504 research outputs found

    Detection of inter-turn faults in multi-phase ferrite-PM assisted synchronous reluctance machine

    Get PDF
    Inter-turn winding faults in five-phase ferrite-permanent magnet-assisted synchronous reluctance motors (fPMa-SynRMs) can lead to catastrophic consequences if not detected in a timely manner, since they can quickly progress into more severe short-circuit faults, such as coil-to-coil, phase-to-ground or phase-to-phase faults. This paper analyzes the feasibility of detecting such harmful faults in their early stage, with only one short-circuited turn, since there is a lack of works related to this topic in multi-phase fPMa-SynRMs. Two methods are tested for this purpose, the analysis of the spectral content of the zero-sequence voltage component (ZSVC) and the analysis of the stator current spectra, also known as motor current signature analysis (MCSA), which is a well-known fault diagnosis method. This paper compares the performance and sensitivity of both methods under different operating conditions. It is proven that inter-turn faults can be detected in the early stage, with the ZSVC providing more sensitivity than the MCSA method. It is also proven that the working conditions have little effect on the sensitivity of both methods. To conclude, this paper proposes two inter-turn fault indicators and the threshold values to detect such faults in the early stage, which are calculated from the spectral information of the ZSVC and the line currentsPeer ReviewedPostprint (published version

    Detection and Diagnosis of Motor Stator Faults using Electric Signals from Variable Speed Drives

    Get PDF
    Motor current signature analysis has been investigated widely for diagnosing faults of induction motors. However, most of these studies are based on open loop drives. This paper examines the performance of diagnosing motor stator faults under both open and closed loop operation modes. It examines the effectiveness of conventional diagnosis features in both motor current and voltage signals using spectrum analysis. Evaluation results show that the stator fault causes an increase in the sideband amplitude of motor current signature only when the motor is under the open loop control. However, the increase in sidebands can be observed in both the current and voltage signals under the sensorless control mode, showing that it is more promising in diagnosing the stator faults under the sensorless control operation

    An Assessment on the Non-Invasive Methods for Condition Monitoring of Induction Motors

    Get PDF
    The ability to forecast motor mechanical faults at incipient stages is vital to reducing maintenance costs, operation downtime and safety hazards. This paper synthesized the progress in the research and development in condition monitoring and fault diagnosis of induction motors. The motor condition monitoring techniques are mainly classified into two categories that are invasive and non-invasive techniques. The invasive techniques are very basic, but they have some implementation difficulties and high cost. The non-invasive methods, namely MCSA, PVA and IPA, overcome the disadvantages associated to invasive methods. This book chapter reviews the various non-invasive condition monitoring methods for diagnosis of mechanical faults in induction motor and concludes that the instantaneous power analysis (IPA) and Park vector analysis (PVA) methods are best suitable for the diagnosis of small fault signatures associated to mechanical faults. Recommendations for the future research in these areas are also presented

    A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines

    Get PDF
    Research on the modeling and fault diagnosis of rotor eccentricities has been conducted during the past two decades. A variety of diagnostic theories and methods have been proposed based on different mechanisms, and there are reviews following either one type of electric machines or one type of eccentricity. Nonetheless, the research routes of modeling and diagnosis are common, regardless of machine or eccentricity types. This article tends to review all the possible modeling and diagnostic approaches for all common types of electric machines with eccentricities and provide suggestions on future research roadmap. The paper indicates that a reliable low-cost non-intrusive real-time online visualized diagnostic method is the trend. Observer-based diagnostic strategies are thought promising for the continued research

    A precise, General, Non-Invasive and Automatic Speed Estimation Method for MCSA Steady-State Diagnosis and Efficiency Estimation of Induction Motors in the 4.0 Industry

    Full text link
    Tesis por compendio[ES] Hay dos aspectos cruciales a la hora de operar motores de inducción en la industria: la estimación de su eficiencia (para minimizar el consumo de energía) y su diagnóstico (para evitar paradas intempestivas y reducir los costes de mantenimiento). Para estimar la eficiencia del motor es necesario medir tensiones y corrientes. Por ello, resulta conveniente y muy útil utilizar la misma corriente para diagnosticar también el motor (Motor Current Signature Analysis: MCSA). En este sentido, la técnica MCSA más adecuada es aquella basada en la localización de armónicos de fallo en el espectro de la corriente de línea del estator en régimen permanente, pues esta es la condición de funcionamiento de la mayoría de los motores de inducción de la industria. Por otro lado, dado que la frecuencia de estos armónicos depende de la velocidad, resulta imprescindible conocer esta magnitud con precisión, ya que esto permite localizar correctamente los armónicos de fallo, y, por tanto, reducir las posibilidades de falsos positivos/negativos. A su vez, una medida precisa de la velocidad también permite calcular con precisión la potencia mecánica, lo que se traduce en una estimación más exacta del rendimiento. Por último, para adaptarse a las necesidades de la Industria 4.0, en la que se monitoriza continuamente un gran número de motores, la velocidad también debe ser obtenida de manera no invasiva, automática y para cualquier motor de inducción. A este respecto, dado que la medición precisa de la velocidad a través de un encóder es invasiva y costosa, las técnicas de estimación de velocidad sin sensores (SSE en inglés) se convierten en la mejor opción. En la primera parte de esta tesis se realiza un análisis exhaustivo de las familias de técnicas SSE presentes en la literatura técnica. Como se demuestra en ella, aquellos métodos basados en armónicos de ranura (RSHs en inglés) y en armónicos laterales de frecuencia rotacional (RFSHs) son potencialmente los únicos que pueden satisfacer todos los requisitos mencionados anteriormente. Sin embargo, como también se demuestra en esta parte, y hasta esta tesis, siempre había existido un compromiso entre la precisión (característica de los RSHs) y la aplicabilidad general del método (característica de los RFSHs). En la segunda parte, y núcleo de esta tesis, se presenta una metodología que acaba con este compromiso, proporcionando así el primer método de estimación de velocidad preciso, general, no invasivo y automático para el diagnóstico en estado estacionario MCSA y la estimación de la eficiencia de motores de inducción que operan en un contexto de Industria 4.0. Esto se consigue desarrollando una novedosa técnica basada en RSHs que, por primera vez en la literatura técnica, elimina la necesidad de conocer/estimar el número de ranuras del rotor, lo que había impedido hasta la fecha que estos métodos fueran de aplicación general. Esta técnica proporciona además un procedimiento fiable y automático para localizar la familia de RSHs en el espectro de la corriente de línea de un motor de inducción. De igual forma y sin la ayuda de un experto, la técnica es capaz de determinar los parámetros necesarios para estimar la velocidad a partir de los RSHs, utilizando medidas tomadas en régimen estacionario. La metodología es validada utilizando motores con diferentes características y tipos de alimentaciones, empleando para ello simulaciones, pruebas de laboratorio y 105 motores industriales. Además, se muestra un caso de aplicación industrial en el que el algoritmo desarrollado se implementa en un sistema de monitorización continua mediante MCSA, lo que acaba conduciendo al descubrimiento de un nuevo fallo en motores sumergibles de pozo profundo: el desgaste de los anillos de cortocircuito. Por último, se presenta una segunda aplicación directa para este tipo de motores derivada del procedimiento de detección de RSHs: el uso de estos armónicos para diagnosticar, en fase temprana, cortocircuitos entre espiras.[CA] Hi ha dos aspectes crucials a l'hora d'operar motors d'inducció en la indústria: l'estimació de la seua eficiència (per a minimitzar el consum d'energia) i el seu diagnòstic (per a evitar parades intempestives i reduir els costos de manteniment). Per a estimar l'eficiència del motor és necessari mesurar tensions i corrents. Per això, resulta convenient i molt útil utilitzar el mateix corrent per a diagnosticar també el motor (Motor Current Signature Analysis: MCSA). En aquest sentit, la tècnica MCSA més adequada és aquella basada en la localització d'harmònics de fallada en l'espectre del corrent de línia de l'estator en règim permanent, ja que aquesta és la condició de funcionament de la majoria dels motors d'inducció de la indústria. D'altra banda, atés que la freqüència d'aquests harmònics depén de la velocitat, resulta imprescindible conéixer aquesta magnitud amb precisió, ja que això permet localitzar correctament els harmònics de fallada i, per tant, reduir les possibilitats de falsos positius/negatius. Al seu torn, una mesura precisa de la velocitat també permet calcular amb precisió la potència mecànica, la qual cosa es tradueix en una estimació més exacta del rendiment. Finalment, per a adaptar-se a les necessitats de la Indústria 4.0, en la qual es monitora contínuament un gran nombre de motors, la velocitat també ha de ser obtinguda de manera no invasiva, automàtica i per a qualsevol motor d'inducció. En aquest sentit, atès que el mesurament precís de la velocitat a través d'un encóder és invasiva i costosa, les tècniques d'estimació de velocitat sense sensors (SSE en anglés) es converteixen en la millor opció. En la primera part d'aquesta tesi es realitza una anàlisi exhaustiva de totes les famílies de tècniques SSE presents en la literatura tècnica. Com es demostra en ella, aquells mètodes basats en harmònics de ranura (RSHs en anglès) i harmònics laterals de freqüència rotacional (RFSHs en anglés) són els més prometedors, ja que son potencialment els únics que poden satisfer tots els requisits esmentats anteriorment. No obstant això, com també es demostra en aquesta part, i fins a aquesta tesi, sempre havia existit un compromís entre la precisió (característica dels RSHs) i l'aplicabilitat general del mètode (característica dels RFSHs). En la segona part, i nucli d'aquesta tesi, es presenta una metodologia que acaba amb aquest compromís, proporcionant així el primer mètode d'estimació de velocitat precís, general, no invasiu i automàtic per al diagnòstic en estat estacionari MCSA i l'estimació de l'eficiència de motors d'inducció que operen en un context d'Indústria 4.0. Això s'aconsegueix desenvolupant una nova tècnica basada en RSHs que, per primera vegada en la literatura tècnica, elimina la necessitat de conéixer/estimar el nombre de ranures del rotor, cosa que havia impedit fins avui que aquests mètodes foren d'aplicació general. Aquesta tècnica proporciona a més un procediment fiable i automàtic per a localitzar la família de RSHs en l'espectre del corrent de línia d'un motor d'inducció. De la mateixa forma i sense l'ajuda d'un expert, la tècnica és capaç de determinar els paràmetres necessaris per a estimar la velocitat a partir dels RSHs, utilitzant mesures preses en règim estacionari. La metodologia és validada utilitzant motors amb diferents característiques i condicions d'alimentació, emprant per a això simulacions, proves de laboratori i 105 motors industrials. A més, es mostra un cas real d'aplicació industrial en el qual l'algoritme desenvolupat és implementat en un sistema de monitoratge continu mitjançant MCSA, la qual cosa acaba conduint al descobriment d'una nova fallada en motors submergibles de pou profund: el desgast dels anells de curtcircuit. Finalment, es presenta una segona aplicació directa per a aquest tipus de motors derivada del procediment de detecció de RSHs: l'ús d'aquests harmònics per a diagnosticar, en fase primerenca, curtcircuits entre espires.[EN] There are two crucial aspects when operating induction motors in industry: efficiency estimation (to minimize energy consumption) and diagnosis (to avoid untimely outages and reduce maintenance costs). To estimate the motor's efficiency, it is necessary to measure voltages and currents. Hence, it is convenient and very useful using the same current to also diagnose the motor (Motor Current Signature Analysis: MCSA). In this regard, the most suitable MCSA technique is that based on locating fault harmonics in the spectrum of the stator line current under steady-state, as this is the operating condition of most induction motors in industry. Since the frequency of these harmonics depends on the speed, it becomes essential to be able to know this magnitude with precision, as this makes it possible to correctly locate the fault harmonics, and therefore, reduce the chances of false positives/negatives. In turn, an accurate speed information also allows to calculate the mechanical power with precision, which results in a more accurate estimation of the motor performance. Finally, to adapt to the needs of 4.0 Industry, where large numbers of motors are continuously monitored, the speed must not only be obtained very accurately, but also non-invasively, automatically (without the need for an expert) and for any induction motor. In this regard, since precise speed measurement through a shaft sensor is invasive and expensive, Sensorless Speed Estimation (SSE) techniques become the best option. The first part of this thesis conducts a thorough analysis of all the families of SSE techniques present in the technical literature. As demonstrated therein, those techniques based on Slotting and Rotational Frequency Sideband Harmonics are the most promising, as they can potentially meet all the aforementioned requirements. However, as also proved in this part, and up to this thesis, there had always been a trade-off between accuracy, characteristic of Rotor Slot Harmonics (RSHs), and general applicability, characteristic of Rotational Frequency Sideband Harmonics (RFSHs). The second part, and core of this thesis, presents a methodology that ends with this trade-off between accuracy and general applicability, thus providing the first precise, general, noninvasive and automatic speed estimation method for MCSA steady-state diagnosis and efficiency estimation of induction motors that operate in a 4.0 Industry context. This is achieved by developing a novel RSH-based technique that, for the first time in technical literature, eliminates the need to know/estimate the number of rotor slots, which had so far prevented these techniques to be generally applicable. This technique also provides a reliable and automatic procedure to, from among the high number of significant harmonics present in the spectrum of the line current of an induction motor, locate the RSHs family. Also automatically and without the help of an expert, the technique is able to determine the parameters needed to estimate speed from RSHs, using only measurements taken during the motor normal operation at steady-state. The methodology is validated using motors with different characteristics and supply conditions, by simulations, lab tests and with 105 industrial motors. Furthermore, a real industrial case of application is shown as well, where the speed estimation algorithm is implemented in a continuous motor condition monitoring system via MCSA, which eventually leads to the discovery of a new fault in deep-well submersible motors: the wear of end-rings. Finally, a second direct application derived from the reliable and automatic procedure to detect RSHs is presented: the use of these harmonics to diagnose early-stage inter-turn faults in induction motors of deep-well submersible pumps.Bonet Jara, J. (2023). A precise, General, Non-Invasive and Automatic Speed Estimation Method for MCSA Steady-State Diagnosis and Efficiency Estimation of Induction Motors in the 4.0 Industry [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194269Compendi

    Wavelet-Based Analysis of MCSA for Fault Detection in Electrical Machine

    Get PDF
    Early detection of irregularity in electrical machines is important because of their diversity of use in different fields. A proper fault detection scheme helps to stop the propagation of failure or limits its escalation to severe degrees, and thus it prevents unscheduled downtimes that cause loss of production and financial income. Among different modes of failures that may occur in the electrical machines, the rotor-related faults are around 20%. Successful detection of any failure in electrical machines is achieved by using a suitable condition monitoring followed by accurate signal processing techniques to extract the fault features. This article aims to present the extraction of features appearing in current signals using wavelet analysis when there is a rotor fault of eccentricity and broken rotor bar. In this respect, a brief explanation on rotor failures and different methods of condition monitoring with the purpose of rotor fault detection is provided. Then, motor current signature analysis, the fault-related features appeared in the current spectrum and wavelet transform analyses of the signal to extract these features are explained. Finally, two case studies involving the wavelet analysis of the current signal for the detection of rotor eccentricity and broken rotor bar are presented

    Comparative study of advanced techniques for the diagnosis of induction motors

    Get PDF
    This work is a comparative study between the various advanced technologies of diagnosis of induction motors published recently and to make a classification of these diagnostic techniques according to their sensitivities from experimental results of stator short-circuit faults between stator turns. By using the logarithmic FFT spectrum, we can discover the best method to detect faults in their early stages so that we can predict their faults and anticipate breakdowns that can be dangerous for people or the economy
    corecore