158 research outputs found

    Locally adaptive vector quantization: Data compression with feature preservation

    Get PDF
    A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process

    A 6 mW, 5,000-Word Real-Time Speech Recognizer Using WFST Models

    Get PDF
    We describe an IC that provides a local speech recognition capability for a variety of electronic devices. We start with a generic speech decoder architecture that is programmable with industry-standard WFST and GMM speech models. Algorithm and architectural enhancements are incorporated in order to achieve real-time performance amid system-level constraints on internal memory size and external memory bandwidth. A 2.5 × 2.5 mm test chip implementing this architecture was fabricated using a 65 nm process. The chip performs a 5,000 word recognition task in real-time with 13.0% word error rate, 6.0 mW core power consumption, and a search efficiency of approximately 16 nJ per hypothesis.Quanta Computer (Firm)Irwin Mark Jacobs and Joan Klein Jacobs Presidential Fellowshi

    Some new developments in image compression

    Get PDF
    This study is divided into two parts. The first part involves an investigation of near-lossless compression of digitized images using the entropy-coded DPCM method with a large number of quantization levels. Through the investigation, a new scheme that combines both lossy and lossless DPCM methods into a common framework is developed. This new scheme uses known results on the design of predictors and quantizers that incorporate properties of human visual perception. In order to enhance the compression performance of the scheme, an adaptively generated source model with multiple contexts is employed for the coding of the quantized prediction errors, rather than a memoryless model as in the conventional DPCM method. Experiments show that the scheme can provide compression in the range from 4 to 11 with a peak SNR of about 50 dB for 8-bit medical images. Also, the use of multiple contexts is found to improve compression performance by about 25% to 35%;The second part of the study is devoted to the problem of lossy image compression using tree-structured vector quantization. As a result of the study, a new design method for codebook generation is developed together with four different implementation algorithms. In the new method, an unbalanced tree-structured vector codebook is designed in a greedy fashion under the constraint of rate-distortion trade-off which can then be used to implement a variable-rate compression system. From experiments, it is found that the new method can achieve a very good rate-distortion performance while being computationally efficient. Also, due to the tree-structure of the codebook, the new method is amenable to progressive transmission applications

    Conjoint probabilistic subband modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1997.Includes bibliographical references (leaves 125-133).by Ashok Chhabedia Popat.Ph.D

    EMQ: Evolving Training-free Proxies for Automated Mixed Precision Quantization

    Full text link
    Mixed-Precision Quantization~(MQ) can achieve a competitive accuracy-complexity trade-off for models. Conventional training-based search methods require time-consuming candidate training to search optimized per-layer bit-width configurations in MQ. Recently, some training-free approaches have presented various MQ proxies and significantly improve search efficiency. However, the correlation between these proxies and quantization accuracy is poorly understood. To address the gap, we first build the MQ-Bench-101, which involves different bit configurations and quantization results. Then, we observe that the existing training-free proxies perform weak correlations on the MQ-Bench-101. To efficiently seek superior proxies, we develop an automatic search of proxies framework for MQ via evolving algorithms. In particular, we devise an elaborate search space involving the existing proxies and perform an evolution search to discover the best correlated MQ proxy. We proposed a diversity-prompting selection strategy and compatibility screening protocol to avoid premature convergence and improve search efficiency. In this way, our Evolving proxies for Mixed-precision Quantization~(EMQ) framework allows the auto-generation of proxies without heavy tuning and expert knowledge. Extensive experiments on ImageNet with various ResNet and MobileNet families demonstrate that our EMQ obtains superior performance than state-of-the-art mixed-precision methods at a significantly reduced cost. The code will be released.Comment: Accepted by ICCV202
    • …
    corecore