66,573 research outputs found

    Variational mode decomposition: mode determination method for rotating machinery diagnosis

    Get PDF
    Variational mode decomposition (VMD) is a modern decomposition method used for many engineering monitoring and diagnosis recently, which replaced traditional empirical mode decomposition (EMD) method. However, the performance of VMD method specifically depends on the parameter that need to pre-determine for VMD method especially the mode number. This paper proposed a mode determination method using signal difference average (SDA) to determine the mode number for the VMD method by taking the advantages of similarities concept between sum of variational mode functions (VMFs) and the input signals. Online high-speed gear and bearing fault data were used to validate the performance of the proposed method. The diagnosis result using frequency spectrum has been compared with traditional EMD method and the proposed method has been proved to be able to provide an accurate number of mode for the VMD method effectively for rotating machinery applications

    A Personal Book Recommendation System Based on Brainwave Analysis

    Get PDF
    The recommendation system collects and analyzes users’ preferences, and recommend information or commodities to users automatically. In this research, we developed an online book recommendation system based on users’ brainwave information. We collected users’ brainwave information by electroencephalography (EEG) device, and applied empirical mode decomposition (EMD) to decompose the brainwave signal into intrinsic mode functions (IMFs). A back-propagation neural networks (BPNN) model was developed to portrait the user’s brainwave-preference correlations based on IMFs of brainwave signals, and it was applied to design and develop the recommendation system. This research has highlighted a research direction about human computer interaction (HCI) design about recommendation system

    Sensor-based Nonlinear and Nonstationary Dynaimc Analysis of Online Structural Health Monitoring

    Get PDF
    This dissertation focuses on robust online Structural Health Monitoring (SHM) framework for civil engineering structures. The proposed framework improves the diagnostic and prognostic schemes for damage-state awareness and structural life prediction in civil engineering structures. The underlying research achieves three main objectives, namely, (1) sensor placement optimization using partial differential equation modeling and Fisher information matrix, (2) structural damage detection using quasi-recursive correlation dimension (QRCD), and (3) structural damage prediction using online empirical mode decomposition (EMD).The research methodology includes three research tasks: Firstly, to formulate the optimal criteria for the sensor placement optimization damage detection problem based upon a partial differential equation (PDE) analytical model. The PDE model is derived and then validated through experimental results using correlation analysis. Secondly, to develop a novel quasi-recursive correlation dimension method for structural damage detection. The QRCD algorithm is integrated with an attractor analysis and overlapping windowing technique. Thirdly, to design an online structural damage prediction method based on empirical mode decomposition. The proposed SHM prediction scheme consists of two steps: prediction based change point detection using Hilbert instantaneous phase, and damage severity prediction using the energy index of the most representative intrinsic mode function (IMF).Study results show that; (1) the proposed optimal sensor placement method leads to an optimal spatial location for a collection of sensors, which are sensitive to structural damage, (2) the proposed damage detection algorithm can significantly alleviate the complexity of computation for correlation dimension to approximate O(N), making the online monitoring of nonlinear/nonstationary processes more applicable and efficient; and (3) the proposed empirical mode decomposition method for online damage prediction overcomes the boundary effects of the sifting process, and it has significant prediction accuracy improvement (greater than 30%) over other commonly used prediction techniques.Industrial Engineering & Managemen

    To Design and Implement a Recommender System based on Brainwave: Applying Empirical Model Decomposition (EMD) and Neural Networks

    Get PDF
    Recommender systems collect and analyze users’ preferences to help users overcome information overload and make their decisions. In this research, we develop an online book recommender system based on users’ brainwave information. We collect users’ brainwave data by utilizing electroencephalography (EEG) device and apply empirical mode decomposition (EMD) to decompose the brainwave signals into intrinsic mode functions (IMFs). We propose a back-propagation neural networks (BPNN) model to portrait the user’s brainwave preference correlations based on IMFs of brainwave signals, thereby designing and developing the book recommender system. The experimental results show that the recommender system combined with the brainwave analysis can improve accuracy significantly. This research has highlighted a future direction for research and development on human-computer interaction (HCI) design and recommender system

    Variational mode decomposition: mode determination method for rotating machinery diagnosis

    Get PDF
    Variational mode decomposition (VMD) is a modern decomposition method used for many engineering monitoring and diagnosis recently, which replaced traditional empirical mode decomposition (EMD) method. However, the performance of VMD method specifically depends on the parameter that need to pre-determine for VMD method especially the mode number. This paper proposed a mode determination method using signal difference average (SDA) to determine the mode number for the VMD method by taking the advantages of similarities concept between sum of variational mode functions (VMFs) and the input signals. Online high-speed gear and bearing fault data were used to validate the performance of the proposed method. The diagnosis result using frequency spectrum has been compared with traditional EMD method and the proposed method has been proved to be able to provide an accurate number of mode for the VMD method effectively for rotating machinery applications

    An approach to health assessment for tools in milling machine

    Get PDF
    Tool health is identified as the most significant index of the machining process, which directly influences the surface quality of work-piece. An online health monitoring for tools has become more crucial in manufacturing industries. In this study, a health assessment approach for tools in milling machine is presented. First, the vibration signal of tools is decomposed into a finite number of components called intrinsic mode function (IMF) by the empirical mode decomposition (EMD), which are regarded as the initial feature vector matrices. Second, Singular value decomposition (SVD) is used to extract the singular values of the matrices, which forms the feature vector for health assessment. Third, a Self-organizing mapping (SOM) network is introduced to map the extracted feature vectors into Minimum Quantization Error (MQE), and the Taguchi system is then employed to reduce the redundant features. Finally, the MQE is normalized into a confidence value (CV), representing the health status of the tools. A case study demonstrates that the proposed approach can effectively realize the health assessment for tools in milling machine by monitoring of the vibration signals

    Algorithmic options for joint time-frequency analysis in structural dynamics applications

    Get PDF
    The purpose of this paper is to present recent research efforts by the authors supporting the superiority of joint time-frequency analysis over the traditional Fourier transform in the study of non-stationary signals commonly encountered in the fields of earthquake engineering, and structural dynamics. In this respect, three distinct signal processing techniques appropriate for the representation of signals in the time-frequency plane are considered. Namely, the harmonic wavelet transform, the adaptive chirplet decomposition, and the empirical mode decomposition, are utilized to analyze certain seismic accelerograms, and structural response records. Numerical examples associated with the inelastic dynamic response of a seismically-excited 3-story benchmark steel-frame building are included to show how the mean-instantaneous-frequency, as derived by the aforementioned techniques, can be used as an indicator of global structural damage
    • 

    corecore