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Matemàtica Aplicada 4





Als meus amics, els algorismes





Abstract

Keywords: on-line problems, advice complexity, k-server problem, randomized adver-
sary, graph coloring

MSC2000: 200468W27, 68W20, 05C15, 05C85

Online problems are those in which the instance is not given as a whole but by parts named
requests. They arrise naturaly in computer science. Several examples are given such as
ski rental problem and the server problem. The performance of the online algorithms is
analized in terms of the ratio between the cost of the algorithm and the cost of the optimal
offline. This ratio is called the competitive ratio. Several models of online algorithms are
described. They are deterministic algorithms, randomized algorithms and algorithms with
advice (an oracle that provides information of the input).

In the k-server problem, k servers are given to serve requests (points) in a metric space.
In a graph, the distance between two vertices is 1 if the vertices are adjacent. Given
the k-star graph upper and lower bounds on the number of advice bits required for r-
competitiveness are given. Any deterministic algorithm with at most l advice bits, has a

competitive ratio of at least r ≤ k+2l−1
2l

. There is an algorithm with l bits of advice that

has a competitive ratio r ≤ 3
2
l + (k−1)

2l
.

Given a graph G, coloring the graph is giving a coloring of the vertices such that no
adjacent vertices recieve the same color. The goal is to minimize the number of colors
used. In the online coloring problem, defined in chapter 2, each request contains a vertex
and all the edges from the vertex to previously presented vertices. The vertex must be
colored before the next request is provided. We survey results on the problem for the
deterministic, randomized and advice models.

Finaly, a new model is described for the online problems. In this randomized adversary
model, the adversary (that builds the instances) is allowed to use random bits. In this
way the information that the oracle can provide to the algorithm is limited. In the case of

the online coloring, as an upper bound, there exists an algorithm that uses (s+2)k
2

colors
in expectation when the adversary uses s random bits to build the instances and the input
graphs are at most k-colorable. The lower bound given is tight but not general, it has
only been proved in the case of minimum capable algorithms (algorithms able to attain the
optimal coloring in some instance). It states: There exists an adversary using s random
bits to generate k-colorable problem instances for which the number of colors required
on average by any minimum capable algorithm is ck(s) ≥ k

2
(s + 2). We describe also an

attempt to prove the general lower bound by induction and a proof is given for the lower
bound in the case where s = 1.



Notation

Alg online algorithm

Opt optimal algorithm

I problem instance

Alg(I) cost of Alg given instance I

Opt(I) optimal cost of problem for instance I

n instance length

G, G(V,E) graph

V set of vertices

v vertex

E set of edges

G(I) online graph construced from instance I

T, T (I) tree (online)

χ(G), k chromatic number

s number of random bits

ck(s) average number of colors required to color a k-colorable instance with s random bits

Kk complete graph with k nodes

p0, p1 permutations

Kk,k complete bipartite graph with 2 sets of k nodes

Kk,k \ {p} complete bipartite except perfect matching generated by the permutation p
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Chapter 1

Introduction to Online Problems

1. Online Problems and Online Algorithms

Computational problems solved by algorithms are normally modeled in such a way
that for each possible input of the problem, an algorithm processes it in order to
output the best possible answer. In doing this the algoritms are usually designed
and classified according to their performance in time, number of operations, opti-
mality of the output, resources, memory ...

Instead, Online problems are interactive in the following sense: The input of an
online problem is given in a sequence of input portions that we call request sequence.
After each input portion or request, the algorithm is forced to give a partial output.
So, the main difference between the usual computational problems, offline problems,
and the online problems is the fact that the input of an online problem is not known
a priori and the partial output given by the online algorithm is final and can not
be changed.(See [1])

As one can imagine, this type of problems (online) and the online algorithms solving
them can not be analyzed and classified in the same way as the offline ones according
to the time performance etc. One tool used to evaluate the performance of an online
algorithm is the competitive ratio.

As stated previously, an online algorithm is required to give a partial output for each
request. Serving these requests incurs a cost and the overall goal is to minimize the
total cost. The competitive ratio compares the cost paid by the online algorithm
given an input sequence (Alg(I)) with the cost paid by the optimal offline algorithm
given the same input sequence (Opt(I)) as follows.

Definition [7] An online algorithm (Alg) is c-competitive if there is a constant α
such that for every finite input sequence I,

Alg(I) ≤ c ·Opt(I) + α

We say then that the competitive ratio of the algorithm Alg is c. Usually, the
competitive ratio of an algorithm is given in terms of the length of the input or

1



2 1. INTRODUCTION TO ONLINE PROBLEMS

other meaningful variables for the problem. We realize that the competitive ratio
of an algorithm is 1 if the algorithm is optimal. Slight changes on the definitions of
cost and competitive ratio should be done in the case of maximization problems.

Example 1: The ski rental problem

[21] One of the examples that helps us the most in understanding the concept of
online requests and competitive ratio is the Sky rental problem. Which states as
follows.

Assume that you go on a vacation and are taking ski lessons. At the begining of
each day you decide wether you continue taking lessons or stop and return from
your vacation. You take this decision according to how much you have enjoyed the
lesson, the weather, or if you have any broken bones. Each day you can decide
wether to rent the skis for 1¤ or to buy them for 10¤. Of course once the skis have
been bought then no more decisions are required.

As one can imagine the cost is computed in terms of how much money is spent in
order to fulfill the input. The optimal offline strategy in this problem is, clearly,
buy the skis if the vacation is longer than 10 days and rent otherwise. An online
algorithm consists in deciding which day the skis are bought (eg. Alg = Rent until
day 5 then buy day 6).

In order to compute the competitive ratio of an algorithm for the ski rental problem
let us consider the following. In the case of Alg the worst possible instance would be
if the trip is canceled the next day after buying the skis. In the previous example,
the cost paid by Alg, Alg(I) = 15 whereas the optimal would have cost Opt(I) = 6,
as discussed before, so c = 15/6 = 2, 5. Thus providing a measure of how good the
algorithm is. However, it is not always this simple to find the worst case instance
and the best algorithm. The next section describes an approach that is often useful
when computing competitive ratios for online algorithms.

2. Playing with an Adversary

One useful way to view the problem of analyzing online algorithms is to consider
the problem as a game between and online player and a malicious adversary [7].
The online player runs an online algorithm on an input created by the adversary.
The adversary, knowing the algorithm used by the online player, constructs the
worst possible input so as to maximize the competitive ratio. It is, the adversary
not only tries to make the input costly for the online algorithm but at the same
time it also makes it inexpensive for the optimal offline algorithm.

Example 2: The ski rental problem (continued)

The adversary for the ski rental problem will make the trip stop the day after buying
the skis. This is because after that, the algorithm does not have any additional
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costs thus possibly decreasing the competitive ratio. So for any algorithm buying
skis after k days the competitive ratio will be:

c =
k + 10

min{k + 1, 10}

So, the algorithm minimizing the competitive ratio will be the one for k = 9 where
we can see that c = 19

10 = 1.9. This means that, when applying this algorithm, the
cost of the skis will never be over twice the optimal cost no matter the circum-
stances.

It is not always the case where the competitive ratio of a problem can be easily
computed. This is why in most online problems upper and lower bounds for the
competitive ratio give us important information about the problem.

3. Upper and Lower Bounds

Upper and lower bounds for the competitive ratio of online problems are often given
in terms of a meaningful variable to the problem such as the input length. This is
not the case in the ski rental problem, where the competitive ratio does not depend
on any variable. However, as we will see in chapter 2 in the problem of Online
coloring the input length and the chromatic number of the graph presented by the
input are often meaningul to the achievable competitive ratio.

Upper bounds in the competitive ratio determine the competitive ratio achievable
by a given algorithm, i.e for any posible adversary, which is the competitive ratio
of the algorithm. The better the algorithm considered, the lower the upper bound
is.

Lower bounds determine the minimum competitive ratio achievable by any algo-
rithm, i.e. an instance (adversary) must be given in which any algorithm can not
perform better than the lower bound. Usualy finding this bounds is more compli-
cated. This is because one has to find an instance in which every online algorithm
performs “significantly” worse than the optimal offline algorithm.

The goal in the analysis of online problems is finding upper and lower bounds to the
competitive ratio. If both bounds match, then we have computed the competitive
ratio of the problem. In some problems upper and lower bounds are found that do
not match but that have the same order of magnitude in terms of the input length
or some other relevant variable.

An example that may surface the relevance of bounding the competitive ratio is
the server problem. It will be explained in section 6.

4. Randomizing the strategy

If we allow the online player to use randomness, smaller competitive ratios are
attainable in most cases. The introduction of randomness in the game is natural
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and not surprising given the important role of randomization in algorithms and
game theory (see [7, 15]).

It is important to notice that the adversary loses power with the randomization
of the algorithm. In our case, the adversary is aware of the strategy of the online
algorithm. However, it does not know the outcome of the random bits, we call this
type of adversary an oblivious adversary [7]. One way to think of it is imaginining
the adversary has access to the code of the algorithm. It can not know the particular
decisions of the algorithm if those are made at random. This makes impossible to
design strategies as the one for the ski rental problem mentioned above (i.e. if
the buying day is randomized, the adversary can not know which day to finish the
trip). There are other types of adversaries (online adaptative, offline adaptative,...)
discussed also in [7].

The competitive ratio must be redefined as now the performance of the algorithm
is not deterministic. So, the modified definition of the competitive ratio is stated
in [7] as follows.

Definition Let Alg be a randomized online algorithm. Based on the knowledge
of Alg (in particular, the probability distribution(s) Alg uses) the adversary must
choose a finite request sequence (instance) I in advance. Alg is c-competitive against
an oblivious adversary if for every I,

E[Alg(I)] ≤ c ·Opt(I) + α

Where E[·] is the expectation with respect to the random choices of Alg and α is
a constant. We say that c is the expected competitive ratio against an oblivious
adversary.

In section 6 we will see a theorem upper bounding the competitive ratio for online
randomized algorithms in the k-server problem. Although it is not the case in the
theorem presented, there are results in which the number of random bits used is
relevant to the bound.

5. Reciving advice: The Oracle

Another setting considered in [10], consists of making certain bits of information
available to the algorithm. The algorithm (Alg) receives information about the in-
put sequence. This information allows the algorithm to perform better and achieve
lower competitive ratios.

This model is useful in order to investigate how much information Alg is lacking
with respect to Opt. Surprisingly, there are some problems such as ski rental
problem where only one bit of information allows Alg to be as good as Opt as
we will see. Clearly, this does not hold in general and this framework allows us
to classify online problems according to how much information about the future
input is needed in order to solve them optimally or with a specific competitive
ratio. There are cases in which additional bits do not help at all to improve online
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algorithms for specific problems as well as situations when very few advice bits
cause a jump in the achievable competitive ratio [6].

Example 3: The ski rental problem (continued)

[9] This problem is very simple from the advice point of view, as a single bit of
information can tell the algorithm wether to buy the skis the first day or rent every
day. The optimal offline always does one or the other. So, we conclude that the
advice complexity of the ski rental problem is 1.

Studying online problems from this point of view of getting tradeoffs between the
quality of the solution and the size of advice provided a new instrument for measur-
ing the hardness of online problems. Other important conceptual contributions are
the development of a powerful method for proving lower bounds on the achievable
competitive ratios of randomized online algorithms and new insights on the possible
power of information [6].

This model can be viewed as a cooperation in between the oracle O which has
unlimited computational power and the online algorithm Alg. The oracle sees the
whole input of Alg in advance and writes bitwise information needed by Alg onto
an advice tape before Alg reads any input. Then, Alg can accesss the bits from
the advice tape sequentially in the same way a randomized algorithm accesses bits
from the random tape.

The advice complexity of Alg on an input I is the number of advice bits Alg reads
while processing this input. This is usualy considered as a function of the input
size. It is also maximized over all inputs of length at most n in order to obtain the
advice complexity of the algorithm.

It is important to note that the advice complexity is the number of bits used by
Alg. This should be distinguished from the number of pieces of information. For
example the integer n is encoded in log n bits. It may be the case where more than
one bit of advice is read for one algorithm step.

In this model the bounds are on the advice complexity or on the tradeoff between
advice complexity and competitive ratio. As we will see in section 6, the bounds
on the advice model are quite diferent from the bounds for deterministic and ran-
domized algorithms.

It may not seem intuitive but in fact there is a relation betwen randomization and
advice and reads as follows:

Theorem 5.1. [5] Consider an online minimization problem P , I(n) the set of all
possible inputs of length n. Suppose that there exists a randomized online algorithm
R with a wost-case expected competitive ratio of at most E. Then, for any fixed
ε > 0, it is possible to construc a deterministic online algorithm A with advice that
uses at most

dlog ne+ 2dlogdlog nee+ log

(
log(|I(n)|)
log(1 + ε)

)
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advice bits and that achieves a competitive ratio of (1 + ε)E.

It basically states that advice bits are as helpful as random bits when it comes to
the competitive ratio.

6. The k-Server problem in a k-star graph

A general definition of the problem [23] is the following:

Given a metric space (X; d) and k servers, localized in some point of the space. The
online algorithm receives requests for servers over time. Each request is a point in
the metric that needs a server, and the question is which server should we send to
that point. As in the other online algorithm a new request arrives only after having
served the previous request. The goal in the (k-)server problem is to minimize the
total distance travelled by servers.

Solving this problem for a general metric space is rather complicated. In fact the
problem is conjectured to be k competitive and the problem is known to be at least
k competitive as shown in [20]. The matching upper bound is yet to be proven.
The best upper bound known to the date is the one in [18].

Theorem 6.1. The competitive ratio of the k-server problem in a general metric
is at most 2k − 1.

The power of randomization can be noted in many problems. In particular, for the
Server problem a bound was found in [2] that improves on the deterministic bound
in [18] whenever the number of points on the metric space n is sub-exponential in
the number of servers k.

Theorem 6.2. There is a randomized algorithm for the k-server problem that
achieves a competitive ratio of O(log2 k · log3 n) on any metric space on n points.

In this section we present a particular case of the problem. Let SGk be the star
graph with k leaves. This graph consists in k+ 1 vertices. One of them, namely a,
has degree k and is adjacent to the rest of vertices in the graph, the leaves, namely
`1, . . . , `k. See figure 6.

The distance in between two adjacent vertices of the graph is defined as 1. We are
given k servers to attend requests within the graph. This means that at each step
of the algorithm there is only 1 unattended vertex. This fact simplyfies the problem
and permits us to establish paralelisms with the paging problem [6], which is in
fact the k-server problem in a complete graph.

We present a lower bound and an upper bound on the number of advice bits for
r-competitiveness. And also an upper bound randomized algorithm.
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a

`1

`2

`3

`4

`5

`6

`k

. . .

Fig. 1. Graph SGk

6.1. Lower Bound on the advice complexity for r-competitiveness

In order to set a lower bound we will consider the set Sk of special finite request
sequences of the type a, i1, a, i2, a . . ., where ij correspond to leaves. Note that Sk is
infinite. Let St

k for t = 1, 2, 3, . . . denote the subset of Sk consisting of the sequences
of the length t · 2k. For every deterministic algorithm there is one request sequence
from this set where the algorithm must make a movement at each step.

Now we build a tree Tk that visualizes the request sequences in Sk as follows. The
sons of each vertex are all the possible requests that follow the sequence after that
vertex. Starting with the root, it has one son corresponding to the request a, this
son of the root has k sons, corresponding to the k possible leaves requested after
the central vertex, each of those has only one son which corresponds to the request
a after the leave request and so on. See figure 6.1.

We define the tree T 1
k as the request tree of heigh 2k (it corresponds to the request

sequences of length 2k). And recusively we define the request tree Tn
k as the request

tree of heigh 2kn. This tree will have Tn−1
k as a root tree and then T 1

k hanging
from each of its leaves.

Given one concrete request sequence from Sk of length 2k (corresponding to a path
of the request tree T 1

k ) we know the optimal solution would take at most 2 steps
in order to fulfill all the requests. This is because we have k servers and k requests
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r

a

`1 `2 `k

a

. . .

a a

`1 `k. . . `1 `k. . . `1 `k. . .

Fig. 2. Request tree Tk

correspond to the central vertex, and k requests correspond to leaves. So for each
request sequence there is at least one leaf that is requested at most once. Thus, to
serve the middle vertex, the optimal solution will take one server whose leaf will
not be requested in the next 2k − 2 steps.

For each deterministic online algorithm A there exists a sequence in Sk such that
A moves to each of the k a-requests exactly the server staying in the leaf that
will be asked in the next request. In other words, the adversary always asks for
that leaf that any server is attending, because it moved to a in the previous step.
This is the worst possible case because one movement is needed at each step. We
have then that under these circumstances any deterministic algorithm is at least
k-competitive.

Lemma 6.3. For each sequence in St
k there is an optimal solution of cost at most

2t (at most 2t movements of servers are sufficient to fulfill al the requests of any
sequence in St

k).

Consider now the case in which one bit of advice is given. We take now the request
tree T 2

k of heigh 4k, recall that this tree will have T 1
k as a root tree and then again

T 1
k at each of its k2 leaves. Considering that one advice bit is given, assign to each

possible request sequence in T 2
k (each leaf of T 2

k ) a 0 or 1. Consider it as coloring the
leaves of T 2

k with two colors 0 and 1, where the coloring of the leaves corresponds
to the assigned advice bits. Considering all the possible ways to do it, either one
of the T k

1 ’s at the bottom has been assigned the same color to all its leaves or all
trees T 1

k have both colors.

If one of the bottom T 1
k ’s has been assigned the same color to all its leaves, we

can consider it as the previous situation, where no advice on the bottom tree T 1
k is

given. In other words, the subtree given by leaves with the same color is proceed
by a deterministic online algorithm given by the corresponding advice.Then, by the
same reason as before each online algorithm will need 2k server movements to fulfill
the bottom tree requests and at least 2 moves for the upper tree in the worst case.



6. THE k-SERVER PROBLEM IN A k-STAR GRAPH 9

If this is not the case, there is at least one leaf of each bottom tree T 1
k has been

advised color 0. Considering all the request sequences that have color 0 as advice,
their prefixes completely color the leaves of the upper subtree T 1

k of T 2
k . Then again

each online algorithm A with the advice 0 must work for all prefixes of length 2k of
the T 1

k upper subtree of T 2
k and so there exists w ∈ T 2

k such that A moves a server
exactly 2k times in order to fulfill the upper tree requests and at least 1 or 2 times
for the bottom T 1

k .

However, in order to fulfill a sequence of 4k requests, the optimal solution makes 4
moves at most (we have 2k leaf requests so there is a leaf that is requested at most
twice. We move to the center the server that will be requested the least in the leaf
or the one that will be requested the last). It must also be said that the case in
which the deterministic algorithm makes only one step for the bottom subtree, the
optimal solution will make 3 moves at most so the competitive ratio is bounded by:
r ≥ min{(k + 1)/2, (2k + 1)/3} = (k + 1)/2. Hence, given one bit of advice, any
deterministic algorithm will be at most (k + 1)/2-competitive.

Now, we are able now to formulate the following induction hypothesis:

Claim 6.4. Given the set Sn
k of all request sequences Sk of length 2nk (i.e. the tree

Tn
k of heigh 2nk), and n colors as advice to color the leaves, then any deterministic

algorithm will make at least 2k + jn−1 steps to fulfill the request, where jn−1 ∈
[1, 2(n − 1)] is the optimal number of steps needed to fulfill a subset of request
sequences of Sn−1

k .

We already proved this claim for n = 1 and n = 2.

Now we want to prove it true for n+ 1.

Proof. Consider the request tree Tn+1
k of heigh 2(n+ 1)k and consider also that

n+ 1 advice colors are given. In its root it has T 1
k , and a Tn

k starting at each leaf of

the T 1
k of Tn+1

k . Consider that each of the leaves is painted with one of the colors,

i.e. assign an advice to each of the possible request sequences of Tn+1
k . There are

two possible situations here:

(1) One of the lower subtrees Tn
k uses only n colors.

(2) Every one of the subtrees Tn
k uses all of the n + 1 colors, meaning color 0 is

advised in every subtree.

In the first case applying the induction hypothesis to the son tree Tn
k having at

most n colors we get that each online algorithm with this advice distribution must
perform at least 2k+ jn−1 steps by induction hypothesis and one or two more steps
to fulfill the upper subtree. So the algorithm makes 2k + jn steps and the optimal
makes at most jn + 2 steps. So the bound for the competitive ratio is then:

r ≥ min
jn

{
2k + jn
jn + 2

}
=
k + n

n+ 1

In the second case as color 0 is used in every son Tn
k of the root tree T 1

k of Tn+1
k .

So, for each path in the upper T 1
k there exists a request sequence in Sn+1

k of length
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2k(n+ 1) with advice 0, whose prefix corresponds to be this path. Then using the
same argument, each online algorithm A with the advice 0 must work for all the
prefixes of length 2k of the upper subtree T 1

k , so there exists w ∈ Tn
k such that A

moves a server exactly 2k times in the first 2k steps.

In the lower subtree the deterministic algorithm will use at least the optimal number
of steps which are jn ∈ [1, 2n] steps. Then the algorithm makes in total 2k + jn
steps, so the competitive ratio is:

r ≥ min
jn

{
2k + jn
jn + 2

}
=
k + n

n+ 1

ut

The same argument is valid for request sequences of length multiple of 2kn.

Theorem 6.5. Considering the k-server problem in a k-star. Any deterministic
algorithm with at most l advice bits, has a competitive ratio of at least:

r ≥ k + 2l − 1

2l

And now as an immediate corollary taking the reciprocal of the statement we are
able to find the lower bound:

Corollary 6.6. Given a deterministic algorithm such that:

r <
k + 2l−1 − 1

2l−1
⇒ it uses at least l advice bits.

6.2. Upper bound on the expected competitiveness of a Ran-

domized Algorithm

We present a randomized algorithm and compute an upper bound for its expected
competitive ratio.

In order to determine a bound we will consider again the set Sk of special finite
request sequences of the type a, i1, a, i2, a . . ., where ij correspond to leaves.

This can be done because if it was the case that there is more than one leaf in
between two center requests, any algorithm would need at most one move to fulfill
all the leaf requests, so in the end when the steps made by the algorithm are
compared to the optimal number of steps, these leaf requests would not provide
any relevant information.

Consider the following marking algorithm based on [11] divided in phases:

• The phase P starts with all the servers unmarked, k− 1 of them in the leaves
and one in the center. The first request is for the unattended leaf f .

• A server is marked when its leaf is requested.
• Once a server is marked it is not moved from its leaf again during the phase.
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• The phase P ends when k − 1 servers are marked and the non marked server
is in the center.The new phase begins when the unattended leaf is requested.
At the end of each phase all servers are unmarked.

During the phase, the leaf f is requested at the begining, and afterwards there are
exactly k − 2 requests for unmarked leaves diferent than f .

When the center node a is requested and there is no server on the center, the
algorithm picks one of the unmarked servers uniformly at random and takes that
server to the center. When a new leaf is requested, if there is a server on the leaf,
the server is marked. If there is no server on that leaf, the server in the center is
moved to the leaf and the server is marked.

So when the n-th new leaf is requested, (n− 1 marked leaves), the probability that
the leaf has no server is 1

k−n−1 . Knowing that there will be k − 1 requests for new
leaves at the end of the phase, we can compute the expected number of movements
in one phase:

E(steps in phase P ) = 2 + 2 ·
(

1

k − 1
+

1

k − 2
+ . . .+

1

2

)
= 2 + 2 · (Hk−1 − 1)

where the first 2 stands for the first two movements and Hk stands for the k-
th harmonic number. Recall that the phase starts when the unoccupied leaf is
requested and one server of the k− 1 unmarked ones must be moved to the center.
Then two movements are required every time an unocupied leaf is requested and
another unmarked server must be moved to the center.

So the expected number of steps is E(P ) = 2Hk−1 ' 2 log k when aproximating the
(k − 1)-th Harmonic number.

6.3. Upper Bound on the advice for r-competitiveness

The proof of the upper bound in this section is based on the upper bound for the
paging algorithm in [6].

In order to build this upper bound we will consider again the special set of finite
request sequences Sk defined in the previous subsection 6.2.

This can be done because if there were more than one leaf request between two
center requests, any algorithm would need at most one move to fulfill all the leaf
requests, so in the end when the steps made by the algorithm are compared to
the optimal number of steps, these leaf requests would not provide any relevant
information.

Theorem 6.7. Given the k-server problem in a k-star, and requests sequences of
the type Sk. There is an algorithm with l bits of advice (2l < k) with competitive

ratio r ≤ 3
2 l + (k−1)

2l
.
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Proof. Defining c = 2l, the goal is to build c deterministic algorithms A1, . . . , Ac

and argue that for each input there is one algorithm that does not make too many
steps.

Each algorithm will be a marking algorithm. We recall from the previous subsection
that marking algorithms do not make any moves for marked leaves. So let us
consider that requests for marked leaves do not happen. Then, each phase consists
of a request sequence in Sk containing requests for k − 1 diferent leaves.

The requests are processed in l + 1 rounds. For each round the algorithms are
divided in groups and all the algorithms in one group perform the same during the
round. Round 0 processes the requests i0, a, i1, . . . , ik−1−2l , a, so it lasts 2(k − 2l)
steps. Round u processes the requests ik−2l−u+1 , a, . . . , ik−1−2l−u , a and lasts 2l−u

steps.

At each round the algorithms are partitioned in 2l−u groups G0, . . . , G2l−u−1. At
the begining of round 0 each algorithm is on a group alone and at the end of round
u > 0 the groups Gi and Gi+2l−(u+1) are merged into a single group Gi.

Now, consider the requests it, a that are processed in round u. Processing it only
consists in moving the server from the middle to it if the leaf is unattended and
marking the leaf. After processing it there are t + 1 marked leaves and k − t − 1
unmarked ones. We keep an ordering of the unmarked leaves as f0, . . . , fk−t−2 and
assign the leaf fi to the group Gi. It is possible to do that because (k−t−2)−2l−u ≥
0, as t ≤ k − 1− 2l−u. There can be some algorithms Aj ∈ Gi that have no server
on the center after processing it. These algorithms must move a server to the center
in order to process the request a. Each Aj ∈ Gi that requires this move, will move
to the center the server in the unmarked leaf fi assigned to Gi.

After descriving the algorithms, we are going to find the upper bound of the number
of server moves made by all the algorithms during one phase.

To begin with, each algorithm must make two movements at the begining of the
phase, to fulfill the first couple of requests (recall that the phase starts with a
request to the unattended leaf f), this adds to 2 · 2l movements in total (two for
each algorithm).

We also count 2 movements every time that an algorithm gets assigned a new leaf
(this is not tight as some of the algorithms in one group maybe have not needed
any movement during the round). There are two instances in which an algorithm
(or group of algorithms) will be assigned a new leaf. When the leaf assigned to the
group is requested and when merging the groups Gi and Gi+2l−u (every algorithm
in the second group gets assigned the leaf of the group Gi).

Each of the requests in round u can change the assigned leaf for one group of
algorithms. There are 2u algorithms in each group and 2l−u requests in the round
if u > 0 and k − 2l − 1 requests in round 0 (k − 2l − 1 assignments). And, at the
begining of each of the l rounds half of the algorithm gets assinged a new leaf (l · 2l
assignments). Hence, the possible movements made by all the algorithms on this
account are 2 · (2l · l) + 2 · (k − 2l − 1).
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Finally by adding up all the contributions, the movements made by all the algo-
rithms are upper bounded by 3 ·2l · l+2(k−1). Since there are 2l algorithms, there
must be at least one of them that makes at most

3 · l +
2(k − 1)

2l

moves on the instance.

On the other hand, any optimal algorithm makes at least 2 movements. ut

To sum up, the reciprocal of the theorem stated in this section provides an upper
bound for the number of advice bits used by a deterministic algorithm with a lower
bounded competitive ratio.

Corollary 6.8. Given that any deterministic algorithm has a competitive ratio:

r >
3

2
l +

(k − 1)

2l
⇒ they use less than l advice bits

To sum up, we have introduced the k-server problem. Some interesting bounds for
the problem were summarized. We introduced the particular case of the k-server
problem in a k-star. For this problem we have found an upper and a lower bound
for the competitive ratio af an algorithm that uses l advice bits and the reciprocal
of these statements provides us with upper and lower bounds for the number of
advice bits used by deterministic algorithms with the competitive ratio lower and
upper bounded respectively. A randomized algorithm was described that provided
an upper bound for the expected competitiveness. This algorithm belongs to the
class of marking algoritms. Introducing this algorithms helped us understand the
marking algortihms described to prove the upper bound on the advice.





Chapter 2

Online Coloring: Previous Results

1. Introduction: Online Coloring

Given a graph G(V,E) where V is the set of vertices of the graph and E is the set
of edges, the graph coloring problem consists of coloring the vertices of G in such
a way that no two adjacent vertices receive the same color. A coloring of a graph
G(V,E) is a function g : V → N+ that satisfies this property. The goal is coloring V
with the minimum number of colors. For any given graph G the minimum number
of colors in which it can be colored is its Chromatic number χ(G).

The online coloring problem is one of the most studied online scenarios. Here, the
vertices of the graph are revealed one after the other, together with all the edges
conecting them to vertices that have already been presented. Each vertex must be
colored before the next one is presented. As it happens in every online setting, once
a vertex has been assinged the color it can not be changed. The goal is to use the
minimum number of colors to color the graph.

In this setting the competitive ratio of an algorithm Alg that colors the problem
instance I is the quotient between the number of colors used to color the graph
generated by the request sequence χAlg(G(I)) and the chromatic number of the
said graph χ(G(I)).

An introduction to the problem of online graph coloring can be found in [17].

2. General Results

Unlike the sky rental problem discussed in the previous chapter, the online coloring
problem does not have a bounded competitive ratio, in fact the following theorem
stands:

Theorem 2.1. [3] For every online algorithm Alg and every integer t, there exists
a problem instance I constructing a tree T (I) such that χAlg(T (I)) > t. Moreover,
T (I) has only 2t vertices.

15



16 2. ONLINE COLORING: PREVIOUS RESULTS

The proof is by induction on t. One constructs T (Ii) for every i = 1, . . . , t − 1
such that each tree has 2i vertices and the number of colors used is i in each of
them. Then it is possible to choose a vertex xi in each T (Ii) such that each xi has
a distinct color. Then a final vertex v2t is requested adjacent to each xi and it must
receive the t-th color.

This graph would work for every algorithm but not all online algorithms require, as
adversaries, graphs with this many vertices. For example, in the case of the greedy
algorithm Gr (that colors the vertices with the first possible color available) it is
possible to construct a bipartite graph instead with 2t vertices requiring t colors.
We only have to consider the complete graph except the matching generated by
the pairs of vertices {vi, v′i}. We denote this graph as Kt,t \ {id} as the missing
matching is generated by the identity permutation of vertices. And we present the
vertices in the following order v1, v

′
1, v2, v

′
2, . . . , vt, v

′
t.

An upper bound exists that matches the lower bound presented.

Theorem 2.2. [19] There exists an online algorithm Alg such that for every probem
instance I corresponding to a 2-colorable graph G(I) on n vertices, χAlg(G(I)) ≤
2 log(n).

The algorithm is the following. Consider a new vertex vi. There is a unique partition
(I1, I2) of the connected component of vi in the graph G(Ii) where vi ∈ I1. Alg
assigns to vi the least color not assigned to any vertex in I2.

Observe that if Alg assigns vi color k + 2, then Alg must have assigned k + 1 to
some vertex of I2 and k to some vertex vp ∈ I2. Thus, Alg must have assigned k
to some vertex vq ∈ I1. Since Alg assigned vp and vq the same color, they are in
separate components of G(Ir) where r = max{p, q}. Thus, by induction, each of
these components must have size 2k/2 and i > 2(2k/2) = 2(k+2)/2.

This two theorems bound the competitiveness of bipartite graphs. For general
graphs with cromatic number k, an improvement of the proof of theorem 2.1 allowed
to prove the lower bound of Ω(logk−1 n). The theorem is as follows.

Theorem 2.3. [25] For every online algorithm Alg and all integers k and n, there
exists an online graph G(I) on n vertices such that χ(G(I)) ≤ k and χAlg(G(I)) ≥(

logn
4k

)k−1
.

This lower bound was improved in [14]. This is the best general lower bound known
up to date.

Theorem 2.4. [14] For a general graph with n vertices, the competitive ratio of
any deterministic online coloring algorithm is at least 2n/ log2 n.

An alternative proof of the theorem can be found in [22]. It contains also a good
review on the known bounds of the problem of online coloring in both the deter-
ministic and randomized settings.

The best general upper bound known is sublinear. It does not match the upper
bound and can be found in [19]. It states.
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Theorem 2.5. [19] There exists an online algorithm Alg such that for every integer

k and every online k-colorable graph G(I) on n vertices, χAlg(G(I)) ≤
(

kn
log∗ n

)
(1+

o(1)). Where log∗ n is the smallest i for which the value of taking the logarithm of
n recursively i times is at most 1.

The original proof of this theorem used an algorithm constructed recursively. It is
interesting to remark that the same kind of recursive construction was used in [26].
The algorithm presented in [26] is an offline approximate coloring algorithm that
is polynomial. It is remarkable to observe that an offline technique became useful
for the corresponding online problem.

As in the k-server problem, in the deterministic model of the online coloring problem
the upper and lower bounds for the competitive ratio are still not tight.

3. Results for Randomized Algorithms

The upper and lower bounds known for the randomized model of the online coloring
problem are not tight either.

A first upper bound algorithm, presented in [25], achieved an expected competitive
of O(n/

√
log n). The algorithm presented is very similar in style to the sublinear

algorithm presented in [19], except that randomization is added. The algorithm
recduces the problem and then applies the algorithm recursively until an easy base
case is encoutered.

Another algorithm with a better expected competitive ratio was presented in [13].

Theorem 3.1. There eixsts a randomized online coloring algorithm such that has
an expected competitive ratio of O(n/ log n)

This is the best known upper bound for the randomized coloring algorithm. The
best known lower bound does not match the upper bound and was presented in
[14]. It states.

Theorem 3.2. The performance ratio of any randomized online coloring algorithm
is at least n/(16 log2 n).

It is interesting to note that the lower bound for randomized algorithms difers from
the one for deterministic algorithms only in a constant. Both lower bounds were
presented in the same paper and are the best ones known up to date for general
graphs.

4. Results for Algorithms with Advice

No general results are known for coloring algorithms with advice. Bounds have
been found for particular classes of graphs such as paths [12], spider graphs [16]
maximal outerplanar graphs and chordal graphs [24]. There exist also results for
bipartite graphs [4] and 3-colorable graphs [24].
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Recall that in the case of bounds for algorithms with advice we are bounding the
number of advice bits necessary for optimality or for r-competitiveness. This makes
the results for problems with advice very diferent from results for randomized or
deterministic algorithms where the competitive ratio is bounded. In this case we
are interested in the tradeoff between the advice and the competitiveness. The
results bound the number of advice bits necessary for a certain competitive ratio
or the competitive ratio achievable with a certain number of bits.

For bipartite graphs the results are the following:

Theorem 4.1. [4]

There exists an online algorithm for bipartite graphs which needs at most n − 2
advice bits to be optimal on every instance of length n.

An almost tight lower bound for the upper bound given.

Theorem 4.2. [4]

Any determinsitic online algorithm for bipartite graphs needs at least n− 3 advice
bits to be optimal on every instance of length n.

And an upper bound on the number of advice bits necessary for a constant com-
petitive ratio.

Theorem 4.3. [4]

For any integer constant k > 2, there exists an online algorithm for biprtite graphs
that needs less than n√

2k−1
advice bits to color every instance of length n with at

most k colors.

And as a corollary they extend the upper bound to a non constant competitive
ratio (depending on n).

Corollary 4.4. [4]

There is an online algorithm for bipartite graphs that needs at most O(
√
n) advice

bits to color every instance of length n with at most dlog(n)e colors.

For 3-colorable graphs the results are:

Theorem 4.5. [24]

For any n there exist a 3-colorable graph instance on n vertices for online coloring
such that every deterministic online algorithm needs at least log2 3·(n−4)−1 advice
bits to be optimal.

And an upper bound.

Theorem 4.6. [24]

For any 3-colorable graph instance on n vertices for online coloring there exists a
deterministic online algorithm needs at most 1.5863 · (n− 3) + 46 advice bits to be
optimal.
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There is also a similar theorem giving an upper bound on the number of colors
needed to color a 3-colorable graph in at most 4 colors. The number of bits needed
per request is also greater than 1.

No more general results exist for advice coloring up to our knowledge. However, we
think that, a deterministic algorithm needs a lot of information about the graph
instance in order to be optimal. This contrasts with the advice complexity of
problems such as the ski rental discussed in the introduction.

5. Results for Non-General Graphs

There are several families of graphs such as trees, chordal graphs, etc. that have
been analyzed. For some of this families tight upper and lower bounds exist for the
competitiveness.

For example, cromatic bounded graph classes are graph classes where a constant
upper bound exists for the competitiveness. There exists an algorithm that colours
any graph of the class in a constant number of colors (not depending on the input
size). In [17] we can find a summary of results for online cromatic bounded classes
of graphs.

Also [8] contains bounds on the competitiveness of online coloring algorithms for
some graph classes.

In the table 5 we summarize the results presented in this chapter.

Bounds Deterministic Randomized Advice

General
Upper r ≤

(
n

log∗ n

)
(1 + o(1)) r ≤ O(n/ log n) -

Lower r ≥ 2n
log2 n

r ≥ n/(16 log2 n) -

Bipartite
Upper r ≤ 2 log n n−2 advice bits for

optimality, n√
2k+1

for k-colorability
and O(

√
(n)) for

d(log n)e colorabi-
lity.

Lower r ≥ 1
2 log n n − 3 bits for opti-

mality

3-Col
Upper 1.5863 · (n− 3) + 46

bits for optimality.
Lower r ≥ 1

2 log n log2 3 · (n − 4) − 1
bits for optimality

Fig. 1. Bound summary

In the following chapter we present a new model for online algorithms. Then we
find an upper bound and a restricted lower bound for the online coloring problem
in this model. As we comented in the previous section, we think that the amount
of advice bits needed for optimality in the online problem is very large. With this
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model, we look at it from another point of view. The algorithms are given infinite
advice but the adversaries are allowed to use s random bits. In some sense, we
measure the amount of information the algorithm is missing with this bits and we
bound the competitiveness of the algorithms with respect to s.



Chapter 3

Randomizing the Adversary of the
Coloring Problem

1. Randomized Adversary

In this chapter we introduce a more general model (than the advice model) in which
we allow the adversary to use random bits. In spite of the fact that randomization
can be very helpful for online algorithms in the classical model of online computa-
tions, in the classical model random bits are not helpful for the adversary at all.
Since the competitive ratio is defined in the worst-case manner, it is sufficient to
produce deterministically one hard input for each online algorithm. In our model
of advice complexity randomization can increase the power of the adversary. If
the adversary constructs a set of problem instances from which the adversary can
choose one of them randomly, and the advisor does not know these random bits
in advance, then the advisor can only tell the set of possible problem instances
or a probability distribution over the set of problem instances if not uniform, but
not the whole problem instance that will be presented to the algorithm. In this
scenario we measure the expected competitive ratio over the hardest set of prob-
lem instances. A new parameter in the game is the number of random bits of the
adversary with respect to the achievable competitive ratio if the advisor is allowed
to give an unbounded number of advice bits. A more advanced study may counter
tradeoff or the number of advice bits, the number of random bits of the adversary
and the competitive ratio.

There is also another view on the scenario. In the classical model without any ad-
visor the adversary is not allowed to construct one of the hardest problem instances
for the given online algorithm. The power of the adversary will be reduced by ask-
ing him, for a given positive integer s, to generate a set of 2s problem instances.
Then , the competitive ratio of the algorithm with respect to s is the maximum of
the expected competitive ratios over all sets of 2s instances, when the particular
problem instances are chosen from the set constructed by a uniform probability
distribution. This measure of the quality of online algorithms is reasonable because
in the classical model an online algorithm is poor if there exists 1 hard problem
instance for it. Here, investigating the achievable competitive ratio with respect to

21
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s (or the size of the set of problem instances) can provide more insight on the hard-
ness of concrete online problems. For instance, if the competitive ratio improves
essentially with growing s, then the online problem can look easier that at the first
glance in the classical model.

2. Online coloring with randomized adversary

In this chapter we apply this concept on the classical online coloring problem.
Where vertices are coming one after the other with edges leading to the previous
vertices only. As seen in the previous chapter, in the classical model the competitive
ratio is unbounded, it is a sublinear function growing with the number of vertices
n. This holds even for trees where this function is in O(log2 n) [16]. In contrast to
this we show that, with this new model, for all k-colorable graphs for k ≥ 2, the
expected competitive ratio for sets of 2s problem instances is at most (s+ 2)k/2.

Note, that here the sets of problem instances are known to the online algorithm
(infinite advice), that can choose the appropriate working strategy with respect to
the given set of 2s inputs. If this set is unknown we have here the same unbounded
competitive ratio as for the classical online problem because for each online algo-
rithm one can take the hardest problem instance and add a few dummy vertices in
order to get 2s problem instances.

For this upper bound (s+2)k/2 we will reach a tight lower bound when one restricts
to online algorithms for which the probability of using minimum number of colors
is not zero.

We also conjecture that the lower bound holds for every online algorithm and give
a few arguments to support this conjecture. In particular we prove the lower bound
for s = 1.

2.1. Upper Bound

The competitive ratio of the algorithms in this setting is linear with respect to the
number of random bits available to the adversary. A practical way of computing
competitive ratios in this setting is to look for the expected number of colors used
by the algorithm in order to satisfy a problem instance. Knowing the chromatic
number of the problem instance and the expected number of colors used computing
the quotient between them we obtain easily the competitive ratio.

Theorem 2.1. Given an adversary that uses s random bits to generate inputs
and all of its inputs are at most k-colorable, there exists an online algorithm with

unbounded advice, that colors the input using (s+2)k
2 colors in expectation.

Proof. Given the set S of 2s possible problem instances (defined by their request
sequence of vertices) we can construct a rooted tree TS where a node divides itself
into two or more son nodes whenever a next request in the sequence enables to
distinguish between two or more groups of different problem instances. The root
represents the whole set of 2s problem instances. For example, the first node never
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gives any information about the problem instance because it is the same for all
graphs. However, the second node may or may not be adjacent to the first node
presented. So, looking at the first two nodes of all the request sequences, two groups
of problem instances can be derived from that piece of information.

Once constructed, the tree of the set of problem instances (instance tree) will have
at most 2s leaves. Now, the algorithm colors the request sequence given as follows.

First of all choose one leaf ` in the instance tree according to the following criteria.
For each node v in the path from the leaf ` to the root of the tree, the subtree Tv
rooted in the node v has a greater or equal number of leaves than any of its sibling
subtrees Tw. Observe that in a balanced tree any leaf chosen is good according to
the criteria so, there may be more than one possible choice for the leaf. This leaf
corresponds to a possible problem instance I`.

Start coloring the incoming vertices (requests) as if the graph given as input were
the one corresponding to the selected leaf with k colors.

While the actual problem instance I coincides with the problem instance Il we will
be following the path from the root to `. If a request R comes up that does not
coincide with the path it will mean that the unknown actual problem instance does
not correspond to I`. In this case the problem instance is one that corresponds to
a leaf in the subtree TR of problem instances that coincide with I up to the request

R. A leaf ˆ̀ in TR is selected according to the same criteria previously stated and
k new colors are used to color the new incoming requests according to the coloring
of the graph corresponding to Iˆ̀.

Coloring in this way (t+ 1)k colors are used at most to color the graph where t is
the number of switches of leaves until the right leaf is reached. We have to prove
that using this method not more than s/2 switches are performed on average. In

fact, we will prove in the following lemma 2.2 that not more than s2s

2 switches are
required in order to fulfill all possible 2s request sequences.

Knowing that in order to fulfill all 2s possible request sequences not more than
s2s/2 switches are required, we can easily conclude that on average no more than

i/2 switches are made, so in expectation no more than sk
2 + k = (s+2)k

2 colors are
used.

ut

Lemma 2.2. Let S be any set of L problem instances, and let TS be the corresponding
tree with L leaves. Let #(TS) be the number of switches in TS. In TS at most L·logL

2
switches are performed in order to fulfill all L possible request sequences with the
previously described algorithm.

Proof. By induction on the number of leaves of the instance tree L. For L = 2 the
only possible rooted tree is the root v and two leaves v1, v2 hanging from v. Either
choice is possible for ` is equally valid so, choosing v1 there will be no switches for
the first problem instance and one switch for the second, making a total number of
switches 1 as expected.
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T2

T1

Fig. 1. Tree configuration

Suppose the lemma is valid for any tree with less than L leaves. For a tree with
L leaves, the root will have two or more son vertices, pick the one which has the
smallest subtree and name it T2 and name the rest of the tree with the original root
T1 (figure 2.1). The selected leaf will always be in T1 (as T2 is the smallest subtree
with a son root of TS) the total number of switches is #(TS) = #(T1)+ `2 +#(T2).
This corresponds to the switches inside T1, the switches inside T2 and the `2 extra
switches in the cases where problem instance is amongst the leaves of T2. And using
the induction hypothesis:

#(TS) = #(T1) + `2 + #(T2)

≤ `1
2

log `1 +
`2
2

log `2 + `2

=
`1
2

(log `1 +
`2
`1

) +
`2
2

(log `2 + 1)

=
`1
2

(log 2
`2
`1 `1) +

`2
2

(log 2`2)

Where we have rewritten the terms in order to have them as a sum of two log-
arithms. Now we use the fact that `2 ≤ `1, and the inequality 2x ≤ 1 + x for
0 ≤ x ≤ 1 for x = `2

`1
≤ 1 in the first term and we conclude:

#(T ) ≤ `1
2

(log 2
`2
`1 `1) +

`2
2

(log 2`2)

≤ `1
2

(logL) +
`2
2

(logL)

=
L

2
logL

Observe that if all of the son subtrees of the root are equal in number of leaves we
can still choose the selected leaf amongst T1 or in the other way around, select a
subtree where the chosen leaf is not to be T2. ut

Dividing by k the expected number of colors we see that the competitive ratio of
the online coloring problem in this setting is upper bounded by s+2

2 .
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Note that the upper bound on the competitive ratio does not depend of the number
of vertices n the instance graph has. It is a remarkable diference that arises in this
model in contrast to the deterministic and randomized models. This is because,
as infinite advice is given to the algorithm, it does not matter how many vertices
the adversary presents. This makes itself more evident in the lower bound. In
the lower bound one can see that the adversary gains power from the fact that it
can construct 2s instances and present one or another acording to the result of the
random bits.

The reasoning that has allowed us to prove this upper bound could also be used in
other problems where the ratio is given by ’mistakes’, no matter in which moment.
A problem of this kind may be paging [6].

2.2. Restricted Lower Bound for Bipartite Graphs

The lower bound that we are going to present in this section is not general. First of
all we present an adversary, i.e. a construction of 2s instances. Then we lower bound
the expected competitive ratio of the online algorithms against this adversary. The
restriction does not come from the adversary construction but from the posterior
analysis of the lower bound. In fact we bound the expected competitive ratio only
of some algorithms. We call this algorithms minimum capable algorithms. These
are capable of coloring the instance graph in the minimum number of colors possible
even if it is only for some specific result of the random bits. It seems reasonable to
us that the same adversary and lower bound should stand for all algorithms. This
is because the other algorithms would use extra colors in unnecessary situations.
However, the case analysis this type of algorithms require is greater and we have
not been able to prove the lower bound without the restriction.

In order to find lower bounds for the expected number of colors required, let us con-
sider the graph Gs defined as follows. Let the vertex set be V (Gs) = {x0x1 · · ·xm :
xj ∈ Z2, 0 ≤ j ≤ m ≤ s} and in which there is an edge (x0x1 · · ·xm1 , y0y1 · · · ym2)
wheneverm1 ≤ m2, xm1 = ym2 and eitherm1 < m2 or x0x1 · · ·xm1−1 = y0y1 · · · ym1−1.
A vertex of the form x0 · · ·xm is said to be of level s−m or a Ls−m-vertex. Fig 2
shows graph G2.

It is clear that Gs is bipartite, since vertices ending in 0 form an independent set and
so do vertices ending in 1. Let us call those bipartite sets G0

s and G1
s respectively.

It is also easy to check that graph Gs can be defined recursively from to copies
of Gs−1, namely G0s−1 and G1s−1 by adding two new vertices 0 and 1 as shown
in Figure 2.2. Vertex 1 is adjacent to all vertices in G01s−1 and G11s−1 and also
adjacent to vertex 0. Similarly with vertex 0. Finally, in order to preserve the same
label definition, just add prefix 1 to vertices in G1s−1 and 0 to vertices in G0s−1.

Given a sequence of s bits, let us define Zb1,··· ,bs to be a function transforming the
labels of the vertices in V (Gs) as follows: Zb1,··· ,bs(x0x1 · · ·xm) = z0 · · · zm with

zi ≡ xi +
∑i−1

j=0 xjbs−j mod 2. The outcome of this function is the swapping of the
labels of some given vertices depending on the value of the bits b1, · · · , bs. Notice
that bit bi affects to vertices in levels smaller than i. This swapping of labels is
shown in Figure 2.



26 3. RANDOMIZING THE ADVERSARY OF THE COLORING PROBLEM

000 010001 011 100 110101 111

00 1001 11

0 1

b1

b2

L0

L1

L2

Fig. 2. Graph G2.

0 1

Fig. 3. Recursive definition of Gm

In order to determine a lower bound for the expected number of required colors
let us consider an adversary that will produce 2s different instances. All those
instances will output the same graph Gs but showing its vertices in different order
depending on the values of s bits b1, · · · , bs. In all instances vertices will be shown
by levels, starting from level 0, and the order in which vertices appear in each level
is the lexicographic order of the images of their labels through function Zb1,··· ,bs .

It is easy to check that due to the symmetry of the graph, the algorithm cannot
know the value of bit bi before vertices in level i start to appear.

Notice that in order to color the graph with 2 colors the algorithm must guess
correctly all bits b1, · · · , bs in all nodes where each bit is involved. Therefore an
algorithm will be able to color the graph with minimum number of colors in at least
one of the instances, if it follows the following two rules:

• Never use a new color if it is not strictly necessary at that point.
• Use the same strategy in all nodes.
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An algorithm that is able to color the graph with minimum number of colors in
at least one of the instance will be called a minimum capable algorithm. We will
restrict ourselves to minimum capable algorithms, since those restrictions simplify
to a large extent the analysis of the algorithm.

Theorem 2.3. There exists an adversary using s random bits to generate 2-colorable
problem instances for which any minimum capable algorithm requires at least c(s) ≥
(s+ 2) colors on average.

Proof. We will use the adversary explained above to proof this result by induction.

For s = 0 there is only one instance. Recall that G0 = K2 and any algorithm will
require exactly two colors. Therefore the result holds for s = 0.

In order to compute the number of colors required on average to color graph Gs let
us consider the recursive definition of Gs depicted in Figure 2.2.

Let A0 and A1 be the color sets used in subgraphs G00s−1 and G01s−1 respectively,
and let B0 and B1 be the color sets used in subgraphs G10s−1 and G11s−1. Because
of the restrictions of minimum capable algorithms, the same strategy was used to
color both subgraphs G0s−1 and G1s−1 and therefore not only the same colors are
used in both subgraphs (i.e. A0 ∪A1 = B0 ∪B1) but also the same distribution of
colors among their bipartite sets.

On the other hand since bit bs was unknown before starting to appear vertices of
level s, two possible situations arise:

• Bit bs is guessed correctly: In this case A0 = B0 and A1 = B1 and vertices 0
and 1 (level s) may be colored with the same colors used in vertices in level
s− 1. In such a case, no new colors are needed.
• Bit bs is guessed wrong: In this case A0 = B1 and A1 = B0 and vertices 0

and 1 need to use two new colors.

Finally, since probability of guessing bit bs correctly is 1
2 , supposing that c(s− 1) ≥

(s− 1) + 2, we can conclude that c(s) ≥ 1
2 (c(s − 1) + 2) + 1

2c(s − 1) ≥ (s + 2) as
expected. ut

2.3. Restricted Lower Bound for k-colorable graphs, k even

The previous result is for bipartite graphs. In this section we are able to generalize
the previous aversary and extend the previous result to prove a lower bound for
k-colorable graphs. However, the bound is only tight in the case were k even. In
the following section, a tight bound will be proved but a diferent adversary will be
required.

First of all, theorem 2.3 can be extended for k-colorable graphs, as it is shown in
the next Theorem:
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Theorem 2.4. There exists an adversary using s random bits to generate k-colorable
problem instances for which the number of colors required on average by any mini-
mum capable algorithm is given by the expression:

ck(s) ≥
{

k
2 (s+ 2) if k even

bk2 c(s+ 2) + 1 if k odd

.

Proof. If k is even (k = 2m), m identical copies of the bipartite problem instance
Is (Theorem 2.3), namely Isi for i = 1 . . .m are presented as follows: Each vertex
in Isi is adjacent to all the vertices in Isj for all i 6= j (in this way a color used in
Isi can not be used in any other Isj for all i 6= j). Moreover the problem instance
presents first all vertices of level t in all Isi before presenting any vertex of level
t+ 1. In this way for each Isi 2 colors are necessary and sufficient so the chromatic
number of the final graph is k. By Theorem 2.3 (s+ 2) colors required on average
for each Isi . The result is straightforward taking into account that colors used in
different sets Isi must be different.

For k = 2m+ 1 proceed as in the case k = 2m and let the adversary present, as a
last round, a vertex adjacent to all other vertices presented. Clearly, the graph will
be k + 1 colorable and one additional color will be required in all cases. ut

We see that the lower bound of the competitive ratio of the online coloring problem
in this setting is (s + 2)/2 for even k and (s + 2)/2 + 1

k for odd k. This matches
the upper bound in the even case as we expected.

Observe that in the odd case the lower bound does not match the upper bound. In
the next section we are able to provide a proof through another set of instances that
construct a diferent graph. As mentioned before, with this proof the lower bound
is tight even for odd k. This proof has the same restricitions as the one presented
in the previous sections.

2.4. Restricted Lower Bound for k-colorable graphs, k ≥ 3

In this section we present a lower bound that matches the upper bound also in
the odd cases but that does not work in the bipartite case. In this case we do
not extend the adversary for the bipartite case, so we have to descrive another
adversary that allows us to prove the lower bound. It is remarkable that despite
the adversary being diferent, the analysis is also complicated for non-minimum
capable algorithms. This shows us that the dificulty in the analysis lies in the
nature of the algorithms and not in the chosen adversary.

Recall that a coloring of a graph G(V,E) is a function f : V → N+. We define
Kk,k\{p1, . . . p`} as the bipartite graphs with 2 sets V1, V2 of k vertices v1i , v2i for i =
1 . . . k and all the edges between V1 and V2 except for the matchings corresponding
to the permutations p1, . . . , p` from V1 to V2, i.e. the edge (v1i , v

2
p1(i)

) is not in the

graph. We must remark that this notation has in some sense a directionality for
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the edges, so, when taking this graph we are going to indicate from which vertex
set it comes.

Theorem 2.5. There exists an adversary using s random bits to generate k-colorable
problem instances with k ≥ 3 for which the number of colors required on average by
any minimum capable algorithm is given by the expression:

ck(s) ≥ k

2
(s+ 2)

.

Proof. As in the case of the previous lower bound first of all we are going to
describe the problem instances (the adversary) and compute the average number
of colors required to color it by any minimum capable algorithm in order to find
the bound.

First of all, for every possible sequence of random bits, a complete graph with k
vertices, K0

k , is presented (as no random bit is involved in its presentation). We
name its vertices vi for i = 1, . . . , k. We will assume without loss of generality that
any algorithm will color its vertices as f(vi) = i.

Let p0 and p1 be permutations on k elements where p0 : [k] → [k] is the identity
and p1 : [k]→ [k] is unicyclic.

We present two more k-complete graphs. The second k-complete, K0′

k with vertices

v′i, is connected with K0
k by Kk,k \ {p0, p1} from K0

k to K0′

k . Observe that K0′

k is
colorable with the first k colors in two ways f(v′(i)) = p0(f(vi)) = i or f ′(v′(i)) =
p1(f ′(vi)). Where f and f ′ are the two possible coloring functions and f(vi) =
f ′(vi) = i.

The third k-complete, K0′′

k and vertices v′′i , is connected to K0
k by Kk,k \ {p0, p1}

from K0
k and to K0′

k by the matching p0.(see figure 2.4)

Observe that the graph is k-colorable since the coloring f can be extended to
f(v′′i ) = p1(f(vi)) = p1(i) and the coloring f ′ can be extended to f ′(v′′i ) =
p0(f ′(vi)) = i.

Observe also that in order to color the graph with k colors only this two colorings
are possible since any other permutation of colors for K0′

k and K0′′

k are forbiden by
the edges Kk,k \ {p0, p1} from K0

k to the other two complete graphs.

Now the first random bit comes into play. Another k-complete graph is presented.
We name this new graph K1

k and vertices v1i . The adjacencies are:

• Kk,k \ {p0, p1} from K0
k .

• If the first random bit is 0:
– the matching p−11 from K0′

k .

– the matching p1 from K0′′

k .
• If the first random bit is 1:

– the matching p1 from K0′

k .

– the matching p−11 from K0′′

k .
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{p0, p1}

{p0, p1}

{p0, p1}

p0

K 0
0

K 00
0

K0 K1

8
<
:

p�1
1 if b = 0

p1 if b = 1

8
<
:

p1 if b = 0

p�1
1 if b = 1

Fig. 4. Graph G1.

Let f0 and f ′0 be the colorings of K1
k for the event where the first random bit is 0.

And f1 and f ′1 be the colorings if the first random bit is 1. Let f∗ coincide with f

and f ′∗ coincide with f ′ in K0
k , K0′

k and K0′′

k .

We can observe that the edges in Kk,k \ {p0, p1} connecting K0
k to v1i forbid every

color between 1 and k except for p0(i) and p1(i).

In the event that the first random bit is 0, the matching p−11 from K0′

k for f0 forbids

the color p−11 (f(v′i)) = p−11 (i) that was already forbiden and for f ′0 it forbids the

color p−11 (f ′(v′i)) = p1(i) . And the matching p1 from K0′′

k for f0 only forbids
p1(f(v′′i )) = p21(i) that, again was already forbiden and for f ′0 forbids p1(f ′(v′′i )) =
p−11 (p1(i)) = p0(i). So f0(v1i ) can be either p0(i) or p1(i) but k new colors are
necessary for f ′0.

In the event that the first random bit is 1, the matching p1 from K0′

k for f1 forbids
the color p1(f(v′i)) = p1(i) and for f ′1 forbids the color p1(f ′(v′i)) = p21(i) that was

already forbiden. And the matching p−11 from K0′′

k for f1 forbids p−11 (f(v′′i )) =

p−11 (p1(i)) = p0(i) and for f ′1 forbids p−11 (f ′(v′′i )) = p−11 (i) that, again was already
forbiden .So, k new colors are necessary for f1 but f ′1(v1i ) can be either p0(i) or
p1(i).

We see that there are two cases in which two possible colorings are admited with
colors from 1 to k. In order to restrict this we will add the matching p1 from K0

k
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to K1
k . This forces f0(v1i = p0(i) and f ′1(v1i ) = p0(i). It will be useful for the future

analysis of the lower bound. Notice that this does not affect the other colorings.

We continue to construct the problem instances inductively in the following faishon.
For the random bit ` ≤ s a K`

k is presented, it has the edges Kk,k \ {p0} from Kn
k

for n = 0, . . . , `−1 and the matchings p1 and p−11 from Kn−1′
k and Kn−1′′

k acording
to the result of the (n− 1)-th random bit.

In this way, if in the step n no previous colors could be used to color Kn
k , then

these colors cannot be used either to color K`
k. This means that for any error in

guessing the ’correct’ coloring for Kn′

k and Kn′′

k the adversary ensures that in the
following steps those k colors can not be used again.

Once K`
k is presented, K`′

k and K`′′

k are also presented (if ` < s). Both of them
have the edges of Kk,k \{p0, p1} from Kn

k for n = 0, . . . , `−1 and p0 between them.

Note that this describes the 2s instances as for each random bit 2 distinct instances
are presented.

Finally, knowing how the adversary presents the 2s possible instances and that for
each “mistake” any minimum capable algorithm will need k extra colors, we can
count the average number of colors used in coloring this set of instances. If ` bits
are guessed wrong, at least (`+ 1)k colors will be used to color the instance. Thus:

ck(s) ≥
∑s

`=0

(
s
`

)
(`+ 1)k

2s
=
k

2
(s+ 2)

ut

Observe that this proof does not work for bipartite graphs as there is only one
possibility for p1 6= id and in that case p−11 = p1.

Notice also that the restriction of minimum capable algorithms is also needed in the
proof since we rely on the fact that for each mistake k colors need to be added. If
extra colors were used in some step, it would be possible for only partial mistakes to
occur and we can not count how many new colors would be needed in expectation
for the next bit.

2.5. Further observations on the lower bound

As previously mentioned,we are convinced that the result is still true for general
algorithms and not only for minimum capable algorithms, but the analysis is much
harder:

Conjecture 2.6. There exists an adversary using s random bits to generate 2-
colorable problem instances for which any algorithm requires at least c(s) ≥ (s+ 2)
colors on average.

We have tried to prove the conjecture 2.6 by proving the following conjecture by
induction:
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Let B = b1, . . . , bs be a sequence of s random bits, and Bc be the complementary
sequence.

Conjecture 2.7. Given the adversary presented in section 2.2, any algorithm
using ` colors to color the problem instance I(B) will use at least 2(s+ 2)− ` colors
to color I(Bc).

If conjecture 2.7 could be proved, then conjecture 2.6 would be proved. As, accord-
ing to this conjecture, for each pair of bit sequences B and Bc any algorithm uses
at least 2(s+ 2) colors making a total average of c2(s) = 2s−1 · (2(s+ 2))/2s = s+ 2
colors.

We did not manage to complete the proof by induction. However, it is interesting
to state it because it reduces significatively the amount of cases to look at, which
makes us think it is not a bad approach.

We consider induction on the number of random bits s. The result holds for s = 0.
Suppose that the conjecture holds for every number of random bits < s.

Following notation from section 2.2. Let Gs(B) be the graph constructed from
the instance I(B) and let A00(B) be the set of colors used to color G00s−1(B).
Analogously let A01(B), A10(B) and A11(B) be the set of colors used to color
G01s−1(B), G10s−1(B) and G11s−1(B) respectively.

We name |A00(B)∪A10(B)| = a and |A10(B)∪A11(B)| = â. The number of colors
used to color Gs(B) is α = |A00(B)∪A01(B)∪A10(B)∪A11(B)| and the number
of colors used to color Gs(B

c) is αc = |A00(Bc) ∪ A01(Bc) ∪ A10(Bc) ∪ A11(Bc)|.
By induction hypothesis we know that |A00(Bc) ∪ A01(Bc)| ≥ 2((s − 1) + 2) − a
and |A10(Bc) ∪A11(Bc)| ≥ 2((s− 1) + 2)− â.

Let α0,1 be the number of extra colors used for the vertices 0 and 1 (the last vertices
presented) in both B and Bc. α0,1 takes values between 0 and 4.

Now we have to prove that α+ αc + α0,1 ≥ 2(s+ 2).

First of all α ≥ max{a, â}. Moreover, αc ≥ max{2((s−1)+2)−a, 2((s−1)+2)−â}.
Without loss of generality we can assume that a ≥ â and write α ≥ a and αc ≥
2((s− 1) + 2)− â so,

α+ αc ≥ a+ 2((s− 1) + 2)− â = 2(s+ 2) + (a− â)− 2

If a ≥ â+ 2 then we are done. Take into account that if the set A00(B) ∪ A01(B)
and A10(B) ∪A11(B) or A00(Bc) ∪A01(Bc) and A10(Bc) ∪A11(Bc) difer in 2 or
more colors then we are also done. The following cases are left:

• a − â = 1 and A00(B) ∪ A01(B) = A10(B) ∪ A11(B) + 1 color, A00(Bc) ∪
A01(Bc) + 1 color = A10(Bc) ∪ A11(Bc). We expect that in this case a new
color is needed to color the vertex 0 or 1 in Gs(B) or Gs(B

c) but we have not
been able to prove it.

• a − â = 0 and A00(B) ∪ A01(B) = A10(B) ∪ A11(B), A00(Bc) ∪ A01(Bc) =
A10(Bc) ∪ A11(Bc). In this case we expect to see that two new colors are
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needed to color the vertices 0 or 1 in Gs(B) or Gs(B
c). We have not been

able to prove this either.
• a− â = 0 and the sets A00(B) ∪ A01(B) and A10(B) ∪ A11(B), and the sets
A00(Bc)∪A01(Bc) and A10(Bc)∪A11(Bc) difer in at most one color. In this
case we expect to see that one new colors is needed to color the vertices 0 or
1 in Gs(B) or Gs(B

c). We have not been able to prove this either.

The main dificulty in aproaching these three remaining cases is the fact that we do
not have any information in how the algorithm can use the colors in the sets. In
fact we are trying to see that these colors are needed by any algorithm.

We are going to prove the lower bound in the case s = 1 in order to see why do we
think that the lower bound holds. In the case s = 1 the graph G1 is quite simple,
and corresponds to figure 2.5.

00 1001 11

0 1

Fig. 5. Graph G1.

According to the lower bound in average 3 colors are used in order to color this
graph. Any algorithm using 3 or more colors to color the first 4 vertices has already
reached the average. Any other coloring choice is minimum capable so on average
performs as the lower bound states. This is because the choice of colors for 10 and
11 can be right with respect to the choice for 00 and 01, so no new colors are used
for the vertices 0 and 1. Or it can be wrong and 2 new colors are needed for the
vertices 0 and 1 thus ataining the average of 4 + 2/2 = 3 colors.

In a similar way the case where s = 2 can be proven but a lot more cases need to
be considered.

So, despite the fact that we have not been able to prove the lower bound for any
algorithm, we have reason to believe that it is true, and we leave it as a conjecture.





Chapter 4

Conclusions

We defined the concept of online problems and a way to analize their performance
with the competitive ratio. We saw diferent models for online algorithms and
how they were diferent in terms of the bounds for the competitive ratio. The
deterministic, randomized and advice models. The sky rental problem and the
server problem were presented as examples together with some known bounds.

Then we considered the k-server problem in a k star and presented an upper and
lower bound for the advice bits used in terms of the competitive ratio and an upper
bound for the expected competitive ratio for the randomized model. The k-server
problem in a k-star is very reminiscent of the paging problem. The methods in
[6] could be applied for the proofs. The results though, gave us an insight in
the online problems and the kind of bounds one gets with different settings such
as deterministic algorithms, randomized algorithms and algorithms with advice.
Some open questions that this case of the k-server problem presents is: What is the
competitive ratio when there number of servers is less than then number of leaves?
What could be said for the bounds if the graph is not a k star but a tree with k
leaves?

In the second chapter we defined the online coloring problem and we reviewed the
existing bounds for the models of deterministic online coloring, randomized online
coloring and online coloring with advice. We saw that the existing bounds for the
deterministic online coloring problem are not tight. Nor are the bounds for the
randomized version of the problem. No general bounds are known for the advice
model of the problem. Only bounds for the bipartite and 3-colorable graphs are
known. This leads us to think that maybe another model will be succesful to
provide bounds for the coloring problem in a setting where the algorithm does have
information about the adversary.

In chapter 3, we presented a new model for on-line algorithm in which the on-line
algorithm may use infinite advice bits but the adversary may use s random bits.
This model gives us an insight in what happens when some information is missing.
This is interesting to analyze in problems where few advice bits are not useful to
bound the competitive ratio. In the case of online coloring for example, a lot of
information is needed in order to achieve good bounds for the competitive ratio.

35
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We studied the competitive ratio for the online coloring problem with this new
model and it happens to be upper bounded by 1 + s/2. We also found a couple of
lower bounds which are valid with certain (reasonable) restrictions for the on-line
algorithm. That lower bounds meet the upper bound for graphs that can be colored
with an even number of colors. We conjecture that the upper bound is tight for any
possible on-line algorithm and for any chromatic number of the presented graphs.
We even present a partial proof by induction where it can be seen that the cases
in which the lower bound may fail to be true are limited. Moreover, we see a proof
for the lower bound in the case where s = 1.

This new model opens some new questions to be answered: What is the competitive
ratio in this model with limited advice bits? How do other classical on-line problems
behave with this new model?
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information in input. RAIRO - Theoretical Informatics and Applications, 43:585–613, 7 2009.
[11] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and

Neal E. Young. Competitive paging algorithms. Journal of Algorithms, 12:685–699, 1991.
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