850 research outputs found

    Enhancing the 3GPP V2X architecture with information-centric networking

    Get PDF
    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution119sem informaçãosem informaçã

    Improving the Multi-Channel Hybrid Data Dissemination System

    Get PDF
    A major problem with the Internet and web-based applications is the scalable delivery of data. Lack of scalability can hinder performance and decrease the ability of a system to perform as originally designed. One of the most promising solutions to this scalability problem is to use a multiple channel hybrid data dissemination server to deliver requested information to users. This solution provides the high scalability found in multicast, with the low latency found in unicast. A multiple channel hybrid server works by using a push-based multicast channel to deliver the most popular data to users, and reserves the pull-based unicast channel for user requests and delivery of less popular data.The adoption of a multiple channel hybrid data dissemination server, however, introduces a variety of data management problems. In this dissertation, we propose an improved multiple channel hybrid data dissemination model, and propose solutions to three fundamental data management problems that arise in any multiple channel hybrid scheme. In particular, we address the push popularity problem, the document classification problem, and the bandwidth division problem. We also propose a multicast pull channel to the common two-channel hybrid scheme. Our hypothesis that this new channel both improves scalability, and decreases variances in response times, is confirmed by our extensive experimental results. We develop a fully functioning architecture for our three-channel hybrid scheme. In a real world environment, our middleware is shown to provide high scalability for overloaded web servers, while keeping the response times experienced by clients at a minimum. Further, we demonstrate that the practical impact of this work extends to other broadcast-based environments, such as a wireless network

    On the realization of VANET using named data networking: On improvement of VANET using NDN-based routing, caching, and security

    Get PDF
    Named data networking (NDN) presents a huge opportunity to tackle some of the unsolved issues of IP-based vehicular ad hoc networks (VANET). The core characteristics of NDN such as the name-based routing, in-network caching, and built-in data security provide better management of VANET proprieties (e.g., the high mobility, link intermittency, and dynamic topology). This study aims at providing a clear view of the state-of-the-art on the developments in place, in order to leverage the characteristics of NDN in VANET. We resort to a systematic literature review (SLR) to perform a reproducible study, gathering the proposed solutions and summarizing the main open challenges on implementing NDN-based VANET. There exist several related studies, but they are more focused on other topics such as forwarding. This work specifically restricts the focus on VANET improvements by NDN-based routing (not forwarding), caching, and security. The surveyed solution herein presented is performed between 2010 and 2021. The results show that proposals on the selected topics for NDN-based VANET are recent (mainly from 2016 to 2021). Among them, caching is the most investigated topic. Finally, the main findings and the possible roadmaps for further development are highlighted

    Efficient Information Dissemination in VANETs

    Get PDF

    Vehicular ad hoc networking based on the incorporation of geographical information in the IPv6 header

    Get PDF
    Several approaches can be identified in the domain of vehicular ad hoc networks (VANET). Internet Protocol version 6 (IPv6) networking and non-IP geographical networking can each fulfill a subset of the application requirements. In general, a combination of both techniques is proposed to meet all of the application requirements. In this case, packets of one VANET routing protocol are encapsulated inside packets of another. This tunneling, together with the position service required for non-IP geographical unicasting, makes such a combined solution rather complex, and hence more challenging to implement, debug, and maintain. In this article, a new VANET approach is presented that relies on the key assumptions that geo-anycast functionality is not required by the applications, and that geographic unicasting is not needed when IP-based unicasting is provided. This enables the adoption of an IPv6-only VANET solution, removing the need for tunneling and position services. New techniques are required to support IPv6-based geo-broadcasting. In this article, it is described how addresses should be assigned, how geographical data can be incorporated in the IPv6 address, how the other IPv6 header fields can be used to contain additional VANET information, and how routing should be handled to guarantee that no modifications are required to the application units. The implementation of the proposed techniques is described, and the correct functionality of the solutions is experimentally demonstrated. Finally, to prove the added value compared to current state-of-the-art propositions, the presented solution is stacked up against the recently released ETSI standards TS 102 636-4-1 (geographical addressing and forwarding) and TS 102 636-6-1 (transmission of IPv6 packets over GeoNetworking protocols)

    Towards Broadcasting Linear Content over 5G Network

    Get PDF
    Today's society relies heavily on linear television systems with planned programs, which are also a crucial form of communication. Broadcast of liner content is evolving, driven particularly by the evolution of end users’ devices, it is has changed from a small number of linear radio and TV channels to a comprehensive and distinctive offer that is available across a variety of various distribution platforms. Broadcasting linear content over 5G networks involves delivering scheduled, real-time content such as live TV broadcasts, radio programs, or streaming events to a large number of users simultaneously. While 5G networks offer significant advantages in terms of capacity, speed, and latency, there are specific considerations when it comes to broadcasting linear content. hassle cellular networks offering the discontinues services, have been predominantly built on a unicast bidirectional communication paradigm for many years, offering its end customers a variety of services. In this paper, we examine the future 3rd Generation Partnership Project (3GPP) 5G Multicast and Broadcast Services (MBS) standards as well as some of its constraints. We also outline the most recent standardization efforts aimed at bringing non-3GPP broadcast networks into the 5G system, along with the suggestions we have made to standards bodies

    Towards Broadcasting Linear Content over 5G Network

    Get PDF
    Today's society relies heavily on linear television systems with planned programs, which are also a crucial form of communication. Broadcast of liner content is evolving, driven particularly by the evolution of end users’ devices, it is has changed from a small number of linear radio and TV channels to a comprehensive and distinctive offer that is available across a variety of various distribution platforms. Broadcasting linear content over 5G networks involves delivering scheduled, real-time content such as live TV broadcasts, radio programs, or streaming events to a large number of users simultaneously. While 5G networks offer significant advantages in terms of capacity, speed, and latency, there are specific considerations when it comes to broadcasting linear content. hassle cellular networks offering the discontinues services, have been predominantly built on a unicast bidirectional communication paradigm for many years, offering its end customers a variety of services. In this paper, we examine the future 3rd Generation Partnership Project (3GPP) 5G Multicast and Broadcast Services (MBS) standards as well as some of its constraints. We also outline the most recent standardization efforts aimed at bringing non-3GPP broadcast networks into the 5G system, along with the suggestions we have made to standards bodies
    • …
    corecore