
June 11, 2018 18:21 112-IJFCS 1841005

International Journal of Foundations of Computer Science
Vol. 29, No. 4 (2018) 551–569
c� World Scientific Publishing Company
DOI: 10.1142/S0129054118410058

Online Graph Coloring Against a Randomized Adversary

Elisabet Burjons⇤ and Juraj Hromkovič†

Department of Computer Science, ETH Zurich, Switzerland
⇤elisabet.burjons@inf.ethz.ch
†juraj.hromkovic@inf.ethz.ch

Rastislav Královič

Department of Computer Science, Comenius University, Bratislava
kralovic@dcs.fmph.uniba.sk

Richard Královič

Google Inc., Zurich, Switzerland
richard.kralovic@dcs.fmph.uniba.sk

Xavier Muñoz

Mathematics Department, UPC, Barcelona, Spain
xml@ma4.upc.edu

Walter Unger

Department of Computer Science, RWTH Aachen University, Germany
walter.unger@cs.rwth-aachen.de

Received 15 February 2017
Accepted 7 December 2017

Communicated by Jarkko Kari and Alexander Okhotin

We consider an online model where an adversary constructs a set of 2s instances S
instead of one single instance. The algorithm knows S and the adversary will choose one
instance from S at random to present to the algorithm. We further focus on adversaries
that construct sets of k-chromatic instances. In this setting, we provide upper and lower
bounds on the competitive ratio for the online graph coloring problem as a function
of the parameters in this model. Both bounds are linear in s and matching upper and
lower bound are given for a specific set of algorithms that we call “minimalistic online
algorithms”.

Keywords: Online computation; information; randomization; graph coloring.

1. Introduction

For an online problem, the input is revealed gradually in consecutive time steps and
an irrevocable part of the output has to be produced at each time step. In this model

551

June 11, 2018 18:21 112-IJFCS 1841005

552 E. Burjons et al.

there are two players, the algorithm that processes the instances piecewise and the
adversary which presents the instance. A detailed introduction and an overview of
online problems and algorithms can be found in [7, 21].

One of the most studied online scenarios is the problem of coloring a graph
online. In the classical online model, the vertices of the graph are revealed one after
the other, together with the edges connecting them to the already presented vertices.
In this case, an instance I consists of a graph G and the order of presentation of the
vertices. Observe that two di↵erent instances might construct the same graph, only
changing the order in which the vertices are presented. The goal of the algorithm is
to assign the minimum number of colors to these vertices in such a way that no two
adjacent vertices get the same color. The algorithm does not have any information
beforehand about the graph or the next vertices that are going to be presented.
As usual in an online setting, each vertex has to be colored immediately after its
appearance. The quality of an online algorithm for this problem is usually measured
by the so-called competitive ratio, i.e., the ratio between the number of colors used by
this algorithm (on an instance I) and an optimal coloring for the resulting graph (of
this instance, G(I)) as it could be computed by an o✏ine algorithm with unlimited
computing power, knowing the whole graph in advance. The competitive ratio of an
algorithm Alg on an instance I is then

compAlg(I) =
colors used by Alg in I

chromatic number of G(I)
.

The competitive ratio of Alg for a problem P is then computed in a worst-case
manner as compAlg(P) = supI{compAlg(I)}.

For this problem, the competitive ratio is unbounded. This holds even for trees,
for which the lower bound is in ⌦(log n) [18].

Restricting this model to specific graph classes yields improved results where
the competitive ratio is bounded by some constant or even reaches optimality
[2, 8, 15, 16, 18, 25, 28]. An overview of results on the online graph coloring problem
can be found in [19, 20].

One can argue that adversaries as described above are unrealistic, and that in
most online situations we do have some knowledge on the input instance. In the
classical model, the adversary is allowed to construct one of the hardest problem
instances for a given online algorithm. In the model we are studying, the power of
the adversary is reduced by requesting the adversary, for a given positive integer s,
to generate a set of 2s problem instances S and to make them public. So, instead
of restricting the instance to a class of graphs, as mentioned above, the adversary
is restricted to a set S of graphs that the algorithm knows in advance. This same
model has been applied to the paging problem [9], and the string guessing problem
[27], which was originally published at the same time as this paper. A similar model
is presented in [24], where the adversary is constrained within a specific instance

June 11, 2018 18:21 112-IJFCS 1841005

Online Graph Coloring Against a Randomized Adversary 553

distribution, and in [26], where the adversarial choice for the instance must satisfy
specific statistical properties.

A formal definition to measure the performance of algorithms in the model we
propose can be given as follows. Let, for an s 2 N, S be a set of 2s instances of
a considered online problem P. Let Alg be an online algorithm solving P. The
competitive ratio of Alg on S, compAlg(S), is the expected competitive ratio of
Alg on all instances in S with respect to the uniform probability distribution. An
alternative definition would be the ratio between the expected cost of Alg and the
expected optimal cost. We observe, however, that in the case we will look at, where
the instances all have the same chromatic number, i.e., the same optimal cost, both
definitions coincide.

For any S of 2s instances, we define

comp(S) = min{compAlg0(S) | Alg0 solves the instances in S}

as the competitive ratio of the “best” online algorithm for S. Finally,

comps(P) = sup{comp(S) | S consists of 2s instances}

is the competitive ratio for the problem P for an adversary with s random bits. For
an online algorithm Alg solving P and any s 2 N, we define the competitive ratio
of Alg with respect to s as

compAlg(s) = sup{compAlg(S) | S consists of 2s instances of P}.

To sum up, the competitive ratio with respect to a set S is the minimum of the
competitve ratios over all online algorithms solving S. Then, the competitive ratio of
the problem with respect to s is the maximum of the competitive ratios over all sets
of size 2s. This measure for the quality of online algorithms is reasonable, because
in the classical model an online algorithm is bad if there exists one hard problem
instance for it. Here, investigating the achievable competitive ratio with respect to
s (or the size of the set of problem instances) can provide more insight into the
hardness of concrete online problems. With increasing s, the set of instances grows
exponentially and the competitive ratios in this setting provide a more realistic
picture than the classical worst-case model.

As already mentioned, the competitive ratio for graph coloring in the classical
model is unbounded. In contrast to this, we show that, within our new model, for
all k-chromatic graphs with k � 2, the competitive ratio for sets S of 2s problem
instances, all of them with chromatic number k for some fixed k, is at most (s+2)/2.

Note that here the sets of problem instances are known to the online algorithm
that can choose the appropriate working strategy with respect to the given S. If
S is unknown, we have the same unbounded competitive ratio as for the classical
problem since, for each online algorithm, one can take the hardest problem instance
and add a few dummy vertices in order to get 2s problem instances.

June 11, 2018 18:21 112-IJFCS 1841005

554 E. Burjons et al.

We also provide a lower bound of (3s + 8)/4, which is of the same order of
magnitude as the upper bound for general algorithms, and a tight lower bound when
restricting ourselves to online algorithms using new colors only if necessary.

In what follows, the parameter s is viewed as the number of random bits available
to the adversary, because it needs s random bits to randomly pick an input from S.

Another reason to prefer viewing s as the number of random bits of the adversary
instead of as a measure of the cardinality of S will be presented later in the framework
of information content of online problems [17], where the game is played by three
players — algorithm, adversary, and oracle.

2. Upper Bound on the Competitive Ratio of the Online

Coloring Problem

In this section, we show that the competitive ratio of the problem is linear with
respect to the number s of random bits available to the adversary. A practical way
of computing bounds on competitive ratios in this setting is to look for the expected
number of colors used by an algorithm in order to process a problem instance.
Knowing the chromatic number of the problem instance and the expected number
of colors used, we obtain the competitive ratio by computing their ratio.

Theorem 1. Given an adversary that uses s random bits to generate 2s inputs such
that all of them are k-chromatic, there exists an online algorithm knowing the set of
inputs that colors the input using (s+ 2)k/2 colors in expectation.

Proof. Given the set S of 2s possible problem instances (defined by their request
sequences of vertices), we can construct a rooted tree TS called an instance tree.
We call the vertices of the instance tree nodes in order to distinguish them from
the vertices in the instances. In TS , a node branches into two or more child nodes
whenever a request in the sequence enables to distinguish between two or more
groups of di↵erent problem instances. The root represents the whole set of 2s problem
instances. For example, the first vertex never gives any information about a concrete
problem instance because it is the same for all 2s instances. However, in some
instance set, the second vertex might or might not be adjacent to the first vertex
presented. So, looking at the first two vertices of all the request sequences, two
groups of problem instances can be derived from that piece of information in this
case. Note that not every single request necessarily leads to a branch in the instance
tree.

Once constructed, the instance tree TS will have at most 2s leaves. The algorithm
colors the request sequence given as follows.

First of all, it chooses one leaf ` in TS according to the following criterion. For
each node v in the path from the leaf ` to the root of the tree, the subtree Tv rooted
in the node v has at least as many leaves as any of its sibling subtrees Tw. Observe
that, in a balanced tree, any leaf chosen is good according to this criterion. Thus,

June 11, 2018 18:21 112-IJFCS 1841005

Online Graph Coloring Against a Randomized Adversary 555

R

`

TR

Fig. 1. Subtree TR.

there may be more than one possible choice for the leaf. This leaf corresponds to a
possible problem instance I`.

The algorithm then starts coloring the incoming vertices (requests) as if the
graph given as a problem instance is the instance I` corresponding to the selected
leaf `. This means that the online coloring strategy used is optimal for I`.

As long as the actual problem instance I coincides with the problem instance I`,
we use this strategy following the path from the root to `. If a request R comes up
that does not coincide with the chosen path, this means that the unknown actual
problem instance I does not correspond to I`. In this case the problem instance is
one that corresponds to a leaf in a subtree TR of problem instances that coincide
with I up to the request R (see Fig. 1). In this case, a leaf ˆ̀ of TR is selected
according to the same criterion as ` was chosen in TS . Now, k new colors are used
to color the new incoming requests according to an optimal coloring of the graph
corresponding to Iˆ̀. In this context, we speak about a switch from ` to ˆ̀ (or from
I` to Iˆ̀, respectively) during the execution of our online algorithm. The algorithm
continues recursively in TR in the same way as in TS and makes further switches if
necessary.

Coloring in this way, at most (t+ 1)k colors are used to color the graph, where t
is the number of switches until the correct leaf is reached. We have to prove that
using this method no more than s/2 switches are performed on average. In fact, we
will prove in the following lemma that altogether no more than s2s

2 switches are
required in all 2s computations over all 2s problem sequences considered.

Knowing that, in order to color all 2s graphs, no more than s2s/2 switches are
required, we can easily conclude that on average no more than s/2 switches are
made. Hence no more than sk

2 + k = (s+2)k
2 colors are used in expectation.

Lemma 2. Let S be any set of L problem instances, and let TS be the corresponding
tree with L leaves. Let #(TS) be the total number of switches over all L computations
on the L input instances performed by the online algorithm described above. Then,
#(TS)  L log2 L

2 for L � 2.

June 11, 2018 18:21 112-IJFCS 1841005

556 E. Burjons et al.

T2

T1

Fig. 2. Tree configuration.

Proof. We prove the lemma by induction on the number L of leaves of the instance
tree. For L = 2, the only possible rooted tree is a root v and two leaves v1, v2. Either
choice that is possible for ` is equally valid. Therefore, choosing v1, there will be
no switches for the first problem instance and one switch for the second, yielding a
total number of one switch.

Suppose the lemma is valid for any tree with less than L leaves. For a tree with
L leaves, the root will have two or more child nodes. We pick the one which has
the smallest subtree and name it T2 with `2 leaves and name the rest of the tree
with the original root T1 with `1 leaves (see Fig. 2). The selected leaf will always be
in T1 (as T2 is the smallest subtree with a child root of TS). The total number of
switches is #(TS) = #(T1) + `2 +#(T2). This corresponds to the switches inside T1,
the switches inside T2, and the first switch in the computation for each of the `2
instances in T2. Using the induction hypothesis, we get

#(TS) = #(T1) + `2 +#(T2)

 `1
2
log2 `1 +

`2
2

+
`2
2
log2 `2 +

`2
2

=
`1
2

✓
log2 `1 +

`2
`1

◆
+

`2
2
(log2 `2 + 1)

=
`1
2
log2

⇣
2`2/`1`1

⌘
+

`2
2
log2(2`2) .

Now we use the facts that `2  `1 and 2`2  L, and 2`2/`1  1 + `2/`1, because
`2/`1  1, in the first term and conclude

#(TS) 
`1
2
log2

⇣
2`2/`1`1

⌘
+

`2
2
log2(2`2)

 `1
2
log2

✓✓
1 +

`2
`1

◆
`1

◆
+

`2
2
log2 L

=
`1
2
log2 L+

`2
2
log2 L

=
L

2
log2 L.

June 11, 2018 18:21 112-IJFCS 1841005

Online Graph Coloring Against a Randomized Adversary 557

Observe that, if all of the child subtrees of the root have the same number of
leaves, we can still choose the selected leaf among T1 or select a subtree T2 where
the chosen leaf is not included.

Following Lemma 2 the expected number of switches is at most

L log2 L
2

L
=

log2 L

2
. (1)

For L = 2s, the expected number of switches is at most s/2, and so the expected
number of colors used over all 2s input instances is at most k + sk/2. If the optimal
coloring of all the instances uses k colors, then the competitive ratio is at most
1 + s/2.

3. General Lower Bound

First, we present a lower bound for bipartite graphs, i.e., 2-colorable graphs [30].
Afterwards, we generalize the bound to k-chromatic graphs. Note that the lower
bound has the same order of magnitude as the upper bound, but it is not matching.
In Sec. 4, we will present a matching lower bound for a restricted class of algorithms.

An adversarial strategy constructing a set of instances for which any algorithm
uses a large number of colors in expectation, is used for proving a lower bound on
the competitive ratio.

3.1. Bipartite case

Consider an arbitrary set S of 2s bipartite graph instances, and a deterministic
algorithm Alg that knows S. An instance I 2 S is selected uniformly at random,
and is presented online to Alg. Alg has to produce a valid coloring by assigning
every incoming vertex some color.

Theorem 3. Any algorithm Alg requires at least (3s+ 8)/4 colors in expectation
(taken over all graphs from S for the worst-case set S).

Proof. The adversarial strategy is the following. The instances can be described by
a tree-like structure, i.e., by a tree where each of its nodes defines an instance. The
set S will be a subset of 2s instances of this tree.

There is one instance of level 0, namely the complete graph with 2 vertices, K2.
There are 2` instances of level `, constructed as follows: consider any instance I from
the 2`�1 instances of level `� 1. Let V (I) = L [R be the bipartition of the graph
generated by I, G(I). From I, we create two instances of level ` (called straight and
flipped). The straight instance consists of two copies of I, called I1 and I2, with
vertex sets V (I1) = L1 [R1, V (I2) = L2 [R2, and two additional vertices u and v
connected by an edge, such that all vertices from L1 [L2 are connected to u, and
all vertices from R1 [R2 are connected to v. The flipped instance is constructed

June 11, 2018 18:21 112-IJFCS 1841005

558 E. Burjons et al.

I1 I2

u v

I1 I2

u v

Fig. 3. Adversarial instances of level 1. The 2-coloring helps to visualize that both instances are
bipartite.

similarly, except that the vertices from L1 [R2 are connected to u, and the vertices
from R1 [L2 are connected to v. We say that the vertices u and v are vertices of
level `. The two instances of level 1 are as shown in Fig. 3.

For the set S, consider the 2s instances of level s; in each instance, the vertices
are presented in the order of increasing levels, and from left to right within a level.

The following representation of the instance set S aids in proving the lower
bound. Every instance starts by presenting 2s copies of K2 that are the vertices of
level 0. Then 2s�1 copies of K2 are presented consisting of the vertices of level 1,
connected to the corresponding vertices of level 0 by either a straight or flipped
connection. Next, 2s�2 copies of K2 that form the vertices of level 2 are presented,
again connected either in a straight or flipped way. An instance can be described
by an s-bit binary vector, and the whole S can be viewed as a butterfly graph of
dimension s as shown in Fig. 4.

The graph has s+1 rows and 2s columns: the top-most row is row s, the bottom-
most row is row 0. The vertices of the butterfly graph will be called nodes. Each
node of row s has a corresponding subtree that represents one instance. Each leaf
corresponds to two vertices of level 0. The nodes in row 1 represent the vertices
of level 1, either straight or flipped, etc. Each subtree of nodes corresponds to a
bipartite graph of vertices. We call the bipartitions of the graph left and right based
on the order of appearance of the first leaf (i.e., for a leaf, the two vertices appear in

Fig. 4. Butterfly graph of dimension 3. The marked tree corresponds to the representation of an
instance.

June 11, 2018 18:21 112-IJFCS 1841005

Online Graph Coloring Against a Randomized Adversary 559

the order left-right; for an internal node, the left bipartition is the one that contains
the left vertex of the first leaf).

To each node v, we assign a number c(v) that is the number of colors the
algorithm uses in the corresponding subtree. To prove the theorem, we need to show
that

X

v is in row s

c(v) � 2s(3s+ 8)/4. (2)

Instead of proving (2) directly, we assign to a node v two other numbers, l(v) and
r(v), that represent the number of colors used in the left and the right bipartitions,
respectively. Let f(v) := l(v) + r(v); we prove for each row ` that

X

v is in row `

f(v) � 2s(3`+ 4)/2 = 2s(3`/2 + 2). (3)

Observe that

l(v) + r(v) + 2  2c(v),

as every color from c(v) can contribute to both l(v) and r(v) except for the two
vertices of level ` that can contribute only to one part as they are neighbors of all
the vertices in the other part. Since f(v) + 2  2c(v), (3) implies (2).

We prove (3) by induction on `. For nodes on row ` = 0, l(v) = r(v) = 1, and
the claim clearly holds. Consider now row `+ 1. The first ` rows form 2s�` butterfly
graphs, and consecutive pairs of them are joined in row `+ 1. Denote the nodes of
row ` by v1, . . . , v2s�1 , w1, . . . , w2s�1 as shown in Fig. 5.

Nodes vi, wi of row ` correspond to nodes v0i, w
0
i of row ` + 1. We prove the

following:

81  i  2s�1 : f(v0i) + f(w0
i) � f(vi) + f(wi) + 3. (4)

Fig. 5. construction of level ` = 3 from level ` = 2 in the butterfly graph.

June 11, 2018 18:21 112-IJFCS 1841005

560 E. Burjons et al.

Before proving (4), let us show how the induction step of (3) follows from it:

X

v is in row `+1

f(v) =
2s�1X

i=1

f(v0i) + f(w0
i)

�
2s�1X

i=1

(f(vi) + f(wi) + 3)

� 3 · 2s�1 +
X

v is in row `

f(v)

� 3 · 2s�1 + 2s(3`/2 + 2)

� 2s(3(`+ 1)/2 + 2).

It remains to show (4). Consider two nodes v = vi and w = wi. Let Lv, Rv, Lw, Rw

be the sets of colors used to color the left and right partitions of the subtrees of v
and w, respectively. Then the left partition of v0 contains all colors of Lv [Lw (plus
maybe one color used to color the corresponding vertex of level `+ 1), and the right
partition of v0 contains colors Rv [Rw. Similar observations can be made for w0.

The situation looks like in Fig. 6.
Let vL, vR, wL, wR be the colors used for the nodes of level `+ 1 in v0 and w0,

respectively, and let �vL , �vR , �wL , �wR be the indicator variables for the events
that vL, vR, wL, wR are not in Lv, Rv, Lw, Rw, respectively.

Observe that

f(v0)+f(w0) = |Lv[Lw[vL|+|Rv[Rw[vR|+|Lv[Rw[wL|+|Lw[Rv[wR|. (5)

Now, for any two sets A and B, |A [B| = |A| + |B \ A| and |A [B| = 1/2(|A| +
|B \A|) + 1/2(|B|+ |A \B|). Substituting in (5), we get three di↵erent expressions
for f(v0) + f(w0):

f(v0) + f(w0) = f(v) + f(w) + �vL + �vR + �wL + �wR

+1/2(|Lv \ Lw|+ |Lw \ Lv|+ |Rv \Rw|+ |Rw \Rv|

+ |Lv \Rw|+ |Rw \ Lv|+ |Lw \Rv|+ |Rv \ Lw|), (6)

Fig. 6. Diagram that shows the left and right partitions of the graph in straight and flipped states.

June 11, 2018 18:21 112-IJFCS 1841005

Online Graph Coloring Against a Randomized Adversary 561

f(v0) + f(w0) = f(v) + f(w) + �vL + �vR + �wL + �wR

+ |Lv \ Lw|+ |Rv \Rw|+ |Rw \ Lv|+ |Lw \Rv|, (7)

and

f(v0) + f(w0) = f(v) + f(w) + �vL + �vR + �wL + �wR

+ |Lw \ Lv|+ |Rw \Rv|+ |Lv \Rw|+ |Rv \ Lw|. (8)

The two vertices of level ` in v and w can contribute only to one part (either L
or R) as they are neighbors of all the vertices in the other part. Therefore, |Lv \Rv|,
|Rv \ Lv|, |Lw \Rw|, |Rw \ Lw| � 1.

Then, either |Lv \ Lw| � 1 or Lv ✓ Lw and |Rw \ Lv| � |Rw \ Lw| � 1, so
|Lv \ Lw|+ |Rw \ Lv| � 1.

Analogously, we can pair up |Lw \Lv| and |Rv \Lw| etc., and we get the following
set of restrictions:

|Lv \ Lw|+ |Rw \ Lv| � 1,

|Lw \ Lv|+ |Rv \ Lw| � 1,

|Rv \Rw|+ |Lw \Rv| � 1,

|Rw \Rv|+ |Lv \Rw| � 1.

(9)

Moreover, either |Lv \ Lw| � 1 or Lv ✓ Lw and |Lw \ Rv| � |Lv \ Rv| � 1, so
|Lv \ Lw|+ |Lw \Rv| � 1. Using the same argument on the di↵erent sets, we obtain
another set of restrictions:

|Lv \ Lw|+ |Lw \Rv| � 1,

|Lw \ Lv|+ |Lv \Rw| � 1,

|Rv \Rw|+ |Rw \ Lv| � 1,

|Rw \Rv|+ |Rv \ Lw| � 1.

(10)

Looking at the vertices of level `, we deduce that �vL = 1 if (Lv[Lw)\(Rv[Rw) =
;. However, (Lv[Lw)\(Rv[Rw) = ((Lv \Rv)\(Lv \Rw))[((Lw \Rv)\(Lw \Rw)).
So �vL = 1 if |Lv \Rv|+ |Lw \Rw| = 0. It follows that:

|Lv \Rw|+ |Lw \Rv|+ �vL � 1,

|Rw \ Lv|+ |Rv \ Lw|+ �vR � 1,

|Lv \ Lw|+ |Rw \Rv|+ �wL � 1,

|Lw \ Lv|+ |Rv \Rw|+ �wR � 1.

(11)

With all these restrictions observe the following cases:

(1) Lv = Lw

From this fact we directly deduce that |Lv \ Lw| = |Lw \ Lv| = 0.
Replacing these in (9), we get |Rw \ Lv| � 1, |Rv \ Lw| � 1.
And from (10) it follows that |Lw \Rv| � 1, |Lv \Rw| � 1.

June 11, 2018 18:21 112-IJFCS 1841005

562 E. Burjons et al.

(a) Rv = Rw

From this fact we directly deduce that |Rv \Rw| = |Rw \Rv| = 0.
Replacing these equalities and the previous ones in (11), we get �wL =
�wR = 1.
Replacing all of them in (6, 7 or 8), we obtain f(w0)+f(v0) � f(v)+f(w)+4.

(b) Rv (Rw

From this fact, we directly deduce that |Rv \Rw| = 0 and |Rw \Rv| � 1.
Replacing these equalities and the previous ones in (11), we get �wR = 1.
Replacing them in (8), we obtain f(w0) + f(v0) � f(v) + f(w) + 4.

(c) Rv * Rw and Rw * Rv

From this fact, we directly deduce that |Rv \Rw| � 1, |Rw \Rv| � 1.
Replacing them in (6, 7 or 8), we obtain f(w0) + f(v0) � f(v) + f(w) + 3.

(2) Lv (Lw

From this fact, we directly deduce that |Lv \ Lw| = 0 and |Lw \ Lv| � 1.
Replacing these in (9), we get |Rw \ Lv| � 1.
And from (10), we obtain |Lw \Rv| � 1.

(a) Rv (Rw

From this fact, we directly deduce that |Rv \Rw| = 0 and |Rw \Rv| � 1.
We cannot infer anything about |Rv \ Lw| and |Lv \Rw|, but we can make
the following observations:

• If |Rv \ Lw| = 0 and |Lv \Rw| = 0, then Rv ⇢ Lw and Lv ⇢ Rw. Recall
that Rv \Lv 6= ;, Lw \Rw 6= ;, Lv \Rv 6= ; and Rw \Lw 6= ;. Drawing a
Venn diagram of the sets and placing elements in the nonempty subsets, we
realize that |Rw \Rv| � 2, |Lw \Lv| � 2, |Rw \Lv| � 2, and |Lw \Rv| � 2.

Lw Rw

Lv

Rv

Replacing them in (6), we obtain f(w0) + f(v0) � f(v) + f(w) + 4.
• If either |Rv \ Lw| � 1 or |Lv \Rw| � 1 (or both), replacing them in (8),
we obtain f(w0) + f(v0) � f(v) + f(w) + 3.

(b) Rw (Rv

From this fact, we directly deduce that |Rv \Rw| � 1 and |Rw \Rv| = 0.

June 11, 2018 18:21 112-IJFCS 1841005

Online Graph Coloring Against a Randomized Adversary 563

Replacing these in (9), we get |Lv \Rw| � 1.
From (10), it follows that |Rv \ Lw| � 1.
And from (11), we get �wL = 1.
Replacing them in (8), we obtain f(w0) + f(v0) � f(v) + f(w) + 4.

(c) Rv * Rw and Rw * Rv

From this fact, we directly deduce that |Rv \Rw| � 1 and |Rw \Rv| � 1.
Replacing them in (7), we obtain f(w0) + f(v0) � f(v) + f(w) + 3.

(3) Lv * Lw and Lw * Lv

From this fact, we directly deduce that |Lv \ Lw| � 1 and |Lw \ Lv| � 1.

(a) Rv * Rw and Rw * Rv

From this fact, we directly deduce that |Rv \Rw| � 1 and |Rw \Rv| � 1.
We know from (11) that

|Lv \Rw|+ |Lw \Rv|+ �vL � 1.

|Rw \ Lv|+ |Rv \ Lw|+ �vR � 1.

Replacing them in (6), we obtain f(w0) + f(v0) � f(v) + f(w) + 3.

As all cases have been examined, (4) follows and with this the theorem holds.

3.2. k-chromatic graphs

We now extend the lower bound to k-chromatic graphs by using the same graph
structure described previously in the following way.

If k is even (k = 2m), each of the 2s instances consists of m identical copies of
one bipartite problem instance, namely I1, . . . , Im. Moreover, a vertex v`s in the level
` of the graph Is is adjacent to every vertex in It for all t 6= s.

The bipartite lower bound tells us that, to color each Is, any algorithm Alg
requires at least (3s + 8)/4 colors in expectation. Due to all the adjacencies in
between the bipartite instances, no colors may be repeated in Is, It for all s 6= t.
Adding up the expected number of colors for each Is, we get an expected lower
bound of k(3s+ 8)/8.

If k is odd (k = 2m+ 1), each instance consists of one copy of an even instance
I2m and an extra vertex in each level ` adjacent to all the vertices of I2m in the levels
 `. This makes the instances (2m+ 1)-chromatic and an extra color is required for
this vertex. And we obtain the following lower bound.

Theorem 4. Any algorithm Alg requires in expectation (taken over all k-chromatic
graphs from S for the worst-case set S) at least bk(3s+ 8)/8c colors.

4. Lower Bound for Minimalistic Online Algorithms

In order to prove matching lower bounds to the upper bounds proved in Sec. 2, we
restrict our attention to a natural subclass of so-called minimalistic online algorithms
having the following property: They never use a new color if the presented vertex

June 11, 2018 18:21 112-IJFCS 1841005

564 E. Burjons et al.

can be colored with one of the colors used up to the current step. We leave the
existence of a matching lower bound for unrestricted algorithms as an open problem.

4.1. Bipartite graphs

We start again with the bipartite case by proving the lower bound s + 2 on the
expected number of colors if the adversary has s random bits. We use the same
adversarial instances as in the previous section and we analyze the performance of
minimalistic online algorithms on them.

To get some intuition about the proof strategy, consider first the instances of
level 1 in Fig. 3. A minimalistic online algorithm Alg will receive first I1 and I2,
and will use 2 colors to color them. Without loss of generality, we can assume that
the left vertices in I1 and I2 receive one color c1 and the right ones receive c2. In
this case, in the straight example, Alg can color u with c2 and v with c1, however,
Alg will need two extra colors for u and v in the flipped case where both u and v
have c1 and c2 in neighboring vertices. On average, Alg will use 3 = (1 + 2) colors
to color a level 1 instance.

Observation 1. Let I(w) be an instance of level m with 1  m  s represented by
the vertex w in the butterfly graph. In any coloring of I(w) by a minimalistic online
algorithm Alg, either

l(w) = r(w) and |Lw \Rw| = |Rw \ Lw| = 1

or

|l(w)� r(w)| = 1.

Proof. The claim follows from the fact that Alg will only use another color if it is
not possible to use a previously used color. Without loss of generality, suppose that
the left partition needs a new color. If it is not possible to reuse a color for the top-
most vertex of L(w), this means that all the colors are used in both L(w) and R(w),
except maybe one that is only used in R(w), i.e., r(w) = l(w) or r(w) = l(w) + 1.
This means that either they share all the colors except for the top-most layer (where
each partition has one color of its own), or they share all the colors but one (in the
top layer of one side).

We call an online algorithm on the set S of instances symmetric if it uses the
same strategies to color two di↵erent copies of the same subgraph of level m  s
with respect to the order in which the vertices are presented.

Lemma 5. For each s 2 N, any minimalistic symmetric online algorithm Alg
working on the set of instances S uses at least s+ 2 colors on average.

June 11, 2018 18:21 112-IJFCS 1841005

Online Graph Coloring Against a Randomized Adversary 565

Proof. Let us prove this fact by induction on the number of random bits s. Let
s = 0. Then there is only 2s = 1 instance, which is K2, and any minimalistic
symmetric online algorithm Alg needs s+ 2 = 2 colors. Let us assume now that, on
any instance of level m  s, Alg uses m+ 2 colors on average.

In general, let us consider two instances of level s� 1, I(v) and I(w), that merge
together in the straight I(v0) and flipped I(w0) instances at random as described in
the butterfly graph. By induction, Alg uses (s� 1) + 2 = s+ 1 colors on average
on all of the possible 2s�1 instances of level s � 1. By symmetry, Alg has used
the same strategy for I(v) as for I(w), so either L(v) = L(w) and R(v) = R(w),
or L(v) = R(w) and R(v) = L(w). In both cases, either the straight or the flipped
instance will require two extra colors while the other will require none. This means
that any symmetric Alg will require on average one more color to cover the last
step, which concludes the proof.

We are not completely satisfied with forcing the online algorithms to be symmetric,
because this looks like a strong restriction. We can remove this requirement by using
the full power of the adversary. For a given minimalistic online algorithm Alg, the
adversary reorders the sequences of vertices in all I 2 S in such a way that Alg
behaves on every instance as if it were a symmetric algorithm. The adversary can do
this because it can select a hardest set of instances S0 in a worst-case manner with
respect to Alg. In particular, any instance I 2 S can be modified to force Alg to
behave symmetrically in S0 by presenting the vertices in the following order.

When presenting the vertices of level 0, the adversary presents first all the vertices
on the “left” that will be isolated at this point. Now, since Alg is minimalistic, it
will color all the vertices with the same color. Thus, when the vertices on the “right”
are presented, each connected to a vertex on the “left”, all of them will receive a
second color, the same for all of them. By induction, assume that level ` � 1 has
been presented and we have 2s�(`�1) copies of the same subgraph colored with the
same set of colors in the “left” and “right” partitions, L`�1 and R`�1, respectively
(the naming is arbitrary because the straight and flipped states will alter the tags of
left and right in some subgraphs). Now every vertex of level ` will be the neighbor
of two partitions, either L1

`�1 and L2
`�1 or R1

`�1 and R2
`�1 in the straight case, or

L1
`�1 and R2

`�1 or R1
`�1 and L2

`�1 in the flipped case. As all vertices of level ` will be
straight or flipped, we can present all the vertices of the left partition first, attached
to R1

`�1 and R2
`�1 (or R1

`�1 and L2
`�1 in the flipped case). If a new color is needed,

it will be needed for all of the left vertices of this level and the same color will be
used for all of them by minimality. If no new color is needed, only one color will be
available by minimality, so again no conflict arises. Hence, when the right vertices
are presented, all of them will receive the same color analogously and, since each
pair of vertices of level ` connects two of the subgraphs of level `� 1, we will obtain
2s�` copies of the same subgraph colored with the same set of colors. This finally
yields the following result.

June 11, 2018 18:21 112-IJFCS 1841005

566 E. Burjons et al.

Theorem 6. For each s 2 N, any minimalistic online algorithm working on the
set of instances S described in the previous section uses at least s + 2 colors on
average. ⇤

4.2. k-chromatic graphs

We now extend the lower bound to k-chromatic graphs in a similar way as in
Subsec. 3.2.

Creating more copies of an instance of level s and connecting them by adding
edges from each vertex of one copy to all vertices of all other copies, one gets the same
structure as in Subsec. 3.2, and using exactly the same argument as in Subsec. 3.2
and the lower bound for minimalistic online algorithms in bipartite graphs we obtain
the following theorem.

Theorem 7. For any k, s 2 N, and any minimalistic online coloring algorithm
Alg, there exists an adversary using s random bits to construct 2s problem instances
that are k-chromatic such that the competitive ratio of Alg is at least (s+ 2)/2.

⇤

5. Conclusions and Open Problems

In this paper, we presented upper and lower bounds within the same order of magni-
tude for the coloring problem against a randomized adversary. An idea to continue
this line of research would be to prove a matching lower bound for unrestricted
algorithms.

The original point of view on the model we have worked with is given by looking
into advice complexity. Advice complexity was introduced in [11] and revised in
[5, 12, 17] in order to measure the information content of online problems. The
question is how many bits about the future are necessary and su�cient for an online
algorithm in order to be able to solve a given problem in an optimal way or to
guarantee a concrete competitive ratio. Studying online problems from this point of
view by getting tradeo↵s between the solution quality and the size of advice provided,
one obtained a new instrument for measuring the hardness of online problems. Other
important conceptual contributions are the development of a powerful method for
proving lower bounds on the achievable competitive ratios of randomized online
algorithms and new insights on the potential power of information.

The investigations in a series of papers [1–4, 6, 10, 13, 14, 22, 23, 29] show very
di↵erent behaviors of the tradeo↵ between the solution quality measured by the
competitive ratio and the amount of information of the unknown future. Sometimes
this behavior looks really surprising. The typical patterns occurring for di↵erent
problems are the following ones.

(1) The achievable competitive ratio improves continuously with the number of
advice bits provided. Sometimes very quickly, sometimes very slowly.

June 11, 2018 18:21 112-IJFCS 1841005

Online Graph Coloring Against a Randomized Adversary 567

(2) The number of advice bits provided does not help at all until a special threshold
value is reached. After crossing this threshold, the quality of solutions may jump
to a significantly better competitive ratio.

(3) The pattern can be a mix of (1) and (2), depending on the interval of the number
of advice bits o↵ered.

In the classical advice model, there are three players, namely an online algorithm,
the adversary, and the advisor (oracle). As usual in the classical model, the adversary
knows everything about a given online algorithm and constructs the hardest problem
instance for it with respect to the achievable competitive ratio. The advisor in
the extended game is very powerful, it knows everything about the future, i. e.,
it knows the whole input instance that will be presented request by request. The
advisor writes its advice on the oracle tape, and the number of bits read by the
online algorithm from the tape is the advice complexity on this problem instance.
The advice complexity of an online algorithm is in general a function of the input
size defined in a worst-case manner as the maximum over all inputs of the same
size.

The model we propose is now the following. The adversary constructs a set of
2s instances S, but the algorithm does not know anything about S. The advisor
provides an advice tape to the algorithm with some information about S. However,
the advisor does not know the outcome of the random selection (the random bits of
the adversary), so it will not be able to provide information on the real input, only
on the input set.

The goal would be to obtain results on the tradeo↵ between the advice complexity
and the competitive ratio to see whether the behavior is similar to any of those
observed in the classical online model. The results of this paper are only a starting
point for this research, because they deal only with the extremal situation when the
full information about S is o↵ered to the algorithm.

Acknowledgments

This work has been partially supported by the SNF grant 200021-146372 and the
Spanish government under project TEC2013-47960-C4-1-P. An extended abstract
of this paper was published at SOFSEM 2016. Rastislav Královič was partially
supported by grant VEGA 2/0165/16.

References

[1] Kfir Barhum, Hans-Joachim Böckenhauer, Michal Forǐsek, Heidi Gebauer, Juraj
Hromkovič, Sacha Krug, Jasmin Smula, and Björn Ste↵en. On the power of advice and
randomization for the disjoint path allocation problem. In Viliam Ge↵ert, Bart Preneel,
Branislav Rovan, Július Štuller, and A. Min Tjoa, editors, SOFSEM 2014: Theory and
Practice of Computer Science: 40th International Conference on Current Trends in
Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 26-29,
2014, Proceedings, Springer International Publishing, Cham, 2014, pages 89–101.

June 11, 2018 18:21 112-IJFCS 1841005

568 E. Burjons et al.

[2] Maria Paola Bianchi, Hans-Joachim Böckenhauer, Juraj Hromkovič, and Lucia Keller.
Online coloring of bipartite graphs with and without advice. Algorithmica, 70(1):92–
111, Sep 2014.

[3] Hans-Joachim Böckenhauer, Juraj Hromkovič, Dennis Komm, Sacha Krug, Jasmin
Smula, and Andreas Sprock. The string guessing problem as a method to prove lower
bounds on the advice complexity. Theoretical Computer Science, 554(Supplement
C):95–108, 2014. Computing and Combinatorics.

[4] Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, and Richard Královič.
On the advice complexity of the k-server problem. Journal of Computer and System
Sciences, 86(Supplement C):159–170, 2017.

[5] Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and
Tobias Mömke. On the advice complexity of online problems. In Yingfei Dong, Ding-
Zhu Du, and Oscar Ibarra, editors, Algorithms and Computation: 20th International
Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings,
pages 331–340, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[6] Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Rossmanith.
The online knapsack problem: Advice and randomization. Theoretical Computer
Science, 527(Supplement C):61–72, 2014.

[7] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
(Cambridge University Press, 1998).

[8] Hajo J. Broersma, Agostino Capponi, and Daniël Paulusma. A new algorithm for
on-line coloring bipartite graphs. SIAM Journal on Discrete Mathematics, 22(1):72–91,
2008.

[9] Stefan Dobrev, Juraj Hromkovič, Dennis Komm, Richard Královič, Rastislav Královič,
and Tobias Mömke. The complexity of paging against a probabilistic adversary. In
Rūsiņš Mārtiņš Freivalds, Gregor Engels, and Barbara Catania, editors, SOFSEM 2016:
Theory and Practice of Computer Science: 42nd International Conference on Current
Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic,
January 23-28, 2016, Proceedings, pages 265–276, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[10] Stefan Dobrev, Rastislav Královič, and Euripides Markou. Online graph exploration
with advice. In Guy Even and Magnús M. Halldórsson, editors, Structural Information
and Communication Complexity: 19th International Colloquium, SIROCCO 2012,
Reykjavik, Iceland, June 30-July 2, 2012, Revised Selected Papers, pages 267–278,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[11] Stefan Dobrev, Rastislav Královič, and Dana Pardubská. Measuring the problem-
relevant information in input. RAIRO — Theoretical Informatics and Applications,
43(3):585613, 2009.

[12] Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. Online computation
with advice. Theoretical Computer Science, 412(24):2642–2656, 2011. Selected Papers
from 36th International Colloquium on Automata, Languages and Programming
(ICALP 2009).

[13] Michal Forǐsek, Lucia Keller, and Monika Steinová. Advice complexity of online
coloring for paths. In Adrian-Horia Dediu and Carlos Mart́ın-Vide, editors, Language
and Automata Theory and Applications: 6th International Conference, LATA 2012,
A Coruña, Spain, March 5-9, 2012. Proceedings, pages 228–239, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[14] Heidi Gebauer, Dennis Komm, Rastislav Královič, Richard Královič, and Jasmin
Smula. Disjoint path allocation with sublinear advice. In Dachuan Xu, Donglei Du, and
Dingzhu Du, editors, Computing and Combinatorics: 21st International Conference,

June 11, 2018 18:21 112-IJFCS 1841005

Online Graph Coloring Against a Randomized Adversary 569

COCOON 2015, Beijing, China, August 4-6, 2015, Proceedings, pages 417–429, Cham,
2015. Springer International Publishing.

[15] Andras Gyárfás, Zoltan Király, and Jenö Lehel. On-line competitive coloring algorithms.
Technical Report TR-9703-1, 1997.

[16] Andras Gyárfás and Jenö Lehel. On-line and first fit colorings of graphs. Journal of
Graph Theory, 12(2):217–227, 1988.

[17] Juraj Hromkovič, Rastislav Královič, and Richard Královič. Information complexity
of online problems. In Petr Hliněný and Antońın Kučera, editors, Mathematical Foun-
dations of Computer Science 2010: 35th International Symposium, MFCS 2010, Brno,
Czech Republic, August 23-27, 2010. Proceedings, pages 24–36, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[18] Lucia Keller. Complexity of Optimization Problems: Advice and Approximation. PhD
thesis, ETH Zürich, 2014.

[19] H. A. Kierstead and W. T. Trotter. On-line graph coloring. On-line Algorithms,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 7:85–92,
1992.

[20] H.A. Kierstead. Chapter 18 recursive and on-line graph coloring. In Yu. L. Ershov, S.S.
Goncharov, A. Nerode, J.B. Remmel, and V.W. Marek, editors, Handbook of Recursive
Mathematics, volume 139 of Studies in Logic and the Foundations of Mathematics,
pages 1233–1269. Elsevier, 1998.

[21] Dennis Komm. An Introduction to Online Computation - Determinism, Randomization,
Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016.

[22] Dennis Komm and Richard Královič. Advice complexity and barely random algorithms.
RAIRO — Theor. Inf. and Applic., 45(2):249–267, 2011.

[23] Dennis Komm, Richard Královič, and Tobias Mömke. On the advice complexity of
the set cover problem. In CSR, Volume 7353 of Lecture Notes in Computer Science,
pages 241–252. Springer, 2012.

[24] Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive analysis. SIAM
J. Comput., 30(1):300–317, 2000.

[25] László Lovász, Michael Saks, and W.T. Trotter. An on-line graph coloring algorithm
with sublinear performance ratio. Discrete Mathematics, 75(1):319–325, 1989.

[26] P. Raghavan. A statistical adversary for on-line algorithms. On-line Algorithms,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages
79–83, 1991.

[27] Jasmin Smula. Information Content of Online Problems. PhD thesis, ETH Zürich,
2015.

[28] Sundar Vishwanathan. Randomized online graph coloring. Journal of Algorithms,
13(4):657–669, 1992.

[29] David Wehner. Advice complexity of fine-grained job shop scheduling. In Vangelis Th.
Paschos and Peter Widmayer, editors, Algorithms and Complexity: 9th International
Conference, CIAC 2015, Paris, France, May 20-22, 2015. Proceedings, pages 416–428,
Cham, 2015. Springer International Publishing.

[30] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September
2001.

