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Abstract. Variational mode decomposition (VMD) is a modern decomposition method used for 
many engineering monitoring and diagnosis recently, which replaced traditional empirical mode 
decomposition (EMD) method. However, the performance of VMD method specifically depends 
on the parameter that need to pre-determine for VMD method especially the mode number. This 
paper proposed a mode determination method using signal difference average (SDA) to determine 
the mode number for the VMD method by taking the advantages of similarities concept between 
sum of variational mode functions (VMFs) and the input signals. Online high-speed gear and 
bearing fault data were used to validate the performance of the proposed method. The diagnosis 
result using frequency spectrum has been compared with traditional EMD method and the 
proposed method has been proved to be able to provide an accurate number of mode for the VMD 
method effectively for rotating machinery applications. 
Keywords: VMD, diagnosis, gear, bearing, vibration signal. 

1. Introduction 

Signal decomposition method helps to reduce signal complexity and improve the efficiency of 
rotating machinery diagnosis. Empirical mode decomposition (EMD), developed by Huang et al. 
is a well-known decomposition method used for many rotating machinery diagnoses over decades 
[1-4]. However, this method suffers in decomposition process due to mode mixing and end effect 
[5, 6]. In later years, some improvement methods have been developed for EMD such as ensemble 
EMD (EEMD), complementary EEMD (CEEMD), partial EEMD (PEEMD) and succinct and fast 
EMD (SF-EMD) which helps to solve mode mixing and end effect problem by taking advantages 
of noise addition, permutation entropy, sifting stop criterion and window width selection [5-8]. 
But, the improvement method mainly solves the end effect and mode mixing problem for some 
signals but not for all signals. 

Signal decomposition method is one of the most important element in rotating machinery 
diagnosis using the vibration signal. A new idea of vibration suppression of rotating machinery 
application has been proposed by Zhao et al. which helps to reduce system complexity [9]. Besides 
that, there are many diagnosis strategies have been proposed recently in order to provide better 
diagnosis result. Zhao et al. has proposed EEMD, multi-scale fuzzy entropy and SVM and 
W. Deng has proposed EMD, fuzzy entropies and improved LS-SVM for rotating machinery 
diagnosis [10, 11]. Recently, a new signal decomposition method called variational mode 
decomposition (VMD) has been developed and proposed by Dragomiretskiy and Zosso which can 
surpasses EMD and EEMD method in rotating machinery diagnosis [12-15]. VMD helps to solve 
mode mixing problem in decomposition result by the shift from sifting process approach to 
alternating direction method of multipliers approach [16]. The founder of VMD also pointed out 
the importance of determining the number of mode for VMD method to avoid under and over 
decompose problem [16]. In current practice, most researchers used peak searching method on 
frequency spectrum to estimate the mode number for VMD method [14, 15, 17]. Some researchers 
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also used an optimization method to solve the VMD problem such as particle swarm optimization 
(PSO) and artificial fish swarm algorithm (AFSA) [18, 19]. However, these approaches may cause 
a lot of computational time. Some other optimization may be considered to reduce computational 
time such as novel two-stage hybrid swarm intelligence optimization algorithm (GA-PSO-ACO), 
chaotic ant colony optimization (CACO), improved adaptive particle swarm optimization 
(DOADAPO) and genetic and ant colony adaptive collaborative optimization (MGACACO) 
[20-23]. The concept of system technical state evaluation point of view to find operational 
parameters also may considered [24]. Nonetheless, the pre-determine the number of the mode is 
still considered as an open problem for VMD method [16, 17]. 

Hence, this paper proposed a mode determination method using similarities approach between 
VMFs and input signal. The similarities are calculated by using the SDA method. Firstly, the 
maximum possible number of mode for a signal is estimated for VMD decomposition. Then, SDA 
method is used to verify the similarities between VMFs and the input signal for each mode number 
and the SDA plot is produced for each signal. The smallest to the steady state value of SDA method 
was selected as the number of mode for an input signal. The proposed method may provide a good 
alternative solution for current method used to determine the mode number for the VMD method 
as it is simple, easy to implement, less computational and it also can provide an accurate mode 
number for the VMD method. 

2. Variational mode decomposition (VMD) 

VMD is a novel new, fully intrinsic and adaptive and quasi-orthogonal decomposition method, 
where the modes are extracted non-recursively [16]. It determines the relevant band adaptively 
and estimates correspond modes concurrently that will properly balance the errors between them. 
VMD method relies on three main concepts which are Wiener filtering, Hilbert transform and 
analytic signal, and frequency mixing and heterodyne demodulation. It decomposes an input 
signal into its principal modes called variational mode functions (VMFs) that reproducing the 
input signal with different sparsity properties. For each VMFs, it has limited bandwidth and 
assumed to be mostly compact around centre pulsation that been determined during the 
decomposition process. VMD method also adopted alternate direction method of multipliers 
(ADMM) for reconstruction process instead of using sifting process from traditional 
decomposition method. Sparsity prior of each mode is chosen as bandwidth in the spectral domain 
and can be accessed by the following scheme for each mode: 

• Compute associated analytic signal by means of the Hilbert transform in order to obtain a 
unilateral frequency spectrum. 

• Shift frequency spectrum of mode to baseband by mixing the exponential tune to the 
respective estimated centre frequency. 

• The bandwidth estimated through the Gaussian smoothness of the demodulated signal. 
VMD is a good method for sampling and noise of the signal. A tight relation with Wiener filter 

makes this method has an optimal ability to deal with noise in the signal [16]. VMD method also 
helps to solve current decomposition methods limitation such as lacking mathematical theory, 
recursive sifting process which not allows for backward error correction, hard-band limits, the 
requirement to predetermine filter bank boundaries and sensitive to noise. VMD has shown it 
superiority in a wide range of application such as machinery diagnosis, a speech signal, crude oil 
forecasting, wind speed forecasting and image processing due to its advantages over another 
decomposition method [14, 25-29]. VMD was known as a unique method with the unique theory 
behind this method. However, the performance of VMD method totally depends on the 
predetermined parameter especially the number of modes. An inaccurate number of mode will 
result in over and under decompose that will affect the diagnosis result. Therefore, the mode 
determination method proposed in this paper will help to solve this problem as discussed in 
section 3. The theory of decomposition procedure of VMD method described as below. 

Step 1. Initialize ሼ𝑢ො௞ଵሽ, ሼ𝑢ො௞ଵሽ, 𝜆ଵ, 𝑛 ⟵ 0. 
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Step 2. The value of 𝑢௞, 𝜔௞, and 𝜆 is updated according to the following formula: 

𝑢ො௞௡ାଵ ⟵ 𝑓መ(𝜔) − ∑ 𝑢ො௜௡ାଵ௜ழ௞ (𝜔) − ∑ 𝑢ො௜௡௜வ௞ (𝜔) + 𝜆መ௡(𝜔)21 + 2𝛼(𝜔 − 𝜔௞௡)ଶ  , (1a) 

𝜔௞௡ାଵ ⟵ ׬ 𝜔ାஶ଴ |𝑢ො௞௡ାଵ(𝜔)|ଶ𝑑𝜔׬ |𝑢ො௞௡ାଵ(𝜔)|ଶ𝑑𝜔ାஶ଴ , (1b) 

𝜆መ௡ାଵ(𝜔) ⟵ 𝜆መ௡(𝜔) + 𝜏 ൥𝑓መ(𝜔) − ෍ 𝑢ො௞௡ାଵ(𝜔)௞ ൩. (1c) 

Step 3. Repeat the iterative process from 2 until the function is converge based on convergence 
criteria satisfied the condition of ∑ ‖𝑢ො௞௡ାଵ − 𝑢ො௞௡‖ଶଶ/‖𝑢ො௞௡‖ଶଶ௞ < 𝜖 , where 𝜖  is a given accuracy 
requirement. 

3. The proposed mode determination method 

3.1. Similarities concept between sum of VMFs and input signal 

Decomposition method is a tool that separates an input signal into a set of sub-signals that will 
have its own instantaneous frequency. VMD method decomposes an input signal into sets of 
VMFs where each VMF own a unique property. Each VMF owns certain frequency range which 
is derived from the input signal. For an example, the frequency spectrum of clean gear vibration 
signal mainly consists of two or three major peaks that represent the operating speed frequency 
and gear mesh frequencies. This signal will have either two or three VMFs by using VMD method. 
The similarities concept can be described as a relationship between VMFs and input signal. Perfect 
decomposition result will have 100 percent similarities between VMFs and input signal which is 
impossible to achieve due to mathematical slack during the calculation process. Therefore, the 
highest possible value of similarities indicates that the decomposition result is accurate, and the 
information of input signal is not lost during the decomposition result. 

Three simulated signals described in Eq. (2), Fig. 1 and Fig. 2 have been used in order to 
review the similarities concept visually. These three signals are added together to form a single 
signal that will be used as an input signal for VMD method as shown in Fig. 1. Then, three mode 
number has been predetermined for VMD decomposition. Other VMD parameter has been set to 
the standard value as discussed in [14, 16]. Fig. 3 shows the decomposition result for the simulated 
signal in Fig. 2. Then, all the VMFs in Fig. 3 is added up to construct signal shown in Fig. 4. 
Visually, there is no difference between the input signal and reconstructed signal due to clean 
signal, accurate mode number and superiority of VMD method: 𝑆(𝑡) = 𝑠ଵ(𝑡) + 𝑠ଶ(𝑡) + 𝑠ଷ(𝑡), (2a) 𝑠ଵ(𝑡) = 3 sin(2𝜋5𝑡), (2b) 𝑠ଶ(𝑡) = 0.4 sin(2𝜋200𝑡), (2c) 𝑠ଷ(𝑡) = 1.2 sin(2𝜋50𝑡). (2d) 

3.2. Signal difference average (SDA) for mode determination 

In order to validate the similarities between VMFs and input signal, signal difference average 
method (SDA) has been used. Signal difference average method (SDA) calculates the difference 
between the signal for each data point within the signals itself. The smallest value of SDA 
indicates that the signals have high similarities whereas the large value of SDA indicates that there 
is a lot of information loss from the signal. Eq. (3) described SDA method where 𝑦ூெி௦ is a sum 
of VMFS, 𝑦ௌ is an input signal and 𝑛 is the data point in the signals. Therefore, the SDA value 
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between reconstructed signal in Fig. 5 and input simulated signal in Fig. 3 is 7.9814×10-17 which 
is very small that indicates the similarities is very high: 

𝑆𝐷𝐴 = 1𝑁 ෍(𝑦ூெி௦ − 𝑦ௌ)௡
௜ୀଵ  (3) 

The theoretical framework of the proposed automated mode determination method is shown 
in Fig. 5. Initially, the number of the mode is set from 1 until the maximum possible number of 
mode such as 10-20 and in some cases, up until 30. It depends on the signal conditions. For most 
rotating machinery cases, the maximum possible value of mode is set at 15-20 which is based on 
knowledge of previous decomposition method Research's [30-33]. Then, VMD method will be 
run for each mode and produce VMFs for each set of mode. For each mode, all the VMFs will be 
added up to form a single signal which will be compared using SDA method with the input signal. 
Then, the smaller value to the steady state of SDA will be selected as mode number for the input 
signal. Simulated signal with Gaussian white noise is used to validate the proposed method. 

 
Fig. 1. Three simulated signals 

 
a) Simulated signals 

 
b) Frequency spectrum 

Fig. 2. Input simulated signals and it frequency spectrum 

 
Fig. 3. VMD decomposition result for simulated signals 
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a) Sum of VMFs 

 
b) Frequency spectrum 

Fig. 4. Sum of VMFs and it frequency spectrum 

 
Fig. 5. Proposed mode determination method framework 
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noise added to the signal. Others VMD parameters are set to a standard value based on [14, 16]. 
Then, the proposed method is run for the simulated signal shown in Fig. 6 and the result is shown 
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The VMD decomposition results are shown in Fig. 8. The first three VMFs is the three-simulated 
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signal. Now, we will choose the 3, 5 and 6 as mode number and the VMD decomposition result 
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shown in Fig. 9. When the mode is 3, the decomposition result is inaccurate due to none of the 
VMFs produce represent the three-simulated signal shown in Fig. 1. When the mode number is 5 
and 6, the first three VMFs is the three-simulated signal shown in Fig. 1 and the others VMFs is a 
noise from the signal itself. This is expected due to smallest SDA value for this mode number. 
Therefore, we can conclude that the mode number can be selected from the smallest SDA value 
to steady state value which is 4 to 10 for this signal. But, the best practice will be the first smallest 
value of SDA selected as the mode number to avoid any redundancies after decomposition result 
and save computational time. 

 
a) Simulated signal 

 
b) Frequency spectrum 

Fig. 6. Simulated signal with Gaussian white noise 

 
Fig. 7. SDA plot between sum of VMFs and input signal 

 
Fig. 8. VMD decomposition result for simulated signal when the mode is 4 
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a) 

 
b) 

 
c) 

Fig. 9. VMD decomposition result with a different number of mode:  
a) mode is 5, b) mode is 6, c) mode is 3 

4.1. Case 1: Wind turbine gearbox diagnosis 

The wind turbine was used to convert non-polluting and renewable wind energy into  
electricity. Due to the long operation and harsh working environment, wind turbines always 
subject to failures such as wear as shown in Fig. 10. It is very important for any wind energy 
company to diagnose their asset frequently in order to avoid any fatalities. Recently, VMD method 
offers a good diagnosis for many rotating machineries that will be useful for many industries 
including wind energy company [14, 36, 37]. Online vibration data has been used for this study. 
The data was taken from Vestas V90 Hansen gearbox. The power rating for the gearbox is 3 MW 
with a nominal speed of 1800 rpm (30 Hz). Vibration data was taken in a radial direction which 
places on the gearbox casing. The sampling rate is 97656 Hz with a recording time of 6 seconds. 
The gear has 32 teeth with gear mesh frequency of 960 Hz. The vibration datasets have been taken 
in two different conditions which is healthy condition and faulty condition. The healthy and faulty 
vibration signal is shown in Fig. 11.  

 
Fig. 10. Vestas V90 Hansen gearbox fault condition 
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The healthy and faulty signal were decomposed into sets of VMFs by using VMD method. 
However, the exact number of the mode is unknown for both signals. It is very important to have 
an accurate number of mode for each signal in order to have a good and accurate diagnosis result. 
Therefore, the proposed mode determination method has been applied to both signals in order to 
determine its mode number. By following the flow in Fig. 5, the smallest value of SDA to steady 
state is selected as the mode number for each signal. Therefore, the number of mode for healthy 
signal is 7 and the number of mode for the faulty signal is 11. The result is shown in Fig. 12 and 
Fig. 13 respectively. It is expected for the faulty signal to have more mode number due to signal 
complexness. Then, both numbers of mode was initiate in VMD method for decomposition 
process. Others VMD parameters are set to a standard value based on recommended parameter 
value [14, 16]. The decomposition result of the healthy signal is shows in Fig. 14 with its 
corresponding FFT in Fig. 15. For faulty signal, the result is shows in Fig. 16 with its 
corresponding FFT in Fig. 17.  

 
Fig. 11. Healthy and faulty vibration data of wind turbine gearbox 

 
Fig. 12. SDA plot for healthy signal 

 
Fig. 13. SDA plot for faulty signal 
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for diagnosis. Other VMFs will be excluded as it has higher frequency range and it is a noise from 
the signal itself. Then, the same faulty signal has been decomposed using EMD method for 
comparison purpose. The faulty signal has been decomposed into 13 modes which contain signal 
itself as the first mode, 11 IMFs and its trend as the last mode as shown in Fig. 20. In order to 
select most significance IMFs, we use the correlation coefficient method as an indicator as shown 
in Fig. 21 [38]. First three IMFs with high correlation value are selected for gearbox diagnosis as 
there are only IMF1, IMF3 and IMF5 have the correlation value higher than 0.5. Other IMFs are 
excluded as it is not significance for the faulty signal. Hence, the reconstructed signal from EMD 
is shows in Fig. 22 with its corresponding FFT. 

 
Fig. 14. VMD decomposition result for the healthy signal 

 
Fig. 15. FFT of VMFs for the healthy signal 
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missing. The problem for this to happen is the high noise contaminated in the signal where the 
EMD method unable to decompose the signal effectively. Hence, it may lead to wrong diagnosis 
result which can caused failure to occur during operation. Therefore, we can conclude that VMD 
method provides more better diagnosis result by having a good and accurate pre-determined mode 
number. The proposed automated mode determination method also plays an important role to 
ensure the VMD method capable to provide an accurate diagnosis result by providing the accurate 
mode number. 

 
Fig. 16. VMD decomposition for the faulty signal 

 
Fig. 17. FFT of VMFs for the faulty signal 
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a) Combined signal of IMF1 and IMF2 

 
b) FFT of combine signal 

Fig. 18. Combined signal of VMF1 and VMF2 with its FFT for the healthy signal 

 
a) Combined signal of IMF1 and IMF2 

 
b) FFT of combine signal 

Fig. 19. Combined signal of VMF1 and VMF2 with its FFT for the faulty signal 

 
Fig. 20. EMD decomposition of the faulty signal, highlighted is the signal itself and the trend 

4.2. Case 2: Bearing outer race fault 

This dataset has been taken from Spectra Quest Machinery Fault Simulator in the radial 
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direction. This dataset was downloaded online from Acoustic and Vibration Database. The sensor 
used for this measurement is an accelerometer which places on the bearing housing of the 
simulator. The sampling frequency is 51200 Hz with recording length of 10 seconds. The 
rotational speed of the shaft is 29 Hz. Others information for the bearing was described in Table 1. 
VMD method has been used to decompose outer race fault signal. Before the decomposition 
process, the proposed automation mode determination method has been used to determine the 
number of modes. Fig. 23 shows the result which indicates that the number of mode for outer race 
signal need to be set at 4. Fig. 24 shows the decomposition result of VMD method with its FFT 
shown in Fig. 25. Then, the outer race fault signal also has been decomposed using EMD method 
as shown in Fig. 26 with its corresponding FFT in Fig. 27.  

 
Fig. 21. IMFs selection for the EMD method 

 
a) Combined signal 

 
b) FFT of combine signal 

Fig. 22. Combined signal of IMF3, IMF4 and IMF5 of EMD decomposition 

 
Fig. 23. SDA for outer race fault signal 

Table 1. Bearing information 
Name Information 

Number of balls 9 
Ball diameter 7.9375 mm 
Pitch diameter 38.50 mm 

Cage frequency (FTF) 0.359×(shaft speed) 
Ball pass frequency outer (BPFO) 3.572×(shaft speed) 

Ball spin frequency (BSF) 2.320×(shaft speed) 
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Fig. 24. VMFs of VMD method for outer race fault signal 

 
Fig. 25. FFT of VMFs for outer race fault using VMD method 

 
Fig. 26. EMD decomposition result for outer race fault 

The outer race fault signal can be considered as a clean signal which results to perfect 
decomposition result by VMD method as no mode represent the noise. This is an expected result 
for experimental using Spectra Quest Machinery Fault Simulator. In order to diagnose the bearing, 
the selected VMF and IMF has been used to reconstruct the outer race fault signal. For VMD 
method, the first two VMF have been selected due to a frequency range of 0 Hz to 500 Hz as the 
most required frequency is around this range. The reconstructed signal is shown in Fig. 29 with 
its corresponding FFT. For the EMD method, IMF2, IMF3 and IMF4 have been selected in order 
to reconstruct the outer race fault signal.  
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Fig. 27. FFT of IMFs for outer race fault 

 
Fig. 28. Correlation coefficient for outer race fault 

 
Fig. 29. Reconstructed signal of outer race fault 
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The reconstructed signal is shown in Fig. 30 with its corresponding FFT. By comparing the 
VMD and EMD result, the VMD result shows more dominant peaks for FTF, BSF and BPFO. 
This is due to the capabilities of VMD method to avoid information losses during the 
decomposition process. Accuracy in determining the number of modes also influence the 
diagnosis result as the accurate decomposition will reduce the information losses during the 
decomposition process.  

 
Fig. 30. Reconstructed signal of IMF2-IMF4 for outer race fault 

5. Conclusions 

The method proposed in this paper overcomes the mode determination problem for VMD 
method which provides an accurate number of mode for rotating machinery signals. The method 
iteratively adopts the similarities concept between VMFs and input signals by calculating using 
signal difference averaging (SDA) methods. This method has been successfully used for 
determining the mode number of bearing fault and gear fault signal for fault diagnosis. The 
accurate number of mode initiated for VMD method makes this method work effectively and 
efficiently as compared to traditional EMD method for fault diagnosis. However, the proposed 
method may suffer a computational extensive problem for large signal despite its superiority in 
determining the exact number of mode. Some of the highlight from this research study are: 

1) An accurate number of mode influence the decomposition process and result which also 
influence the accuracy of rotating machinery diagnosis. 

2) Signal difference average method (SDA) is able to provide a good indicator for determining 
the exact mode number for a signal. 

3) Automated mode determination method is able to provide an accurate number of mode for 
any vibration signal either clean or noisy signal.  

4) VMD method avoids information losses as it reconstructed very good signal after 
decomposition as compared to EMD. 

5) Pre-determine parameters for VMD is still considered as a good research direction for future 
improvement in order to improve its performance.  

In the future, we will pay attention to optimizing this method to reduce the computational cost 
and time. 
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