404 research outputs found

    Online graph coloring against a randomized adversary

    Get PDF
    Electronic version of an article published as Online graph coloring against a randomized adversary. "International journal of foundations of computer science", 1 Juny 2018, vol. 29, nĂșm. 4, p. 551-569. DOI:10.1142/S0129054118410058 © 2018 copyright World Scientific Publishing Company. https://www.worldscientific.com/doi/abs/10.1142/S0129054118410058We consider an online model where an adversary constructs a set of 2s instances S instead of one single instance. The algorithm knows S and the adversary will choose one instance from S at random to present to the algorithm. We further focus on adversaries that construct sets of k-chromatic instances. In this setting, we provide upper and lower bounds on the competitive ratio for the online graph coloring problem as a function of the parameters in this model. Both bounds are linear in s and matching upper and lower bound are given for a specific set of algorithms that we call “minimalistic online algorithms”.Peer ReviewedPostprint (author's final draft

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity with the root. The social optimum is the Minimum Steiner Tree. We are interested in situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying metric but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the designer's goal is to choose a single, universal protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is: to what extent can prior knowledge of the underlying metric help in the design? We first demonstrate that there exist graphs (outerplanar) where knowledge of the underlying metric can dramatically improve the performance of good network design. Then, in our main technical result, we show that there exist graph metrics, for which knowing the underlying metric does not help and any universal protocol has PoA of Ω(log⁥k)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional hypercubes. Then we switch to the stochastic model, where each player is independently activated. We show that there exists a randomized ordered protocol that achieves constant PoA. By using standard derandomization techniques, we produce a deterministic ordered protocol with constant PoA.Comment: This version has additional results about stochastic inpu

    Adding Isolated Vertices Makes some Online Algorithms Optimal

    Full text link
    An unexpected difference between online and offline algorithms is observed. The natural greedy algorithms are shown to be worst case online optimal for Online Independent Set and Online Vertex Cover on graphs with 'enough' isolated vertices, Freckle Graphs. For Online Dominating Set, the greedy algorithm is shown to be worst case online optimal on graphs with at least one isolated vertex. These algorithms are not online optimal in general. The online optimality results for these greedy algorithms imply optimality according to various worst case performance measures, such as the competitive ratio. It is also shown that, despite this worst case optimality, there are Freckle graphs where the greedy independent set algorithm is objectively less good than another algorithm. It is shown that it is NP-hard to determine any of the following for a given graph: the online independence number, the online vertex cover number, and the online domination number.Comment: A footnote in the .tex file didn't show up in the last version. This was fixe

    Probabilistic alternatives for competitive analysis

    Get PDF
    In the last 20 years competitive analysis has become the main tool for analyzing the quality of online algorithms. Despite of this, competitive analysis has also been criticized: it sometimes cannot discriminate between algorithms that exhibit significantly different empirical behavior or it even favors an algorithm that is worse from an empirical point of view. Therefore, there have been several approaches to circumvent these drawbacks. In this survey, we discuss probabilistic alternatives for competitive analysis.operations research and management science;

    Tight Bounds for Online Coloring of Basic Graph Classes

    Get PDF
    We resolve a number of long-standing open problems in online graph coloring. More specifically, we develop tight lower bounds on the performance of online algorithms for fundamental graph classes. An important contribution is that our bounds also hold for randomized online algorithms, for which hardly any results were known. Technically, we construct lower bounds for chordal graphs. The constructions then allow us to derive results on the performance of randomized online algorithms for the following further graph classes: trees, planar, bipartite, inductive, bounded-treewidth and disk graphs. It shows that the best competitive ratio of both deterministic and randomized online algorithms is Theta(log n), where n is the number of vertices of a graph. Furthermore, we prove that this guarantee cannot be improved if an online algorithm has a lookahead of size O(n/log n) or access to a reordering buffer of size n^(1-epsilon), for any 0 < epsilon <= 1. A consequence of our results is that, for all of the above mentioned graph classes except bipartite graphs, the natural First Fit coloring algorithm achieves an optimal performance, up to constant factors, among deterministic and randomized online algorithms

    Online coloring problem with a randomized adversary and infinite advice

    Get PDF
    Online problems are those in which the instance is not given as a whole but by parts named requests. They arrise naturaly in computer science. Several examples are given such as ski rental problem, the server problem and the coloring problem. The performance of the online algorithms is analized in terms of the ratio between the cost of the algorithm and the cost of the optimal offline. This ratio is called the competitive ratio. Several models of online algorithms are described. They are deterministic algorithms, randomized algorithms and algorithms with advice. We present several upper and lower bounds for the competitive ratio in a particular case of the k-server problem. We review the known bounds for the coloring problem in the diferent models. We present a new model, the randomized adversary. For this model we present an upper bound and a restricted lower bound. Finally we conjecture an unrestricted lower bound and we present several approaches to the result
    • 

    corecore