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Abstract. Tool health is identified as the most significant index of the machining process, which 

directly influences the surface quality of work-piece. An online health monitoring for tools has 

become more crucial in manufacturing industries. In this study, a health assessment approach for 

tools in milling machine is presented. First, the vibration signal of tools is decomposed into a finite 

number of components called intrinsic mode function (IMF) by the empirical mode decomposition 

(EMD), which are regarded as the initial feature vector matrices. Second, Singular value 

decomposition (SVD) is used to extract the singular values of the matrices, which forms the feature 

vector for health assessment. Third, a Self-organizing mapping (SOM) network is introduced to 

map the extracted feature vectors into Minimum Quantization Error (MQE), and the Taguchi 

system is then employed to reduce the redundant features. Finally, the MQE is normalized into a 

confidence value (CV), representing the health status of the tools. A case study demonstrates that 

the proposed approach can effectively realize the health assessment for tools in milling machine 

by monitoring of the vibration signals. 

Keywords: health assessment, tool, empirical mode decomposition, singular value  

decomposition, self-organizing mapping network, Taguchi method. 

1. Introduction 

In recent years, monitoring of tool health, as one of the key techniques in modern manufacture, 

has attracted increased attention. During the manufacturing process, tool health status directly 

affects the surface finish and dimensional accuracy of the product, however, a health assessment 

based process can give a pre-warning, then repairs or replacements can be taken at the earliest or 

most convenient time with the minimum loss of productivity [1]. Tool health assessment is 

therefore not only a diagnostics requirement to prevent machine-tool failure and production-

material waste, but also plays crucial role which mainly affects the dimensional integrity, better 

performance and service-life of machined components [2]. 

Nowadays, many studies have been conducted on the tool wear monitoring, which mainly 

includes off-line and real-time measurement. The former usually performs the periodical 

measurements of tool state during machining process. Pham et al. [3] developed an electrical 

sensing circuit for wear measurement. Mizugaki [4] utilizes a laser range sensor, while Yan et al. 

[5] utilizes a machine vision system to measure the electrode wear. However, these approaches 

are extremely time-consuming since the machining process must be interrupted for periodical 

measurements. Therefore, the latter, a real-time monitoring approach, appears to be more 

pragmatic and has been well-developed in recent years. C. S. Ai et al. [6] proposed an approach 

to monitor milling tool wear using the cutting sound acoustic spectrum and the linear predictive 

cepstrum coefficient of the milling sound signal to monitor the milling tool wear. Martín P. Gómez 

et al. [7] investigated the correlation between the acoustic emission parameters and degrees of tool 

wear during the process and developed a strategy for detecting tool wear. G. Sutteret et al. [8] 

proposed a technique by analyzing the evolution of cutting force signal and the evolution of the 

friction coefficient. Mohammad et al. [9] proposed an approach to determine tool condition by 

using force and acoustic emission signal separately in micro-milling. Choi et al. [10] used acoustic 
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emission and cutting forces in their attempt to develop a tool condition monitoring system for 

turning operations. 

However, drawbacks of the present methods still exist. Noise signals or unknown influencing 

factors often disturb the acoustic emission, which makes it difficult to obtain the useful signals 

and characteristics. Force sensors are usually hard to assemble, and multiple force sensors are 

needed in some circumstances, resulting in cost-consuming impracticability for industrial 

applications [11]. As for the other sensors with low costs, unfortunately, they often exhibit less 

sensitivity to cutting conditions and tool status. Compared with the above sensors, an 

accelerometer sensor is employed to acquire vibration signals in this study, which has the 

advantages on low cost and high sensitivity to tool wear. 

The tool wear monitoring by vibration signal involves a significant issue: how to properly 

process and de-noise the monitored signals. Traditional signal processing techniques, including 

time-domain and frequency-domain analysis, are based on the assumption that the processing 

signals are stationary and linear. Unfortunately, vibration signals of worn tool are both nonlinear 

and non-stationary. In recent studies, several advanced time-frequency analysis techniques have 

been introduced to deal with non-stationary signals [12]. Wigner-Ville distribution (WVD) is one 

of the most studied and applied methods in time–frequency analysis, which provides simple and 

clear energy spectrum diagram both in the time and frequency domains. However, cross term often 

shows in dealing with signals for its quadratic time-frequency nature. Wavelet transform, another 

time-frequency analysis techniques, has been extensive used in recent years. Signals are processed 

by a multi-scale analysis, which is suitable for non-stationary signals, but some deficiencies still 

exist. Firstly, energy leakage will occur when using wavelet transform to process signals due to 

the fact that wavelet transform is essentially an adjustable windowed Fourier transform [13]. 

Secondly, once the wavelet function is selected, the result of wavelet transform would be the signal 

under a certain frequency band [14]. Therefore, wavelet transform is not a self-adaptive signal 

processing method constitutionally. 

The Empirical Mode Decomposition (EMD), proposed by N.E.Huang, provides an effective 

way to deal with nonlinear and non-stationary signals, it decomposes signals into intrinsic mode 

functions (IMFs) by their local time and scale characteristics, without a fixed pre-establish 

function, which makes it self-adaptive. Nowadays, EMD has been widely used in signal 

decomposition. Therefore, it is used for feature extraction in this paper. 

Meanwhile, considering the periodic impulses usually exhibit in vibration signal while the tool 

wear occurs, singular value decomposition (SVD) of matrix can be used to extract features. 

According to the matrix theory, singular value is the nature characteristic of matrix and owns 

favorable stability. SVD has been broadly applied in regularization, noise reduction, signal 

estimation, signal detection. However, it still have some deficiencies, before reconstructing phase 

space, reconstruction parameters, such as lag time and embedding dimension must be determined, 

which will involve extensive computations. Thus, this construction method is unavailable in a 

real-time application [15]. Here, the IMFs, resulted from EMD, are used to automatically form 

initial feature vector matrix, which is exactly the phase space. Therefore, an EMD based SVD 

technique is proposed as feature extraction method for tool vibration signal. 

After feature extraction, a pattern recognition method is essential for assessment. Over the 

years, several techniques of pattern recognition have been well-developed. But, in general, the 

normal operation data sets are relatively easier to acquire, but it is hard to obtain whole-life data 

set representative when the tool runs for short time. Here, SOM based MQE chart, which 

quantifies the deviation degree of current process with only the normal process state space, is 

employed. SOM has proven to be powerful in analysis of complex industrial processes, which 

allows cluster structure of the data, monitoring of operation state, and novelty detection [16]. The 

SOM has been successfully applied in various engineering applications [17]. And for optimization, 

Taguchi method is introduced to choose the key features and discard the negative ones. 

The main purpose of this study is to propose an approach to health assessment for milling tools 
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based on the EMD, SVD, SOM-based MQE and Taguchi system. This paper is organized as 

follows: Section 2 introduces the methods of feature vector extraction using the EMD and SVD, 

MQE calculation using the SOM, feature vector optimization using the Taguchi method and the 

integrated process of tool health assessment. Section 3 describes the case studies to validate the 

proposed approach. Finally, Section 4 concludes this paper. 

2. Methodology 

2.1. Empirical mode decomposition 

EMD is a self-adaptive method to decompose nonlinear and non-stationary signals. The 

advantage of EMD is that basis functions are derived from the analyzed signal itself. Hence, the 

signal analysis is adaptive in contrast to the traditional methods where basis functions are fixed. 

It decomposes the given signal into a series of IMFs through an iterative process called screening, 

each one, with distinct time scale [14].  

First, Huang defined the IMF which should satisfy two conditions: (1) in the whole data set, 

the number of extrema and the number of zero crossings must either equal or differ at most by 

one; (2) at any point, the mean value of the upper envelope and lower envelope is zero [19]. Then 

the sifting process is: 

(a) For a given signal 𝑠(𝑡), construct its upper envelope and lower envelope by connecting all 

local maxima and local minima with cubic spline functions, respectively. 

(b) Compute the envelopes mean 𝑚(𝑡) and extract the detail ℎ(𝑡) = 𝑠(𝑡) − 𝑚(𝑡), regard ℎ(𝑡) 
as new 𝑠(𝑡) and repeat the operation above until ℎ(𝑡) satisfies the IMF conditions, then obtain the 

first IMF 𝑖𝑚𝑓1(𝑡) = ℎ(𝑡).  
(c) Let the residual 𝑟(𝑡) = 𝑠(𝑡) − ℎ(𝑡) be a new signal, repeat (a), (b) and (c), obtain the other 

orders IMFs. 

EMD works like an adaptive high pass filter. It sifts out the fastest changing component of a 

composite signal first. The cut off frequency of the high pass filter is adaptive and data-driven. 

After the first filtering, the signal 𝑠(𝑡) can be expressed as: 

𝑠(𝑡) = 𝑖𝑚𝑓1(𝑡) + 𝑟1(𝑡), (1) 

where 𝑟1(𝑡)  is the low frequency component, compared with 𝑖𝑚𝑓1(𝑡).  Repeating the 

decomposition on 𝑟1(𝑡), then we obtain: 

𝑠(𝑡) = ∑𝑖𝑚𝑓𝑖(𝑡)

𝑛

𝑖=1

+ 𝑟𝑛(𝑡). (2) 

Thus, each IMF contains lower-frequency oscillations than the prior-extracted one [18], 𝑠(𝑡) 
has been decomposed into 𝑖𝑚𝑓𝑖(𝑡) and 𝑟𝑛(𝑡). Here, average trend of the signal is shown in the 

residual function 𝑟𝑛(𝑡); 𝑖𝑚𝑓𝑖(𝑡) contain different components of the signal from high frequencies 

to low ones, with the most important information of the given signal in the first several IMFs. 

2.2. Singular value decomposition 

SVD is an important algebra decomposition of matrix, which is widely used in signal 

processing and statistics [20]. The SVD is defined as follows: 

If 𝑋 is a real 𝑚 × 𝑛 matrix, according to the SVD theorem, the matrix 𝑋 can be decomposed 

in the form: 

𝑋 = 𝑈𝜎𝑉𝑇 , (3) 
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where 𝜎 = [𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, ⋯ , 𝜎𝑝), 𝑂] or its transposition, which is decided by 𝑚 > 𝑛 or 𝑚 < 𝑛; 

while 𝑂 is zero matrix; 𝑝 = 𝑚𝑖𝑛(𝑚, 𝑛), and 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑝 ≥ 0. These (𝑖 = 1, 2, … , 𝑝) are 

called the singular values of matrix 𝑋. 𝑈(𝑚 ×𝑚) and 𝑉(𝑛 × 𝑛) are orthogonal matrices and the 

columns of the orthogonal matrix 𝑈  and 𝑉  are called the left and right singular vectors. The 

singular values represent the importance of individual singular vectors in the composition of the 

matrix. In other words, a singular vector corresponding to the larger singular values have more 

information about the structure of the pattern embedded in the matrix than the other singular 

vectors. 

Here, matrix of IMFs and the residual error is processed by singular value decomposition 

(SVD), singular values is obtain as (𝐸1, 𝐸2, ⋯ , 𝐸𝑛) , where 𝑛  is the number of IMFs and the 

residual error, normalized it as below: 

𝑇𝑘
′ = (𝐸1 ∑𝐸𝑖

𝑛

𝑖=1

⁄ ,𝐸2 ∑𝐸𝑖

𝑛

𝑖=1

⁄ ,⋯ , 𝐸𝑛 ∑𝐸𝑖

𝑛

𝑖=1

⁄ ). (4) 

Considering the complexity of the signal RMS, kurtosis and peak value of the original signal 

are added as assist feature, in order to include both the entire signal and components features. 

RMS, kurtosis and peak value are figured out as (𝑅, 𝐾, 𝑃) and normalized as: 

𝑇𝑘
′′ = (𝑅 max(𝑅)⁄ , 𝐾 max(𝐾)⁄ , 𝑃 max(𝑃)⁄ ). (5) 

Finally, combine the above vector as: 

𝑇𝑘 = (𝑇𝑘
′ , 𝑇𝑘

′′), (6) 

where 𝑇𝑘 is the final normalized feature vector, which carries the information of tool wear. It can 

be used to classify different tool status, so as to assess the health. 

2.3. MQE calculation based on SOM network 

SOM is a kind of competed artificial neural network, which preserves mapping of the input 

data from its high-dimensional data space onto usually a two dimensional grid. Data points, which 

closely resemble each other, are located to nearby map neurons that form a two-dimensional lattice, 

each neuron is represented by a dimensional weight vector. Neurons of the map are connected to 

adjacent neurons by a neighborhood relation, which indicates the topology of the map [21]. 

During training procedure, take vector 𝑋  for example, the distance between it and all the 

weight vectors of SOM is computed by using distance measure as below. The neuron whose 

weight vector is closest to 𝑋 is called Best Matching Unit (BMU) [22]: 

||𝑋 − 𝑤𝑐|| = min
𝑖
(||𝑋 − 𝑤𝑖||), (7) 

where 𝑐 is the BMU, || • || represent a distance measure, typically Euclidian distance. The weight 

vector of BMU is enhanced as well as its neighbors by the learning rule: 

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝛼(𝑡) ⋅ ℎ𝐵𝑀𝑈,𝑖(𝑡)(𝑥(𝑡) − 𝑤𝑖(𝑡)), (8) 

where 𝑤𝑖(𝑡) represent the weight vector; 𝛼(𝑡), the learning rate with the range of 0 < 𝛼(𝑡) < 1; 

ℎ𝐵𝑀𝑈,𝑖(𝑡), neighborhood function determined by distance between 𝐵𝑀𝑈 and its neighbor. 

After training, the neurons are grouped in clusters by their distance in the structure, which form 

a new kind of topology. When a test vector is inputted, the vector is compared with the weight 

vectors of all map units in SOM [23]. Therefore, depending on how faraway the current data is 
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deviating from the train data, a quantitative assessment index can be obtained by calculation of 

the Minimum Quantization Error (MQE) [24]. 𝑀𝑄𝐸 value is figured out by: 

𝑀𝑄𝐸 = ||𝑋𝑖𝑛𝑝𝑢𝑡 − 𝑤𝑏𝑚𝑢||, (9) 

where 𝑋𝑖𝑛𝑝𝑢𝑡  is the input data vector, and 𝑤𝑏𝑚𝑢  is the weight vector of BMU. In this study, 

datasets of the tool that with mild wear are used as train data. Therefore, the 𝑀𝑄𝐸 shows how far 

the current tool status is deviating from the mild wear data. The health status can be quantified 

and visualized by following the trends of 𝑀𝑄𝐸. 

2.4. Feature vector optimization using Taguchi method 

Taguchi method is an important tool for robust design, which optimizes the product and 

process conditions that are minimally sensitive to the causes of variation. Meanwhile, the method 

can also be applied to the development of factorial experiments and the analysis of their associated 

outcomes. 

To date, Taguchi method has become a well-recognized approach for analyzing the interaction 

effects while performing ranking and screening of various controllable factors. Moreover, this 

method is proven to be capable of solving a variety of problems involving continuous, discrete 

and qualitative design variables [25]. 

Here, Taguchi method is applied to optimize the feature vector. The optimization starts with 

the mild wear and severe wear tool feature vector, then the 𝑀𝑄𝐸 is figure out as preceding part of 

this text. After that, Taguchi method creates a standard orthogonal array (OA), which depends on 

the number of factors and levels needed. The optimum experimental conditions can be easily 

determined with the OA. Take an eight-factor-two-level OA for example (Table 1). 

Table 1. Taguchi orthogonal array  

 Level 

       Factor 

 Ex 
1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 2 2 2 

3 1 1 2 2 2 1 1 1 

4 1 2 1 2 2 1 2 2 

5 1 2 2 1 2 2 1 2 

6 1 2 2 2 1 2 2 1 

7 2 1 2 2 1 1 2 2 

8 2 1 2 1 2 2 2 1 

In the OA, features have two levels. Level-1 represents the presence of a feature, while level-2 

represents the absence of a feature. Here, nine MQEs are calculated with the combination of the 

features dictated by the OA and the larger-the-better signal-to-noise ratio (SNR) is calculated as 

follows: 

𝑚𝑖 = −10 log [
1

𝑛
∑

1

𝑀𝑄𝐸𝑗

𝑛

𝑗=1

], (10) 

where 𝑚𝑖 is the SNR for the 𝑖 th run of the OA, and 𝑛 is the sample size of each abnormality. 

Then, an average SNR at level-1 and level-2 of each feature is obtained and the gain is calculated 

as below [20]: 
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𝐺𝑎𝑖𝑛 = 𝑀𝑒𝑎𝑛𝑙𝑒𝑣𝑒𝑙1 −𝑀𝑒𝑎𝑛𝑙𝑒𝑣𝑒𝑙2 . (11) 

According to principle, features with positive gain are selected for the health assessment and 

the rest are discarded. 

2.5. Health assessment using only normal condition datasets 

As tools operate, the monitoring data obtained by accelerometer sensor is transferred to the 

trained SOM incessantly, which calculate the 𝑀𝑄𝐸  of the current status. In this approach, 

confidence value (𝐶𝑉), proposed by Qiu et al. [26], is introduced as an index to evaluate the health 

status. The 𝐶𝑉 can be formulated as below: 

𝐶𝑉 =
𝑐

√𝑀𝑄𝐸 + 𝑐
, (12) 

where 𝑐 is scale parameter determined by the 𝑀𝑄𝐸 under the normal state and the predetermined 

𝐶𝑉, 𝑀𝑄𝐸 is just the 𝑀𝑄𝐸 under the monitoring data offered by SOM running. 

According to the principles of SOM and 𝑀𝑄𝐸, mild wear signals with the similar features to 

the trained dataset, will gather around the normal cluster, which should have a minimum 𝑀𝑄𝐸 

value relative to that of other faulty status. Along with the wear of tools, features of the signal turn 

to be more and more different from the trained data, therefore MQEs of them will become higher. 

𝐶𝑉 is inverse proportional to the 𝑀𝑄𝐸, so healthy tools get higher 𝐶𝑉, and worn tools trend to be 

lower as well.  

Therefore, the 𝐶𝑉 of tools under normal conditions is expected to be close to 1, this value is 

defined as 𝐶𝑉𝑝𝑟𝑒. This initial value is mainly determined by experts in the field, and usually ranges 

from 0.99 to 0.90. 𝐶𝑉𝑝𝑟𝑒 can be denoted as: 

𝐶𝑉𝑝𝑟𝑒 =
𝑐0

√𝑚𝑒𝑎𝑛(𝑀𝑄𝐸𝑛𝑜𝑟𝑚𝑎𝑙) + 𝑐0
, (13) 

where 𝑚𝑒𝑎𝑛(𝑀𝑄𝐸𝑛𝑜𝑟𝑚𝑎𝑙) is the average of all MQEs under normal conditions, and corresponds 

to the 𝑚𝑒𝑎𝑛(𝑀𝑄𝐸𝑛𝑜𝑟𝑚𝑎𝑙), which is determined artificially. So, 𝑐0 can be calculated as follows: 

𝑐0 =
𝐶𝑉𝑝𝑟𝑒√𝑚𝑒𝑎𝑛(𝑀𝑄𝐸𝑛𝑜𝑟𝑚𝑎𝑙)

1 − 𝐶𝑉𝑝𝑟𝑒
. (14) 

As 𝐶𝑉 drops below the predetermined threshold, fault occurs. The CVs of the whole life of 

tool can be divided into three stages as Fig. 1. 

Stable performance Performance 

Degradation

Fault

Danger line

Fault line

 
Fig. 1. Different stages of CVs during the whole life cycle of tool 
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2.6. Flow of the proposed method 

The aforementioned methods consist of the health assessment process, as depicted in Fig. 2. It 

can be summarized as below. 

Taguchi method

Tools in 

Milling 

Machine

Sensor EMD
Feature 

Vector
SOM

IMF1

IMF2

IMFn

CV

Original 

Signal

MQE
Tool 

Health

R

 Fig. 2. Process of tool health assessment 

The procedure can be divided into three parts: 

Feature extraction: The vibration signal of a tool is decomposes into several IMFs and a 

residue 𝑟𝑛  using the EMD. The IMFs 𝑐1, 𝑐2, ⋯ , 𝑐𝑛  and 𝑟𝑛  are combined to construct an initial 

feature vector matrix. The SVD is then employed to obtain the singular values of the matrix, 

thereby forming the feature vector. 

Pattern recognition: Prior to the real-time recognition, a Self-organizing mapping (SOM) 

network is utilized to map the extracted feature vectors into MQE. The Taguchi method is 

employed to generate the optimized feature vectors that are used to re-train the SOM, and the 

original MQEs are recalculated.  

Health assessment: The obtained MQE is converted into a CV by a predetermined 

normalization function. Thus, the health state of the tool can be monitored by tracking its CVs 

curve. 

3. Experimental verification 

3.1. Experiment setup 

The data in this study captures from runs on a milling machine. The cutting speed is set to 

826 rev/min; two levels of cut depth are chosen as 0.75 mm and 1.5 mm; two levels of feed rate 

are taken as 0.25 mm/rev and 0.5 mm/rev which translate into 413 mm/min and 206.5 mm/min. 

Cast iron is used as the material. The size of the work-piece is 483 mm × 178 mm × 51 mm. In 

this research, two experiments with cut depth of 1.5 mm feed rate of 0.5 mm/rev, and cut depth of 

0.75 mm feed rate of 0.25 mm/rev were chosen as example 1 and 2. 

 
Fig. 3. Sensor mounting position 

A vibration sensor is mounted on the clamping device on the table, an accelerometer (model 

7201-50, ENDEVCO) with a frequency range up to 13 KHz. Its signal is fed into an 
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ENDEVCO 104 charge amplifier with sensitivity 5.71 and 100 mV/g output. The signal is then 

fed into an ITHACO 4302 Dual 24 dB octave filter with corner frequencies 400 Hz and 1 KHz. 

The signal is then fed through the PHOENIX CONTACT UMK-SE11,25 cable connector into the 

high speed data acquisition board of the computer. 

 
Fig. 4. Measure of flank wear VB 

The flank wear VB is measured as the distance from the cutting edge to the end of the abrasive 

wear on the flank face of the tool. The flank wear was observed during the experiments. The insert 

was taken out of the tool and the wear was measured with the help of a microscope. 

3.2. Experiment results and discussion 

3.2.1. Feature extraction 

Tool original signal which is nonlinear and non-stationary is shown in Fig. 5. Here, EMD is 

employed to decompose it into IMFs. 

 
Fig. 5. A sample of EMD decomposition results of tool signal 

Table 2. Feature vector 

No. 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 𝑅 𝐾 𝑃 

1 0.4744 0.8642 0.1675 0.0049 0.0109 0.9012 0.7393 0.8068 

2 0.4332 0.8964 0.0881 0.0329 0.0040 0.9491 0.7095 0.7624 

3 0.4828 0.8629 0.1491 0.0102 0.0041 0.9568 0.7655 0.8175 

4 0.5072 0.8504 0.1377 0.0233 0.0069 0.9341 0.7209 0.7720 

5 0.4323 0.8862 0.1665 0.0064 0.0067 0.9151 0.7492 0.8014 

6 0.4511 0.8832 0.1270 0.0161 0.0080 0.8899 0.7602 0.8130 

7 0.5661 0.7986 0.2037 0.0135 0.0027 0.9064 0.7711 0.8280 

8 0.4645 0.8684 0.1733 0.0093 0.0038 0.9386 0.7630 0.8181 
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According to the previous experiences, the first four IMFs which contain the most important 

information of the signal and a residual error are selected to form a feature matrix, SVD is 

employed to extract the feature. Then RMS, kurtosis and peak value are added to the feature vector. 

Table 1 shows 8 groups of normalized feature vectors from the tool with mild wear. 

3.2.2. SOM-based MQE calculation with Taguchi method 

After the extration, features are sent to SOM. SOM is trained by the vector of normal tools, 

with the trained SOM, MQE of each vector can be calculated. Here, Taguchi method is introduced 

in optimization, two tools with mild wear and wear of VB 0.76 mm, respectively, are send to 

Taguchi experiment. The result is shown as Table 3. 

Table 3. Result of Taguchi method 

 Level 

         Factor 

Ex 
1 2 3 4 5 6 7 8 𝑚𝑖 

1 1 1 1 1 1 1 1 1 0.11 

2 1 1 1 1 1 2 2 2 -1.92 

3 1 1 2 2 2 1 1 1 0.09 

4 1 2 1 2 2 1 2 2 -0.65 

5 1 2 2 1 2 2 1 2 -3.59 

6 1 2 2 2 1 2 2 1 -3.67 

7 2 1 2 2 1 1 2 2 -0.40 

8 2 1 2 1 2 2 2 1 -2.82 

9 2 1 1 2 2 2 1 2 -2.92 

Mean level 1 -1.61 -1.31 -1.35 -2.05 -1.47 -0.21 -1.58 -1.57  

Mean level 2 -2.05 -2.64 -2.08 -1.51 -1.98 -2.98 -1.89 -1.90  

Gain 0.44 1.33 0.73 -0.54 0.51 2.77 0.31 0.33  

According to the rules of Taguchi method, factor 4 with negative gain shoud be discarded. The 

rest are selected to constitute final vectors. 

3.2.3. Health assessment 

Here 110 samples from example 1 and 60 samples from example 2 are chosen to assess, every 

five samples are in the same VB. The CV and VB of each group are shown in Fig. 6 and 7. 

  
Fig. 6. CV and VB of the tools in example 1 

The blue curve in the left Figure shows trend of CV, the first ten samples with CVs above 9.0 

indicate the tool is in good state, as the tool operating, CV falls at the same time, but it is still in 

the range of healthy state, as soon as the CV drop below a given threshold, quality of the work-
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piece will be influenced at high probability. VB is a index which directly represents the wear of 

tools. The trend of VB, expressed by the curve in the right Figure, clearly demonstrates that the 

tool health degenerates tracking as the CV. 

  
Fig. 7. CV and VB of the tools in example 2 

Example 2, as an assist group, shows the familiar trend with example 1, the VB curve proves 

the property of the result as well. 

Thus it is clear that CV coincidently represents the health of tool and it is also distinctly proved 

that this approach to health assessment for tools is feasible. 

4. Conclusions 

This study presents a health assessment approach for tools in milling machine. Firstly, EMD 

is employed to decompose the signal of tool and feature vector is extracted with IMFs by SVD. 

Then SOM based MQE chart and Taguchi method are utilized to map the features into CV and 

optimize the feature. Its feasibility and efficiency has been verified in the experiment. Generally 

speaking, this approach focuses on the whole procedure which consists of signal processing, 

feature extraction, feature optimization and confidence value (CV) calculation. Vibration signal 

is used, which makes data acquisition easy, and the combination of EMD and SVD avoid some 

drawback in processing nonlinear and non-stationary signal. The employment of Taguchi method 

makes the result more accurate, and the optimization of the feature vector reduces computations 

as well, which is meaningful for real-time assessment. 

Nevertheless, additional work is needed to further validate the method in wider applications. 

Meanwhile, relationship between CVs in different cutting condition ought to be investigated, and 

how to determine threshold, thereby accurately assessing health conditions, is also recognized as 

an issue. 
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