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This article presents a study of a locally adaptive vector quantization (LAVQ)

algorithm for data compression. This algorithm provides high-speed one-pass com-

pression and is fully adaptable to any data source and does not require a priori

knowledge of the source statistics. Therefore, LAVQ is a universal data compression
algorithm. The basic algorithm and several modifications to improve performance

are discussed. These modifications are nonlinear quantization, coarse quantization

of the codebook, and lossless compression of the output. Performance of LAVQ on

various images using irreversible (lossy) coding is comparable to that of the Linde-

Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has

potential for real-time video compression. Unlike most other image compression al-

gorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless

data compression algorithm is comparable to that of Lempel-Ziv-based algorithms,

but LAVQ uses far less memory during the coding process.

I. Introduction

Data compression is the art Of packing data, the process

of transforming a body of data to a smaller representation
from which the original or an approximation to the orig-

inal can be computed at a later time. Most data sources

contain redundancies Such as nonuniform symbol distri-

bution, pattern repetition, and positional redundancy. A

data compression algorithm encodes the data to reduce
these redundancies.

Data compression has not been a stmldard feature

in most communication/storage systems for the following

reasons: Compression increases the software and/or hard-
ware cost; compression/decompression is difficult to in-

corporate into high data rate (greater than 10 Mb/sec)

systems; most compression algorithms are not flexible

enough to process different types of data; the unpre-
dictability of compressed data file size presents space allo-

cation problems. These obstacles are less significant today

due to recent advances in algorithm development, high-

speed very large-scale integrated circuit (VLSI) technol-
ogy, and packet switching communications. Data com-

pression is now a feasible option for those communication

or storage systems for which communication bandwidth

and/or storage capacity are at a premium. If present
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trends continue, the volume of speech and image data in

the near future will become prohibitively large for many

communication links or storage devices.

A number of applications require data compression for

efficient data storage. To facilitate fast processing, main-
tain accurate records, and recall old records quickly, a

number of businesses are optically scanning their docu-

ments and saving them on magnetic media. This takes

up large amounts of memory; efficient storage requires

data compression. Documents are stored for archival pur-

poses, so a short delay in retrieval (decompression) is not

detrimental. A similar application exists in law enforce-

ment, security, and intelligence agencies, where facial, fin-

gerprint, and other images are kept on file for fast retrieval,

analysis, and matching.

Data compression is required also in limited bandwidth

communications; the two best examples of this are video

telephony and high-definition television (HDTV). Video

telephony requires transmission of images over a small

bandwidth; this can be as small as 4 kHz in the standard
voice communication channel. Sending an image, even a

small one, without data compression is not feasible. For

HDTV, data compression is also needed if signals are to be

sent digitally over a standard television channel: HDTV
signals require roughly four times the bandwidth of stare

dard TV signals. High-speed algorithms which compress

the image without substantially degrading image quality
are requirements for both video telephony and HDTV. As
more and more information must be transmitted over the

same size bandwidth, data compression becomes impera-

tive to maintain transmission rate and data fidelity.

Vector quantization (VQ) is an efficient data compres-

sion technique for speech and images. VQ maps a sequence
of continuous or discrete vectors into a digital sequence

suitable for transmission over a digital channel or storage

in a digital medium. The goal is to reduce the volume

of data while preserving required fidelity levels. In [1], a

weli:designed VQ scheme was shown capable of providing

high compression ratio with good reconstructed quality.

Unlike scalar quantization where the actual coding of

continuous or discrete samples into discrete quantities is

done on single samples, the input data of a VQ encoder
are multidimensional blocks of data (input vectors). An

important technique in VQ is the training of codebooks

prior to transmission [1]. Extensive preprocessing is per-

formed on sample source data to construct the codebook

to be used in the compression session. The encoder and

decoder must first agree on the same codebook before data
transmission. The closeness between an input vector and
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a codeword in the codebook is measured by an appropi-

ate distortion function. During the compression session,

distortions between an input vector and codewords in the

codebook are evaluated; the codeword closest to the input

vector is chosen as the quantization vector to represent the

input vector. The index of this chosen codeword is then

transmitted through the channel. Compression is achieved

since fewer bits are used to represent the codeword index

than the quantized input data. The decoder receives the

codeword index and reconstructs the transmitted data us-

ing the preselected codebook.

Traditional VQ schemes have a few inherent disadvan-

tages. (1) The generation of a good codebook requires a

priori knowledge of the source data, which in practice are

not often easily available. (2) Traditional VQ schemes are

static schemes. They assume that the statistical proper-
ties of the source data remain the same for all compression

sessions and the codebooks are optimized based on this

assumption. Real-world data tend to have varying charac-

teristics, and static algorithms may not be efficient enough

to process diverse sources. (3) Both codebook generation :
and codeword search for input vectors involve computing

the distortion between input vectors and codewords in the

codebook; these are usually eomputationally intensive pro-

cesses, especially when the eodebook size is large.

A new class of data compression algorithms, locally

adaptive vector quantization (LAVQ) algorithms, was sug-

gested in [2] and [3]. Unlike traditional VQ algorithms,

LAVQ algorithms do not require a priori knowledge of the :
source, nor do they require the tedious process of codebook !

generation, as the codebook is generated on the fly during
encoding, and the decoder mimics the operations of the
eneoder to maintain an identical :codebook at all times.

This algorithm does not require a full codebook search:

The codebook is updated after each use to maintain the !

most:recently used codewords at the front of the codebook; i
a codeword which is within the error allowance is typically :_

found in the top one-fifth to one-tenth of the book through !
a sequential search. This algorithm dynamically adapts to

the local features of the source and is particularly good in

compressing sources with varying characteristics..

In this article the basic algorithm suggested in [2] and

[3] will be described. Subsequent sections will be devoted
to the analogy of LAVQ to a vector differential pulse code

modulation (DPCM) algorithm, improvements to the ba-

sic LAVQ algorithm, and application to lossless data com-

pression. The algorithm has been fully implemented in
software; a brief description of this implementation is in-

eluded. Experimental results on both lossy image coding

and lossless data compression are also presented.



Ih Basic Algorithm

The basic-LAVQ algorithm provides a simple yet effec-
tive one-pass data compression strategy (refer to Fig. 1).

The encoder has a codebook containing codewords (vec-

tors) where the index of the codeword corresponds to its
position in the codebook. A block is taken from the image

and compared to the stored codewords; if there exists a

codeword sufficiently close to the image block (within the

error allowance), the index itself is sent, and that codeword
is moved to the top of the codebook. If no such codeword

exists, a special index is sent. This index is followed by the
block itself. This block becomes a new codeword and is

placed at the top of the codebook. All other codewords are

pushed down, and if the number of codewords exceeds the
maximum allowed, the last codeword is lost. Initially, the

codebook may be empty or full from the previous image
encoded.

On the decoder side, the decoder expects an index. If

this index is the special one denoting that a new block was

sent, the decoder expects a block to be received immedi-

ately following the special index; this block is placed at the
top of the eodebook and all other codewords are pushed

down. If the codebook is already full, tile last codeword

is discarded. This new block is also placed into the image

being built by the decoder. If the index is not one desig-

nating a new block, then the codeword corresponding to

the index is put into the image being built, and that code-

word is moved to the top of the codebook. Thus, if the

encoder and decoder start with the same codebook, they

will have the same eodebook at each step, and the image

will be successfully sent [2-4].

The LAVQ strategy maintains the most recently used

vectors in the codebook in the order of last usage; this

allows the algorithm to efficiently code any image on the
fly without codebook training: The algorithm needs only

one pass of the image to code it entirely. In serial imple-

mentation, LAVQ has time complexity O(nm) and storage

complexity O(m), where n is the number of pixel s in the
image and m is the number of codewords in the codebook.

Most of the time spent on encoding is taken by finding the

closest codeword in the codebook and determing if that
match is close enough. Rearranging the codebook and

sending the required index, and possibly a new block, can

be done quickly in serial implementation using lookup ta-

bles, linked lists, and other software techniques. To min-

imize the amount of time spent on codebook searching

and to improve performance, a partial search of the code-

book can be used: Instead of searching serially for the best

match, the encoder can stop searching at the first instance

of a close-enough match, with the criterion dictated by the

error allowance given.

The basic LAVQ algorithm, however, has poor per-

formance compared to traditional VQ strategies such as

the Linde-Buzo-Gray (LBG). Several adjustments can be

made to improve the algorithm without degrading the ad-

vantage of one-pass high-speed implementation. Two ap-

proaches can be used to improve rate. First, the statistics
of the coded indices can be skewed toward small values (re-

cent indices) by (1) a partial codebook search as outlined

above, (2) using tall and narrow blocks (N x 1 pixels) to
make each block more similar to the blocks immediately

previous to it in a raster scan, and (3) coding only the dif-

ferential value of each block by removing the mean value

and reinserting it later. Second, tile number of bits used

to send new codewords can be reduced by (1) reducing

the number of bits used to describe each new pixel and (2)

using nonlinear quantization of these new codeword val-

ues. These two approaches, combined with lossless adap-

tive arithmetic coding of the output, improve the perfor-

mance of LAVQ to be comparable to that of LBG. These

improvements will be discussed in detail in a subsequent
section.

II1. LAVQ as a Vector Analogy of DPCM

Differential pulse code modulation (DPCM) data com-
pression algorithms are efficient and have low complexity.

They are particularly effective in encoding gray-scale im-
ages, which are dominantly characterized by an autore-

gressive (AR) stochastic model or an autoregressive mov-
ing average (ARMA) model. DPCM operates on individ-

ual samples z(n) and encodes the quantized difference e(n)

between a predicted value _(n) and x(n). The prediction

is based on the pixels neighboring z(n). The error e(n)
tends to be small rather than large, and compression is

achieved by assigning fewer bits to smaller values of e(n)

and more bits to larger values of e(n).

From an information theoretic point of view, given a

data source, it is always advantageous to encode vector

quantities rather than scalar quantities. A vector exten-

sion of DPCM coding involves encoding a vector of dif-

ferences E = [el(n), e2(n), ..., eN(n)], where N is the
vector size. However, the number of combinations of E in-

creases exponentially with N; especially for large N, this

quickly becomes too large to be practically feasible for effi-

cient encoding. Another drawback of DPCM is its inflexi-

bility: DPCM performs well when coding sources are char-

acterized by the AR or ARMA models (e.g., speech and

image data); however, for data sources dominantly charac-

terized by pattern repetitions (e.g., data base records and

engineering data), DPCM performs poorly.
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LAVQ is analogous to DPCM in a sense: Both DPCM

and LAVQ can be viewed as consisting of a preprocess-

ing stage and a compression stage. DPCM preprocesses a

sample by taking the difference between the sample value

and its corresponding predicted values and sends the quan-

tized difference to be entropy coded. LAVQ, on the other

hand, preprocesses a vector of samples by matching it to

the codeword vectors in a dynamic codebook followed by a

move-to-front codebook update, and sends either a code-
book index or an uncoded vector to the decoder. The ma-

jordifference is that DPCM encodes the scalar difference,

whereas LAVQ encodes the vector recency, which can be

considered as a different measure of difference (vector dif-
ference). Thus, LAVQ uses the locally adaptive move-to-

front preprocessing unit to convert the hidden statistical

and correlational redundancy to a scalar statistical redun-

dancy. This allows representation of vectors as scalars and

approaches vector entropy, which, in the information the-

oretic sense, is smaller than the corresponding scalar en-

tropy. This was proven in [2] and is verified in the results

given here.

IV. Improvements to LAVQ for Image
Compression

A. Index Coding

1. Difference Coding. The most significant visual

artifact of LAVQ is the sawtooth or staircase effect. This
occurs from using discrete vectors to represent a set of vec-

tors within a threshold set by the error allowance; thus,

differences between codewords can be large enough to be

noticeable. In particular, if the pixels are slowly varying

across the image, as is the case with most images, the

encoded blocks do not track this variation closely. That
is, adjacent blocks are coded with the same block while

the amount of error is within the allowance; when that

allowance is exceeded, suddenly a different block is used.

This difference can be noticeable and, since most images
have regions of slow variations or of constant color or in-

tensity, quite common.

This assumption of images having regions of slowly

varying or constant pixels implies that adjacent blocks

have similar mean values. Thus, the mean can be removedl

and only the differential values of the image can be coded.

Each vectbr now represents the difference between the ac-

tual pixel value and a reference value equal to the distorted
mean of the previously coded block. This distorted mean

is a valid choice of reference because both the encoder and

decoder can compute it exactly from the previous block's

distorted pixel values. The small difference vectors are

more likely to be well approximated by the recently occur-
ring difference vectors maintained in the current codebook.

Thus, slowly varying or constant regions can be more ac-

curately coded without extensive use of new codewords.

The mean must be updated after each block is processed
at both the encoder and the decoder. This ensures that

both have the same mean to remove and to reinsert into

the image at each step.

2. One-Pass Index Compression. Because of the

move-to-front codebook rearrangement strategy and be-

cause most images have similar adjacent blocks, the small-
est indices are most likely to be used more often. There-

fore, they can be coded using a lossless compression code
to obtain better performance. However, to maintain one-

pass compression, the lossless code must also be one-pass.
Furthermore, the statistics of the coded indices are un-

known a priori, and no assumption can be made regarding
them.

The code which yields the most promising results with

minimal increase in computational complexity is the adap-
tive arithmetic code. This algorithm is the static arith-

metic code implemented with probabilities of each symbol
updated after each use. By starting with the same initial

distribution at the encoder and decoder, lossless coding

can be obtained. The arithmetic code approaches global
symbol entropy closely; in some cases, it does even bet-

ter: The average entropy of the adaptive arithmetic code

is average local entropy based on symbol statistics.from --

the start to the symbol being coded. Global entropy is
derived from the statistics of each symbol based on the

entire sequence; local entropy is derived from the statistics

of each symbol based on part of the sequence in the neigh-

borhood of the symbol being coded. The global entropy
is always greater than or equal to the global average of all

the local entropies. Thus, for s0urces which have localized
characteristics which vary throughout the sequence, using =

localized adaptive coding methods is more advantageous z
than using global, nonadaptive coding methods.

B. Codeword Data Coding

1. Bit Stripping. Bit stripping of new codeword val-
ues can be used independently from or in conjunction with

difference coding to obtain higher compression rates. The

least-significant bits of either a block of pixels or a vec- __

tor of differences tend to be uniformly random therefore,
stripping (hese b_ts before sending data to the decoder -

and reinserting a mean value at the decoder decreases the

number of bits sent When a new -codeword is generated -

for the codebook, with a small increase in distortion. The

amount of additional error incurred is not readily notice-

able in most images.
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2. Nonlinear Quantlzation. When difference coding

is used with bit stripping, only a few values typically occur,

and these may be represented by a relatively small number

of quantization levels. However, there may be sharp edges

in the image which will have large differences in value be-

tween adjacent blocks. This can cause large errors at edges

if linearly quantized difference values are too small to keep

up with the rapid change in pixei values. To minimize this

"error, nonlinear q(mntization can be used. The choice of

quantization step Sizes is not clearly defined, as the im-

agestatistics are unknown to the encoder and cannot be
easily transmitted to the decoder. Therefore, design of

the quantizer cannot be made adaptive, and an arbitrary

Choice mus_ be made beforehand. Quantizer design has
some criteria, however. Initial step sizes (near zero) should

be small, and subsequent sizes should increase. Based on

this assumption, a fixed logarithmic quantizer is used.

C. Interpolation and Smoothing

As mentioned earlier, since LAVQ uses discrete vec-

tors to represent a set of vectors within a threshold set by

the error allowance, there is noticeable blockiness in the

output. Difference coding helps remove this effect, but it
is insufficient: Since zeroth order estimation of the next

block is used--the mean is assumed to be identical across

adjacent blocks--regions with gradual pixel value changes

can cause a sawtooth or staircase visual artifact at high

compression rates. In addition, difference coding does not
remove the block boundaries visible in the vertical direc-

tion. In cases where difference coding is used and where it

is not, horizontal interpolation can remove the horizontal

artifacts, and vertical smoothing can remove the vertical

artifacts; if done carefully, both techniques do not exces-

sively destroy detail or cause a blurry appearance.

Horizontal interpolation essentially interpolates across

those blocks represented by different codewords. Each

block is classified as either a repeat of the previous block

or not; the first occurrence of a block that is not a repeat

of the previous block is recorded; the rest are initially left

blank. These blank blocks are filled with a pixelwise lin-

ear interpolation of the edges of the two closest nonblank

blocks: However, this can smear edges which occur in the

image; therefore, a threshold is used: If the difference be-

tween two differing blocks is larger than this threshold,
no interpolation is done. This threshold must be adjusted

externally.

Vertical smoothing averages the pixels on the vertical
block borders. If both blocks on the border are not new

codewords, that is, both already exist in the codebook,

then the two border pixels are averaged; this average value

is substituted for the border pixels. If both blocks are new

codewords, nothing is done. If only one is new and the

other is an existing eodeword, then the new block is un-

altered; the existing block's boundary pixel is substituted

with the average of the boundary pixel of the new block

and the two boundary pixels (the boundary and the pixel
vertically adjacent to it) of the existing block. In this way,

new codewords, which usually describe detailed areas, are

unaltered, while existing codewords, which describe areas

of low detail, are smoothed.

V. Lossless Data Compression

As mentioned earlier, the LAVQ algorithm is also suit-
able for lossless compression of database records and other

data dominantly characterized by pattern repetitions. Ex-

amples of these data sources include textual data, account-

ing and payroll database data, telemetry data, and engi-

neering data. Lossless compression using LAVQ can be

achieved easily by setting the error allowance to zero. In

the lossless compression mode, the basic LAVQ encoder

becomes a locally adaptive move-to-front (MTF) algo-
rithm.

Lossless LAVQ works best on data with fixed record

sizes. Data represented in fixed-size packets and with

patterns confined to the packets or fixed subfields within
them are the best candidates for LAVQ. IIowever, ar-

bitrary fixed-length blocking of data can also be used

on other sources without defined block sizes without sig-

nificant detriment. Universal data compressors such as

Lempel-Ziv (LZ) -based algorithms assume no structure

of the source except for intersymbol correlation; however,

many of these algorithms require large amounts of mem-

ory during coding, use complex tree data structures such
as the "Patricia tree" to maintain their dictionaries, and

have sophisticated pruning techniques to update the code

tree. LAVQ requires relatively less memory and less com-

plex data structures; it uses a simple codebook updating

algorithm (MTF in this case) with a much smaller data

buffer. Several high-performance LZ-based algorithms use

back-end entropy coders to further improve performance;

LAVQ can be likewise equipped. In short, lossless LAVQ

can achieve rates comparable to the best LZ-based algo-
rithms.

VI. Software Implementation

Software implementation of LAVQ, complete with all

improvements, has been completed. To minimize source

code complexity, the arithmetic coder has been imple-

mented separately from the encoder. Parameters variable
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in the encoder include block dimensions, codebook size,
eFr6r tolerance, nUmber of bits strlpped(first or best oc-

currence of an acceptable codeword, and difference cod-

ing. Furthermore, to allow use of the encoder for image

sequences, as in video, codebook preservation is also pro-
vided. This allows the codebook from the previous frame
to be used in the subsequent one.

A. LAVQ Encoder and Decoder

The encoder program first reads in all the data, then

converts the image into a linked list of blocks. The code-

book is specified as a doubly linked list to facilitate speed
in rearrangement: Only ten pointers at most need be

changed to do a complete codebook rearrangement. The

codebook is initially assumed empty. At each step, a block
is compared with the eodebook entries and the best or first

occurrence of an acceptable codeword is found. The code-

book is updated as needed, and the requisite values are

output. The program can also calculate global entropy of

the encoded file to give an estimate of the highest compres-

sion possible with these parameters. The decoder program

reverses this arrangement, with each input being an index

or a new codebook value, and the codebook is rearranged

in a manner identical to the encoder codebook. The image

is rebuilt as a linked list and is then converted to image
format and output.

are decoded. A detailed discussion of arithmetic codes is

available in [5].

VII. Experimental Results

A. Image Compression

The LAVQ algorithm was tested on a number of mono-

chrome 8-bit 512 x 512 pixel images. Global pixel en-
tropies, which are entropies estimated over the whole im-

ages, are listed in Table 1. These images were selected to

provide a diverse cross section of images to examine the

flexibility of LAVQ. A portrait ("lena"), a wildlife/natural

scene of a seal on a rocky seashore ("seal"), a high de-

tail overhead view of Los Angeles International Airport

("lax"), the cratered surface of Mercury ("mercury"), the

rings of Saturn ("saturn"), and a medical CAT scan image

("cat01") were used. The images are shown in Fig. 2,

Performance parameters are measured in mean squared

error (MSE) for distortion and required bits per pixel for
rate. MSE is defined as

MSE =
I 512'_

5122 E [Poriginal,/- Pprocessed,i] 2
i=1

B. Adaptive Arithmetic Coding

The arlthmetic coder implemented is one described in

[5]; it is used here with only minor modifications; the most

notable of these is the ability to input symbols of alphabet

size less than 256. The assumption is made at first that the

symbols are all equiprobable; after each symbol is encoded,
its statistics are modified to reflect this. Two encoders and

decoders are used: One pair encodes and decodes only the

indices from the output of the LAVQ encoder and ignores

the new codeword information; the second pair codes and
decodes these new codeword values.

The basic arithmetic code operates in the following
manner: The symbols are arranged in some order and

are assigned regions of size corresponding to their prob-

abilities. These regions span the space from 0 to 1. The

coding region is initially defined to be [0,1). When a sym-

bol is coded, the symbol space [0,1) is scaled to fit the

coding region, and the new coding region is defined by the
region specified by the symbol coded. Therefore, at each

step, the coding region becomes more and more narrow. In

for images of size 512 x 512 pixels.

The LAVQ parameters used were 8 x 1 blocks with

255 codewords in the codebook. Difference coding was
used, and 4 bits with logarithmic quantization levels were -
used to represent each new codeword value. There is not

much difference in performance between finding the best
match in the codebook (complete codeword search) and -

stopping after the first instance of an acceptable (within

error allowance) codeword in the book (partial codebook

search, typically one-fifth to one-tenth of the entire book);

therefore, the latter strategy is used to maximize speed
and to favorably skew the index statistics. Codebook and

block sizes were selected to obtain good results; block sizes

larg_r-br smaller than 8 × 1 yielded worse results, and in- •
creasing codebook size beyond 255 had only marginal rate
improvement with substantial increase in computational

complexity. Block interpolation and smoothing are used

with a threshold of 32. The LBG algorithm using blocks _-

of size 4 x 4 pixels (found to yield good results in general
and better results than LBG with 8 x 1, 4 x 2, or 16 x 1

pixel blocks) is presented for compari_ ".--
practice, tl%_o_ding reglonts scaled in size as each uffain- -- ..........

blguous most signi-ficant bit iS tra, nsmitted. The decoder In the rate-distortion curves generated for all six images

reverses this by scaling up the coding region as symbols (see Figs. 3 through 8), the LAVQ blocks are 8 x 1 pixels;
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255 codew0rds are in the codebook, the difference coding

has 4 bits per codeword value, and there are logarithmic

quantization, block interpolation, and smoothing, except

for Fig. 5, which lacks block interpolation and smoothing.
LBG was done with 4 x 4 pixel blocks. LAVQ sends the

codebook simultaneously with the indices while compress-

ing the image; therefore, a true comparison should include

the cost of sending the codebook for LBG as well. The

LBG curves were generated using 4 x 4 pixel blocks and

varying codebook sizes (from 16 to 8192). LAVQ curves

were generated using the parameters outlined above. The
curves have differing scales because each image has differ-

ent characteristics which alter the algorithms' ability to

compress them.

In most cases, LAVQ does better (defined as having a

lower distortion for a given rate or vice versa) than LBG
in the low-distortion regions (high-rate regions); in this

region, LAVQ sends more new eodewords, and these new
codewords are more accurate renditions of the original im-

age than the codewords used by LBG, which are the cen-

troids of many blocks. Because LAVQ requires that more
codewords be sent than LBG for low-distortion cases, this

factor by itself would seem to make the rate for LAVQ

worse than for LBG. However, LAVQ can take good ad-

vantage of lossless entropy coding of indices and new code-
words. In contrast, because LBG's codebook search algo-

rithm distributes its codewords to span the space in which

the image's vectors exist, in general LBG does not profit

as much as LAVQ does from lossless compression. Only

about a 5-percent improvement using arithmetic coding

was noted, compared to over 50-percent improvement ob-

tained for LAVQ using arithmetic coding of both indices

and codewords. As a result, LAVQ often has the potential

for better performance than LBG after entropy coding is

applied to LAVQ.

At lower rates (and higher distortions), LBG takes time
to select a good codebook and therefore can do much bet-

ter than LAVQ, which does not train a codebook at all.
This is the dominant factor which can make LAVQ per-

formance worse than LBG: Since LAVQ does not train

a codebook, it relies on recently occurring vectors for a
source of new codewords. These do not necessarily reflect

a good choice of codewords, so for a given rate, the distor-
tion for LAVQ can be higher than for LBG.

Such generalizations, however, have many exceptions.

For example, two images in the set used here, "cat01" and
"saturn," have large regions of uniformity compared to

the other images. In the high-rate (low-distortion) region,

these low-detail regions are better coded by LBG than

by LAVQ because the LBG codewords can code regions of

low detail with less distortion; this effect is enough in these

two images to defeat the advantage that LAVQ gains by

lossless compression of the indices and codewords.

In the low-rate (high-distortion) region, "cat01" and
"saturn" are better coded with LAVQ than with LBG.

With other images, the time spent by LBG in developing

a good codebook made the performance of LBG better
than what LAVQ could achieve without training. With

these two images, however, LAVQ can code the low-detail

regions quite easily with very few new codewords while the
details are better preserved in the high-detail regions. This

can be enough to offset the disadvantages mentioned ear-

lier that LAVQ encounters in the low-rate (high-distortion)

region.

Each LBG rate-distortion curve of 10 data points took

approximately 100 hours of computation on a Sun Sparc 2,

while one LAVQ curve with 24 data points, complete with

lossle_ compression, was done in about 1 hour: LAVQ is

much faster than LBG and can achieve performance com-

parable to LBG if the cost of the codebook is included.

Furthermore, LAVQ preserves detail better than LBG,

but does so with increased blockiness in low-detail regions.

This detail-preserving feature of LAVQ is discussed in the
next section.

B. Detail Preservation

As mentioned in the previous sections, LAVQ operates

by matching a vector to the codewords in the codebook us-

ing a predetermined fidelity criterion, and new codewords
are entered verbatim from the examined vector if no match

occurs within this error allowance. Therefore, those vec-

tors which are significantly different from previous vectors
are coded without distortion; these occur at edges or areas

of high detail. The cost of preserving these details, how-
ever, is increased distortion in low-detail ("smooth") ar-
eas. Codewords are not optimized to best represent these

regions, so they exhibit more blockiness. Thus, LAVQ pre-
serves details and is potentially very attractive to military

intelligence and space applications: These applications re-

quire close examination of details to identify and differen-

tiate among various objects.

These effects are illustrated in Figs. 9 and 10. In Fig. 9,

the upper right edge of the hat brim of "lena" is shown.
The LBG codebook size, to be comparable to LAVQ, is

fixed at 256. The LAVQ error allowance was adjusted to

yield a distortion comparable to LBG. LBG achieves 43.83

MSE at 0.50 bits/pixel (compression ratio of 16:1). LAVQ

achieves 43.68 MSE at 0.56 bits/pixel (compression ratio

of 14:1). The edge of the hat brim is rendered with much

169



less blockiness with LAVQ; the drawback is that the low-
detail areas exhibit noticeable blockiness.

In Fig. 10, the lower right edge of the upper terminal

of 'qax" is shown. The LBG codebook size is again fixed

at 256. LBG achieves 166.8 MSE at 0.50 bits/pixel (com-
pression ratio of 16:1). LAVQ achieves 166.0 MSE at 0.77

bits/pLxel (compression ratio of 10:1). Here, LBG does

poorly in preserving the details of the aircraft, terminal,
and service vehicles; details of the terminal and several ser-

vice vehicles have disappeared. LAVQ does much better
on these details, but exhibits more blockiness than LBG

when representing the tarmac, which has less detail. With

LAVQ, it is possible to identify aircraft type, while it is

more difficult with LBG. For the two aircraft in Fig. 10,

the fuselage and wing shapes, engine locations, and other

details are preserved more clearly by LAVQ than by LBG.

C. Lossless Data Compression

Demonstration of lossless compression of structured

data was conducted on Magellan space-probe engineer-

ing data. The Magellan spacecraft engineering data file
"mdata" consists of 1692 records of 100 bytes each; each

record consists of 15 fields of various sizes ranging from
4 bytes to 16 bytes. Many good existing LZ variants can
achieve compression ratios for "mdata" of 2.2:1 to 5:1 of

the original file size, depending on the amount of mem-

ory consumed. The UNIX program "compress" achieves a

compression of 3:1 at a cost of 544 kbytes of memory used.

The Magellan engineering data have both natural pars-

ing (a frame marker at the beginning of each record) and

artificial parsing (the record size is fixed, 100 bytes) prop-
erties. Most real-world data sources like texts, images, and
engineering data records possess either or both of these two

parsing properties. To apply LAVQ to these data, the file

was first blocked in sequential order into 5-byte blocks.

LAVQ was then applied to each block position; thus, all
of the first 5-byte blocks (bytes 1 to 5 in the i00-byte
record) were coded using one encoder, all of the second

5-byte blocks (bytes 6 to 10 in the 100-byte record) were
coded using a second encoder, and so on.

The resulting LAVQ output, both indices and new

codeword values, was then coded with the adaptive arith-

metic coder used earlier. Results using a Q-coder [6,7] and

the theoretical limit reached by nonadaptive means (com-
puted from the global entropy) are also included for com-

parison. The Q-coder is essentially an adaptive arithmetic
coder; it differs from the arithmetic coder used above: The

arithmetic coder maintains a running total of frequency of

use of each symbol and uses this to determine probabilities

for arithmetic coding. The Q-coder uses a fixed probability
table accessed by an adaptive finite state machine. This

finite state machine adapts with the previous symbols; its
state is determined by the bits in each byte.

Two differing approaches are taken. First, the code-
book size is fixed at 256, and only one coder is available.
Thus, a large buffer is needed to store the data to allow

sequential coding of each of the 20 blocks in each record.

Results tabulated in Table 2 show that the best perfor-

mance is obtained from using large buffers: Larger files
have more opportunities for repetitions and patterns of

codeword usage. In Table 2, compression ratios of Magel-

lan engineering data are of 169,200-byte size. Tabulated

are compression ratios achieved by the adaptive arithmetic

coder used for LAVQ, the Q-coder, and the theoretical
maximum using a global entropy _c0der. This last value

is derived from the global per-symbol entropy. Note that

larger buffer sizes provide greater compression. Arithmetic

coder compression approaches the theoretical value (global
entropy) closely. Even better results are sometimes ob-

tained. The Q-coder and arithmetic coder sometimes ap-

pear to have results better than entropy; this occurs be-
cause these adaptive coders code on the basis of local en-

tropy (entropy over a localized window of characters) as
opposed to the global entropy listed here. The Q-coder

does better than arithmetic cod_ngl-which does about as

well as theoretically possible with a global entropy coder.

In the second approach, the codebook size is allowed

to vary, and all 20 coders are available for parallel cod-

ing. No additional buffer is needed in :this case, as the 20

blocks are coded simultaneously. Again, the indices and

new codeword values are coded with the adaptive arith-

metic coder and compared with the Q-coder and the global
entropies; results are listed in Table 3. in this table, as in

Table 2, compression ratios of Magellan engineering data
are Of i69,200-byte size. No dat-a_hfl'er is allowed here,

but 20 Coders are operating in parallel; In this case, the

arithmetic coder does slightly better than the Q-coder.

Again, the Q-coder and arithmetic coder sometimes ap-
pear to have results better than entropy for the same rea-
son given for Table 2. Best performance is obtained with

larger codebooks; large codebooks can record codewords

farther into the past and therefore have more opportuni-
ties for codeword matching. Here, the arithmetic coder

does better than entropy and the Q-coder. In both cases,

LAVQ performance is comparable to LZ-based algorithms.
The advantage of LAVQ is that far less memory is required

than for LZ algorithms; this is of importance in systems
with size, weight, or complexity constraints, as is the case
with deep-space probes.
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VIII. Conclusion

The LAVQ algorithm provides a fast, one-pass data

compression algorithm. Improvements to the basic algo-

rithm maintain this one-pass high-speed property while
increasing performance measurably. Experimental results

in image compression yield performance not significantly
inferior to LBG, but at a fraction of the complexity. Dis-

tortion in images occurs as blockiness in low-detail areas,

while high-activity areas maintain sharp details. LAVQ

also performs well in lossless compression, again with low

complexity as compared with other algorithms.
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Table 1. Plxel entropies. Global plxel entropies

of Images.

Images Entropy, bits/pixel

"cat01" 5.503

"lax" 6.827

'qend' 7.445

"mercury" 6.416

"saturn" 6.885

"seM" 7.356

Table 2. Magellan data compression: sequential compression.

Buffer Codebook

size, bytes size

Compression ratio achieved by

Arithmetic Q-coder Global
coder entropy

169200 256 3.957 5.053 3.887

84600 256 3,752 4.764 3.748

56400 256 3.635 4.556 3.640

42300 256 3.429 4.210 3.440

28200 256 3.285 3.929 3.296

14100 256 2.913 3.320 2.921

Table 3. Magellan data compression: simultaneous compression.

Codebook

Compression ratio achieved by

Arithmetic Q-coder Global
coder entropy

256 3.957 3.912 3.887

128 3.873 3.815 3,798

64 3.411 3.290 3.314

32 2.973 2.814 2.949

16 2.747 2.545 2.6076
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Fig. 1. Encoder and decoder: An Image block Is compared to the codebook (A); If a codeword close enough

exlsts, that codeword Is moved to the top of the codebook (B) and the Index Is transmitted (C). If It does not exist

(D), then the block Is Inserted st the top of the codebook (E) and the Index mar 1 and the block are transmitted

(F). On the recelver slde, if an Index Is recelved, the corresponding codeword (G) Is moved to the top of the

codebook and the block Is inserted Into the reconstructed Image (H). If the special Index m + 1 Is received (I), a

raw block Is antlclpated Immedlately following; thls block Is placed In the codebook and also In the reconstructed

Image (J).
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%at01 .... lax"

"lena" "mercury"

"saturn" "seal"

Fig. 2. Original Images. All images are 512 X 512 plxel, 8-bit monochrome.
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ORIGINAL LBG - .... -: LAVQ

Fig. 9. Detail of "lena." Note that LBG has more blockiness at the edge, but represents low-detail ("smooth") areas without as much
blockiness as LAVQ.
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