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Abstract—This paper shows that one class classification meth-
ods combined with wavelets are capable of detecting the majority
of faults on a 3 phase induction motor learning only from healthy
data. It has important applications for condition monitoring
of electro-mechanical machines in industry as it means that
rare and expensive-to-obtain faulty data is not required. The
experiments were carried out under laboratory conditions on a
small, well worn, 3 phase induction motor, which had bearing
faults, imbalance faults, broken rotor bar faults and winding
faults imposed on it. A two class support vector machine (SVM)
was trained on equal amounts of healthy and faulty data to
demonstrate that it has high accuracy when faulty data is readily
available. The combination of the one-class SVM and wavelets
to the best of the author’s knowledge has not been previously
attempted but shows acceptable results.

I. I NTRODUCTION

Fault detection and identification is a well researched topic
but there are considerable challenges in adapting methods and
results from lab based experiments to real world industrial
applications such as noisy environments, harsh environmental
conditions and the complexity of machinery. In the dairy
industry, billions of litres of milk are bottled and capped
on machines worth in excess of 1 million GBP, ready for
transportation to a supermarket. Breakdowns are very serious
as not only does this mean the loss of the production and the
need for repairs, but also 8 hours of resterilisation must take
place which further increases downtime. Dairy engineers have
conservatively calculated losses of at least 50,000 GBP perday
of machine downtime [1] in Europe. This fact alone highlights
the need for an effective condition monitoring system. There
are several desirable properties that such a system should have.
The machines are often operated in hostile conditions and the
chemicals used for sterilisation can damage sensors. Therefore
the system should use a minimal amount of sensors. Vibration
sensors would be exposed to these harsh conditions and so
current was selected because it can be read from the inverter
which is protected from the harsh environment.

When collecting data from industrial machines, the quantity
of healthy data is usually far greater than the quantity of faulty
data. This imbalance makes it difficult to apply traditionaltwo
class classification methods successfully because it becomes
hard to determine the boundary between the two classes
when one class has such limited data [2]. Furthermore, short

TABLE I. DAIRY INDUSTRY CONDITION MONITORING SCENARIO

DETAILS

Conditions Values
Data Sample Duration circa 30 seconds
Sample Rate 5kHz
Motor Size 1.5kW
Motor Speeds 700RPM, 1000RPM and 1500RPM
Motor Loads 0kW (no load), 0.75kW (half load) and

1.5kW (full load)

of damaging the machine in every conceivable way, it is
almost impossible to collect data for every fault state. One
class classification methods are designed to accurately learn
from just healthy data so that any deviations are regarded
as abnormal. For condition monitoring of industrial machines
they are ideal in principle and this paper will compare one and
two class support vector machines (SVM) to identify if the one
class SVM can produce an acceptable level of detection and
if so, how they compare to the two class SVM.

The dairy filler machines are powered using inverter driven
1.5kW 3 phase induction motors. The machines themselves
have embedded systems on which data collection and analysis
can be performed. The rough details of this food industry
condition monitoring scenario can be found in table I. The
laboratory experiment was conducted under these conditions.
Details of the faults imposed on the induction motor can be
found in section III.

II. I NDUCTION MOTOR ANALYSIS

The three phase induction motor is one of the most
popular motors used in industry. Its popularity results from
its ruggedness and reliability. However, the non-linear nature
of its operation makes fault detection a significant challenge.
Induction motor fault detection is a well researched area with
several advanced signal processing techniques proposed [3],
[4]. This paper will consider motor current signal analysis
(MCSA) as it is particularly applicable to process machinery.
In some industries such as food and packaging, motors and
machines operate in hostile environments which can damage
sensors. Therefore they prefer the smallest number of sensors
possible to accurately diagnosis the condition of the machine.
MCSA is a good solution as the current signal can be extracted
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from the inverter which is in a sealed cabinet and protected
from hostile conditions.

MCSA has been successfully applied for the detection of
the four faults imposed on the motor in this paper. In terms
of bearing faults, Blodt et al. [5] undertook a comprehensive
review of the stator current model and determined that bearing
faults not only induce modulations in the current through
torque variations but also through imbalance, leading to ex-
tra frequencies to study. For eccentricity type faults, Supen-
gat et al. [6] did several experiments over several different
motor loads using vibration and current information. After
performing analysis on the signals, they identified significant
frequencies which provided fault information as the loading
on the motor increased. However, to achieve this information,
the motor had five sensors attached to it which might not be
ideal in certain industries, such as the food industry where
machine cleaning can damage sensors. Broken rotor bars have
received much attention. Kim et al. [7] studies variances in
impedance due to broken rotor bars to try to detect such a fault.
The study shows that it is possible to clearly identify broken
rotor bars from the current signal. Benbouzid and Kliman [3]
present a thorough review of MCSA techniques with which
to analyse broken rotor bar faults. Thomson et al. [8] look
at trying to detect winding faults using MCSA. It highlighted
through spectral analysis that with at least 20% of the turns
shorted, clear spikes at predicted frequencies could be seen.
Siddique et al. [9] provides a review of techniques with which
to analyse stator winding faults. Gandhi et al. [10] highlights
that wavelet analysis techniques are some of the most efficient
for extracting relevant fault features.

III. I NDUCTION MOTOR FAULTS

Bearing faults and shorted turns in the stator windings are
the most common reasons for induction motor failure. This is
likely because the main mechanical force passes through the
bearings and also brineling can occur from the currents that
are passed through it. Stator windings have the most electrical
force passing through them.

A. Bearing Faults

The four types of bearing fault are the inner race, the outer
race, the ball bearing and the cage defects. These faults can
cause machine vibration at pre-defined frequencies depending
on the bearing structure and the shaft rotational speed. This
vibration results in air gap eccentricity which will cause
variations in flux density. Cage defects, ball bearing defects,
inner and outer race defects will produce frequencies which
can be computed from equations which depend on parameters
such as the motor shaft rotational frequency in hertz, the
diameter of a ball bearing, the diameter of the bearing itself,
the contact angle between the ball bearings and the cage and
the number of balls. A full description of these equations and
their derivation can be found here [11].

These frequencies result in harmonics in the stator current
which can be detected via the following equation:

fcurrent = |fs ±mfvbr| . (1)

(a) Damaged Bearing (b) Bolt generating imbal-
ance

(c) Rotor Bar Damage (d) Winding fault through
phase disconnection

Fig. 1. Pictures of the four simulated faults on the 3 phase induction motor

where fcurrent are the current harmonics,fs is the
supply frequency,m is a positive integer andfvbr ∈
{fcd, fbd, fir, for} are the characteristic vibration frequencies
for each of the four bearing faults (cage defects, ball bearing
defects, inner and outer race defects respectively.

Subfigure (a) in Figure 1 shows the damaged bearing used
in this paper. A slot was cut across the bearing, creating all
four faults. The authors chose to damage the bearing in this
way so that they could compare the performance of fast fourier
transforms (FFT) and wavelet packet transforms (WPT) over
all four bearing faults. The outer race has been damaged in
two places and clear damage can be seen to the cage and one
of the balls. Inner race damage (thick grey line) can be seen
in the middle of the image.

B. Eccentricity Faults

Air gap eccentricity occurs in induction motors when there
is an unequal gap between the stator and rotor. There are
two different types of eccentricity: static and dynamic. Static
eccentricity occurs when the axis of rotation is displaced such
that the minimal airgap length is constant. This can be caused
by the incorrect positioning of the rotor in the stator at the
time of manufacture or perhaps through stator ovality. This
means that the field distribution in the airgap is no longer
symmetrical which leads to a radial force, known as the
unbalanced magnetic pull, which acts in the direction of the
minimal airgap. Dynamic eccentricity occurs when the rotoris
not rotating on its own axis and so the minimal airgap length
varies according to the rotated position.

In real world conditions, static and dynamic eccentricity
tend to co-exist which gives rise to frequency components in
the current spectrum [6].

In this paper, this eccentricity fault is simulated by at-
taching a bolt to the rotor shaft to create an imbalance (see
subfigure (b) in figure 1).

C. Broken Rotor Bar Faults

If there is any asymmetry in the supply or the stator
winding impedances then a backward rotating field will appear.



Applying this to the rotor winding means that the frequency of
the induced electromagnetic force will appear at slip frequency
rather than the supply frequency. Therefore the frequencies
for which signs of broken rotor bar faults appear in the stator
current can be computed [12].

Subfigure (c) in Figure 1 shows how the rotor bar fault was
created by the drilling of a small hole through one of the rotor
bars to disconnect.

D. Stator Winding Faults

For low voltage stator windings, there are several possible
faults that can occur:

• Turn to turn shorts within the coil

• Shorting between coils of the same phase

• Phase to phase shorting

• Phase to earth shorting

Often there is no warning and there is little that online
monitoring can do to provide any timely indication of a fault.
However, for shorted turns within the stator winding, it is
possible to detect their frequency components (fw) [8].;

Subfigure (d) in figure 1 shows how the winding fault was
replicated via the disconnection of one of the phases.

IV. WAVELETS

Wavelets [13] are a powerful tool for analysing stationary
and non-stationary transient signals. They feature the dila-
tion property which allows them to adjust the width of the
frequency band and the location of its central frequency so
they can automatically focus on the positions of high and low
frequency changes. Gaeid et al. [14] provides a good review
of wavelets and their useful applicability to induction motor
fault detection.

For any signalx (t) ∈ L2 (R) where t is time, the
continuous wavelet transform is given by the convolution of
the signal with a scaled conjugated waveletW (α, β) where *
denotes the complex conjugate of the waveletψ; namely

W (α, β) = α−
1/2

∫

∞

−∞

x(t)ψ∗

(

t− β

α

)

dt. (2)

The termW (α, β) indicates how similar the wavelet and
signal are through the scale (or pseudo frequency) parameter
α and time shift parameterβ. It shows that wavelets are a
time-frequency analysis tool. To chose the scale and time
shift parameters, it is noted that only dyadic scales can be
used without information loss, leading to the discrete wavelet
transform, given by:

ψm,n (t) = 2−
m/2ψ

(

2−mt− n
)

(3)

whereα = 2m and β = n2m. These discrete wavelets
also form an orthonormal basis. Wavelet analysis can then be
performed via a low-pass filterh(n) relating to the scaling
functionϕ(t) and a high-pass wavelet filterg(n) that is related
to the wavelet functionψ(t):

h(n) = 2−
1/2 〈ϕ(t), ϕ(2t− n)〉 (4)

g(n) = 2−
1/2 〈φ(t), φ(2t− n)〉 . (5)

In decomposition of the signalx(t), the application of the
low and high pass filters leads to two vectorscA1 (approxi-
mation coefficients) andcD1 (detail coefficients). In wavelet
transform decomposition, this step is repeated on the approxi-
mation vector to achieve the required depth of decomposition.
The symbol↓ 2 denotes down-sampling (omitting the odd
indexed elements of the filter).

WPT [13] are a generalisation of the wavelet transform.
Define two functionsW0(t) = ϕ(t) andW1(t) = ψ(t) where
ϕ(t) is the scaling function andψ(t) is the wavelet function.
In the orthogonal case, form = 0, 1, 2, ...,, functionsWm(t)
are obtained by:

W2m(t) = 2

2N−1
∑

n=0

h(n)Wm(2t− n) (6)

W2m+1(t) = 2
2N−1
∑

n=0

g(n)Wm(2t− n) (7)

Wj,m,n(t) = 2−
j/2Wm(2−jt− n). (8)

wherej is a scale parameter andn is a time localisation
parameter. The functionsWj,m,n are called wavelet packet
atoms.

The difference between this method and wavelet transforms
is that both the details and the approximations are further
decomposed, thus giving a wavelet packet tree. Each decom-
position contains a set of nodes, indexed by positive integers
(i, j) wherej is the node depth andi is the node position at
that depth fori = 0, 1, ..., 2j − 1.

The signal energy for sub-signal node

Bj
i (i = 0, 1, ..., 2j − 1)

(i.e. the approximation and detail) at depthj is given by:

Ei =

100
M
∑

k=1

∣

∣

∣
Bj

i (k)
∣

∣

∣

2

2j−1
∑

i=0

(

M
∑

k=1

∣

∣

∣
Bj

i (k)
∣

∣

∣

2
)

(9)

where the numerator is the energy for a given node, the
denominator is the energy of the whole signal andM is the
number of sampling points.



V. CLASSIFIERS

One class classifiers [15], [16] were chosen because they
are designed for novelty detection; in this case the aim is
to separate a small number of abnormal data points from a
large number of normal data points. They are designed to for
situations where one class (the healthy class) is well sampled
and the other class (the faulty class) is very poorly sampled,
making it hard to use information from the poorly sampled
class to determine a boundary between the two classes.

A. One Class Classification - Support Vector Novelty Detec-
tion

One Class Support Vector Machine (OCSVM) [17] is a
novelty detection method based on the support vector machine
[18].

Consider healthy training datax1, x2, ..., xl ∈ R
n. Letφ be

the mappingφ : R → F into some feature dot product space
F . Let k(x, y) = (φ(x), φ(y)) be a positive definite kernel
which operates on the mappingφ. In this paper, the kernel used
is the Gaussian kernel,k(x, y) = exp

(

−‖x− y‖
2
/2σ2

)

, as
it suppresses growing distances in larger feature spaces. Here,
σ is the width parameter associated with the Gaussian kernel.
The data is mapped into the feature space via the kernel func-
tion and is separated from the origin with maximum margin.
The decision function is found by minimising the weighted
sum of the support vector regulariser and the empirical error
term depending on a margin variableρ and individual error
termsξi:

min
w∈F,ξ∈Rl,ρ∈R

1
2 ‖w‖

2
+ 1

νl

l
∑

i=1

ξi − ρ,

subject to (w · φ(xi)) ≥ ρ− ξi,
ξi ≥ 0,

(10)

wherew is a weight vector inF and v is the fraction of
the training set to be regarded as outliers. Using Lagrangian
multipliers, αi, βi ≥ 0, with constraints and setting the
derivatives of those multipliers with respect tow equal to zero
leads to

w =
l
∑

i=1

αiφ(xi), (11)

l
∑

i=1

αi = 1, (12)

αi + βi =
1

νl
. (13)

Solving the dual problem leads to the ’abnormality’ detection
function, given by

g(x) = ρ0 −

Ns
∑

i=1

αik(si, x). (14)

The user has to choose the appropriate kernel, with its
associated parameters, for the problem. Rather than choosing
an error penaltyC as via the classical SVM method, one
chooses a value forν which is the fraction of the training set
to be classified as outliers. The software used for this classifier
is LIBSVM for Matlab version 3.12 [19].

Fig. 2. Photo of the motor and data acquisition unit

B. Two Class Classification - Support Vector Classification

The two class SVM classifier [18] seeks to maximise the
margin between the healthy and faulty classes but classification
performance can suffer when one of the classes is under-
sampled. Using the same variables in section V-A, the op-
timisation problem becomes

min
w∈F,ξ∈Rl,ρ∈R

1
2‖w‖

2
− νρ+ 1

l

l
∑

i=1

ξi,

subject toyi · ((xi · w) + b) > ρ− ξi, ξi > 0, ρ > 0
(15)

with decision function

g(x) = sgn

(

l
∑

i=1

yiαiK(xi, x) + b

)

(16)

VI. DATA ACQUISITION

The data was acquired from a 3 phase asynchronous
380V 1.5kW induction motor. Motor speed was altered by
using a Vacon 10 Amp inverter drive. Current was read from
an open loop sensor in the inverter. Five motor states are
considered; healthy, faulty bearing, eccentricity, broken rotor
bar and stator winding. Three motor speeds are considered;
700RPM, 1000RPM and 1500RPM. Three different loads are
also considered; 0kW (no load), 0.75kW (half load) and 1.5kW
(full load). Only one phase of current was used and three
experimental runs were made for each motor configuration.
For each combination of these states, three sets of roughly 30
seconds of current signal was collected, except in the case of
the winding fault whereby only data from the machine running
at 1500RPM was collected. This was because it was impossible
to simulate the winding fault by disconnecting a phase at 700
RPM and 1000 RPM as the inverter was needed to achieve
these speeds. This means that there were a total of (5*3*3*3)-
(2*3*3)= 117 sets of data collected. The experimental layout
can be found in figure 2.

VII. M ETHOD

A. Method Details

In the section, the experimental design is introduced so that
the one class and two class SVMs could be compared.



TABLE II. PARAMETER RANGES FOR BOTH CLASSIFIERS

Parameter Values
σ 10

i for i = −9,−8, ...,−1, 0, 1, 2

ν 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5

1) The 117 signal samples were analysed using a Han-
ning window of length 16000 (found to be effective
from initial experimentation).

2) Each signal was sampled at 5kHz and processed
using WPT with the daubechies 10 wavelet to depths
varying from 3 and 11 inclusive in unit intervals. The
signal energy was computed for each node. Db10 was
chosen as it had previous success in fault detection
[20].

3) Data samples were split into three different frequency
feature sets of signals energies in the following
ranges: 0-125Hz, 0-500Hz and 0-2500Hz.

4) The training set for one class classification was
formed by combining two healthy signal samples
from each load, each speed and each frequency
feature set so that the third remaining sample for
each healthy load, speed and feature set forms a
healthy testing set. This means that for the training
set (healthy data only) for the 700 RPM data on
the 0-125Hz feature set, for example, consists of 6
signal samples (2 lots for each of the 3 loads). The
testing set has the 3 remaining healthy samples (one
for each load) and the faulty data (bearing, shaft
imbalance, broken rotor bar or stator winding). For
two class classification, the training set was formed
by combining two healthy and two faulty (bearing
or shaft imbalance or rotor or winding fault) signal
samples from each load, speed and frequency feature
set so that the third remaining sample for each healthy
and faulty load, speed and feature set forms a healthy
testing set. This means that for the training set for
the 700 RPM data on the 0-125Hz feature set, for
example, consists of 12 signal samples (2 lots for
each of the 3 loads from 2 states (healthy and faulty)).
The testing set has the 3 remaining healthy samples
(one for each load) and the 3 remaining faulty data
samples (bearing, shaft imbalance, broken rotor bar
or stator winding).

5) Each of the classifiers were trained using all param-
eters in the given range (see table II). 10 fold cross
validation was applied during training.

6) The classifiers were then tested using the testing sets
for each fault, speed and frequency feature set.

For extra clarity, although the training sets contain current data
with variable loads (for a given speed), data from different
speeds were not compared against each other as this would
lead to results bias.

VIII. P ERFORMANCEMETRICS

For the traditional two class classification problem where
data from each class is roughly equal, there are many metrics
such as accuracy, sensitivity and specificity which can be used
to measure performance. For one class classification problems,
where the data set is heavily imbalanced to favour the healthy
class, accuracy, for example, is not as useful. Consider a test

set with 90 healthy and 10 unhealthy data points. A classifier
that classifies all points as healthy will have an accuracy of
90% but is likely to be very poor for detecting unhealthy data.

The balanced error rate (BER) is given as the average of
the false positive and false negatives

BER = 1/2 (FP + FN) (17)

where FP and FN denotes the percentage of wrongly
classified healthy and unhealthy data respectively. In this
example, the BER would be 50%; demonstrating how weak
the given classifier is. This metric will be used throughout the
results section to judge performance.

IX. RESULTS

In this section the results are presented for the one class
and two class SVMs so that the BER can be compared for each
motor speed and feature set. The two class SVM was trained on
BOTH healthy and faulty data which was plentiful and roughly
equal in quantity so its performance will be superior to thatof
the one class SVM which was only trained on healthy data. The
two class SVM demonstrated very low errors on the bearing
faults (bar 1500RPM), the imbalance faults, the rotor bar faults
and the winding faults. This shows that given sufficient faulty
data, automatic fault detection can be achieved with a strong
level of accuracy (see tables III to VI) using a single phase of
current data rather than multiple vibration sensors.

In many industries however, faulty data is difficult or
impossible to obtain without incurring significant cost. Even if
some data is available, it is highly unlikely it will encompass
all fault conditions. One class classification methods focus
on healthy data, which is readily available and learn only
from this data. Tables III to VI show the performance of
the one class SVM and on internal motor faults (bearing (bar
1500RPM), rotor bar and winding), the average classification
error is less than 10% which is a very good performance, given
it was required to detect unknown faults. Its performance on
bearing faults at 1500RPM was little better than chance which
is a problem. However, this fault at this speed produced the
weakest performance from the two class SVM with average
errors of nearly 22% on healthy and faulty test data. It is felt
that the weak performance on the 1500RPM bearing data was
due to the motor compensating for the fault as it was designed
to run at that speed.

The one class SVM also performed reasonably well on the
imbalance fault with a lowest average classification error of
18.4%. This fault is a very difficult one to detect given it is
external to the motor, the metal bolt is not the biggest and
also the end of the shaft is held by the load generator so any
imbalance effects will be minimised.

X. CONCLUSION

The results show that the one class SVM can be effectively
used for classification on induction motor fault data using
healthy data only. This result has considerable potential for
industry as it shows that the majority of faults at different
motor speeds can be detected learning from just healthy
data. This means that one class classification algorithms can



TABLE III. T HE LOWESTBER RATE USING ONE CLASS AND TWO

CLASS SVM OVER ALL SPEEDS AND MOTOR LOADS FOR THE BEARING

FAULT

Speed/Feat. 1SVM
Ave

1SVM
STD

2SVM
Ave

2SVM
STD

700/All 1.9% 1.3% 0.0% 0.0%
700/500 1.5% 1.6% 0.0% 0.0%
700/125 1.8% 1.6% 0.0% 0.0%
1000/All 2.0% 2.2% 0.0% 0.0%
1000/500 2.1% 1.1% 0.0% 0.0%
1000/125 1.5% 0.6% 0.0% 0.0%
1500/All 48.0% 3.8% 21.9% 0.3%
1500/500 48.3% 1.9% 21.9% 0.3%
1500/125 48.0% 1.6% 21.9% 0.3%

TABLE IV. T HE LOWESTBER RATE USING ONE CLASS AND TWO

CLASS SVM OVER ALL SPEEDS AND MOTOR LOADS FOR THE IMBALANCE

FAULT

Speed/Feat. 1SVM
Ave

1SVM
STD

2SVM
Ave

2SVM
STD

700/All 22.0% 3.1% 7.5% 2.0%
700/500 21.7% 1.7% 6.9% 3.4%
700/125 20.3% 2.1% 6.9% 3.7%
1000/All 18.4% 1.9% 3.6% 1.8%
1000/500 19.2% 4.7% 4.7% 1.9%
1000/125 18.9% 4.6% 4.4% 1.9%
1500/All 24.0% 1.7% 2.4% 1.5%
1500/500 28.6% 2.7% 3.5% 2.8%
1500/125 24.4% 4.0% 3.9% 2.3%

be applied in a wide range of industries which depend on
induction motors to power their machines. In principle they
would be relatively easy to setup as healthy data is readily
available.
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