs: (i) we apply branch and
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Algorithm 2 BRANCH & BOUND INFORMATIVE PATH PLANNING (BB-IPP)
1: procedure PATHPLANNING_BB(GP, xstart)
2: ▷ Set γ∗ ← 0

3: ▷ Generate a set of Q query points, {pi}Q
i=1 ∈ W

4: ▷ Predict query point rewards {L(pi)}Q
i=1 using Eq. (3.5), (3.6), and (3.8)

5: ▷ Sort by increasing Li and assign the upper bound as the α-percentile LUB ← L⌈αQ⌉

6: [z∗, γ∗]← BB_RECURSION(xstart, ∅, 0, 0)
return φz∗

7: end procedure

8: procedure BB_RECURSION(x, zparent, γparent, j)
9: if j < H then

10: ▷ Approximate maximum possible reward over the planning horizon
11: γmax ← γparent + (H − j)LUB

12: else
13: γmax ← −∞
14: end if

15: if γmax > γ∗ then
16: ▷ Sample {ξi}M

i=1 (consisting of primitives over [t + jδt, t + (j + 1)δt]) according to Eq. (3.11)

17: ▷ Extend trajectories, Z ← {(zparent, ξi)}M
i=1

18: ▷ Predict reward of each trajectory {γi}M
i=1 using Eq. (3.5), (3.6), (3.8), and (1.5)

19: ▷ Sort Z by decreasing γi

20: for each zchild ∈ Z do
21: ▷ Update total reward at child, γchild ← γi

22: if γchild > γ∗ then
23: γ∗ ← γchild, z∗ ← zchild
24: end if

25: [z∗, γ∗]← BB_RECURSION(φzchild (t + δt)), zchild, γchild, j + 1)

26: end for
27: end if

return z∗, γ∗

28: end procedure

bound to a search tree constructed of feasible motion primitives over a finite

horizon, (ii) there is no fixed goal point towards which the algorithm presented

here is driving, and (iii) as opposed to calculating an upper bound based on

average variance reduction of a GP model, we calculate the upper bound based

on an estimate of the ideal utility (Eq. (3.8)) from a set of unobserved query

points, i.e., potential future sampling locations. The overall methodology for
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Figure 3.3: Illustrative example of the receding horizon BB-IPP algorithm driving
towards a high-reward (yellow) ROI along the right edge of the sampling area. This
2D example uses H = 2 and trajectory parameterizations of z = (vx, ωz) correspond-
ing to speed and turn rate, respectively. For vx > 0, the gray region represents the
reachable space for one branching step over t + δt.

branch-and-bound informative path planning (BB-IPP) is provided in Alg. 2

and illustrated with a 2D example in Fig. 3.3.

3.2.1.1 Branching Procedure

Algorithm 2 is based on a recursive best-first tree search adapted to the specific

type of trajectory parametrization and heuristics employed. A tree with

candidate trajectories over [t, t + T] is constructed recursively starting from

the current state, xstart. States in the tree are extended at each level by a set

of M feasible motion primitives over δt that form the edges of the tree. It is

desired that the set of candidate trajectories covers the reachable space of the

system while minimizing M. To achieve this, trajectory parameterizations are

generated through stratified rejection sampling by partitioning the domain into

several semantically different classes, i.e., “forward”, “left”, “right”, “down”,
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and “up”, to ensure balanced selection of primitives in each direction. Then

each class is sampled uniformly, with primitives that violate the constraints

(e.g., collisions) discarded. The main reason for stratifying the space is to

achieve good coverage of the domain even with few samples, motivated by

our real-time computation requirements. The quality of this proposed sample

selection is analyzed in Section 3.2.1.2.

More formally, let ξ = (vx, vz, ωz) be a primitive parameterization and Ξ be

the parameter space over a single stage δt. This parameter space is partitioned

into Ξ = {Ξ1, . . . , ΞM}, where

Ξi = [v̄x,i − v̂x, v̄x,i + v̂x]× [v̄z − v̂z,i, v̄z,i + v̂z]× [ω̄z,i − ω̂z, ω̄z,i + ω̂z],

with v̄x, v̄z, ω̄z denoting the chosen nominal velocity, depth rate, and turn

rate, respectively, while v̂x, v̂z, ω̂z can be regarded as perturbations around the

nominal values. The nominal values and perturbations are chosen to fully

cover the space without any overlap. The set of single-stage primitives {ξi}M
i=1

is then sampled according to

ξi ∼ Uniform({ξ ∈ Ξi | g(Γ(φξ(τ))) ≤ 0, t ∈ [t, t + δt]}). (3.11)

The multi-stage trajectory parameterization over the planning horizon then

follows as z = (ξ1, . . . , ξH), while the parameter sample space is defined as

Z = ΞH. The mapping from parameter space to a state space trajectory is

achieved by the function φ as outlined in Section 3.1.2.
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3.2.1.2 Branching Reachability Analysis

This section further examines the reachability characteristics of the branching

procedure outlined in Section 3.2.1.1. The branching procedure is based on

sampling motion primitives defined in velocity space; however, since the

objective function is defined over the position workspaceW , a key require-

ment is the ability to explore that workspace with high probability in order

to discover regions of high information content, especially since early stages

greatly affect the sampling positions of later stages. Therefore, we establish a

relationship between the velocity-space sampling process and the resulting

coverage ofW to ensure that the branching procedure does not omit key areas

of the reachable workspace.

As a guideline, our goal is to ensure that with high probability we can visit

any spatial region with a given radius Rmin over the reachable space for a given

planning horizon. A typical choice of this radius corresponds to the vehicle’s

turning radius of approximately Rmin = 15 meters. Further, letWx0,T ⊂ W

denote the reachable workspace starting at some state x0 over a horizon T

and let the set of samples generated by the search algorithm be denoted by

Ŵx0,T ⊂ Wx0,T. We require that with high confidence R(Ŵx0,T) < Rmin where

R(Ŵx0,T) = sup
p∈Wx0,T

(
min

p′∈Ŵx0,T

∥p− p′∥
)

is the radius of the largest ball that does not contain a future sampling location

over the reachable workspace. We limit the analysis to spatial positions in the

horizontal plane due to the significantly smaller length scale of the workspace

depth component. Since the distribution of R(Ŵx0,T) is difficult to compute
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(a) (b)

Figure 3.4: (a) The approximate reachable workspaceWx0,T over different planning
horizons for vx ∈ [0.8, 1.6] m/s and ωz ∈ [−0.09, 0.09] rad/s. The nonzero minimum
speed means that the area immediately in front of the vehicle is not reachable for the
shorter horizons. (b) Candidate sampling locations Ŵx0,T (gray dots) evaluated for
M trajectories over T = 140 sec. The largest empty circle for the samples is shown on
the right.

analytically, i.e., it depends on a nonlinear transformation of a probability den-

sity function over the primitive sampling parameters, we instead numerically

approximate its expected value and its confidence interval through offline

sampling. This is accomplished by executing multiple simulations resulting in

different R(Ŵx0,T) employed for sample-based confidence-interval analysis.

In each simulation, sampled locations are generated using MH trajectories

over a given planning horizon. Fig. 3.4 shows an example of approximated

reachable spaces and the largest empty ball for a set of future sampling loca-

tions evaluated over T = 140 sec. Additionally, Fig. 3.5a shows statistics for

the maximum empty ball calculated over 30 trials for various combinations of

MH and T. These results show that the parameters ultimately selected for the

BB-IPP algorithm satisfy the desired exploration criteria with high probability.

Specifically, after 100 simulations we obtain a sample mean for R(Ŵx0,T) of
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Figure 3.5: Monte Carlo analysis of the maximum empty radius (a) and maximum
percentage of empty reachable space (b) as a function of the number of sampled
trajectories for various planning horizons. Each data point shows the mean calculated
over 30 trials with the error bars representing two standard deviations. The parameter
combination implemented for the BB-IPP algorithm is highlighted.

11.47 meters and sample standard deviation of 0.98 meters. This corresponds

to a confidence interval of

CIR(Ŵx0,T)
= [11.21, 11.67].

Therefore, based on the chosen sampling parameters, with high confidence

the branching procedure will not miss a region with radius Rmin = 15 meters.

Fig. 3.5b further emphasizes adequate coverage in the position space by

showing that the largest empty ball is actually a very small percentage of the

total area of the reachable space. Based on this analysis and further studies

performed in Section 4.1, we pick parameters for T, M, and Z to achieve the

desired reachability over a maximum planning horizon while also balancing

computational expense.
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3.2.1.3 Bounding Procedure

We have shown that the branching procedure produces desired reachability

characteristics that ensure the proposed method is capable of exploring all

regions of the reachable workspace. However, since the ultimate objective

is not to visit a single location, a dense branching set is not necessary if it is

determined in an early stage that a branch is unlikely to maximize information.

In this sense, to avoid the exponential number of possible trajectories, it is

critical to utilize a heuristic for the upper bound on the reward at any given

sampling location. The goal is to choose an upper bound LUB that effectively

restricts the search space while not pruning branches that could contain the

optimal solution.

The upper bound is computed by first generating a space-filling set of Q

query points {pi}Q
i=1, where pi are candidate sampling locations within the

planning horizon reachable space. These query points are evaluated using Eq.

(3.8) to produce a set of rewards {Li}Q
i=1 that estimate the reward distribution.

The upper bound on the reward LUB is then assigned as the α-percentile of

Lk where Lk ∈ {L1 ≥ . . . ≥ LQ}. The value chosen for α ∈ [0, 1] represents

a trade-off between computation time and optimality: small values of α will

prune many branches of the tree and reduce the computation time, but lead to

a greater risk of pruning the optimal solution. Conversely, large values of α

result in a strict LUB threshold that explores more of the search tree. Empirical

parameter tuning experiments indicate that best performance is achieved

when 0.9 ≤ α ≤ 1. Once all branches have been explored, BB-IPP of Alg. 2

returns the optimal sampling trajectory.
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3.2.2 Cross-Entropy Informative Path Planning (CE-IPP)

A second method based on cross-entropy optimization offers an alternative

for use in the PATHPLANNING procedure of Alg. 1. The idea behind the

cross-entropy method is to treat the optimization problem outlined in Eq. (1.6)

as an estimation problem of rare events. In what follows, we present the

simplified version of the cross-entropy method and refer interested readers to

other related work for the detailed formulation [25, 55, 78].

Define a collection of indicator functions {I{J(z)≥γ}} on Z for various

thresholds or levels γ. Consider the case when Z has a probability density

function p(·; v̄) belonging to some parametric family {p(·; v), v ∈ V}, where

v̄ is the true or nominal parameter. For instance, this could be a mixture of

Gaussians. We can associate with Eq. (1.7) the following estimation problem:

Pv̄(J(Z) ≥ γ) = Ev̄[I{J(z)≥γ}] = ∑
z

I{J(z)≥γ}p(z, v̄). (3.12)

The association comes from the fact that the probability Pv̄(J(Z) ≥ γ) will be

very small (rare event) when γ is close to γ∗. By the cross-entropy method,

this rare event can be estimated by iteratively generating and updating a

sequence of tuples {(γ̂j, v̂j)} such that it will converge to a small region of the

optimal tuple {(γ∗, v̄∗)}.

Let v0 be the initial parameter, for instance v0 = v̄, and employing a

multilevel approach using a sequence, the tuples {(γ̂j, v̂j)}j≥1 can be updated

iteratively by:

• Let γj be the (1− ρ)-percentile of J(Z) under vj−1. An estimate of γj,
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Iteration  𝑗 = 1

Iteration  𝑗 = 2

Iteration  𝑗 = 3

Sampling Step = 𝑛 Sampling Step = 𝑛 + 1

𝝋𝒛∗

Figure 3.6: Illustrative example of the receding horizon CE-IPP algorithm driving
towards a high-reward (yellow) ROI along the right edge of the sampling area. This
2D example uses H = 2 and trajectory parameterizations of z = (vx, ωz) correspond-
ing to speed and turn rate, respectively. For vx > 0, the gray region represents the
reachable space for one branching step over t + δt.

denoted γ̂j, can be obtained by drawing M samples from p(z, vj−1) and

assigning γ̂j as the (1− ρ)-percentile of {γi}M
i=1.

• With fixed γ̂j and vj−1, the estimate of vj, denoted v̂j, can be derived

from work by Kobilarov [55]:

v̂j = argmax
v∈V

1
|ϵj| ∑

zi∈ϵj

ln p(zi, v), (3.13)

where ϵj is the elite set of the samples, i.e., samples zi for which γi ≥ γ̂j.

Instead of updating v̂j directly with Eq. (3.13), we apply a simple smooth-

ing filter:

v̂j = κv̂j + (1− κ)v̂j−1, (3.14)

where κ is the smoothing parameter with 0.7 < κ < 1. The filter serves

two purposes: (i) smoothing the parameter update, and (ii) avoiding v̂j from
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Algorithm 3 CROSS ENTROPY INFORMATIVE PATH PLANNING (CE-IPP)
1: procedure PATHPLANNING_CE(GP,xstart)
2: ▷ Set j← 0,γ̂0 ← 0, and v̂0 ← v0
3: repeat
4: Set j← j + 1

5: ▷ Generate samples {zi}M
i=1 from p(·; v̂j−1), starting from xstart

6: ▷ Reject samples with constraint violations g(φzi ) > 0

7: ▷ Predict reward of each sample {γi}M
i=1 using Eq. (3.5), (3.6), (3.8), and (1.5)

8: ▷ Sort γi in ascending order and compute the (1− ρ)-percentile γ̂j ← J⌈(1−ρ)M⌉

9: ▷ Update v̂j using Eq. (3.13) over the elite set ϵj ← {(zi|γi) ≥ γ̂j}
10: until j = K ▷ K is number of iterations

11: ▷ Choose the sample with the maximum reward
12: z∗ ← argmax

zi

J(zi)

return φz∗
13: end procedure

converging prematurely into a local minima, especially during the inital stage

of the optimization process. A step-by-step process of the cross-entropy

informative path planning (CE-IPP) is given in Alg. 3 and illustrated with a

2D example in Fig. 3.6. Once again, the sampled trajectory parameterizations

for the AUV motion profile consist of a tuple sequence z = {(vx, vz, ωz)i}H
i=1.
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Chapter 4

Performance Evaluation of
Gaussian Process Adaptive
Sampling

4.1 Simulation Studies

Monte Carlo simulation studies were performed to evaluate the overall GPAS

method and each informative path planner in sensing and localizing multiple

ROIs. Quantitative and qualitative validation of the GPAS method is provided

against conventional sensing approaches in a variety of realistic 3D environ-

ments. With regards to Chesapeake Bay water quality applications, ROIs are

described here by hypoxic zones – areas of the water column characterized by

a dearth of dissolved oxygen. Values for dissolved oxygen in the Chesapeake

Bay typically range between 0 – 9 mg/L, with hypoxic zones designated by

dissolved oxygen values less than 2 mg/L [43]. Thus, in order to maintain the

assumption that measurements are normalized in the range 0 – 1, ROIs are

defined as areas of the environment that exhibit normalized measurements

below a threshold of 2mg/L
9mg/L ≈ 0.22. Hypoxic zones typically occur near the
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Figure 4.1: True environmental distribution used for simulation studies with a static
field normalized in the range 0 – 1. ROIs are shown in red as the volume below the
desired measurement threshold of 0.22.

seafloor because pycnocline layers of fresh and salt water prevent oxygen-rich

surface water from mixing with deeper water. Decomposition of algae and

other phytoplankton beneath the pycnocline further exacerbates the consump-

tion of dissolved oxygen [43, 53]. To emulate this phenomenon, the ROIs in

the virtual environmental fields used for the simulation studies are a linear

function of depth and reach their maximum volume at the seafloor. Further,

all environmental fields are assumed to be static based on the short time scale

of AUV deployments within this application (on the order of hours).

Fig. 4.1 shows one such virtual environmental field used for the studies

of Sections 4.1.1 and 4.1.2: a 300 meter × 300 meter × 5 meter volume with

two ROIs near the seafloor. The volume of the ROIs in this environmental
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Table 4.1: Summary of the performance metrics used to evaluate the planning ap-
proaches.

Metric Description

Planning Time The average computation time to select the optimal path at each
sampling step n over the set of simulations. The simulations were run
on a single laptop with a 2.8 GHz Intel i7-7700HQ processor with 16
GB of RAM. Each algorithm was implemented in Matlab on Ubuntu
18.04 for prototype analysis, although significant speed improvements
could be achieved by implementing the algorithms in C++.

Reward Per
Segment

The average optimal reward of the generated trajectory divided by
the number of segments in the planning horizon, i.e., γ∗/H, over the
set of simulations.

GP RMSE The average root-mean-square error (RMSE) of the estimated GP
model at the end of the sampling mission over the set of simulations.

GP Variance The average variance of the estimated GP model at the end of the
sampling mission over the set of simulations. The variance of the GP
model is calculated as the mean of the covariance matrix diagonal.

Percent Mission
in ROI

The average time spent within ROIs divided by the total mission time
over the set of simulations.

field account for approximately 1.5% of the total sampling volume. No prior

information of the environment is assumed and the initial density of the

GP model is set to a uniform distribution across the scalar field. For each

simulation, a different random seed was used for trajectory generation and the

starting location of the AUV was randomly selected to be on the surface within

a 25 meter × 25 meter box in the bottom left corner of the environmental area.

Performance metrics used to evaluate the planning approaches are given in

Table 4.1.

Additionally, low-cost AUV operations require periodic surfacing for GPS

fixes in order to maintain navigation accuracy. Thus, in the simulations and

field experiments that follow, a heuristic was implemented such that the ve-

hicle surfaces for a GPS reading after traveling a user-specified distance. For
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instance, in order for the Iver3 AUV to maintain a dead reckoning accuracy of

5 meters (using its onboard compass, inertial measurement unit, and Doppler

velocity log), the vehicle should resurface after traveling approximately 500

– 1000 meters [44] depending on the environmental conditions and the fre-

quency of course and/or depth changes. Future work will examine methods

for incorporating surfacing decisions into the path planning such as those

explored by Kemna [52].

4.1.1 Algorithm Parameter Tuning

An initial Monte Carlo simulation study was performed to evaluate parameter

variations of each informative path planner. Nominal parameter values for

both planners that were not varied for the analysis are presented in Table

4.2. While the value of δ in Eq. (3.9) was set to 0.9, it should be noted that

variations of this parameter may be insignificant [19]. Fifty simulations were

executed for each parameter combination.

4.1.1.1 BB-IPP Parameter Tuning

Performance of the BB-IPP method was evaluated by varying the planning

horizon T and the reward upper bound percentile α. Table 4.3 shows the

resulting performance metrics for various combinations of these parameters.

These results reveal that both the mean reward per trajectory segment and

the mean planning time increase as the values of T and α increase. This is

expected, as longer planning horizons and larger values of the reward upper

bound percentile threshold correlate with evaluating a greater number of
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Table 4.2: Algorithm parameters used for simulation studies.

Component Parameter Description

General

N = 160 Number of sampling points over mission (N =
t f /δt)

t f = 6000 sec Total sampling mission time (including surfac-
ing events)

δt = 35 sec Time step between each collected sample

T = 140 sec Planning horizon time length

δ = 0.9 Probability regret bound is satisfied after N
sampling steps

BB-IPP

α = 0.95 Upper bound percentile threshold

Q = 2000 Number of query points used to estimate the
utility distribution

v̄x ∈ {1.0, 1.4}m/s Nominal speed trajectory parameterizations

v̂x = 0.2 m/s Perturbation magnitude from each v̄x

v̄z ∈ {−0.08, 0, 0.08}
m/s

Nominal depth rate trajectory parameteriza-
tions

v̂z = 0.04 m/s Perturbation magnitude from each v̄z

ω̄z ∈ {−0.06, 0, 0.06}
rad/s

Nominal yaw rate trajectory parameterizations

ω̂z = 0.03 rad/s Perturbation magnitude from ω̄z

CE-IPP

K = 9 Maximum number of iterations

M = 300 Number of trajectories evaluated at each K-th
iteration

ρ = 0.1 Percentile threshold for specifying elite sample
set

κ = 0.9 Parameter update smoothing filter value

vx ∈ [0.8, 1.6] m/s Range of available speeds from which to sam-
ple

vz ∈ [−0.12, 0.12] m/s Range of available depth rates from which to
sample

r ∈ [−0.09, 0.09] rad/s Range of available yaw rates from which to
sample
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possible trajectories. The remaining metrics of Table 4.3 including GP RMSE,

GP variance, and mission time in ROIs do not indicate a strong relationship

with the values of the BB-IPP parameters.

4.1.1.2 CE-IPP Parameter Tuning

For the CE-IPP method, performance was evaluated by varying the planning

horizon T, the elite set percentile threshold ρ, and the number of trajectory

samples generated per iteration M. The elite set percentile threshold ρ was

chosen for study because it determines the rarity of trajectories that are used

to learn subsequent importance samplers, thereby increasing the frequency of

generating informative paths.

Table 4.4 shows the resulting performance metrics for various combinations

of the CE-IPP parameters. These results exhibit the expected trend that the

mean planning time increases as the values of T (longer trajectories) and M

(greater number of possible trajectories) are increased. Surprisingly, however,

while the mean reward per segment generally increases with longer planning

horizons, greater values of M seem to result in a decrease in the mean reward

per segment. This could possibly be explained by the fact that larger values

of M result in a greater number of trajectories that compose the elite set of

samples ϵj. In turn, the (1− ρ)-percentile of this set γ̂j would be higher if the

majority of the samples do not produce large rewards. This is supported by a

slight increase in the mean reward per segment and mean mission percent in

ROIs as the value of ρ decreases. The remaining metrics of Table 4.4 including

GP RMSE and GP variance do not indicate a strong relationship with the
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values of the CE-IPP parameters.

Overall, the parameters for each algorithm were selected to balance plan-

ning time, GP model fidelity, and the time spent in ROIs. The resulting

parameter values chosen for subsequent simulation analysis and field ex-

periments are given in Table 4.2. A comparison between the two planning

methods shows that while both produced the same level of GP model fidelity,

the CE-IPP method produces paths with slightly higher rewards and consis-

tently spends a higher percentage of the mission sampling within ROIs. This

comes at the expense of greater computation time, as the BB-IPP method is

approximately 5 – 10x faster than the CE-IPP method, particularly when eval-

uating trajectories over a longer planning horizon. Neither method, however,

is prohibitively expensive to preclude further examination, especially if the

algorithms were to be optimized for runtime performance.

4.1.2 Performance Over the Sampling Mission

This section further analyzes the performance of each planner over the time

history of the sampling mission. A baseline planning approach consisting of a

pre-programmed undulating lawnmower (LM) path was also simulated to

illustrate the advantages of the proposed GPAS method against conventional

sensing approaches. In typical operations, a pre-programmed coverage mis-

sion such as this is executed without regard to the collected data. It is not

until the data is analyzed after the vehicle returns that ROIs may be identified,

at which point the vehicle would need to be redeployed to collect additional

data in these areas. The adaptive scheme of the GPAS method addresses this
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problem by using the acquisition function of Eq. (3.8) to balance the trade-off

between data collection in known ROIs (through GP model mean predic-

tions) and exploration of unknown and/or uncertain areas of the environment

(through GP model variance predictions).

4.1.2.1 Quantitative Performance

Fig. 4.2 shows the performance of each path planning algorithm as a function

of the sampling step, averaged over a total of 150 simulations. While the

planning times for each GPAS method are longer than the baseline LM path,

it is evident that the trajectories planned by the GPAS method consistently

produce higher rewards throughout the mission. Although not shown in Fig.

4.2, this is emphasized by the percentage of the total mission time spent in

ROIs: 13.1% of the mission for the BB-IPP method, 20.9% of the mission for

the CE-IPP method, and 2% of the mission for the baseline LM path, even

though the volume of the ROIs account for only 1.5% of the total sampling area

volume. Both the mean reward per segment and the mission percentage in

ROIs indicate that the trajectories produced by GPAS significantly outperform

the baseline LM path in collecting valuable measurements. In particular, the

CE-IPP method produces slightly better rewards than the BB-IPP method and

is able to allocate the most sampling time to the ROIs.

While these results indicate that the GPAS method is superior in collecting

valuable measurements in ROIs, it is important to ensure that prediction over

the entire environmental field is not sacrificed. Fig. 4.2c and 4.2d show the

GP RMSE and GP variance as a function of the sampling step, respectively.
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Figure 4.2: Metrics used to evaluate the performance of each path planning method
over a set of 150 simulations (LM is the baseline undulating lawnmower path).
Plots begin at the 10th sampling step so as to let the GP train with an initial set of
measurements. The lines are the mean values and the shaded regions capture values
within one standard deviation around the mean.

While the GP variance is similar for all planning methods, the lower RMSE

values of the GPAS method compared to the baseline LM path show that

the adaptive trajectories produce more accurate surrogate models over the

course of the mission. This is intuitive, as the adaptive trajectories initially

choose to explore areas of the environment with high uncertainty. As the

mission progresses, a more accurate GP model means that additional effort

can be focused on further improving the model in both ROIs (exploitation)
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Figure 4.3: Hyperparameter estimates θ∗ = [lx, ly, lz, σf , σw]T for each path planning
method over a set of 150 simulations (LM is the baseline undulating lawnmower
path). The lines are the mean values and the shaded regions capture values within
one standard deviation around the mean.

and uncertain areas (exploration).

Additionally, an ablation study was performed on the GP model to deter-

mine its ability to predict ROIs in the absence of direct measurements within

these regions. For each simulation, measurements collected within ROIs were

removed from the full set of collected measurements and the GP model was

retrained on the subset of measurements. This reduced GP model was then

used to predict the values of the removed ROI points as well as the values

of the full measurement set, resulting in average RMSE values of 0.078 and
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0.055, respectively. These RMSE values are only slightly higher than those

observed from the GP model trained on the full measurement set. Further,

an average of 83% of the removed measurements were still predicted below

the ROI threshold, indicating that the GP model is capable of modeling and

predicting these regions even in the absence of direct measurements.

Fig. 4.3 captures the hyperparameter estimates for each path planning

method over the same set of simulations. All strategies produced relatively

similar hyperparameter estimates that began to stabilize towards the end

of the sampling mission. To compare the quality of these hyperparameter

estimates, however, the RMSE was calculated using new GP models that were

retrained with the final, averaged hyperparameters estimated by each path

planning method. This resulted in average RMSE values of 0.038 for BB-IPP,

0.039 for CE-IPP, and 0.047 for the baseline LM method. These results are

fairly consistent with the trends seen in Fig. 4.2c and provide further evidence

that the GPAS method tends to produce models with overall lower RMSE

values.

4.1.2.2 Example Trajectories

Fig. 4.4 shows the resultant trajectories and sampling locations of candidate

simulations for each path planning method. These trajectories and sampling

locations are overlaid on the estimated GP model of each simulation using

the hyperparameter estimates at the end of the mission. Additionally, a time-

series plot of the measurement signal is provided for each trajectory with the

red portion signifying time spent within an ROI. Even though the trajectories
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planned by the GPAS method did not provide as complete area coverage as

the baseline LM path, they exhibit a good exploration-exploitation trade-off by

initially exploring the environment to learn a model of the underlying scalar

field, and subsequently focusing samples within the ROIs.

The results shown in Fig. 4.4 also indicate that the GPAS method is capable

of detecting and localizing multiple ROIs within a scalar field. Even though the

signal level plots show that the first ROI is discovered early in the mission, the

GPAS method continues to explore the rest of the field, as the variances around

unexplored regions were still high. After the second ROI is discovered by both

GPAS planning methods, the sampling is then focused alternatively between

the two ROIs, a behavior that results from the GP-UCB criteria to minimize

cumulative regret given the number of samples remaining in the mission, the

current knowledge / uncertainty of the environment from collected data, and

a limited planning horizon. As data is collected in one ROI, the uncertainty of

that ROI decreases, and the utility of other areas of the environment (including

other ROIs) increases as a result. These results show that the GPAS method is

not prone to local minima even though the measurement signal level for both

ROIs is comparable. In contrast, since the baseline LM path is preplanned with

equal sampling step size, the samples collected along the trajectories are fixed.

Furthermore, depending on the vehicle’s starting position and the location of

the ROI within a given environment, the detection of a ROI is random at best.
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Figure 4.5: An example of a randomly generated environmental distribution and the
resulting sampling points. Bathymetry is shown in brown where the right figure
illustrates a portion of the trajectory exhibiting bottom-following at a safe minimum
height.

4.1.3 Performance on Randomized Environmental Fields

While the simulation results explored so far highlight the advantages of the

GPAS algorithm on a candidate test environment, it is important to study

whether the results apply to any realistic sampling environment. This section

gathers additional statistical evidence of the performance of the BB-IPP, CE-

IPP, and baseline LM approaches on a set of 500 randomized, auto-generated

sampling environments. The length, width, and depth of each environment

was varied to create a range of sampling volumes between approximately

5× 104 m3 and 3.5× 106 m3. The static field distribution was randomly gener-

ated in the horizontal plane and, similar to Fig. 4.1, linearly scaled based on

the depth.

In addition to randomly generating the environmental field, bathymetry
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was also generated for added realism. Consideration of local bathymetry is

particularly important for operations in the Chesapeake Bay, as it is typical

for hypoxic regions to form close to the seafloor. Bathymetry-aware planning

is thus necessary to reduce the risk of vehicle loss when operating in envi-

ronments characterized by large variations in bathymetry, significant bottom

vegetation, and muddy soil. An example of a randomly generated sampling

environment is shown in Fig. 4.5.

Slight modifications to the test conditions and algorithms were imple-

mented to accommodate the new environments. The overall mission time

for each environment was scaled according to the relative volume of each

environment. Similarly, the baseline LM path was precomputed to scale ac-

cording to the relative volume of each environment, not intersect with the

seafloor, and cover the entire sampling volume within the mission time. For

the adaptive planners, bathymetry was modeled throughout the sampling

mission by incorporating measurements from simulated altimeter and pres-

sure sensors. This bathymetry model was used to predict the vehicle’s height

from the seafloor along each trajectory considered during path planning. If

any trajectory violated a safe minimum height from the seafloor, the depth rate

vz was saturated such that the vehicle never violated the safe height threshold.

Any trajectory that violates the bathymetry constraints after saturating vz is

removed from consideration. In this way, the resulting motion primitives

remain dynamically feasible while safely navigating variable bathymetry pro-

files as shown in Fig. 4.5. In addition to considering bathymetry during path

planning, the waypoint following autopilot was extended to always keep the
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current state of the vehicle above the safe minimum height while transiting

between waypoints.

Evaluation metrics for each planning method are shown in the form of box

plots in Fig. 4.6, including a generalized ROI mission ratio (RMR) to account

for variation between the randomized environments:

RMR =
(tROI/t f )

(VROI/V)
, (4.1)

where tROI is the time spent within ROIs, VROI is the volume of the ROIs,

and V is the total volume of the test environment. This metric normalizes the

percentage of time spent within ROIs based on the actual volume of the ROIs

within different environments.

Overall, the performance observed on the randomized environments is

consistent with that of Section 4.1.2, where the BB-IPP and CE-IPP algorithms

outperform the baseline LM approach on all metrics except planning times (as

expected). In particular, the RMR values illustrate that the GPAS algorithm

generalizes to a variety of realistic, constrained sampling environments and is

able to dedicate more sampling time within ROIs (approximately 3 – 5x for

BB-IPP and 4 – 7x for CE-IPP) when compared to the baseline LM approach.

Further, the GPAS method produced lower GP RMSE and variance values

than the baseline LM coverage pattern, indicating that the adaptive sampling

does not compromise the fidelity of the final GP model. The minimal spread

of the planning times also indicates that the planning algorithms are agnostic

to the environment being sampled and can repeatably produce new sampling

points.
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Figure 4.6: Performance metric box plots for each path planning method over a
simulation set of 500 randomly generated sampling environments. The GP RMSE
and variance results were based on a GP model trained at the end of each mission.
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4.2 Field Experiments

As a demonstration of the algorithm, two field experiments were carried out

in the Severn River, Maryland using the JHU Oceanserver Iver3 AUV of Fig.

3.1. The goal was to use the GPAS method on an operational platform to

fully explore the environment workspace while also prioritizing the collection

of measurements within ROIs. The first experiment prescribed the AUV to

take simulated measurements from the virtual environmental field of Fig.

4.1. This virtual field provides a perfect ground truth from which to evaluate

the GP modeling. Additionally, this experiment is used to determine if the

results from the simulation studies translate to an operational platform, thus

giving confidence to the statistical results of the Monte Carlo testing in Section

4.1.3. The second experiment then used the GPAS algorithm to collect in situ

dissolved oxyen measurements for the purpose of discovering and modeling

hypoxic zones. The locations of the two field experiments are shown in Fig.

4.7.

4.2.1 Test Platform

The AUV is equipped with two on-board computers for autonomous control

as well as various sensors for vehicle localization and navigation. When oper-

ating on the surface, the AUV primarily uses GPS and a magnetic compass to

obtain its pose estimates. The AUV is also equipped with an inertial measure-

ment unit (IMU), a Doppler velocity log (DVL), an altimeter, and a pressure

sensor such that it can perform dead reckoning navigation when submerged.

Table 4.5 lists the noise characteristics of these sensors. After achieving DVL
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Table 4.5: JHU Iver3 AUV measurement sources and resolutions.

State Source
Update

Rate
Measurement Resolution

Roll, Pitch,
Heading

OceanServer 1 Hz
< 0.5 deg Heading RMSE

when level; 1 deg Heading
RMSE when < ±30 deg tilt

Z Trans OceanServer 1 Hz 0.1 meter Std Dev

Translational
Velocity

600kHz RDI
Explorer DVL

4 Hz 0.01 m/s Std Dev

bottom lock, experimental testing [44] found that the submerged positional

accuracy of the JHU Iver3 is approximately 0.5% distance traveled in nominal,

fixed-depth conditions. This error has the potential to increase to approx-

imately 1% distance traveled when operating in environments with high

currents or when executing many course and/or depth changes.

In addition, the vehicle was outfitted with a JFE Advantech RINKO-FT

dissolved oxygen sonde for measuring the environmental features of interest.

Communication with the AUV is achieved through Wi-Fi when it is on the

surface and through acoustic communication when it is submerged. Due

to the limited bandwidth available through acoustic communication, only

vehicle state updates and safety commands (e.g., abort commands) are sent

between the operator and the vehicle. Thus, all processing regarding the path

planning and GP modeling is performed by the vehicle’s on-board computers.

The two on-board computers have separate functionality in a front-seat /

back-seat configuration. The front-seat computer acts as the autopilot of the

AUV. This computer processes sensor data to estimate the vehicle’s state and

accepts commands in the form of desired heading, desired speed, and desired
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Overhead Trajectory View
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Figure 4.7: AUV field experiments were conducted in the Severn River, Maryland.
The northernmost test area, referred to as TA1, ran the GPAS algorithm using virtual
measurements from a simulated environmental field with multiple ROIs. The south-
ernmost test area, referred to as TA2, ran the GPAS algorithm using in situ dissolved
oxygen measurements.

depth. The back-seat computer hosts the GPAS and path planning algorithms.

This computer receives vehicle state information from the front-seat and pro-

vides the navigation commands for the current sampling point. Additionally,

the back-seat computer contains software to provide safety oversight includ-

ing geofencing, abort overrides, safety thresholds, and heartbeat monitoring

of all software components. The open-source Robot Operating System (ROS)

[107] was used as the framework for managing information between each

software component on both on-board computers.
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4.2.2 Implementation Details

As seen in the results of the simulation studies, there exists a trade-off be-

tween performance and computational time between the two planning al-

gorithms: the CE-IPP algorithm slightly outperforms in collecting higher

rewards and spending more time in ROIs, while the BB-IPP algorithm re-

quires less computational expense. This trade-off is important because the

AUV on-board computers are significantly less powerful than standard lap-

top or desktop computers. Thus, due to the faster planning times and the

relatively constrained sampling areas, the BB-IPP algorithm was chosen as

the path planning subroutine implemented on the AUV for field experiments.

The advantages of the more computationally expensive CE-IPP algorithm

become more pronounced when performing sampling missions in large areas.

Slightly longer processing times are acceptable on larger grids because the

sampling waypoints can be spaced further apart. Future work in optimiz-

ing the implementation of these algorithms could overcome this limitation.

Further, sampling platforms with increased computational capabilities (e.g.,

ASVs) could accept the more expensive CE-IPP algorithm.

Additionally, in a similar manner to Section 4.1.3, the planning algorithm

was required to maintain a minimum height of 1.5 meters from the seafloor

as a conservative safety condition to prevent vehicle loss, either through

entanglement in bottom vegetation or getting stuck in loose mud. Enforcing

this condition was done by continuously estimating the local bathymetry using

the vehicle’s onboard altimeter (to measure height from bottom) and pressure

sensor (to measure depth). This safety condition, however, should not prohibit
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detection of ROIs, as technical reports of the testing area [87, 46] indicate that

there is not significant variation in dissolved oxygen measurements within 2

meters of the seafloor (typically < 1 mg/L). Further, the results of the ablation

study in Section 4.1.2 indicate that ROIs can still be accurately predicted by

the resulting GP model using nearby measurements. As additional emergency

recovery mechanisms are added, this safety condition could be relaxed to

minimize height from the seafloor.

4.2.3 Experiment #1: Virtual Environmental Field

The first experiment was designed to determine if the results obtained in the

simulation studies translated to an operational environment. To this end, the

experiment utilized the virtual environmental field of Fig. 4.1 such that the

GP model on-board the vehicle was trained via virtual measurements from

this distribution based on the AUV’s current position. This experiment was

performed in the northernmost test area (TA1) of Fig. 4.7. This area was chosen

because it is large enough to accommodate the virtual environmental field and

consisted of fairly constant bathymetry that would not interfere with sample

selection. Algorithm parameters were identical to those in Table 4.2 with the

exception that t f = 5200 sec and δt = 40 sec. This produces trajectories of

N = 130 sampling points and allows for additional time required for GPS

surfacing events.

The results of the first experiment performed in TA1 are shown in Fig.

4.8 while the performance metrics are summarized in Table 4.6. The plots

show that the resulting sampling points and vehicle trajectory are very similar
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Figure 4.8: Results for the field experiment performed in TA1 using the virtual
environmental distribution of Section 4.1. The left image shows the estimated GP
model with sampling points in 3D. The measured bathymetry of the test area is shown
in brown. The top right plot shows a bird’s-eye view of the AUV trajectory with
the estimated distribution at the seafloor. The time series plots in the bottom right
show the normalized virtual measurements, where measurements within an ROI are
highlighted in red, and the vehicle altitude.

to those observed in the simulation studies. Additionally, the performance

metrics of Table 4.6 are consistent with the simulation results observed in

Fig. 4.2 with the exception of longer planning times due to less processing

power on the AUV on-board computers. Both of these facts demonstrate

the practicality of the proposed method in a real world application while

also giving further confidence to the statistical results from the randomized

environment testing of Section 4.1.3.

One can observe in the TA1 results of Fig. 4.8 that the AUV unexpectedly

navigated outside of the safety geofence due to a series of failed checksum
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Table 4.6: Summary of performance metrics observed for each field experiment.
Values for the GP RMSE and GP Variance are measured at the end of the sampling
mission. GP RMSE was not calculated for the experiment in TA2 due to the lack of a
ground truth dissolved oxygen source.

Experiment Planning Time
(sec)

GP RMSE GP Variance Percent Mission in
ROI

TA1 0.67± 0.21 0.056 0.098 17%

TA2 0.63± 0.20 - 0.42 mg/L 48%

messages in the commanded inputs. This event occurred approximately 1400

sec into the mission and is evident by the break in the AUV’s 2D trajectory

outside the bottom right corner of the sampling area. At this time, safety

mechanisms caused the AUV to travel back to the center of the mission

area. The AUV resumed operations once back at the center of the sampling

area approximately 1700 sec into the mission and successfully completed

the remainder of the mission. Overall, this caused a 300 sec delay from the

originally intended 5200 sec total mission time.

4.2.4 Experiment #2: In Situ Measurements From Dissolved
Oxygen Field

The second experiment was performed in the southernmost test area (TA2) of

Fig. 4.7. This experiment was designed to demonstrate the GPAS algorithm

in collecting samples based on an environmental field estimated from in

situ dissolved oxygen measurements. As described in Section 4.1, dissolved

oxygen values in the Chesapeake Bay typically range between 0 – 9 mg/L.

In order to evaluate sampling locations using the GP-UCB, measurements

were normalized based on this range to be between 0 – 1. The dimensions

of TA2 are 200 meters × 200 meters with depth ranges between 6 meters
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Figure 4.9: Results for the field experiment performed in TA2 using in situ dissolved
oxygen measurements. The left image shows the estimated GP model with sampling
points in 3D. The measured bathymetry of the test area is shown in brown. The top
right plot shows a bird’s-eye view of the AUV trajectory. The time series plots in the
bottom right show the DO measurements, where measurements below the normalized
ROI range (22nd percentile) are highlighted in red, and the vehicle altitude.

on the western edge and 12 meters on the eastern edge. This test site lies

within a channel of the Severn River that is characterized by large changes

in bathymetry and greater than average depths. These characteristics are of

interest for measuring dissolved oxygen, as pockets of significant depth at

the center of the channel have a tendency to produce hypoxic regions [90].

Algorithm parameters were identical to those in Table 4.2 with the exception

that t f = 4000 sec, δt = 40 sec, and N = 85 to accommodate the smaller

sampling volume.

The results obtained for the field experiment in TA2 are shown in Fig.

4.9 while the performance metrics are summarized in Table 4.6 (with the
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exception that GP RMSE could not be calculated in the absence of the ground

truth dissolved oxygen field). The environmental distribution shown by the

GP model in Fig. 4.9 is an estimate based on the collected dissolved oxygen

measurements, which range between approximately 2.3 mg/L at the bottom

of the channel along the eastern edge and 7 mg/L at the surface. The first

takeaway from this experiment is that hypoxic conditions (< 2 mg/L) were

not present at TA2 during the data collection event. This is primarily due

to the fact that the field experiment was performed in early October, while

hypoxic zones are typically most prevalent in July and August. The observed

dissolved oxygen levels, however, were still well below the 3 mg/L threshold

that is required to support most marine life including deep-water fish, crabs,

and oysters [132]. Further, the observation that these measurements occurred

in early October means that the region surrounding TA2 would be highly

susceptible to hypoxia during peak summer months.

In the absence of hypoxic zones, an alternative evaluation of the GPAS

effectiveness is to consider the samples collected in relation to the available

measurement range at the test site. We continue to use the previous definition

of an ROI as values below a normalized threshold of 0.22 (i.e., the 22nd

percentile of the available measurement range), but now in relation to the

available measurement range of 2.3 – 7 mg/L. According to this evaluation,

the AUV spent 1946 sec within ROIs, accounting for approximately 48% of the

total mission time. This translates to an RMR value of 2.4 when considering

the volume of the ROI based on the collected data. In other words, the GPAS

algorithm performed as expected with the information that was available
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during collection. This is evidenced in Fig. 4.9 by the concentration of samples

collected along the eastern edge of the sampling area, especially towards the

end of the sampling mission.

4.3 Summary of Findings

The results presented in this chapter indicate that the proposed GPAS method-

ology achieves the desired goal of producing environmental datasets that

focus on regions of interest, while at the same time not sacrificing the final

model fidelity of the full workspace. In fact, the Monte Carlo simulation

results on randomized environments even show that the final GP models

trained from GPAS trajectories are more accurate than those trained from

conventional coverage trajectories.

The statistical performance gleaned from the simulation analysis was then

supported by the results seen during AUV field tests. When operating on

one of the same environmental fields used in simulation (in a virtual sense),

the real AUV produced nearly identical results in its performance metrics.

This fact gives added confidence that the performance seen in simulation is a

good indicator of the performance that can be expected during deployments in

similar environments. The final field test operating on in situ dissolved oxygen

measurements serves as a demonstration into one such environment. Given

enough trust in the system through additional simulation validation and field

testing, the desire is that deployments such as the field test in TA2 could

become a regular part of the strategy in monitoring the health of estuaries

such as the Chesapeake Bay.
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Part II

Good Seamanship Path Planning
and Performance Evaluation for

Autonomous Surface Vessels
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Chapter 5

Background on Autonomous
Surface Vessel Navigation

The focus of this thesis in Part II now shifts to another problem within ma-

rine robotics: improved navigation strategies for autonomous surface vessels

(ASVs). While ASV navigation shares many similarities with nonholonomic

path planning in other fields, it remains an open problem due to an array of

domain-specific challenges and the many competing requirements of these

systems. For example, ASVs must not only satisfy mission objectives and

perform traditional collision avoidance, but they must also act in accordance

with more abstract good seamanship1 principles that human ship captains

would exhibit. This includes predictable maneuvering, taking early and obvi-

ous actions, and obeying navigation protocols according to the International

Regulations for Prevention of Collisions at Sea [41], referred to as COLREGS.

1As stated in Chapter 1, the term “seamanship” is used throughout this thesis because it is
explicitly referenced in international maritime protocols [41] and contains intrinsic concepts
that are understood by the practicing community. In an effort to avoid gender-biased language,
however, terms such as seamanship should begin to be phased out and replaced with neutral
terms (e.g., ship handling) in the future.
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5.1 Review of COLREGS

The most recent edition of COLREGS [41] was initially published in 1972 and

has been adopted as common practice since 1977. The full set of protocols

consists of 38 rules organized into five different sections. The first two sections

address the general applicability of the rules as well as proper ship handling

etiquette. The final three sections address proper light and sound signaling,

priorities given to different types of vessels, and exemptions given in special

circumstances. These final three sections heavily depend on the ability to

properly classify the vessel type and interpret its day shapes, lights, or sounds.

While a complete ASV navigation suite would be expected to comply with

all of the rules, the work in this thesis does not focus on maritime perception

and classification (which in itself is a challenging research subject). Thus,

only a subset of COLREGS from the first two sections is addressed, leaving

extensions to the remaining rules open for future work.

Specifically, this research focuses on power-driven vessels and the COL-

REGS maneuvering protocols that all vessels must follow to reduce confusion

when there is a collision risk. These expectations are covered in rules 2, 7, 8,

13 – 17 and designate vessels as either give-way (one which must yield to the

other vessel) or stand-on (one which is expected to maintain course and speed

while the other vessel yields).

• Rule 2 – Responsibility: The rule of responsibility essentially acts as

a catch-all by saying that, regardless of what is dictated by the other

COLREGS protocols, it is the responsibility of any vessel to act according

77



to the “ordinary practice of seamen.” This rule of good seamanship is

meant to recognize that special circumstances arise on the water and it is

the responsibility of all vessels to act appropriately, regardless of which

vessel has right-of-way.

• Rule 7 – Risk of Collision: This rule dictates that vessels must continu-

ously monitor whether a collision risk exists with another vessel. Factors

that influence whether a collision risk exists include the navigation con-

ditions and the size / actions of the target ship.

• Rule 8 – Action to Avoid Collision: This rule again includes aspects of

good seamanship, as it covers characteristics about proper vessel actions

in a collision avoidance scenario. These characteristics include making

large, obvious maneuvers that are readily apparent on radar, making

early maneuvers to avoid close-quarter situations, making maneuvers

that result in passing at a safe distance, and not impeding the safe

passage of another vessel.

• Rule 13 – Overtaking: If a collision risk exists, a vessel is deemed to be

overtaking when it approaches another vessel from a direction more

than 22.5 deg abaft abeam such that the overtaking vessel would only

be able to see the stern lights of the overtaken vessel (Fig. 5.1a). The

overtaking vessel is expected to give way whereas the overtaken vessel

is expected to stand on. If there is confusion as to whether ownship is

overtaking, it should assume that it is.
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• Rule 14 – Head-on: If a collision risk exists, a head-on encounter is de-

scribed by vessels that approach each other on approximately reciprocal

courses (Fig. 5.1b). The preferred de-escalation strategy in this scenario

is for both vessels to give way to starboard such that they pass on each

other’s port side. However, special circumstances (such as a significantly

offset head-on encounter) may deem it appropriate that the vessels pass

each other on their starboard side.

• Rule 15 – Crossing: If a collision risk exists and the geometry of the

encounter does not satisfy the criteria for overtaking or head-on scenar-

ios, the encounter is a crossing scenario (Fig. 5.1c). If the target ship is

approaching from ownship’s starboard side, then ownship is expected

to give way while the target ship is expected to stand on.

• Rule 16 – Action by Give-Way Vessel. This rule simply states that the

give-way vessel must take early and appropriate action to stay well clear

of the other vessel.

• Rule 17 – Action by Stand-On Vessel The primary expectation of the

stand-on vessel is to maintain course and speed. If, however, the give-

way vessel is noncompliant (i.e., does not take appropriate evasive action

in a timely manner), the stand-on vessel is permitted and expected to

take its own evasive action, so long as it does not turn to port. Turning

to port in this instance could result in a head-on collision if the give-way

vessel belatedly maneuvers to starboard as it should.
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Figure 5.1: Diagrams of COLREGS rules 13 – 15 and the expected actions by each
vessel.

5.2 Collision Risk Assessment

The rules presented above rely on the underlying assumption that a collision

risk exists between the vessels; otherwise, no action would need to be taken.

There have been many studies over the past two decades that assess the

collision risk between two oncoming vessels, including general surveys of

maritime risk assessment [66, 80]. Traditionally, metrics related to the closest

point of approach (CPA) have been used to determine the collision risk of an

encounter. The CPA is defined as the location where two moving objects with

fixed velocity vectors reach their minimum separation distance. For example,

the works of Bukhari et al. [12] and Perera et al. [102] both assess collision

risk based on fuzzy inference of CPA-based indices. Meanwhile, Li and Pang

[64] applied Dempster-Shafer theory to combine multiple CPA-based indices

into an overall collision risk assessment.
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Two important metrics derived from CPA are the time until CPA (tcpa) and

the distance at CPA (dcpa). Defining the position vectors of each vessel as p1

and p2 and their velocity vectors as v1 and v2, these metrics are calculated as

follows:

tcpa =
(p2 − p1) · (v1 − v2)

||v1 − v2||2
, (5.1)

dcpa = ||(p1 + tcpav1)− (p2 + tcpav2)||. (5.2)

In this formulation, a negative value of tcpa indicates that CPA occurred in the

past. Collision risk and the applicability of COLREGS can then be determined

based on whether tcpa and dcpa are less than the desired safety thresholds, the

values of which are largely the preference of the ship captain and could vary

based on the situation at hand.

A parallel line of research has focused on performing maritime safety

assessment using the concept of ship domain. The traditional definition of

ship domain as defined by Goodwin [38] is “the surrounding effective waters

which the navigator of a ship wants to keep clear of other ships or fixed

objects.” With regards to safety assessment, various authors have applied

ship domain in a binary fashion (i.e., any object within the vessel’s domain is

considered a threat to navigational safety) [35, 18], while others have adopted

a more continuous risk assessment, known as a fuzzy ship domain, based on

the object’s degree of penetration into the vessel’s domain [124, 134, 104]. He

et al. [45] use multiple ship domains that depend on the COLREGS situation

to determine collision avoidance maneuvers. An excellent review of different

ship domain models and their applications is presented by Szlapczynski [126].

81



5.3 ASV Navigation Related Work

Until COLREGS are adjusted to explicitly consider ASVs, it is understood that

ASVs and humans alike must abide by the current standard. The challenge

in developing ASV software to comply with these protocols, however, is that

they were originally written for human-operated vessels. The result is that

portions of the protocols were intentionally left vague so as to leave room

for interpretation and common sense decision-making (from a human per-

spective). Further, there are many aspects of good seamanship not explicitly

written in these protocols, particularly regarding multi-vessel encounters. In

these circumstances, some COLREGS protocols may not be applicable because

they would produce conflicting expectations for each vessel. A robust ASV

system must be capable of COLREGS compliance while remaining flexible

enough to not blindly adhere to a rule-based system in more complicated

scenarios.

Many of the early approaches to COLREGS-compliant ASV navigation

focused on reactive planning methods, meaning that control actions are gen-

erated in a local sense from immediate sensor information as opposed to

employing motion planning to generate a future trajectory. For ASVs, this

typically takes the form of generating a desired velocity vector. Benjamin

et al. [5] was one of the first works to introduce behavior-based COLREGS

compliance using interval programming (IvP). Within an IvP framework,

the COLREGS behavior produces an objective function that encourages COL-

REGS compliance, which is then combined with objective functions from other

behaviors (e.g. waypoint following) and optimized to produce the desired
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velocity vector. Other work by Naeem et al. [98] offers an alternative based

on line-of-sight waypoint guidance that is augmented with manual heading

biases to account for different COLREGS encounters. Extensions to velocity

obstacles [31] are also popular for ASV navigation due to the ability to handle

many dynamic obstacles at reasonable computational expense. Kuwata et

al. [58] incorporated COLREGS with velocity obstacles by augmenting the

restricted velocity space with regions that violate COLREGS. Similar concepts

have also been adopted using reciprocal velocity obstacles [57].

More recent work in COLREGS-compliant ASV navigation has focused

primarily on deliberative planning approaches. Eriksen provides a recent

collection of works [28, 27, 29] detailing each component in an overall ASV

navigation system, including a planning approach that evaluates an exhaus-

tive set of motion primitive-based trajectories. The work by Bergman et al. [6]

uses a similar approach within a two-stage planner, where motion primitives

are used as the trajectory seed for direct optimal control methods. Modifica-

tions to tree-based designs are also described in a COLREGS-modified RRT

planner [16] and model predictive control-based approaches [49, 42]. Rather

than using a discrete set of motion primitives at each stage of the planning

tree construction, other methods incorporate adaptive sampling techniques to

scale the length of the primitives based on the estimated future risk [123, 113].

Recent lines of research have also begun the challenging problem of modeling

the probabilistic intent of other vessels during planning [129].

A limitation of the approaches listed above, however, is their ability to

generalize in complicated multi-vessel scenarios. As discussed above, while

83



Target 
Ship #1

Target 
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Figure 5.2: Example of a multi-vessel scenario with conflicting COLREGS rules.

COLREGS provide guidance in single-vessel scenarios, the protocols cannot

be blindly applied to each vessel individually in multi-vessel encounters.

For example, consider the scenario shown in Fig. 5.2. If COLREGS rules

were applied to each target ship individually, ownship would be expected

to stand on to target ship #1 but also give way to target ship #2. These

conflicting expectations mean that COLREGS rules designed for single-vessel

scenarios do not generalize easily to multi-vessel scenarios. In reality, the

primary rules that remain in multi-vessel situations are those that specify good

seamanship practices (e.g., Rules 2, 7, 8). Thus, it is important to consider what

exactly constitutes good seamanship such that ASV software can exhibit these

principles when faced with complicated avoidance situations. The approach

presented in Chapter 6 aims to make progress toward this goal of an ASV

navigation system that generalizes to all types of on-water encounters.

84



Chapter 6

Encoding Good Seamanship
Principles Within a Path Planning
Framework

This chapter now begins to detail a hybrid planning approach that adheres

to COLREGS protocols in single-vessel encounters, but also incorporates a

more general risk-based framework for multi-vessel encounters. Once again,

the problem statement introduced in Section 1.3 is used to guide the planner

development, albeit slightly reformulated to now minimize a cost rather than

maximize a reward, i.e.:

z∗ = argmin
z∈Zcon

J(z), (6.1)

γ∗ = min
z∈Zcon

J(z), (6.2)

where then π∗ = φ(z∗). This is a notational choice for convenience that allows

the costs to be defined as positive values.

The dynamic surface vessel model and its parameterization for trajectory
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Figure 6.1: Autonomous surface vessel used in field experiments for which the
hydrodynamic model was derived.

generation are first provided, followed by the derivation of how good seaman-

ship principles can be quantified to evaluate the quality of proposed paths.

Finally, the strategy employed to perform this path planning is described.

6.1 Surface Vessel Dynamic Model

First, we introduce the hydrodynamic surface vessel model of the system

under test – a simplified 2-DOF model that captures the unique acceleration

and turning characteristics of high-speed surface craft while minimizing the
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number of required model coefficients. Thus, it is assumed that the vessel

operates in a plane where roll, pitch, sway, and heave effects are negligible

(at least for the purposes of simulating ASV navigation at mission-length

timescales). This model was developed for the 29-ft rigid-hull inflatable boat

shown in Fig. 6.1 and would primarily be intended for smaller vessels. The

state x = (px, py, ψ, u, r) ∈ X includes the position p = (px, py) ∈ R2, yaw ψ,

surge velocity u, and yaw rate r. The control inputs u = (δT, δR) ∈ U define

the normalized thrust input and normalized yaw rate input, respectively.

These control inputs are scaled and constrained in order to produce high-level

motion characteristics at steady-state. The normalized thrust input δT ∈ [0, 1]

represents the range between zero and maximum propeller speed, and the

normalized yaw rate input δR ∈ [−1, 1] represents the range between maximal

deflections of the vehicle rudder. The equations of motion ẋ = f (x, u) are

given as the following:

ṗx = u cos ψ, (6.3a)

ṗy = u sin ψ, (6.3b)

ψ̇ = r, (6.3c)

u̇ = Xuuu2 + Xuu + kδT, (6.3d)

ṙ = Nur(u)ur + Nr(u)r + c(u)u2δR, (6.3e)

where (·̄) indicates that the hydrodynamic coefficients have been made inde-

pendent of the vehicle’s mass and inertia.
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Figure 6.2: Values for the yaw acceleration model coefficients based on vessel surge
speed.

Table 6.1: Surface vessel hydrodynamic model coefficients

Coefficient Xuu Xu k Nur(u) Nr(u) c(u)

Value -0.0114 -0.2283 11.29 (Fig. 6.2) (Fig. 6.2) (Fig. 6.2)

Units 1/m 1/s m/s2 1/m 1/s 1/m2

Surface craft hydrodynamics are complicated by the fact that the motion

characteristics are dependent on whether the vessel is plowing (pushing

through the water at slow speeds) or planing (riding on top of the water at

high speeds). The equations of motion are able to capture the main effects

of each regime by scheduling the yaw acceleration model coefficients on the

vessel surge speed. The values of these coefficients as a function of surge

speed are shown in Fig. 6.2 and the remaining coefficients are given in Table

6.1.
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6.2 Surface Vessel Motion Parameterization

For high-level ASV planning, trajectories are generated using a sequence of

motion primitives according to the parameterization introduced in Section

1.3.2. The resulting primitive curves can account for kinematic constraints and

be solved in closed form, enabling the planner to consider a large number of

future state evolutions.

More formally, each primitive assumes constant velocity and turn rate,

and the primitive parameter is given as ξ = (δu, δψ) corresponding to desired

changes in speed and heading, respectively. The full, multi-stage trajectory

parameter over the planning horizon is then given as z = (ξ1, ..., ξn) ∈ Z for a

sequence of n primitives. At a time t∗ = t + δt, the mapping φ : Z → X then

takes the following form:

u(t∗) = u(t) + δt

(
min

(
max

(
δu
δt

, amin
)
, amax

))
, (6.4a)

r(t∗) = min
(
max

( δψ

δt
, rmin

)
, rmax

)
, (6.4b)

ψ(t∗) = ψ(t) + δtr, (6.4c)

px(t∗) =

{
px(t) +

u(t∗)
r
(

sin(ψ(t) + δtr)− sin ψ(t)
)

if r ̸= 0,
px(t) + δtu(t∗) cos(ψ(t)) otherwise,

(6.4d)

py(t∗) =

{
py(t)− u(t∗)

r
(

cos(ψ(t) + δtr)− cos ψ(t)
)

if r ̸= 0,
py(t) + δtu(t∗) sin(ψ(t)) otherwise.

(6.4e)

where linear acceleration a ∈ [amin, amax] and turn rate r ∈ [rmin, rmax] have

been saturated within the system’s allowable bounds. This formulation as-

sumes that the transients from potential velocity discontinuities are small
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when compared to the horizon over which surface vessel interactions occur,

particularly when using conservative values for the system’s allowable control

bounds.

6.3 Quantifying Good Seamanship

Developing ASV planning and evaluation strategies that generalize to compli-

cated multi-vessel scenarios requires that they embody the notions of good

seamanship. These practices not only include the COLREGS maneuvering pro-

tocols primarily intended for single-vessel encounters, but also more general

themes regarding safe and predictable navigation on the water that transcend

rules 13 – 17. This section attempts to quantify good seamanship practices

into a mathematical framework for ASV planning and evaluation purposes.

An appropriate quantification of good seamanship should capture the

essence of COLREGS maneuvering compliance without subjecting the anal-

ysis to rule-based conditions that may not be appropriate in multi-vessel

encounters, e.g., when there are conflicting give-way and stand-on expec-

tations. In these instances, it is understood that COLREGS are interpreted

more as guidelines to good seamanship as opposed to a set of rules that must

be strictly followed. As such, this methodology could supplement existing

COLREGS decision-making, where specific COLREGS rule classification loses

value due to potentially conflicting rules for each target ship. Good seaman-

ship is quantified here based on the combination of two categories: (i) how the

ASV reduces the overall collision risk to all vessels involved in an encounter

and (ii) whether the ASV takes early, appropriate action. The first category
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Configuration #1 Configuration #2

Figure 6.3: Two configurations with the same dcpa value. It is clear, however, that the
scenario on the left presents a much higher risk at CPA than the scenario on the right.

is rooted in the collision avoidance requirements of all mariners while the

second category captures the essence of responsibility intended by COLREGS.

6.3.1 Collision Risk Quantification

6.3.1.1 Ship Domain

This research makes use of the concept of ship domain (as described in Sec-

tion 5.2) to quantify the overall collision risk between multiple vessels. An

appropriate definition of the ship domain geometry can overcome several of

the weaknesses associated with CPA-based risk assessment. This is because

CPA is naturally a circular domain representation and does not discriminate

between different geometries with the same dcpa value. This idea is illustrated

through two different configurations shown in Fig. 6.3. Both configurations

have the same dcpa value, however, it is clear that the scenario on the left

presents a much higher risk when compared with the scenario on the right.

Conversely, ship domain geometry can be described by any polygon, typically
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Figure 6.4: Decentralized ellipse ship domain, where d is the distance to the edge of
ownship’s domain in the direction of the target ship. The fuzzy ship domain, which
translates domain violation fd(t) into a risk value, is shown by the inner contour
plots.

one that emphasizes keeping the fore and starboard sectors of the vessel clear,

as illustrated in Fig. 6.4.

Existing ship domains proposed in the literature generally define the ge-

ometry based on three different methods: analytical [134, 68], empirical from

ship movement data [18], and those based on artificial intelligence from expert

knowledge [104, 140]. Because ship domain has been used in various applica-

tions, different authors adopt slightly varying definitions of ship domain and

there is no universally accepted geometry. We utilize ship domain with the
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following assumptions:

• The ship domain is designed for an open water setting, although it

could be modified for use in traffic separation schemes or waters with

constricted maneuvering.

• Following Szlapczynski [126], the domains of all vessels in an encounter

should be kept clear, i.e., ownship should not violate the domain of any

target ship and likewise each target ship should not violate ownship’s

domain.

This work adopts a decentralized ellipse as the ship domain (Fig. 6.4) simi-

lar in form to that proposed by Szlapczynski [125], albeit with different dimen-

sions. The proposed methodology for quantifying good seamanship, however,

does not depend on the specific geometry of the ship domain; thus, different

geometries could be substituted into the procedures provided hereafter. While

various authors have proposed complex polygonal domain geometries, many

of these can be approximated by a decentralized ellipse. Further, the govern-

ing equations of a decentralized ellipse can be solved analytically [125] while

still creating a domain that emphasizes COLREGS maneuvering compliance,

e.g., by favoring port-to-port maneuvers or those that cross astern of the target

ship. As shown in Fig. 6.4, the geometry of this domain is described by the

ellipse axis lengths a and b, and displacements from the ellipse center ∆a and
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∆b. Values for these parameters are approximated according to the following:

a(t) = 1
2

(
R f ,d(t) + Ra,d(t)

)
, (6.5)

b(t) = 1
2

(
Rs,d(t) + Rp,d(t)

)
, (6.6)

∆a(t) = R f ,d(t)− a(t), (6.7)

∆b(t) = Rs,d(t)− b(t), (6.8)

where R f ,d(t), Ra,d(t), Rs,d(t), and Rp,d(t) are radii for the fore, aft, starboard,

and port sectors of the domain, respectively. Values for these radii are con-

figurable and can be affected by factors such as vessel size, vessel speed,

environmental conditions, the skill of the mariner, etc. Following the work of

Kijima [54] and Wang [134] with slight modifications for a more conservative

domain size, the values of these radii are chosen based on the vessel’s evasive

maneuvering characteristics, including the length of the vessel in nautical

miles L, speed in knots ukts(t), advance AD, and tactical diameter DT:

R f ,d(t) =
(

1 + 1.34
√

kAD(t)
2 +

(
0.5kDT(t)

)2
)

2L, (6.9)

Ra,d(t) =
(

1 + 0.67
√

kAD(t)
2 +

(
0.5kDT(t)

)2
)

2L, (6.10)

Rs,d(t) =
(
0.2 + kDT(t)

)
2L, (6.11)

Rp,d(t) =
(
0.2 + 0.75kDT(t)

)
2L, (6.12)
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where

kAD(t) = AD(t)/L ≈ 10(0.3591 log10 ukts(t)+0.0952), (6.13)

kDT(t) = DT(t)/L ≈ 10(0.5441 log10 ukts(t)−0.0795). (6.14)

The equations above depend only on ukts(t) and L, which are assumed to

be known for ownship and estimated for a target ship through Automatic

Identification System (AIS) or other perception systems. In the event that

these radii are too conservative for some users, a scale factor λr can easily be

applied to each domain dimension, i.e., R(·)(t) = λrR(·)(t).

The primary drawback of a decentralized ellipse is that it is equally accept-

able to pass on either side of a vessel in overtaking scenarios. Some works

define different domain geometries for these different COLREGS situations

[18, 104], but this leads to the possibility of discontinuities when using ship

domain for projection calculations. We address this drawback by introducing

an equalizer term le on the lateral dimensions of the domain based on the

relative heading between ownship and the target ship. An overtaking scenario

occurs when a vessel approaches another vessel from a direction more than

22.5 deg abaft abeam. Letting ψr represent the relative heading between the

vessels, this roughly translates to an associated |ψr| ≤ 67.5 deg. The lateral

equalizer term is then defined using smoothing bounds ψ+
r = 72.5 deg and

ψ−r = 62.5 deg to prevent discontinuities in the domain geometry:

le = min
(

max
(
|ψr| − ψ+

r

ψ−r − ψ+
r

, 0
)

, 1
)

. (6.15)
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The final port and starboard radii then become

Rlat(t) = 1
2

(
Rs,d(t) + Rp,d(t)

)
, (6.16)

Rs,d(t) = (1− le)Rs,d(t) + leRlat(t), (6.17)

Rp,d(t) = (1− le)Rp,d(t) + leRlat(t). (6.18)

6.3.1.2 Collision Index

The example described in the previous section through Fig. 6.3 highlights the

limitations of using tcpa and dcpa for collision risk assessment. To alleviate

these problems, Szlapczynski [124] introduced a new measure for collision

risk derived from the degree of penetration within a ship domain. At every

time instant t, collision risk can be assessed based on a scale factor fd(t) of the

largest domain-shaped area that is free from other vessels, i.e., after scaling a

ship’s domain by fd(t), the other vessel will be on the boundary of the scaled

domain. Values for fd(t) < 1 can then represent the degree of penetration by

a target ship into ownship’s domain as shown in Fig. 6.4. Szlapczynski [125]

provides analytical formula for calculating fd(t) on a decentralized ellipse

ship domain, however, fd(t) could also be determined for arbitrary domain

geometries [124]. Thus, the reader is free to substitute any ship domain for

use with this methodology.

Following and updating some of Szlapczynski’s developments [125], we

now provide the formula for calculating fd(t) on a decentralized ellipse for

completeness. This derivation calculates fd(t) of the target ship’s domain with

respect to ownship position, i.e., how much is the target ship’s domain scaled
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Figure 6.5: Diagram depicting variables used in the derivation of fd(t).

to get to ownship position. As shown in Fig. 6.5, let X and Y be the lateral and

longitudinal relative position of the target ship with respect to ownship’s local

vehicle frame. Also let VX and VY be the relative velocity of the target ship

along these dimensions and α be the yaw angle of the target ship in ownship’s

local vehicle frame. The center of the rotated fd-scaled ellipse is given by

Xe(t) = X + h fd + VXt, (6.19)

Ye(t) = Y + k fd + VYt, (6.20)

h = ∆a cos α + ∆b sin α, (6.21)
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k = ∆a sin α− ∆b cos α. (6.22)

We aim to solve for fd(t) using the parametric equation for the fd-scaled

ellipse:(
Xe(t) cos α + Ye(t) sin α

)2

fd(t)2a2 +

(
Xe(t) sin α−Ye(t) cos α

)2

fd(t)2b2 = 1. (6.23)

By expanding and organizing terms, we can reformulate Eq. (6.23) as

A1Xe(t)2 + B1Xe(t)Ye(t) + C1Ye(t)2 = fd(t)2, (6.24)

where

A1 =
cos2 α

a2 +
sin2 α

b2 , (6.25)

B1 = 2 sin α cos α
( 1

a2 −
1
b2

)
, (6.26)

C1 =
sin2 α

a2 +
cos2 α

b2 . (6.27)

Plugging Eq. (6.19) and (6.20) into Eq. (6.24) then lets us formulate a quadratic

equation for fd(t):

A2 fd(t)2 + (B21 + B22t) fd(t) + C21 + C22t + C23t2 = 0, (6.28)

where

A2 = A1h2 + B1hk + C1k2 − 1, (6.29)

B21 = (2A1X + B1Y)h + (2C1Y + B1X)k, (6.30)

98



B22 = (2A1VX + B1VY)h + (2C1VY + B1VX)k, (6.31)

C21 = A1X2 + B1XY + C1Y2, (6.32)

C22 = 2(A1XVX + C1YVY) + B1(XVY + YVX), (6.33)

C23 = A1V2
X + B1VXVY + C1V2

Y . (6.34)

Finally, solving for fd(t) in Eq. (6.28) using the standard quadratic equation

gives

f 1,2
d (t) =

−(B21 + B22t)±
√

D1t2 + E1t + F1

2A2
, (6.35)

where

D1 = B2
22 − 4A2C23, (6.36)

E1 = 2B21B22 − 4A2C22, (6.37)

F1 = B2
21 − 4A2C21. (6.38)

When assuming that the relative velocity vector between the vessels re-

mains constant into the future, Eq. (6.35) gives the domain scale factor at any

future time for a decentralized ellipse geometry. While the quadratic solution

of Eq. (6.35) gives two possible values for fd(t), the single desired solution

is that which is both positive and real. To determine the domain scale factor
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for ownship’s domain, the same calculation from above is repeated from the

perspective of the target ship. The superscripts (·)OS and (·)i are henceforth

used to refer to values calculated from ownship’ perspective and the i-th target

ship’s perspective, respectively.

In order to translate the domain scale factor into a measure used for colli-

sion risk evaluation, we define a domain risk index, rd ∈ [0, 1], using a logistic

function according to the following:

rd(t) =
1

1 + eκ( fd(t)− f0)
, (6.39)

where κ and f0 are parameters that define the shape of the logistic curve. Equa-

tion (6.39) was chosen based on findings that indicate the safety perceived by

mariners is roughly proportional to the logarithm of the vessel separation dis-

tance [103]. This work uses κ = 10 and f0 = 0.5 based on tuning experiments

and the resulting domain risk is shown by the inner contour plots of Fig. 6.4.

Several works only consider violations of ownship’s domain [134, 104,

68] or the target ship’s domain [35, 125] when assessing current and future

collision risk. We believe these interpretations are incomplete, as the actual

collision risk between two vessels should be identical regardless of each

vessel’s perspective. Thus, we define the combined mutual domain risk

between ownship and the i-th target ship as such:

rOS,i
d (t) = rOS

d (t) + ri
d(t)

(
1− rOS

d (t)
)

, (6.40)

where again, rOS
d is calculated from the perspective of ownship and ri

d is

calculated from the i-th target ship perspective.
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Subsequently, the collision index between the ASV and the i-th target ship

at time t is defined as the maximum value of the mutual domain risk over a

future time horizon T:

Θi
C = max

τ∈[t,t+T]
rOS,i

d (τ). (6.41)

This optimization can be easily solved numerically by assuming constant

speed and heading for each vessel. Figure 6.6 shows a projection of both

vessels at the future time of maximum mutual domain risk, deemed ti
C. The

values Θi
C and ti

C are meant to provide analogous risk metrics to dcpa and tcpa,

albeit generalized through the ship domain geometry to capture additional

features that contribute to the overall risk.

6.3.2 Appropriate Action Quantification

6.3.2.1 Ship Arena

Similar to the concept of ship domain is the notion of ship arena, defined as

the area around ownship where a mariner should begin maneuvering if a

collision risk exists. The ship arena naturally encompasses a larger area than

the ship domain, as any evasive action should be planned and executed well

before violations of each ship’s domain. Additionally, by defining a geometry

that prefers earlier action to vessels in ownship’s fore and starboard sectors,

the ship arena can capture the give-way and stand-on expectations governed

by COLREGS.

This work again chooses a decentralized ellipse to define the ship arena,

albeit with different dimensions of R f ,a, Ra,a, Rs,a, and Rp,a. It is typical
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Figure 6.6: Illustration of overall risk methodology. Θi
C is calculated as the maximum

mutual domain risk with the i-th target ship over a future time horizon t + T. Θi
A

is calculated based on the i-th target ship’s degree of penetration within ownship’s
arena.

for mariners to internally set predefined distances at which they begin to

consider maneuvering actions. In give-way situations, taking early action is

preferred, sometimes right when a target ship is reliably detected on radar

or AIS. Conversely, in stand-on situations, mariners are expected to maintain

course and speed until the target ship has been deemed noncompliant, i.e., the

target ship does not perform its own evasive action. Evasive action by ownship

in these noncompliant stand-on situations would then occur at distances much

shorter than the detection or give-way range. It should be emphasized that

the dimensions of exactly when a ship should begin maneuvering are strictly
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based on the preferences of the mariner. There is a dearth of literature on

more principled methods to make these parameter selections; thus, values for

R f ,a, Ra,a, Rs,a, and Rp,a can be set arbitrarily based on the size of the vessels

and their perception capabilities. Future research should certainly guide the

community into more accepted standards for defining the ship arena based

on the vessel classification (e.g. sailing vessel, etc.) and relative velocity, as

these values all affect when evasive action should be considered.

6.3.2.2 Action Index

Once the ship arena is defined, the action index with respect to the i-th target

ship, Θi
A, is calculated in a similar fashion to rd:

Θi
A =

1

1 + eκ( f i
a(t)− f0)

, (6.42)

where now the value f i
a(t) is the ship arena scale factor such that the i-th target

ship lies on the boundary of ownship’s scaled ship arena. This representation

can be thought of as the degree to which ownship should take action and can

appropriate quantify delayed avoidance maneuvers. When compared to the

calculation of Θi
C, it should be noted that Θi

A is evaluated for each target ship

only from the perspective of ownship.

6.3.3 Overall Risk Index

We can now define an overall risk index for the i-th target ship as

Θi
S = Θi

CΘi
A. (6.43)
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As visualized in Fig. 6.6, the combination of Θi
C and Θi

A is important for

evaluating seamanship – even if a target ship is within the ASV ship arena,

the overall risk should be low if there is no future collision risk. Similarly, the

overall risk should be low if a future collision risk exists, but the target ship is

far off into the distance.

This overall risk index is able to better capture periods of high risk in the

ASV trajectory when compared to CPA-based methods. Specifically, the time

and location of maximum collision risk is not necessarily the same as the time

and location of CPA. For a vessel crossing the bow of another vessel, it is likely

that the point of maximum collision risk occurs well before CPA. Figure 6.7

illustrates this scenario with two snapshots of vessel geometry: one at the

point of maximum risk and another at CPA. It is clear that the overall risk

between the two vessels is significantly less in the CPA configuration even

though the vessels are closer together.

For a multi-vessel scenario involving i = 1, . . . , N target ships, the risk

associated with each target ship can be combined to capture the risk associated

with the overall scenario, ΦS. As opposed to using the average value of all

Θi
S, this work proposes the overall scenario risk should be calculated as the

union of individual risk indices through the following recursion:

WHILE i ≤ N

ΦS =

{
Θi

S if i = 1
Θi

S + ΦS
(
1−Θi

S
)

if 1 < i ≤ N

(6.44)

The logic behind this formula is that the overall scenario risk should be at least

as large as the highest risk from the i-th target ship, with additional risk from
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Figure 6.7: Overall risk curve for a two-vessel crossing scenario. Snapshots of the
vessel configuration are given at the time of maximum overall risk (left) and the time
of CPA (right).

other vessels only augmenting the value of ΦS. The value provided through

ΦS provides a quantitative metric for evaluating the overall risk of a given

multi-vessel configuration or sequence of events. By naturally incorporating

the essence of COLREGS through domain geometry rather than rule-based

heuristics, this metric generalizes the core seamanship principles that remain

important even in complicated multi-vessel scenarios.
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6.4 Path Planning Approach

This section now proposes an approach to ASV path planning by naturally

extending COLREGS compliance to multi-vessel encounters through the good

seamanship metrics of Section 6.3. The two key components of the overall

decision-making are modules relating to situational awareness and path plan-

ning. The situational awareness module categorizes an encounter with respect

to relevant hazards and vessels in the environment including the COLREGS

type, requirements of ownship, etc. The planning module then consists of a

three-layered architecture with (i) a high-level, primitive-based branch-and-

bound planner, (ii) a mid-level clothoid-based RRT* [8, 50], and (iii) a low-level

trajectory follower. The high-level branch-and-bound planner uses the output

from the situational awareness logic to prescribe a sequence of H state nodes

separated by timestep δt over a receding planning horizon T = δtH. In the de-

scriptions that follow, we denote (·)n to refer to a future state node calculated

at time t + nδt in the n-th stage of the sequence. It is desired that these nodes

constitute a coarse trajectory that exhibits good seamanship and other aspects

of COLREGS compliance, mission efficiency, and safety considerations (Fig.

6.8). This state node sequence is connected by the mid-level clothoid-based

RRT* to produce a continuous and feasible trajectory at a much finer time

scale, which is then tracked using line of sight guidance techniques [14, 60, 33].

Similar to the planning approaches discussed in Part I, the focus in this

thesis is on the high-level planning that would handle COLREGS compliance

and good seamanship on the timescales seen in surface craft interactions (i.e.,

larger than the system dynamics). Determining this high-level path remains
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Figure 6.8: Primitive-based receding horizon planning that encodes good seamanship
principles for multi-vessel scenarios.

the most open challenge in ASV navigation, as the trajectory tracking methods

used in the mid- and low-level planners are fairly well established, or could

be easily substituted for more recent methods such as MPC-based tracking for

ASVs [11].

6.4.1 Situational Awareness

The module performing situational awareness is meant to incorporate all per-

ception information into a simplified world model S on which path planning

can operate. Following the procedure of Alg. 4, we define V to be the set of all

perceived target ships and V∗ to be the set of relevant target ships considered
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Algorithm 4 SITUATIONAL AWARENESS
1: procedure OVERALL_SITUATION(x,V)
2: for each Vi ∈ V do
3: if Θi

C > Θ̃C & ti
C < t̃C then

4: V∗ ← (V∗ ∪ {Vi})
5: (Ctype, Cexp)i ← COLREGS type and expectation ▷ determined from [137]
6: if Θi

S > Θ̃S then
7: C i

type ← EMERGENCY; C i
exp ← GIVE-WAY ▷ Ownship in extremis

8: end if
9: end if

10: end for
11: if size(V∗) = 0 then
12: Stype ← CLEAR; Sexp ← ANY

13: else if any(C i
type) = EMERGENCY then

14: Stype ← EMERGENCY; Sexp ← GIVE-WAY

15: else if size(V∗) = 1 then
16: Stype ← COLREGS; Sexp ← C i

exp
17: else
18: Stype ← CONGESTION

19: if any(C i
exp) = GIVE-WAY then

20: Sexp ← GIVE-WAY

21: else
22: Sexp ← STAND-ON

23: end if
24: end if

return S ← {V∗,Stype,Sexp}
25: end procedure

during planning, i.e., those for which Θi
C and ti

C satisfy user-specified thresh-

olds Θ̃C and t̃C, respectively. COLREGS is categorized for each relevant target

ship and S is defined according to the number of relevant target ships as well

ownship’s expectation for each relevant target ship.

6.4.2 Cost Function

ASV navigation requires many different considerations when evaluating the

quality of proposed paths. We wish to follow a nominal trajectory πnom as

closely as possible while minding traditional aspects such as collision avoid-

ance, as well as domain-specific aspects such as COLREGS compliance and
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the good seamanship principles introduced in Chapter 5. The cost function

J : Z → [0, 1] for evaluating potential trajectories thus consists of a weighted

average of mission cost JM, safety cost JS, and COLREGS cost JC as follows:

J =
wM JM + wS JS + wC JC

wM + wS + wC
, (6.45)

where wM, wS, and wC are weights for the mission, safety, and COLREGs

criteria, respectively.

6.4.2.1 Mission Cost

Mission cost at an n-th stage node is calculated as the cumulative normalized

distance from the nominal trajectory over the planning horizon, i.e.,

LM(xn, un) =
||pn − pn,nom||

||p0 − pn,nom||+ uδtn
. (6.46)

The denominator in this equation uses the maximum distance that could

be traveled from the nominal trajectory over the future time length as a

normalization factor. The mission cost for a trajectory up to the n-th stage is

then the sum of individual node mission costs:

JM =
n

∑
i=1

LM,i, (6.47)

where a complete trajectory would be a total of n = H nodes.

6.4.2.2 Safety Cost

Safety cost is determined from a combination of risk factors – both from

static obstacles in the form of a cost map and from dynamic vessels using
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the seamanship-based risk metric defined in Section 6.3. Let C : p → [0, 1]

be a cost map of position states over the local environment. This cost map

is built based on information publicly available in electronic navigational

charts (ENCs) to include known hazards (buoys, bridges, etc.) as well as

bathymetry data and shoreline boundaries. Real-time perception of additional

static obstacles can then easily augment this cost map beyond the information

available in ENCs. Then, using developments from Section 6.3, the final safety

cost is defined as the union of risks from both static obstacles and the overall,

multi-vessel scenario risk:

LS(xn, un) = ΦS,n + ΦS,n
(
1− C(pn)

)
. (6.48)

The use of ΦS in the safety cost captures the risk from all relevant vessels in a

manner that also prioritizes good seamanship practices. The safety cost for a

trajectory up to the n-th stage is then the sum of individual node safety costs:

JS =
n

∑
i=1

LS,i, (6.49)

where a complete trajectory would be a total of n = H nodes.

6.4.2.3 COLREGS Cost

The COLREGS component of the cost function is intended to capture other

features of good seamanship that are difficult to incorporate within the ship

domain approach. Portions of this cost are informed by the work of Woerner

[136, 137], which proposed a framework to evaluate the COLREGS compliance

of single-vessel encounters. While Woerner’s framework was designed for
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Algorithm 5 COLREGS COST METHODOLOGY
1: procedure COLREGS_COST(π,S)
2: Set QC ← 1
3: if Sexp = GIVE-WAY & Stype ̸= EMERGENCY then
4: QC ← pDQC ▷ Penalize for delayed actions (pD from Alg. 5 of [137])
5: QC ← pMQC ▷ Penalize non-obvious maneuvers (pM from Alg. 7 and 8 of [137])
6: QC ← pI QC ▷ Penalize action indecision
7: QC ← pSQC ▷ Penalize speed-only actions (prefer course changes)
8: else if Sexp = STAND-ON then
9: QC ← COLREGS score for Rule 17 ▷ (Alg. 9 of [137])

10: end if
return JC ← 1−QC

11: end procedure

use on post-processed trajectories, we have adapted the work here to evaluate

the quality of a proposed path (from a COLREGS perspective). Several addi-

tional penalties that generalize to multi-vessel encounters are also applied as

outlined in Alg. 5. When ownship is not in an emergency state, these include

principles such as ensuring that control actions produce readily apparent

maneuvers, creating a predictable trajectory by reducing changes in control

actions (i.e., minimizing indecision), and preferring course changes to speed

changes.

The two components of Alg. 5 not based in the work of Woerner [137]

are the definitions of pI and pS, referring to an indecision penalty and speed

change penalty, respectively. For the former, we define an activation function

δξn =

{
0 if (ξn − ξn−1) = (0, 0),
1 else,

(6.50)

to represent changes between sequential motion primitive parameters. The

penalty used to minimize action indecision (and thus make maneuvers more
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predictable to other target ships) is then calculated as

pI = 1−
max

(
∑H

n=2 δξn − 1, 0
)

3
(
1 + ∑H

n=2 δξn
) . (6.51)

The second term pS is that which encourages course changes over speed

changes when choosing a trajectory. Changes in course are much more per-

ceivable to the target ship, both visually and over radar, and further reduce

potential confusion during an encounter. This penalty is set to a simple con-

stant of pS = 0.9 that is applied to primitives where δu ̸= 0 and δψ = 0.

6.4.3 Branch & Bound Path Planning

Let high-level planning occur in the parameter space Z such that a trajec-

tory π consists of state nodes derived from a sequence of motion primitive

parameters z, i.e., π = {xn}H
n=1 = φ(z). The computation time of planning

over this finite horizon is exponential based on the value of H, thus making

brute force search methods infeasible for the planning horizons required over

surface craft encounters. Branch-and-bound planning alleviates this burden

by pruning regions of the parameter space that are unlikely to contain the

optimal solution based on estimates of the expected costs in those regions. The

branch-and-bound planner of Alg. 6 implements a receding horizon strategy

such that a final trajectory is computed up to the local planning horizon T,

which is then periodically re-planned at a nominal refresh rate of 0.25 Hz, or

when critical events trigger a new plan (such as when Stype = EMERGENCY

or the size of V∗ changes). Efficiency is increased by “warm starting” the tree

generation by setting π∗ and γ∗ as the values obtained from following πnom.
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Algorithm 6 BRANCH & BOUND PRIMITIVE PLANNING
1: procedure BB_PLANNER(xstart, πnom,S)
2: Initialize γLB, δt, H, M
3: Initialize [π∗, γ∗] based on the cost of following πnom
4: Evaluate cost γu=0 of zero-speed trajectory πu=0
5: if γu=0 < γ∗ then
6: γ∗ ← γu=0; π∗ ← πu=0
7: end if
8: [π∗, γ∗]← BB_RECURSION(∅, 0, 1)

return π∗

9: end procedure

10: procedure BB_RECURSION(zparent, γparent, n)
11: Estimate γLB ▷ Eq. (6.56)
12: if (γparent + γLB) < γ∗ & n ≤ H then
13: Sample primitives: {ξk}M

k=1 ▷ Eq. (6.52) and (6.53)
14: Extend trajectory parameterizations: Z ← {zk}M

k=1 ← {(zparent, ξk)}M
k=1

15: Generate state trajectories: Π← {πk}M
k=1 ← φ(Z) ▷ Starting from xstart

16: Calculate cost {γk}M
k=1 of each πk ∈ Π: ▷ Eq. (6.45), πnom, S

17: Sort πk by increasing γk
18: for each πk ∈ Π do
19: if γk < γ∗ then
20: γ∗ ← γk; π∗ ← πk
21: end if
22: [π∗, γ∗]← BB_RECURSION(zk, γk, n + 1)
23: end for
24: end if

return π∗, γ∗

25: end procedure

6.4.3.1 Branching Procedure

The edges of the branch-and-bound tree at each n-th stage consist of a set of

M primitive curves with constant velocity and turn rate, each parameterized

using {ξk}M
k=1 as defined in Section 6.2. Using a full dynamic model such as

Eq. (6.3) would require several integration steps to generate each segment,

resulting in significant increases to computation time. Thus, for high-level

planning at this stage, we utilize the kinematic trajectory parameterization

of Eq. (6.4) that can be solved in closed form, while more rigorous dynamic

constraints are handled by the other layers of the overall system.
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Values for the trajectory parameters are chosen from discrete sets at each

level of the tree:

δu ∈
{
{−2

3 unom,−1
3 unom, 0} if n = 1,

{0} otherwise,
(6.52)

δψ ∈ π
180{−60,−45,−30, 0, 30, 45, 60} ∀ n. (6.53)

The strategy behind Eq. (6.52) is to choose a single speed at the beginning of

the trajectory, which minimizes M and allows the depth of the tree H to be

maximized based on the system’s available computing resources. Additionally,

as shown in Alg. 6, rather than including a speed change primitive that

brings ownship to rest, a zero-speed trajectory πu=0 is evaluated as a single

instance before tree generation. This is because the vessel is underactuated

and only one zero-speed trajectory is possible, regardless of the sequence

of desired heading changes. The choice of Eq. (6.53) also ensures that if a

heading change is chosen, that a minimum of 30 deg is used to remain readily

apparent as required by COLREGS. This threshold is not explicitly written in

the COLREGS protocols, but it has become commonly accepted by the U.S.

Coast Guard [136, 137].

The choices of δt, H, and M are also crucial in generating desirable ma-

neuvers. To ensure that control actions are considered both before and after

the relevant vessel interactions while minding computational constraints, this

work chooses

δt = max
(

min
i
(ti

C)/ℓ, δ̃t
)
, (6.54)

where δ̃t is a nominal minimum value for the time step. This formula scales
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δt based on the time until maximum mutual domain risk, such that longer

planning horizons are accommodated if the interaction is far away. The choice

of ℓ sets the number of control actions considered until ti
C.

6.4.3.2 Bounding Procedure

The lower bound on the overall cost is calculated as JLB : Z → [0, 1], and is

used as a heuristic to prune branches unlikely to contain the optimal solution

such that an exponential number of trajectories is not explored. Due to the

nature of the cost function in Section 6.4.2, it is entirely possible for γ∗ to equal

zero if πnom were to be tracked exactly while not encountering any relevant

vessels or hazards. Thus, the lower bound must assume that the safety and

COLREGS portions of the final cost are zero at unobserved state nodes. The

remaining portion of the lower bound is estimated as the mission cost-to-go

for the current branch to return back to the nominal trajectory. As illustrated

in Fig. 6.9, we define p̂n+1 to be the position projected towards πnom at the

(n + 1)-th stage by a distance uδt:

p̂n+1 =

{
pn+1,nom if ||pn+1,nom − pn|| ≤ uδt,

pn +
(pn+1,nom−pn)
||pn+1,nom−pn||uδt otherwise.

(6.55)

Successive projections are then made from the previous projection up until the

end of the planning horizon. The lower bound on the cost over the remaining

planning horizon (for the branch under evaluation) is then estimated as the

total mission cost of these direct position projections:

JLB =
H−1

∑
n

wM||p̂n+1 − pn+1,nom||
(wM + wS + wC)(||p0 − pn+1,nom||+ uδt(n + 1))

. (6.56)
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Figure 6.9: Example of the procedure used to estimate the JLB heuristic, where H = 4
was set arbitrarily for illustration purposes.

Letting γparent be the cost accumulated on the current trajectory branch and

γLB be the value resulting from Eq. (6.56), if (γparent + γLB) ≥ γ∗, then the

current branch is pruned, as it is highly unlikely to produce the optimal

solution given the estimated future cost.
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Chapter 7

Towards Verifying Autonomy
Decision-Making through
Simulation-Based Testing

As discussed in Chapter 1, building trust in autonomous systems means

that algorithms such as the ASV planner of Chapter 6 need to be rigorously

tested. This chapter takes a brief detour from ASV navigation to present an

algorithmic approach for continuous performance analysis of autonomous

systems using large-scale simulation data. First, adaptive scenario generation

is used to identify unknown failure modes in the system under test (SUT),

followed by performance regression analysis to determine if the system has

degraded in performance against either previous software versions or other

baseline approaches. The proposed framework is generalized such that it can

be applied to any black-box SUT, and will then be used in Chapter 8 to analyze

the performance of the good seamanship ASV planning strategy.
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7.1 Introduction

7.1.1 Autonomy Testing & Evaluation

Given the need to trust autonomous systems in safety-critical domains, it

is well understood that rigorous testing and evaluation (T&E) methods are

needed to ensure robust performance [4]. The challenge of properly validating

the decision-making aspects of an autonomous system, however, is extremely

difficult. It is typical that even a moderately complex autonomy will have

many interacting components that obfuscate predicting its actions under all

possible stimuli. Modern autonomous systems are also inherently stochastic

in nature, either through probabilistic decision-making or updates to their

control policy based on learned information. These challenges force evaluators

to treat the autonomous system as a black box – one that also exhibits a highly

nonlinear and/or discontinuous performance surface.

Autonomy T&E encompasses a large swath of research summarized by

Corso et al. [20]. To date, much of this literature focuses on fault detection and

software robustness [17, 84] or formal methods [71] as opposed to evaluating

the actual decision-making of the system. In realistic, complex autonomy, it is

not sufficient to confirm that the system performs appropriately in isolated

scenarios. Rather, a much larger testing space (i.e., the space of all possible

test conditions under consideration) is required to evoke emergent behaviors

that may only appear under certain combinations of stimuli.

As emphasized by Alexander et al. [1], evaluating the decision-making of

an autonomous system in operational environments requires a diverse test
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suite that provides situation coverage of the testing space. Field experiments

in realistic settings are the ideal avenue to perform autonomy T&E; however,

they are expensive and time-consuming. Simulation-based testing offers

an alternative that can produce large datasets under a wide array of test

conditions for statistical performance analysis (under the assumption that

the simulation is a reasonably good predictor of the true SUT behavior).

Techniques for obtaining these datasets primarily focus on scenario generation

methods [110]. For example, Li et al. [65] used exhaustive test generation

methods over sensor ranges to discover performance transitions in urban

driving environments, while Zou et al. [141] used multi-objective optimization

techniques to identify failures in multi-UAV conflict resolution algorithms.

Scenario generation based on importance sampling is of particular interest

here, as several veins of research [131, 130, 20] have shown this to be an effec-

tive method to identify unknown failure modes within high-dimensional

testing spaces. These methods auto-generate scenarios that balance the

exploration-exploitation trade-off of both characterizing autonomy perfor-

mance under a wide array of test conditions, while preferentially generating

scenarios that hone in on areas of interest (often those that stress the decision-

making and lead to deficient performance). Work by O’Kelly et al. [100]

employs this idea by using the cross-entropy method to detect rare-event

failures in autonomous driving scenarios. In fact, previous work by the au-

thor in collaboration with Mullins [91, 92, 93] has also developed intelligent

scenario generation techniques to identify the failure modes and performance

boundaries of an autonomous system. The concepts in these works lay the
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foundation that will be further developed in Section 7.2.

7.1.2 Performance Regression Testing

A significant technical gap within autonomy T&E exists when it comes to

comparing the current performance of the SUT against its previous versions,

i.e., performance regression testing. While traditional regression testing is

common in software development for code analysis and fault detection [139],

autonomous systems introduce a new challenge where it also becomes nec-

essary to ensure that software changes do not adversely affect the holistic

performance and behavior of the autonomy in unexpected ways, particularly

when changes are constantly made during active development.

When using simulation-based testing to study holistic performance, the

question becomes how to analytically compare the performance and failure

regions of one dataset to another. Figure 7.1 illustrates this notion of perfor-

mance regression, where example performance landscapes for two different

autonomy versions (A and B) are shown side-by-side. These scatter plots

represent simulated scenarios for various test parameter combinations. The

color shows the performance score assigned to each scenario based on the

autonomy’s actions. Two failure regions (red and gray) are highlighted be-

tween the datasets. The red failure region exists in version A, but is fixed

based on software changes made for version B. The gray region does not exist

in version A, but rather appears as a new, unexpected failure mode in version

B. In this sense, the gray region represents a region of performance regression

characterized by a decrease in performance.
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Figure 7.1: Simulation performance datasets for two versions of autonomy software.
The red box highlights performance improvement whereas the gray box highlights
performance regression.

The underlying research objective highlighted by the example of Fig. 7.1 is

to apply statistical learning techniques to analytically compare two (potentially

high-dimensional) performance landscapes. Such an analysis helps ensure

that more “mature” releases of autonomy software reduce the failure space

and do not produce new, unexpected failure modes. Alternatively, this process

could also be used to conduct a principled performance comparison between

two different autonomy strategies (or two different autonomy products) tested

within the same context.

While simulation-based testing is an effective way to generate performance

datasets, there is more limited literature on performance regression techniques.

Work by Rocklage et al. [111] considered auto-generating scenarios for regres-

sion tests in the context of self-driving car maneuvering. The problem posed

here, however, is the more general comparison of performance datasets, one

which shares similarities with the change detection field. Applications within

this field usually fall into detecting changes within time-series information [2]
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Figure 7.2: A design for augmented continuous integration for testing autonomy
software. In addition to traditional unit testing that checks for software quality issues,
automated simulation-based testing is used to evaluate the holistic performance of
the system. Additionally, statistical learning is used to detect performance regression,
i.e., areas where the SUT may have degraded in performance when compared to its
previous versions.

or between images [86, 115]. Generalized methods that detect differences in

the underlying probability distributions between datasets also exist [116, 99].

The remainder of this chapter is thus focused on (i) a performance analysis

methodology utilizing adaptive scenario generation to produce performance

datasets that identify failure modes in the system (such as those in Fig. 7.1),

and (ii) developing a methodology to conduct performance regression analy-

sis between two of these (potentially non-identical) datasets. The overall goal

is to use both of these pieces within an augmented continuous integration

framework for testing autonomy software, shown in Fig. 7.2. This form of

holistic performance testing is envisioned as a complement to the traditional

practice of unit-based software testing, which would typically only capture
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software errors such as memory leaks or segmentation faults. An augmented

continuous integration pipeline such as Fig. 7.2 would not only check for soft-

ware quality, but also automatically test the decision-making of the autonomy,

i.e., the “brain” of the system, to ensure that failure regions are identified and

properly tracked.

7.2 Performance Analysis Methodology

The focus of the performance analysis presented here is on the holistic decision-

making aspects of the autonomy that are evoked through simulation-based

testing. From a development standpoint, the desired output of the analysis

is the discovery of test parameters that produce unexpected failure modes,

defined as regions of the testing space characterized by undesirable perfor-

mance and/or behavior in the autonomy. For autonomy T&E, discovering

these failure modes allows developers to fix the issues or limit the operational

profile of the system.

A high-level depiction of the analysis methodology (influenced by [93])

is shown in Fig. 7.3, where adaptive scenario generation is used to empha-

size data collection around failure modes, followed by unsupervised cluster-

ing methods to separate unique failures conditions within the dataset. This

framework introduces two key inputs of the process: (i) determining the test

parameters and their values to be varied between simulations, referred to as

the testing space, and (ii) the performance criteria on which the autonomy is

evaluated based on its actions, referred to as the performance space.
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Figure 7.3: High-level flow diagram of the performance analysis methodology to
identify failure modes, influenced by the work in [93].

7.2.1 Problem Setup

Formally, the autonomous SUT is treated as a function F : X D → Y that maps

a D-dimensional testing space X D = X1 × . . .×Xd to a scalar performance

space Y ⊂ R. A scenario η = [η1, . . . , ηD]
T ∈ X D is a specific instantiation

of the testing space, where ηk ∈ Xk is the value of each test parameter. The

performance score y = F (η) ∈ Y is the output of each simulated scenario.

Ultimately, we wish to identify regions of the testing space characterized

by low performance scores (i.e., failure modes) as Q = {X D | Y < y∗}, where

y∗ is a performance threshold that indicates failure scores of interest. However,

because the performance landscape of a black-box autonomy exists in a high-

dimensional (and often highly nonlinear) space, it is difficult to characterize

124



Q analytically. Thus, the structures of Q and Y are estimated using samples

collected from the SUT in the form of simulation datasets.

Let sets of N scenarios X = {ηi}N
i=1 and their resulting performance scores

Y = {yi}N
i=1 be combined to form a study S = {X, Y}. Further, the algorithms

that follow are assumed to operate on the normalized testing space X̄ D =

[0, 1]D and normalized performance space Ȳ = [0, 1], where the (·̄) operator

indicates data that has been normalized to this range based on its maximum

and minimum possible values. The objective then is to characterize failure

modes by identifying a set of scenario clusters Q∗ = {Qi}
q
i=1 that are uniquely

determined by both the severity of the failure mode and their location within

the testing space.

7.2.2 Adaptive Scenario Generation

In the presence of a high-dimensional testing space, it is not feasible to perform

an exhaustive set of simulations to identify salient features of the system’s

performance landscape, especially when limited simulations can be collected

due to runtime constraints and the ability of the simulation to be parallelized.

Thus, as described in Section 7.1, adaptive scenario generation based on im-

portance sampling can be used to collect high-information data that balances

the exploration-exploitation trade-off, ensuring that the simulation set covers

the entire testing space while also giving preference to scenarios in areas of

interest. Within the context of this analysis, these areas of interest would be

unexpected failure modes of the system.

Previous work outlined by Mullins [91, 93, 92] (and contributed to by the
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author) details an approach for adaptive scenario generation that is extended

by this thesis. While the original details are left to previous work [93], the basic

paradigm is illustrated in Fig. 7.3, where batches of scenarios are submitted

to the SUT, and the resulting performance scores are used to fit a surrogate

modelM : X̄ D → Ŷ that predicts performance in untested scenarios. Here, Ŷ

represents the predicted normalized performance space. These predictions are

used within an acquisition function L(η̄) to estimate the utility of proposed

samples. The scenarios submitted to the SUT during the next iteration of

data collection (i.e., the loop of Fig. 7.3) are then chosen with probability

proportional to their expected utility [138].

The key pieces of this process that are extended here are the surrogate

model and associated acquisition function. The choice of surrogate model is

important because autonomous systems can exhibit unpredictable emergent

behavior that results in highly nonlinear and/or discontinuous performance

(as exampled in Fig. 7.1). Further, the surrogate model must also be able

to accommodate high-dimensional testing spaces (i.e., tens of dimensions)

and large sample sets. For these reasons, this work adopts quantile random

forests (QRFs) [85] as the surrogate modeling technique, although alternative

methods such as deep neural networks could be easily substituted. QRFs

are well-suited to handle the challenges described above through their non-

parametric structure, while also providing prediction bounds that accommo-

date the uncertainty associated with autonomy performance.

In general, for a response variable Y, predictor variable X, and underlying

conditional distribution P(Y ≤ y|X = η), quantile regression methods not
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only attempt to estimate the conditional mean, but also the conditional α-

quantiles, defined as

Qα(η) = inf{y : P(Y ≤ y|X = η) ≥ α}. (7.1)

Quantile random forests achieve estimates Q̂α(η) of these α-quantiles using

the inherent bagging structure of random forests. In essence, rather than

simply storing the weighted mean of all observations for a given leaf node

(as is the case with traditional random forests), QRFs extend this by storing

the values of all observations from each tree to compute an estimate of the full

conditional distribution,

P̂(Y ≤ y|X = η) =
N

∑
i=1

wi(η)I{Yi≤y}, (7.2)

where wi are the typical weights calculated when training the random forest

and I is the indicator function (see [85] for details). The α-quantile estimates

can then be calculated by using Eq. (7.2) in Eq. (7.1). Most importantly, Q̂α(η)

can be used to provide confidence bounds on the predictions made by the

QRF model. Using a 95% prediction interval, the predictions become

[ŷlb, ŷ, ŷub] =̂ [Q̂0.025(η), Q̂0.5(η), Q̂0.975(η)], (7.3)

where the superscripts (·)lb and (·)ub represent the lower and upper prediction

bounds.

Now that the performance of untested scenarios can be predicted, we next

define the acquisition function that estimates the utility of proposed samples.

To accommodate high-dimensional testing spaces (large D) and high-volume
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sample sets (large N), the acquisition function is defined as

L(η̄) = wD

(
∑K

i=1 ||η̄− η̄i||
K

)
+ wF (1− ŷ) + wV

(
ŷub − ŷlb

)
, (7.4)

where wD, wF, and wV are weights that emphasize exploration of the testing

space, failure mode coverage, and collecting data in regions of high perfor-

mance uncertainty, respectively. The exploration portion of Eq. (7.4) calculates

the average distance between a proposed sample and its K-nearest collected

samples. Higher utility is assigned to proposed scenarios with large average

distances, as this indicates a region of the testing space that is sparsely sam-

pled. Empirical testing has shown that an approximate value of K ∈ [4, 6]

and values of wD = 1, wF = 5, and wV = 4 provide the desired results for

reasonable values of D (i.e., less than 12).

The final term of Eq. (7.4) (collecting data in regions of high performance

uncertainty) is important in order to gain confidence in the results of those

regions. From a T&E perspective, high performance uncertainty may also

indicate a region of large performance gradient. Identifying these large gradi-

ents, termed here as performance boundaries, is useful because they contain

information regarding critical decisions made by the autonomy, which in turn

can lead to the discovery of new failure modes. When compared to purely ran-

domized scenario generation, importance-based methods ultimately produce

a sample set that better represents the interesting areas of the performance

landscape. This process allows significant insight into the decision-making

of the system by isolating the scenarios that result in behavior changes. Such

insight is extremely valuable when evaluating black-box systems, particularly
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those with unpredictable performance surfaces.

7.2.3 Failure Mode Identification

Figure 7.3 shows that the output of the the adaptive scenario generation

process is a final sample set S that characterizes the performance landscape

of the SUT, meaning it is expected that S contains samples from all areas

of the testing space with varying performance scores. It is difficult to draw

conclusions from S in its raw form, as it is typically high-dimensional data

composed of thousands of scenarios. Thus, in our goal of understanding the

failure modes of the system, we employ unsupervised learning that clusters

the samples in both (i) the degree of performance deficiency and (ii) the region

of the testing space where failure occurs. In this way, each cluster represents a

unique failure mode in a form that is more readily digested by the analyst.

7.2.3.1 Performance Space Clustering

The data contained in S is first clustered on the Y space such that common

performance themes can be binned into similar categories. First, S is filtered

to remove any samples that have performance scores above the threshold

indicating failure scenarios of interest: ȲQ = {Ȳ | Ȳ < ȳ∗}. Performance space

clustering then operates on the ȲQ set.

The algorithm used for unsupervised clustering is dependent on the struc-

ture of the data and the fact that the number of clusters is not known a pri-

ori. The clustering algorithm implemented for performance space clustering
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uses Gaussian mixture models (GMMs) fit with the iterative Expectation-

Maximization algorithm [82], although alternative algorithms could also be

used. The assumption of Gaussian structure to the performance clusters im-

poses limitations on their shape, but also adds useful analysis properties by

giving estimates of the cluster center (mean) and spread (covariance).

A set of j performance clusters is defined as Pj = {pi}
j
i=1 = GMM(ȲQ, j),

where each pi is a unique performance cluster and GMM is the clustering

operation [82]. To overcome the assumption inherent to GMMs that the

number of clusters is known, multiple models are fit, where each assumes a

different number of clusters j ∈ [1, jmax]. The final performance cluster set is

then determined as

P∗ = max
s
{Pj}

jmax
j=1 , (7.5)

where s is the averaged silhouette score [112] of the clustered samples.

7.2.3.2 Testing Space Clustering

The second clustering step takes samples within each performance cluster

and further groups them in the X D space. This aids in diagnosing regions

of the testing space that cause different forms of failure. In other words,

similar failure modes belonging to the same performance cluster could occur

at multiple different locations within the testing space and it is useful to

separate each of these clusters.

Once again, the choice of clustering algorithm is important given the

new domain X D. Imposing structure requirements on the data (such as in

GMMs) in the testing space proved to be too limiting. Additionally, there
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are potentially many more individual clusters within this space, amplifying

the challenge that the number, size, and locations of failure modes are not

known a priori. Thus, the testing space clustering makes use of density-based

methods (specifically DBSCAN [30]) to alleviate some of these problems,

which can accommodate an unknown number of clusters and imposes loose

requirements on their shape.

Let X̄p be the scenarios for which their respective performance scores

belong to each p ∈ P∗, i.e., X̄p = {X̄ | ȲQ ∈ p}. Then, in a similar fashion

to the performance clustering step, a set of scenario clusters is calculated as

Q = DBSCAN(X̄p, σ), where each q ∈ Q is now a unique cluster of scenar-

ios, DBSCAN is the clustering operation [30], and σ denotes the clustering

algorithm’s hyperparameters. Because these hyperparameters significantly

affect the clustering process, several cluster sets are calculated over variations

to the hyperparameters. The scenario cluster set for a given p is once again

that which maximizes the silhouette score over the tested hyperparameters:

Qp = max
s
{Q}σ. (7.6)

This clustering process is then repeated using scenarios from each p ∈ P∗ such

that the final set of failure modes is identified as Q∗ = {Qp}pmax
p=1 .

7.2.3.3 Feature Scaling

When analyzing realistic SUTs, the well-known curse of dimensionality dilutes

the effectiveness of clustering if applied directly to high-dimensional data;

thus, feature importance scaling is applied during testing space clustering
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to reduce the size of the testing space based on the importance of each test

parameter. This is achieved by using the QRF surrogate model trained on the

final sample set S. The importance βk of each k-th parameter is determined by

how much the out-of-bag mean-squared error of the model changes through

different parameter permutations [40]. Normalized parameter importance is

given as β̄k = βk/ ∑D
ℓ=1 βℓ. The normalized importance values are then used

as weights to scale the Euclidean distance d between two scenarios ηm and ηn

as:

d(ηm, ηn) =
√
(ηm − ηn)TB(ηm − ηn), (7.7)

where B = diag(β̄1 . . . β̄D). This weighted distance function is used during

testing space clustering and has the effect of minimizing unimportant test

parameters.

7.3 Identifying Performance Regression in
Autonomous Systems

The performance analysis of Section 7.2 is capable of producing high-information

datasets that evaluate the system’s failure modes and statistical performance.

This information is highly useful, but without proper context, it can be diffi-

cult to determine whether the system is performing as expected. This section

thus outlines the second component of the evaluation pipeline in Fig. 7.2:

an approach to compare these datasets from a regression standpoint, either

datasets generated between versions of the same system, or datasets generated

between different systems evaluated on the same parameters.
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7.3.1 Problem Setup

Extending the formal problem definition of Section 7.2.1, this section tackles

the problem of comparing two different SUTs, FA and FB, where FA ̸= FB.

Assuming both SUTs are evaluated on the same testing space X D, we define

the change in performance over the entire testing space as ∆Y = YB −YA =

FB(X D)−FA(X D). Given these definitions, we aim to identify the subset

of regression regions characterized by a decrease in performance: X− =

{X D |∆Y < 0}.

Once again, an exact characterization of the regression regions is intractable;

thus, we estimate them using the performance datasets SA and SB collected

fromFA andFB, respectively. While the techniques of Section 7.2 are preferred

for generating performance datasets around failure modes of the system, the

regression analysis could also be applied to datasets generated from more

simplistic randomized Monte Carlo methods. Further, while we assume that

both SUTs are evaluated on the same testing space, the resulting studies need

not be identical. For the purposes of performance regression analysis, we aim

to estimate the regression regions by identifying a set of regression clusters R∗

that are uniquely determined by both the severity of the performance decrease

between SA and SB, and also their location within the testing space.

The overall approach taken to identify and characterize the regression

clusters shares many similarities with the methods of Section 7.2, albeit applied

to augmented datasets of predicted performance regression. Fig. 7.4 shows

a flowchart of the process. The algorithms that follow again operate on the

normalized testing space X̄ D and normalized performance space Ȳ .
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Figure 7.4: Overall performance regression analysis approach. Surrogate modeling
is used to normalize each study to the other and predict whether samples have
regressed. Unsupervised clustering is then used to extract unique regression clusters
in both the severity of the performance decrease and its location within the testing
space.

7.3.2 Regression Modeling

Given that S̄A ̸= S̄B, the first step of the performance regression analysis is

to once again fit QRF surrogate modelsMA andMB to each dataset S̄A and

S̄B, respectively. Regression regions are then estimated based the predicted

response of each model to the opposite dataset:

[Ŷlb
AB, ŶAB, Ŷub

AB] =MB(X̄A), (7.8)

[Ŷlb
BA, ŶBA, Ŷub

BA] =MA(X̄B), (7.9)

∆ŶA = ŶAB −YA, (7.10)

∆ŶB = −(ŶBA −YB). (7.11)
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Here, ŶAB and ŶBA are the predicted scores from studies A and B on models

B and A, respectively. The upper and lower prediction bounds are translated

to predict the bounds on the performance regression of each dataset as

∆Ŷlb
A = Ŷlb

AB −YA, (7.12)

∆Ŷub
A = Ŷub

AB −YA, (7.13)

∆Ŷlb
B = −(Ŷub

BA −YB), (7.14)

∆Ŷub
B = −(Ŷlb

BA −YB). (7.15)

A combined study set S̄∗ = {X̄∗, ∆Ŷ∗}, where X̄∗ = X̄A ∪ X̄B and ∆Ŷ∗ =

∆ŶA ∪ ∆ŶB, is then created to predict the change from FA to FB. The set

of samples representing performance regression can be estimated as S̄−∗ =

{S̄∗ |∆Ŷ∗ < 0}. This combined set augments the number of samples (N∗ =

NA + NB) for improved fidelity in cluster analysis. Alternatively, the predicted

regression bounds ∆Ŷlb
∗ = ∆Ŷlb

A ∪ ∆Ŷlb
B and ∆Ŷub

∗ = ∆Ŷub
A ∪ ∆Ŷub

B could also

be used to define the combined study set. Using the lower bound offers a

conservative approach and prioritizes extracting regions with the greatest

possible regression. The upper regression bound, meanwhile, lets the analy-

sis prioritize performance regression that is occurring with high confidence,

meaning that even the upper bound is predicted to have regressed.
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7.3.3 Regression Clustering

The final set of regression clusters R∗ is determined using the same clustering

procedure defined in Section 7.2.3. The primary difference here, however, is

that the process is applied to the augmented dataset S̄−∗ , which now contains

predicted performance change as opposed to the original scores. Ultimately,

the identification of both Q∗ and R∗ allow for a complementary analysis

during development. Q∗ gives the user insight into the current deficiencies of

the system from an absolute perspective, while R∗ gives the user a sense of

how the system is progressing from a relative perspective.

7.4 Preliminary Analysis on Test Functions

Before applying the performance analysis and regression frameworks to a real

autonomous system in Chapter 8, a preliminary evaluation of the surrogate

modeling strategy is performed to obtain a baseline of its effectiveness. This

evaluation is done using a Monte Carlo study of auto-generated test functions

from which ground truth performance landscapes can be calculated. Unsuper-

vised cluster evaluation is omitted because establishing ground truth clusters

is much more subjective in nature.

Each randomized test function is meant to be representative of the types of

performance surfaces seen in autonomy testing datasets. Specifically, the test

functions generate Y to consist of several “plateaus” within X D. The quantity,

performance score, and location of each plateau are all randomized. The

boundary between adjacent plateaus is linearly smoothed and measurement
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Figure 7.5: Example of the regression analysis applied to two randomly generated
test functions (left). The resulting regression dataset and three high-priority clusters
are shown by the middle and right plots, respectively.

noise is added to each sample such that y = ytruth +N (0, σ2), where σ = 0.02.

For each study, two test functions are randomly generated and assigned as

FA and FB (examples shown in Fig. 7.5), allowing us to study the modeling

performance in the context of the performance regression methodology. The

results obtained by predicting performance regression then naturally trans-

late to predicting raw performance (as would be used for adaptive scenario

generation) through the operations of Section 7.3.2.

In order to compare different modeling approaches, the QRF model of

Section 7.2 was compared against a Gaussian process regression (GPR) model

and a five-layer neural network (DNN), all of which used hyperparameters

that were optimized to minimize prediction error. The performance of each

model is then evaluated across various combinations of D and N to determine

scalability for high-dimensional testing spaces and large datasets. Ten studies
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were run for each combination of D and N (each with new test functions) and

the results were averaged.

Figure 7.6 shows the performance of each model in its predictions of the

regression dataset S∗. When comparing the predictions to the ground truth

regression between pairs of randomized test functions, the first evaluation

metric shows the five-fold cross validation mean absolute error (MAE) of ∆Ŷ∗.

Each model exhibits the expected trend that MAE increases for large values of

D and small values of N. The QRF model has lower MAE scores than the GPR

model over all combinations of D and N, but is slightly outperformed by the

DNN model for large sample sizes, indicating that there may be conditions to

apply different modeling techniques.

The second evaluation metric shown in Fig. 7.6 is the percentage of ∆Ŷ∗

predictions that lie outside their prediction bounds (i.e., the 95% prediction

interval [∆Ŷlb
∗ , ∆Ŷub

∗ ]). For the GPR and DNN models, the 95% prediction

intervals of Eq. (7.8) and (7.9) are calculated as [Ŷlb, Ŷub] = Ŷ± 1.96σ, where

the standard deviation σ for the GPR model is calculated through its inherent

covariance structure, and for the DNN model is approximated using the

model’s five-fold cross validation root-mean-square error. The percentage of

outliers for all models is roughly consistent with a 95% confidence interval,

however, the QRF exhibits the lowest outlier percentage, where typically

only 1 – 2% of its predictions lie outside the prediction interval. While the

prediction interval is centered on the mean for the GPR and DNN models, the

prediction interval of the QRF model is asymmetrical around the mean, which

likely results in the increased uncertainty robustness.
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(a) QRF surrogate modeling

(b) GPR surrogate modeling

(c) DNN surrogate modeling

Figure 7.6: Regression modeling performance on the prediction of ∆Ŷ∗ for random-
ized test functions.

139



Overall, the QRF surrogate modeling offers a good balance of reducing

MAE while also minimizing the number of predictions that lie outside the

95% predicted regression intervals. It is evident, however, that each surrogate

modeling technique may offer some benefits based on the characteristics of

the dataset and could be easily substituted into the performance analysis

framework.
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Chapter 8

Performance Evaluation for
Autonomous Surface Vessel
Navigation

We now tie Chapters 6 and 7 together by running performance analysis on the

proposed good seamanship ASV planning strategy. With regards to T&E of

ASV systems, perhaps the biggest issue preventing full adoption is trusting

that these systems will behave as expected when operating in environments

with other vessels. As detailed in Chapter 5, safely navigating in real-world

environments demands that these systems perform a combination of mission

completion, general obstacle avoidance, and COLREGS compliance, all of

which are objectives that could potentially conflict with each other. To es-

tablish trust in the decision-making of an ASV, it is necessary to perform a

full statistical evaluation of the system over the range of its normal operating

environment using the methods developed in Chapter 7.

The system under test is the 29-ft rigid-hull inflatable boat introduced in

Section 6.1 and pictured in Fig. 6.1. All parameters for both planning and

141



evaluation are tuned for this vessel. The values for parameters of the ASV

planner not previously derived or defined are given in Table 8.1.

First, the testing spaces and performance spaces are defined with respect

to the ASV navigation problem. These components are then applied using

the performance analysis of Chapter 7 to evaluate the good seamanship ASV

planning strategy. The performance of the planner is compared to other base-

line navigation approaches in both single-vessel and multi-vessel avoidance

scenarios. We then examine the extracted failure modes of the system and

perform a case study on the usefulness of the performance regression frame-

work when attempting to remedy these failure modes. Finally, the results of

field experiments in the Chesapeake Bay are described for testing the good

seamanship planner over a wide array of COLREGS geometries.

8.1 Analysis Setup

8.1.1 ASV Testing Space Design

The testing space X D is the first component that needs to be defined for

effective simulation-based T&E. Proper parameterization of the testing space

requires careful thought – the goal is to capture all relevant scenarios while

minimizing its dimensionality. Here, the application of interest is evaluating

ASV decision-making in the context of COLREGS compliance and multi-vessel

good seamanship.

Figure 8.1 illustrates the test parameters from which three testing spaces

are designed within this context. These parameters capture all geometries of

relevant collision encounters with other vessels, as well as the possibility to
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Table 8.1: ASV planner parameters used for simulation studies and field experiments.

Parameter Description

[rmin, rmax] = [−0.12, 0.12] rad/s Allowable turn rate bounds of the ASV

[amin, amax] = [−4.0, 1.0] m/s2 Allowable acceleration bounds of the ASV

L = 4.77× 10−3 nmi Length of ownship

λr = 7.5 Ship domain radius scaling factor

κ = 10 Ship domain/arena logistic function shape parame-
ter

f0 = 0.5 Ship domain/arena logistic function shape parame-
ter

R f ,a = 1200 m Ship arena fore radius

Rs,a = 1200 m Ship arena starboard radius

Ra,a = 650 m Ship arena aft radius

Rp,a = 650 m Ship arena port radius

δ̃t = 7 sec Minimum time step between branch & bound plan-
ner nodes

ℓ = 4 Number of control actions considered until time of
maximum mutual domain risk

H = 6 Number of state nodes in branch & bound planner
trajectory sequence

Θ̃C = 0 Collision index threshold for determining whether
target ship is in COLREGS

t̃C = 70 sec Time until maximum mutual domain risk threshold
for determining whether target ship is in COLREGS

Θ̃S = 0.5 Overall risk index threshold used for determining
emergency state

wM = 1 Cost function mission weight

wS = 15 Cost function safety weight

wC = 3 Cost function COLREGS weight
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Figure 8.1: Illustration of the test parameters used for each testing space. Ranges and
descriptions are given in Table 8.2.

evoke emergent behavior through competing mission objectives and varying

compliance of the target ships. For all testing spaces, the ASV starts at a fixed

location and travels due North at a nominal speed of 6 m/s towards a goal

waypoint (in this sense, πnom is simply the straight line trajectory between the

start and goal points). Naturally, there are many more factors that would be of

interest in the overall ASV navigation problem than those captured in Fig. 8.1.

For example, the locations of static obstacles and environmental effects are all

parameters that could influence the behavior of the system. While this thesis

focuses primarily on behaviors induced due to different collisions encounters

with other vessels, a full test suite should certainly include additional testing

spaces to capture these factors.
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Table 8.2: Test parameter ranges and descriptions for the ASV testing spaces. The
intercept time in the following descriptions is defined as the time at which the target
vessel and ASV are collinear along the North-South axis assuming constant speed
and heading.

Parameter Description

η1 ∈ [0, 360] deg Nominal relative heading for target ship #1

η2 ∈ [0, 16] m/s Nominal relative speed for target ship #1

η3 ∈ [−200, 200] m Lateral offset of target ship #1 from ASV at the intercept time

η4 ∈ [0, 1000] m ASV distance from goal waypoint at intercept time

η5 ∈ [0, 400] m Avoidance range used by target ships for their own navigation

η6 ∈ [0, 360] deg Nominal relative heading for target ship #2

η7 ∈ [0, 16] m/s Nominal relative speed for target ship #2

η8 ∈ [−200, 200] m Lateral offset of target ship #2 from ASV at the intercept time

8.1.1.1 Single-Vessel Standard Testing Space

The first testing space on which the good seamanship planner is evaluated

involves only the first three test parameters of Fig. 8.1: X 3
1v = X1 ×X2 ×X3.

Thus, the X 3
1v testing space only generates single-vessel encounters where the

target ship maintains constant speed and heading based on the scenario. This

simple 3D testing space is meant to evaluate the ASV planner’s compliance

with COLREGS over a wide array of geometries.

8.1.1.2 Single-Vessel Extended Testing Space

The second testing space extends X 3
1v by also including the fourth and fifth test

parameters: X 5
1v = X1 ×X2 ×X3 ×X4 ×X5. The η4 test parameter modifies

how close the collision encounter occurs to the ASV’s goal waypoint, intro-

ducing a competing priority that could affect its avoidance of the target ship.

Additionally, the target ship does not simply maintain constant speed and
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heading during the encounter. Rather, it follows a simple collision avoidance

strategy based on COLREGS-compliant velocity obstacles [58], where the η5

test parameter varies the target ship’s desired avoidance radius.

8.1.1.3 Multi-Vessel Testing Space

The final testing space is designed to evaluate the ASV planner in multi-vessel

situations where COLREGS become much more subjective and rule-based

planners may not generalize. This 7D testing space, consisting of parameters

X 7
2v = X1 ×X2 ×X3 ×X5 ×X6 ×X7 ×X8, captures all encounter geometries

for two vessels and also varies their desired avoidance radius.

8.1.1.4 Handcrafted Test Scenarios

As a baseline for comparison to the X 3
1v testing space, a test suite of standard

COLREGS scenarios was generated by a group of experts and former ship

captains with extensive knowledge of COLREGS. This test suite consisted of

64 scenarios, shown in Figure 8.2, that exercised the ASV in a select number

of COLREGS geometries within X 3
1v. The purpose of including a set such as

this is to show that the conventional approach of handcrafting COLREGS test

scenarios, as seen in other research [98, 7, 58], is incomplete for the purpose of

fully evaluating ASV decision-making and performance.

8.1.2 ASV Performance Space Design

The second component to be defined is the performance space Y , i.e., the scor-

ing criteria for evaluating ASV performance on scenarios generated from each

testing space. It is understood that the criteria used to evaluate appropriate
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ASV
Target Ship

LEGEND

Figure 8.2: Depiction of the handcrafted COLREGS scenarios test suite. Each black
arrow designates a separate test scenario, with the length of the arrow representing
the relative velocity of the target ship with respect to the ASV.

behavior in an encounter may be subjective. For instance, one ship captain

may feel comfortable with small avoidance distances, while another may

deem those ranges to be unsafe. Therefore, the methodology below adopts a

series of scoring functions that can be tuned to the preference of the user and

the ASV under test.

While there have been a significant number of studies into ASV path plan-

ning approaches that consider COLREGS, there is much less literature on

techniques to evaluate the COLREGS compliance of different planning algo-

rithms. Evaluating whether fielded ASV software is compliant with COLREGS
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is a challenging problem, where it becomes necessary to perform an objective

evaluation based on subjective COLREGS protocols. Tam and Bucknell [127]

looked at assessing the collision risk based on the type of COLREGS encounter

and the speed of the vessels, however, the analysis was geared more towards

path planning as opposed to performance evaluation. COLREGS maneuvering

compliance can be thought of as a subcategory to navigational safety assess-

ment that evaluates not just the collision risk of an encounter, but whether

the actions of each vessel were appropriate based on the COLREGS proto-

cols. The most complete analysis of quantitative COLREGS evaluation was

performed by Woerner et al. [137, 136]. These works define algorithms that

evaluate the actions taken by a vessel for each COLREGS rule. This procedure

provides a more principled analysis for comparing observed behavior against

the expected behavior in different COLREGS scenarios. Woerner’s analysis

framework was used by Minne [88] to develop a test generation framework

for comparing the performance of multiple ASV navigation strategies.

In this thesis, we offer improvements to state-of-the-art methods for eval-

uating ASV decision-making in the context of both single-vessel encounters,

where COLREGS compliance dominates performance evaluation, and multi-

vessel encounters that require a more generalized approach to performance

evaluation. While the work of Woerner provides a path forward for single-

vessel COLREGS encounters, the rule-based nature of the scoring criteria does

not generalize well to multi-vessel scenarios. As such, we leverage the good

seamanship principles developed in Chapter 6 to create evaluation criteria

for multi-vessel encounters as a supplement to existing COLREGS evaluation,
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where specific COLREGS rule classification loses value due to potentially

conflicting rules for each target ship.

A hierarchical approach to evaluation is taken such that a final score is

calculated based on multiple layers of sub-scores. This approach is beneficial

because the overall performance can be dissected to determine the root cause

of a particular performance mode. For example, the safety of an ASV trajectory

can be evaluated independently of its COLREGS compliance. In a similar

form to the cost function of the ASV planner, the final score is calculated as

a weighted combination of performance sub-scores in mission criteria YM,

safety criteria YS, and COLREGS criteria YC. While it may seem logical to

apply the ASV planner cost function calculations as the performance criteria,

there are two primary reasons why slightly different calculations are used:

(i) the intent of the performance criteria is to remain independent of the

ASV planning strategy such that it can be universally applied to any planner

attempting COLREGS-compliant navigation, and (ii) the performance criteria

below can be applied to the full, post-processed trajectories of all vessels in

the encounter. The second condition means that the scoring criteria has the

benefit of hindsight (and ground truth) in evaluating the full encounter and is

not limited by a finite planning horizon or uncertainty of the future scenario

evolution, as is the case when designing the cost function for the ASV planner.

With this in mind, the overall performance space is calculated as

Y =
wMYM + wSYS + wCYC

wM + wS + wC
, (8.1)

where wM, wS, and wC are corresponding weights for the mission, safety, and
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COLREGS criteria, respectively. The values for these are the same as those

listed in Table 8.1.

8.1.2.1 Mission Score

Since the mission for all testing spaces is simply reaching a desired goal

waypoint, the mission sub-score is calculated as the average of the ASV spatial

and temporal efficiencies:

YM =
1
2

(
tnom

tactual
+

ρnom

ρactual

)
. (8.2)

Temporal efficiency measures a ratio of the nominal time tnom required to

reach the goal by following πnom had there been no COLREGS encounter,

against the actual time tactual required to reach the goal. Similarly, spatial

efficiency measures a ratio of the the length of πnom (ρnom) against the actual

distance traveled ρactual in the simulation.

8.1.2.2 Safety Score

The safety sub-score is calculated based on the actions taken by the ASV

without consideration of specific COLREGS protocols. Thus, this sub-score

primarily considers the overall risk ΦS(t) associated with the final, post-

processed trajectories. As highlighted in Section 6.3, the ship domain geometry

used to calculate ΦS(t) is better able to capture the risk of an encounter when

compared to CPA-based methods, as CPA does not differentiate between

geometries that are inherently more risky beyond the distance calculation.

Ideally, for an ASV exhibiting good seamanship, ΦS(t) should be kept
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as close to zero as possible, indicating minimal future collision risk and/or

the ASV taking early evasive action. We capture these characteristics by

translating the overall risk index into a metric for evaluating seamanship

performance over the full encounter. First, let ΦS,max be the maximum overall

risk of the ASV:

ΦS,max = max
t∈[ts,t f ]

ΦS(t), (8.3)

where ts and t f are the start and final times of the encounter, respectively. Also,

let t̄ = (t− ts)/(t f − ts) be the normalized time vector such that t̄ ∈ [0, 1].

Two performance metrics can then be defined that measure the maximum risk

(Eq. (8.4)) and the cumulative risk (Eq. (8.5)) over the encounter:

ΦM = 1−ΦS,max, (8.4)

ΦC = 1−
∫ 1

0

ΦS(t̄)
ΦS,max

dt̄. (8.5)

The calculation of ΦC represents a score for the amount of risk acquired during

the encounter, normalized by the maximum risk. Thus, a value of ΦC = 0

would mean that the ASV maintained a risk value of ΦS,max for the entirety of

the encounter. This metric is able to capture sustained periods of high risk as

well as indecision that leads to multiple spikes in the risk.

Finally, the safety sub-score is calculated as a combination of ΦM and ΦC,

both of which constitute good seamanship behaviors and risk reduction:

YS = ΦM
(
1 + α(2ΦC − 1)(1−ΦM)

)
. (8.6)

The form of Eq. (8.6) rewards short periods of low risk and penalizes sustained
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Figure 8.3: The YS performance surface resulting from Eq. (8.6).

periods of high risk, where α serves as a tuning parameter that controls the

amount of penalty based on the value of ΦC (this work uses a value of α = 0.75

based on empirical testing). The performance surface of YS based on different

values of ΦM and ΦC is shown in Fig. 8.3.

8.1.2.3 COLREGS Score

The final component YC of Eq. (8.1) is meant to specifically quantify COLREGS

compliance as opposed to more general safety principles.

8.1.2.3.1 Single-Vessel COLREGS Scoring: While there are fairly obvious

metrics that can be used with respect to mission and safety criteria, there is

not currently an accepted framework for evaluating COLREGS compliance.

Nevertheless, the most complete analysis of COLREGS scoring to date is

presented by Woerner [137, 136] and we adopt this scoring convention here

for single-vessel encounters, such as those generated inX 3
1v andX 5

1v. The work
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by Woerner puts forth an algorithmic approach that quantifies the compliance

of an ASV trajectory with respect to each applicable COLREGS rule. For

single-vessel encounters, this is an appropriate approach, as the ASV should

comply as closely as possible with the protocols as they were intended.

8.1.2.3.2 Multi-Vessel COLREGS Scoring: As discussed in Chapter 5, many

of the COLREGS protocols were written with single-vessel encounters in mind,

and their applicability to multi-vessel scenarios is debated. The Woerner scor-

ing algorithm [137, 136] proposes to maintain the same scoring methodology

used for single-vessel encounters for each target ship in a multi-vessel en-

counter. When COLREGS rules conflict with each other, Woerner proposes

that user-supplied priorities should be assigned to each vessel and COLREGS

rule. In this thesis, we adopt an alternative approach that does not apply

single-vessel scoring to a multi-vessel encounter. Instead, the COLREGS score

for multi-vessel encounters is determined using the same procedure as Alg.

5 such that YC = QC. This approach relies on the risk-based evaluation of

Eq. (8.6) to capture adherence to good seamanship principles, while addi-

tional considerations such as obvious maneuvering and minimizing action

indecision are captured through QC. The primary difference here is that, as

opposed to calculating QC over a receding planning horizon, the calculation

is performed over the post-processed encounter defined over t̄.
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8.2 Performance Evaluation Results

We now transition to actually applying the performance evaluation described

in Chapter 7 to the ASV planner of Chapter 6, using the 29-ft rigid-hull

inflatable boat of Section 6.1 as the SUT. This section focuses on analyzing

performance-based trends from simulation data with the intent of discovering

the unique failure modes of the system. Section 8.3 then provides field test

examples of the planner behavior in candidate scenarios.

For the analysis of this section, scenarios were adaptively-generated using

the methodology of Section 7.2. A total of 3,000 scenarios were simulated

on the X 3
1v testing space, 7,000 scenarios on the X 5

1v testing space, and 14,000

scenarios on the X 7
2v testing space. The threshold for performance scores

of interest was set to y∗ = 0.9, representing the approximate 20-th score

percentile of the seamanship planner.

8.2.1 Comparison to Baseline Planning Strategies

We first evaluate the good seamanship ASV navigation strategy in simulation

against two more traditional planners: (i) a variant of the good seamanship

planner that utilizes CPA-based avoidance criteria / costs as opposed to ship

domain-based criteria, and (ii) a COLREGS-supplemented velocity obstacles

(VO) planner (similar to the approach by Kuwata et al. [58]). Figure 8.4 shows

each planning strategy’s performance landscape (projected onto pairs of 2D

subspaces) for the studies performed on X 3
1v, where each point represents a

simulation and corresponding performance score. The black dots represent

the handcrafted scenarios of Fig. 8.2 as a baseline for comparison.
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(a) Seamanship-based planner (b) CPA-based planner

(c) VO-based planner

Figure 8.4: Performance landscapes of each planning strategy calculated from 3000
adaptively-generated scenarios on the X 3

1v testing space. The color of each scenario
represents the performance scores Y , while the black dots represent the set of hand-
crafted scenarios (introduced in Fig. 8.2) as a baseline for comparison.

Qualitatively, it is evident that the proposed seamanship-based planning

strategy has significantly fewer and less severe failure modes when compared

to the CPA-based and VO-based planners. Additionally, the resulting perfor-

mance landscapes show that handcrafted test scenarios only cover a small

portion of the testing space and reveal limited information about the overall

system performance. Conversely, adaptive test generation is able to provide

a more complete picture, producing parameter combinations that highlight
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(b) X 5
1v study
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(c) X 7
2v study

Figure 8.5: Histograms for each planner representing the percent volume of the
testing space occupied with respect to different scoring bins of Y .

regions of deficient performance with much higher resolution.

Since it is difficult to visualize the performance landscapes of the higher

dimensional testing spaces in scatter plot form, we examine the performance

statistics of each study in Fig. 8.5. It is not appropriate to simply examine the

raw distribution of scores collected from each study, as the adaptive nature of

the sample collection produces a distribution that is biased towards the failure

modes of the system. Thus, each bar in the histograms of Fig. 8.5 represents

the volume of X characterized by a particular range of Y as a percentage of
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the total volume of X . In other words, each bar is calculated as

b = 100 ∗ Vol(X | y− < Y ≤ y+)
Vol(X )

, (8.7)

where y− and y+ are the lower and upper scores of the bin edges, respectively.

The values of Vol(X | y− < Y ≤ y+) are estimated by summing the Voronoi

volumes of scenarios that have performance scores within the bin edges.

Viewing the performance distribution as a percentage of volumes removes the

bias introduced by the varying sample densities throughout the testing space.

These results show that the seamanship-based planner outperforms the

other planners by achieving high performance scores in the vast majority of

all testing spaces. The seamanship-based planner also minimizes lower per-

formance scores when compared to the other planners. Table 8.3 summarizes

some of these metrics for additional comparison. Overall, the seamanship-

based planner has the smallest testing space volume below y∗ for all studies,

and also has higher minimum scores than the other planners for all studies.

The metrics summarized in Table 8.3 also show that the seamanship-based

planner had the lowest collision rate, and was able to avoid collisions in all

single-vessel encounters, even when the target ship was noncompliant in

obeying COLREGS.

8.2.2 Failure Mode Introspection

While the good seamanship planner offers improved performance when com-

pared to other baseline planning strategies, there are still challenging test

parameter combinations that stress the decision-making and lead to regions
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Table 8.3: Performance metrics for each ASV planning method.

Planner Seamanship CPA VO

X 3
1v

Study

Vol(X | Y < y∗) % 5.0 8.7 24.6

Minimum Score 0.71 0.23 0.32

Collision % 0 0.075 0.030

X 5
1v

Study

Vol(X | Y < y∗) % 10.5 11.2 18.4

Minimum Score 0.59 0.23 0.19

Collision % 0 0.023 0.005

X 7
2v

Study

Vol(X | Y < y∗) % 8.2 11.8 27.6

Minimum Score 0.13 0.11 0.05

Collision % 0.003 0.016 0.095

of lower performance. We now wish to do a further introspection into these

primary failure modes of the good seamanship planner.

For the X 3
1v testing space, Fig. 8.6 shows the “top 3” failure modes from

the Q∗ set (i.e, the three clusters that exhibited the lowest average scores)

that were extracted using the methods of Section 7.2.3. The most significant

failure mode, Q1, is displayed in blue. This failure mode is characterized by a

high-speed, noncompliant target ship that is overtaking ownship on a nearly

parallel course. An example of the ASV behavior from a scenario near the

centroid of this failure mode is shown in Fig. 8.6b, where the trajectories of

ownship (OS) and the target ship (TS) are stamped with numbers between

“0 – 9” representing equivalent time points. This scenario is particularly

challenging because ownship is required to stand-on until the target ship is

deemed noncompliant, occurring at approximately the “3” time stamp. At

this point, the geometry of the scenario produces a decision-making boundary

between performing an emergency avoidance maneuver to either port or

158



(a) “Top 3” failure clusters from Q∗ (b) Failure scenario from Q1.

Figure 8.6: (a) The “top 3” failure clusters from the Q∗ set (Q1 = blue, Q2 = red, Q3 =
gold). The ellipses display each cluster’s covariance structure and the the black circle
highlights the scenario shown in (b).

starboard. Ownship ultimately decides that an avoidance maneuver to port

minimizes the cumulative risk by getting out of the target ship’s path more

quickly than would be the case with a maneuver to starboard. The port

maneuver, however, requires ownship to slightly cross the target ship’s bow,

which is less than ideal and lowers the performance score of the scenario. The

end result is that ownship is able to avoid a collision with the unsafe target

ship, but the minimum distance between the vessels is too close due to the

high speed of the target ship.

The difficulty of the scenario geometries seen in Q1 of X 3
1v is further exac-

erbated in multi-vessel scenarios. In examining the primary failure mode of

the X 7
2v testing space (one that is characterized by a violation of the collision

radius between ownship and one of the target ships), we see that once again

this mode is dominated by high-speed, noncompliant target ships that are
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Figure 8.7: Example scenario from the primary failure mode of the X 7
2v testing space,

characterized by a violation of ownship’s collision radius by TS2.

overtaking ownship. Figure 8.7 shows an example of how these conditions

nearly lead to collision just after the “4” time stamp. Ownship is now being

overtaken by two target ships from opposite sides, both of which have speeds

of approximately 12 m/s and a desired avoidance radius of only 25 m. The

short avoidance radius of the target ships results in a late maneuver by TS2

just after the “3” time stamp. This maneuver, however, does not open enough

range between TS2 and ownship. At approximately the same time, ownship

deems both target ships to be noncompliant. Because ownship is restricted

on both sides, it reduces speed to avoid a collision (indicated by the shorter

distance between the “3” and ‘4” time stamps of ownship’s trajectory). The

combination of the late avoidance maneuver by TS2 and the speed reduction

of ownship puts the two vessels on a collision course at close range. As a final

effort to avoid collision, ownship increases back to the nominal speed and
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tries to maneuver away from the paths of TS2 and TS1. While this successfully

avoids a true physical collision, the minimum range between ownship and

TS2 is only 35 meters, a range that is much too close and results in a very low

performance score of y = 0.14. Although this scenario of two noncompliant

target ships is unlikely to occur in a real environment, the knowledge of this

failure mode is extremely valuable such that future iterations of the planner

can improve performance under these conditions.

8.2.3 Performance Regression Analysis Case Study

Now that the primary failure modes of the good seamanship planner have

been identified, this section presents a case study into applying the perfor-

mance regression framework of Section 7.3; specifically, how this analysis can

be leveraged to track any adverse changes in performance after introducing

software updates. This case study focuses on the X 3
1v testing space due to its

low-dimensional interpretability.

The good seamanship planner presented thus far serves as the baseline

software version (deemed version A). This software version produces the

performance dataset SA shown in Fig. 8.8a. In order to fix the Q1 failure mode

discovered in Section 8.2.2, a software update was proposed that would allow

the ASV to increase its speed above the nominal value during emergency

situations. In other words, during emergencies, the speed primitives were

updated to be chosen according to

δu ∈
{
{−1

2 unom, 0, 2unom} if n = 1,
{0} otherwise.

(8.8)
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(a) Dataset SA (b) Dataset SB

(c) Regession dataset S∗ (d) “Top 3” regression clusters from R∗

Figure 8.8: Case study results of applying the performance regression analysis to the
X 3

1v testing space of the good seamanship planner.

This proposed update would allow the ASV to decrease the relative velocity

between itself and the target ship in the overtaking scenarios of Q1 character-

ized by high-speed target ships. A smaller relative velocity would then give

ownship additional time to reduce the collision risk of the encounter. This pro-

posed update was implemented as version B and produced the performance

landscape shown in Fig. 8.8b.

The regression analysis produces the regression dataset S∗ in Fig. 8.8c,

which predicts changes in performance ∆Ŷ∗ over the X 3
1v testing space. The
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five-fold cross validation MAE of ∆Ŷ∗ was 0.015 and the percentage of samples

outside the prediction bounds was 2.9% (using 95% confidence intervals). Both

of these measures indicate that the regression modeling performance on real

autonomy datasets is consistent with the results seen on the test functions of

Section 7.4.

Qualitatively, Fig. 8.8c shows that the software changes from version A to

version B did in fact improve performance in the Q1 scenarios where ownship

is being overtaken by a high-speed target ship (displayed as the yellow region

indicating an increase in performance). However, these software changes also

produced unexpected performance regression in other areas of the testing

space. The R∗ set is shown in Fig. 8.8d, representing the “top 3” regression

clusters in terms of severity and volume. While R1 and R2 (shown in blue and

red, respectively) overlap in the testing space, they are unique clusters within

the performance space, meaning that R1 is characterized by a more severe

performance regression than R2.

Further introspection of the scenarios comprising the R1 cluster reveals

that performance has regressed in scenarios where the target ship is on the

border between overtaking and crossing ownship at speeds between 11 – 12

m/s. Figure 8.9 shows a pair of representative scenarios from R1, one from

each SA and SB. In version A, the ASV maintains its nominal speed and makes

an emergency maneuver to starboard. Once the target ship passes, the ASV

resumes travel towards its goal waypoint.

After the software change, however, the ASV now has the ability to in-

crease speed in this emergency situation. The evasive plan again maneuvers
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(a) Version A (b) Version B

Figure 8.9: Example scenarios of the primary R1 regression cluster. After the software
updates, scenarios within the R1 cluster show that the ASV is susceptible to being
herded when traveling on a similar velocity vector to the target ship.

to starboard, but also increases the speed of ownship as evidenced by the

increased spacing between time stamps “2 – 6”. The resulting velocity vector

of ownship becomes nearly identical to that of the target ship, putting them

on parallel courses with similar speeds. This state leads to a decision-making

edge case for the planner between attempting to pass ahead of the target ship,

and performing a full circle in what is colloquially known as a “paperclip”

maneuver. The choice between these decisions produces the oscillations seen

between time stamps “2 – 5” as ownship is herded along the target ship tra-

jectory. A herding condition such as this is not uncommon among receding

horizon planners when the similar relative velocities of the vessels cause the

scenario to evolve beyond the planning horizon.

The performance regression identified by R1 encompasses a small region
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of the testing space, but it is extremely valuable to have knowledge of this

new ASV behavior. This section acted as a case study, as it is currently not

desired for the planner to travel above the nominal mission speed. However,

if this requirement were to change in the future such that higher speeds

were acceptable, then additional software updates would need to be made in

subsequent releases to prevent this type of herding failure.

8.3 Field Experiments on Candidate Scenarios

After examining the performance of the good seamanship planner in simula-

tion, field experiments with the 29-ft autonomous rigid-hull inflatable boat

introduced in Section 6.1 (and again shown in Fig. 8.10) were performed to

both demonstrate the proposed planning method on hardware and provide

confidence to the simulation analysis. All experiments were performed in the

Chesapeake Bay within the operating area shown in Fig. 8.10. A safety pilot

was on board the vessel at all times to take control in the event of an emergency.

A total of 14 scenarios were tested on the water to capture a diverse array

of different COLREGS scenarios under both single-vessel and multi-vessel

encounters. This section will examine a subset of the most representative

scenarios from the field tests.

To replicate the simulations as closely as possible, the experiments utilized

virtual target ships that were corrupted with state noise to mimic character-

istics of the true perception system. Maritime perception for autonomous

operations is its own challenge that is beyond the scope of this thesis. Not

only must the perception system reliably detect other vessels on the water
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Figure 8.10: Field tests with a 29-ft autonomous RHIB were performed in the Chesa-
peake Bay to evaluate the good seamanship planner on an operational platform.

under different environmental conditions, but for proper COLREGS compli-

ance, it must also be able to classify the type of vessel as well. Thus, virtual

target ships offer an effective alternative that isolates the testing of the good

seamanship planner, while also facilitating greater testing throughput.

8.3.1 Single-Vessel Scenarios

8.3.1.1 Crossing Stand-on – Fig. 8.11

The ASV is expected to stand on while the target ship gives way in this

crossing scenario. In Fig. 8.11a, the target ship gives way and ownship

properly maintains course and speed.

A second variation of this scenario, however, was repeated in Fig. 8.11b

with a noncompliant target ship that did not attempt evasive action. Ownship

correctly maintains course and speed until the target ship is deemed noncom-

pliant after the “4” time stamp, which then requires the ASV to take its own
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(a) Target ship is compliant.

(b) Target ship is noncompliant.

Figure 8.11: Crossing scenario where ownship is expected to stand on.
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evasive action. The resulting avoidance maneuver resembles the standard “pa-

perclip” maneuver taught to ship captains for precisely this situation. When in

extremis, COLREGS prohibit turning to port because the vessels would then be

on a collision course if the target ship gave way as it should. The appropriate

maneuver then is to reduce collision risk by turning to starboard, continuing

to monitor the situation, and performing a full roundabout to de-escalate the

situation if necessary. This result falls naturally out of the seamanship-based

planner without the need for a preplanned maneuver or rule-based heuristic

to account for this situation.

8.3.1.2 Offset Head-on – Fig. 8.12

It is highly preferred in COLREGS for vessels to pass port-to-port when

meeting on reciprocal courses (as would be captured by the decentralized

ellipse ship domain). The scenario shown in Fig. 8.12 is difficult because

the vessels approach from each other’s starboard side, meaning that they

must cross each other’s bow in order to pass port-to-port. While “correct”

maneuvering for these offset head-on edge cases is debated, for small offsets

such as this scenario, it is generally accepted that the vessels should attempt

to pass port-to-port if maneuvers are made early enough that crossing ahead

of each other poses little risk. The ASV properly exhibits this behavior here,

and even provides enough clearance to account for the noncompliance of the

target ship.
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Figure 8.12: Offset head-on scenario where both vessels are expected to give way.

8.3.1.3 Overtaking – Fig. 8.13

The ASV is expected to give way in this scenario as it overtakes a low-speed

target ship. As opposed to other COLREGS situations that dictate a strong

preference for evasive maneuvers to starboard, it is generally acceptable to

overtake a vessel on either side (whichever is safer). This scenario highlights

how the ship domain lateral equalizer of Eq. (6.15) accounts for this nuance

and allows the ASV to overtake with a maneuver to port. In this case, overtak-

ing with a maneuver to port is highly preferred because it results in ownship

passing astern of the target ship.
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Figure 8.13: Overtaking scenario where ownship is expected to give way.

8.3.2 Multi-Vessel Scenarios

8.3.2.1 Conflicting Crossing Expectations – Fig. 8.14

This scenario features a roundabout geometry where, according to single-

vessel COLREGS protocols, the ASV would be expected to give way to TS2

while somehow also standing on to TS1. With these conflicting expectations,

the seamanship-based approach is still able to produce an avoidance maneu-

ver that minimizes risk by prioritizing its responsibility to avoid TS2 off its

starboard bow through the geometry of each ship domain and arena. The

resulting maneuver correctly treats the situation as a roundabout where each

vessel is expected to proceed counterclockwise around the encounter. Due to

the shorter avoidance radius of the target ships in this scenario, TS1 does not

give way because of the early action by ownship. TS2 then performs a small

maneuver to starboard to fulfill its give way expectation with regards to TS1.
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Figure 8.14: Scenario with two vessels crossing from opposite directions and conflict-
ing COLREGS expectations.

8.3.2.2 Double Crossing Give-way – Fig. 8.15

The ASV is expected to give way to two different vehicles that are both

crossing in the scenario shown in Fig. 8.15. The difficulty in this scenario lies

in the high speed of TS1 coupled with its shallow crossing angle, one that

lies near the threshold of TS1 actually overtaking the ASV. From a COLREGS

and good seamanship perspective, course changes are preferred over speed

changes when giving way because they are more readily perceivable by the

other vessels in the situation. Given the approach angle of TS1, the planner

deems it necessary to both reduce ownship’s speed while also performing a

COLREGS-compliant (i.e., readily apparent) heading change between time

stamps “2 – 5”. The additional speed reduction of the trajectory is necessary

to appropriately decrease the collision risk of the encounter. The ASV then
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Figure 8.15: Scenario with two vessels crossing where ownship is expected to give
way to both vessels.

resumes progress towards the goal after the situation is clear.

8.3.2.3 Conflicting Overtaking Expectation – Fig. 8.16

The scenario shown in Fig. 8.16 features another geometry with conflicting

expectations when COLREGS are considered for each individual vessel. Own-

ship must give way as it overtakes TS1, but it is also expected to stand on as it

is being overtaken by TS2. If this were a single-vessel scenario only involving

TS1, then it is likely that the ASV would exhibit similar behavior to that of Fig.

8.13 by passing astern of TS1. With the addition of TS2, a maneuver to port

would introduce additional risk to the scenario by encroaching on the path of

TS2. Therefore, the planner overtakes TS1 on its starboard side, which then

allows TS2 to overtake TS1 on its port side. The downside of this maneuver is

that it requires ownship to then cross the bow of TS1; however, the trajectory
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Figure 8.16: Scenario where ownship overtakes one vessel while being overtaken by
a second vessel.

of ownship is safe by passing far enough ahead of TS1 so as not to violate the

ship domain of either vessel.
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Chapter 9

Conclusion

9.1 Part I Summary

The research in Part I of this thesis presented a Gaussian process-based

adaptive sampling method with the goal of fully exploring an environment

workspace, while also localizing and heavily sampling regions of interest that

exhibit extreme sensory measurements and high spatially-correlated variabil-

ity when compared to the surrounding area. The proposed GPAS algorithm

automatically balances the trade-off between exploration and exploitation and

dynamically adjusts the sampling density according to sensor measurements.

Two informative path planning methods (one based on branch and bound

techniques and one based on cross-entropy optimization) were presented to se-

lect future sampling locations in a 3D environment, while also considering the

motion constraints of the system over the planning horizon. Both the adaptive

sampling algorithm and the path planning subroutines were applied to an un-

deractuated AUV, and their performance against area-coverage survey paths

was studied in simulation. Further, two preliminary field experiments were
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performed in the Severn River, MD based on both a virtual environmental dis-

tribution and a distribution based on in situ dissolved oxygen measurements.

Results from both the simulation studies and field experiments show that

the proposed methodology is able to be fielded on operational platforms and

preferentially collect measurements in regions of interest without sacrificing

overall model fidelity of the full sampling area.

9.2 Part II Summary

The research in Part II then shifted to another domain within marine robotics:

improved ASV navigation that complies with COLREGS protocols and good

seamanship principles. The strategy to achieve this goal entailed a risk-based,

multi-layer path planning approach that quantifies good seamanship through

the use of ship domain and ship arena concepts. This approach naturally ap-

plies to both single-vessel scenarios, where adherence to COLREGS protocols

is required, and multi-vessel scenarios where COLREGS are ill-defined.

Beyond just developing improved navigation for ASVs, Part II also intro-

duced a simulation-based testing framework for improved performance eval-

uation of black-box autonomous systems. This framework utilizes statistical

learning techniques such as adaptive scenario generation and unsupervised

clustering to extract the system’s failure modes. Additionally, this work in-

troduced how these components can be used for regression testing purposes

to track changes in performance between system updates. Ultimately, the

performance analysis was applied to the good seamanship path planning

175



approach to compare it with other baseline ASV planners, perform an anal-

ysis of its failure modes, and conduct a case study on the utility of tracking

performance regression in a continuous integration fashion. This analysis

culminated with several on-water tests with a 29-ft ASV that demonstrated

how the good seamanship planner successfully handled various single-vessel

and multi-vessel COLREGS scenarios.

9.3 Future Work

There are several areas of future work that are natural extensions to the

research in this thesis. With regards to adaptive environmental sampling

for AUV applications, the following items are a subset that offer immediate

improvements to the goal of more informed data collection.

• Mission efficiency could be improved by investigating more intelligent

surfacing strategies based on communication objectives or uncertainty

thresholds. Surfacing only when necessary would limit the number of

disruptions when collecting samples at depth. In applications where

there is not a fixed mission duration, planning efficiency could also

be improved by considering the additional desire to minimize travel

distance or mission time while maximizing information gain.

• Another improvement to the AUV sampling work of Part I would be to

incorporate knowledge of tidal currents (or other environmental effects)

into the path planning process. Smaller platforms such as the AUV

used in this research are particularly susceptible to even moderate tidal
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currents, which can lead to compromised maneuvering. Exploiting

currents when performing vehicle planning could be beneficial when

performing sampling missions over a larger area.

• A larger extension to the work in Part I would be to incorporate multiple

sampling vehicles within a heterogeneous robot team. Robot teams are

able to exploit the strengths of different platforms in order to collect

the desired measurement profile over a larger sampling area. For in-

stance, UAVs could collect sparse samples over very large areas that

inform where more dense sampling should be executed using the AUV

strategies of this thesis.

There are also many avenues to improve the ASV navigation work of Part

II. The following research subjects are prime for continuing work in this area.

• An obvious direction that needs to be tested is the performance of the

good seamanship planner when operating on data from a real percep-

tion system. While the field experiments tried to replicate some of the

nuances of real data by adding noise effects, there is no substitute for

testing a complete end-to-end system. Future work should plan to per-

form additional testing with real perception data that could identify new

failure modes of the planner.

• In a similar vein, the uncertainty from real sensors affects the predicted

state evolution of target ships in the environment. An interesting avenue

to pursue would be improved prediction of how target ships might

behave in the future when planning trajectories for ownship. This might
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entail fitting a distribution to the possible trajectories that the target ship

might take, and then planning based on minimizing the overall risk that

arises from the range of these possible behaviors. This is indeed an open

and challenging research problem, as the behavior of the target ship

would be dependent on things such as the COLREGS geometry, the type

and size of both vessels, and even other vessels in the environment.

• Also related to the integration of improved ASV perception would be to

extend the planning framework to accommodate COLREGS protocols

that were not addressed in this research. The first area to extend would

be to classify the target ship type (e.g., sailing vessel, fishing vessel,

vessel constrained by draft, etc.), and then appropriately give way if the

target ship has a higher priority per COLREGS. Further extensions could

then be done to properly identify and react to lights, sound signals, and

day shapes.

Both of the marine robotics applications discussed in this thesis (as well

as autonomous systems from any domain) could also benefit from contin-

ued research into improved T&E of their black-box decision-making. The

framework of Chapter 7 provides a starting point for this, but more work cer-

tainly needs to be done. In particular, one of the biggest challenges remaining

is to appropriately handle the uncertainty associated with the performance

landscape of the autonomy, especially given stochastic perception and the

probabilistic decision-making of many modern autonomous systems. Meth-

ods to correlate the performance uncertainty across multiple samples of the

testing space would be useful in determining the system’s robustness under

178



certain combinations of testing parameters. Detailed quantification of this

uncertainty may also improve the probability estimates of rare-event failure

modes.

As a final discussion point, another outstanding T&E challenge that is de-

manding extensive thought in the testing community is how to properly per-

form verification and validation (V&V) of autonomous systems, particularly

when simulation-based testing must be relied on to augment performance

data that field testing cannot provide. Traditional simulation V&V was able to

use knowledge of physical processes (e.g., physics-based modeling) to gain

trust in a simulation. The added component of autonomous decision-making

exacerbates the challenge of simulation V&V, as it becomes much harder to

predict how a scenario may translate from a simulation to the real world.

The augmented continuous integration framework introduced in Chapter 7 is

perhaps a step towards a common testing paradigm that would give testers

the data and knowledge needed to gain trust in autonomous systems.
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