2,356 research outputs found

    Liquid-gas-solid flows with lattice Boltzmann: Simulation of floating bodies

    Full text link
    This paper presents a model for the simulation of liquid-gas-solid flows by means of the lattice Boltzmann method. The approach is built upon previous works for the simulation of liquid-solid particle suspensions on the one hand, and on a liquid-gas free surface model on the other. We show how the two approaches can be unified by a novel set of dynamic cell conversion rules. For evaluation, we concentrate on the rotational stability of non-spherical rigid bodies floating on a plane water surface - a classical hydrostatic problem known from naval architecture. We show the consistency of our method in this kind of flows and obtain convergence towards the ideal solution for the measured heeling stability of a floating box.Comment: 22 pages, Preprint submitted to Computers and Mathematics with Applications Special Issue ICMMES 2011, Proceedings of the Eighth International Conference for Mesoscopic Methods in Engineering and Scienc

    The Influence of Currents and Bathymetry on the Phytoplankton Growth Dynamics in a Deep Lake: An Application of the Lattice Boltzmann Method

    Get PDF
    The invasive species, the quagga mussel, infiltrated Lake Michigan in the early 2000s and immediately began depleting the base of the aquatic food system: the lake\u27s phytoplankton population. Today the quagga mussel covers 80% of the lake floor deeper than 10 meters, can be concentrated at 35,000 mussels per square meter, and is efficient at filtering throughout the depth of the water column. This thesis aims to contribute to the difficult task of describing the impact these mussels have on the size and preferred depth of the phytoplankton population in Lake Michigan. In a simplified model, two species of phytoplankton competing for nutrients (one preferred) with bottom boundary mussel consumption were simulated using the lattice Boltzmann method. Four lake-bottom boundary condition scenarios, the Mid Lake Plateau, an open channel, a small hill, and a steep drop-off, were considered in order to test the viability and flexibility of the lattice Boltzmann method and to explore how the bathymetry of Lake Michigan influences the phytoplankton population. In addition, slow and fast currents were tested and the varying distributions of the phytoplankton were analyzed. The results of this thesis can be used to evaluate the viability of a modeling and computational tool for quantitatively evaluating the impacts bathymetry and currents have on an aquatic system

    A new lattice Boltzmann model for interface reactions between immiscible fluids

    Get PDF
    In this paper, we describe a lattice Boltzmann model to simulate chemical reactions taking place at the interface between two immiscible fluids. The phase-field approach is used to identify the interface and its orientation, the concentration of reactant at the interface is then calculated iteratively to impose the correct reactive flux condition. The main advantages of the model is that interfaces are considered part of the bulk dynamics with the corrective reactive flux introduced as a source/sink term in the collision step, and, as a consequence, the model’s implementation and performance is independent of the interface geometry and orientation. Results obtained with the proposed model are compared to analytical solution for three different benchmark tests (stationary flat boundary, moving flat boundary and dissolving droplet). We find an excellent agreement between analytical and numerical solutions in all cases. Finally, we present a simulation coupling the Shan Chen multiphase model and the interface reactive model to simulate the dissolution of a collection of immiscible droplets with different sizes rising by buoyancy in a stagnant fluid

    Analysis of mixed motion in deterministic ratchets via experiment and particle simulation

    Get PDF
    Deterministic lateral displacement (DLD) ratchets are microfluidic devices, which are used for size-based sorting of cells or DNA. Based on their size, particles are showing different kinds of motion, leading to their fractionation. In earlier studies, so-called zigzag and displacement motions are observed, and in recent study by our group (Kulrattanarak et al., Meas Sci Technol, 2010a; J Colloid Interface Sci, 2010b), we have shown that also mixed motion occurs, which is an irregular alternation of zigzag and displacement motion. We have shown that the mixed motion is due to asymmetry of the flow lane distribution, induced by the symmetry breaking of the oblique primitive lattice cell (Kulrattanarak et al. 2010b). In this study, we investigate mixed motion in depth by numerical and experimental analysis. Via 3D simulations, we have computed explicit particle trajectories in DLD, and are able to show that there are two critical length scales determining the type of motion. The first length scale d f,1 is the first flow lane width, which determines the transition between zigzag motion and mixed motion. The other length scale, d f,c , determines the transition between mixed motion and displacement motion. Based on our experimental and numerical results we have been able to correlate the migration angle of particles showing mixed motion to the particle size, relative to the two critical length scales d f,1 and d f,

    Fast, Scalable, and Interactive Software for Landau-de Gennes Numerical Modeling of Nematic Topological Defects

    Get PDF
    Numerical modeling of nematic liquid crystals using the tensorial Landau-de Gennes (LdG) theory provides detailed insights into the structure and energetics of the enormous variety of possible topological defect configurations that may arise when the liquid crystal is in contact with colloidal inclusions or structured boundaries. However, these methods can be computationally expensive, making it challenging to predict (meta)stable configurations involving several colloidal particles, and they are often restricted to system sizes well below the experimental scale. Here we present an open-source software package that exploits the embarrassingly parallel structure of the lattice discretization of the LdG approach. Our implementation, combining CUDA/C++ and OpenMPI, allows users to accelerate simulations using both CPU and GPU resources in either single- or multiple-core configurations. We make use of an efficient minimization algorithm, the Fast Inertial Relaxation Engine (FIRE) method, that is well-suited to large-scale parallelization, requiring little additional memory or computational cost while offering performance competitive with other commonly used methods. In multi-core operation we are able to scale simulations up to supra-micron length scales of experimental relevance, and in single-core operation the simulation package includes a user-friendly GUI environment for rapid prototyping of interfacial features and the multifarious defect states they can promote. To demonstrate this software package, we examine in detail the competition between curvilinear disclinations and point-like hedgehog defects as size scale, material properties, and geometric features are varied. We also study the effects of an interface patterned with an array of topological point-defects.Comment: 16 pages, 6 figures, 1 youtube link. The full catastroph

    Transport Phenomena and Structuring in Shear Flow of Suspensions near Solid Walls

    Full text link
    In this paper we apply the lattice-Boltzmann method and an extension to particle suspensions as introduced by Ladd et al. to study transport phenomena and structuring effects of particles suspended in a fluid near sheared solid walls. We find that a particle free region arises near walls, which has a width depending on the shear rate and the particle concentration. The wall causes the formation of parallel particle layers at low concentrations, where the number of particles per layer decreases with increasing distance to the wall.Comment: 14 pages, 14 figure
    • …
    corecore