528 research outputs found

    Online Coloring of Bipartite Graphs with and without Advice

    Get PDF
    In the online version of the well-known graph coloring problem, the vertices appear one after the other together with the edges to the already known vertices and have to be irrevocably colored immediately after their appearance. We consider this problem on bipartite, i.e., two-colorable graphs. We prove that at least ⌊1.13746⋅log2(n)−0.49887⌋ colors are necessary for any deterministic online algorithm to be able to color any given bipartite graph on n vertices, thus improving on the previously known lower bound of ⌊log2 n⌋+1 for sufficiently large n. Recently, the advice complexity was introduced as a method for a fine-grained analysis of the hardness of online problems. We apply this method to the online coloring problem and prove (almost) tight linear upper and lower bounds on the advice complexity of coloring a bipartite graph online optimally or using 3 colors. Moreover, we prove that O(n)O(\sqrt{n}) advice bits are sufficient for coloring any bipartite graph on n vertices with at most ⌈log2 n⌉ colors

    Optimal Online Edge Coloring of Planar Graphs with Advice

    Full text link
    Using the framework of advice complexity, we study the amount of knowledge about the future that an online algorithm needs to color the edges of a graph optimally, i.e., using as few colors as possible. For graphs of maximum degree Δ\Delta, it follows from Vizing's Theorem that O(mlog⁡Δ)O(m\log \Delta) bits of advice suffice to achieve optimality, where mm is the number of edges. We show that for graphs of bounded degeneracy (a class of graphs including e.g. trees and planar graphs), only O(m)O(m) bits of advice are needed to compute an optimal solution online, independently of how large Δ\Delta is. On the other hand, we show that Ω(m)\Omega (m) bits of advice are necessary just to achieve a competitive ratio better than that of the best deterministic online algorithm without advice. Furthermore, we consider algorithms which use a fixed number of advice bits per edge (our algorithm for graphs of bounded degeneracy belongs to this class of algorithms). We show that for bipartite graphs, any such algorithm must use at least Ω(mlog⁡Δ)\Omega(m\log \Delta) bits of advice to achieve optimality.Comment: CIAC 201

    Online Multi-Coloring with Advice

    Full text link
    We consider the problem of online graph multi-coloring with advice. Multi-coloring is often used to model frequency allocation in cellular networks. We give several nearly tight upper and lower bounds for the most standard topologies of cellular networks, paths and hexagonal graphs. For the path, negative results trivially carry over to bipartite graphs, and our positive results are also valid for bipartite graphs. The advice given represents information that is likely to be available, studying for instance the data from earlier similar periods of time.Comment: IMADA-preprint-c

    Online graph coloring against a randomized adversary

    Get PDF
    Electronic version of an article published as Online graph coloring against a randomized adversary. "International journal of foundations of computer science", 1 Juny 2018, vol. 29, nĂșm. 4, p. 551-569. DOI:10.1142/S0129054118410058 © 2018 copyright World Scientific Publishing Company. https://www.worldscientific.com/doi/abs/10.1142/S0129054118410058We consider an online model where an adversary constructs a set of 2s instances S instead of one single instance. The algorithm knows S and the adversary will choose one instance from S at random to present to the algorithm. We further focus on adversaries that construct sets of k-chromatic instances. In this setting, we provide upper and lower bounds on the competitive ratio for the online graph coloring problem as a function of the parameters in this model. Both bounds are linear in s and matching upper and lower bound are given for a specific set of algorithms that we call “minimalistic online algorithms”.Peer ReviewedPostprint (author's final draft

    Lower bounds for on-line graph colorings

    Full text link
    We propose two strategies for Presenter in on-line graph coloring games. The first one constructs bipartite graphs and forces any on-line coloring algorithm to use 2log⁥2n−102\log_2 n - 10 colors, where nn is the number of vertices in the constructed graph. This is best possible up to an additive constant. The second strategy constructs graphs that contain neither C3C_3 nor C5C_5 as a subgraph and forces Ω(nlog⁥n13)\Omega(\frac{n}{\log n}^\frac{1}{3}) colors. The best known on-line coloring algorithm for these graphs uses O(n12)O(n^{\frac{1}{2}}) colors

    Online coloring problem with a randomized adversary and infinite advice

    Get PDF
    Online problems are those in which the instance is not given as a whole but by parts named requests. They arrise naturaly in computer science. Several examples are given such as ski rental problem, the server problem and the coloring problem. The performance of the online algorithms is analized in terms of the ratio between the cost of the algorithm and the cost of the optimal offline. This ratio is called the competitive ratio. Several models of online algorithms are described. They are deterministic algorithms, randomized algorithms and algorithms with advice. We present several upper and lower bounds for the competitive ratio in a particular case of the k-server problem. We review the known bounds for the coloring problem in the diferent models. We present a new model, the randomized adversary. For this model we present an upper bound and a restricted lower bound. Finally we conjecture an unrestricted lower bound and we present several approaches to the result

    Deterministic Graph Exploration with Advice

    Get PDF
    We consider the task of graph exploration. An nn-node graph has unlabeled nodes, and all ports at any node of degree dd are arbitrarily numbered 0,
,d−10,\dots, d-1. A mobile agent has to visit all nodes and stop. The exploration time is the number of edge traversals. We consider the problem of how much knowledge the agent has to have a priori, in order to explore the graph in a given time, using a deterministic algorithm. This a priori information (advice) is provided to the agent by an oracle, in the form of a binary string, whose length is called the size of advice. We consider two types of oracles. The instance oracle knows the entire instance of the exploration problem, i.e., the port-numbered map of the graph and the starting node of the agent in this map. The map oracle knows the port-numbered map of the graph but does not know the starting node of the agent. We first consider exploration in polynomial time, and determine the exact minimum size of advice to achieve it. This size is log⁥log⁥log⁥n−Θ(1)\log\log\log n -\Theta(1), for both types of oracles. When advice is large, there are two natural time thresholds: Θ(n2)\Theta(n^2) for a map oracle, and Θ(n)\Theta(n) for an instance oracle, that can be achieved with sufficiently large advice. We show that, with a map oracle, time Θ(n2)\Theta(n^2) cannot be improved in general, regardless of the size of advice. We also show that the smallest size of advice to achieve this time is larger than nÎŽn^\delta, for any ÎŽ<1/3\delta <1/3. For an instance oracle, advice of size O(nlog⁥n)O(n\log n) is enough to achieve time O(n)O(n). We show that, with any advice of size o(nlog⁥n)o(n\log n), the time of exploration must be at least nÏ”n^\epsilon, for any Ï”<2\epsilon <2, and with any advice of size O(n)O(n), the time must be Ω(n2)\Omega(n^2). We also investigate minimum advice sufficient for fast exploration of hamiltonian graphs
    • 

    corecore