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Abstract

A new approach to high-order-conditional probability density estimation is developed,
based on a partitioning of conditioning space via decision trees. The technique is applied
to image compression, image restoration, and texture synthesis, and the results compared
with those obtained by standard mixture density and linear regression models. By apply-
ing the technique to subband-domain processing, some evidence is provided to support the
following statement: the appropriate tradeoff between spatial and spectral localization in
linear preprocessing shifts towards greater spatial localization when subbands are processed
in a way that exploits interdependence.
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CHAPTER 1:

Introduction

Generally, there is a theoretical performance advantage in processing data jointly instead of sepa-

rately. In data compression, for example, the advantage of joint processing results from the ability

to exploit dependence among the data, the ability to adapt to the distribution of the data, and

the ability to fill space efficiently with representative points [45, 71].

It is generally much easier and often more natural to process data sequentially than jointly. It

is of interest, therefore, to find ways of making the performance of sequential processing approach

that of joint processing to the extent possible. There are some situations in which sequential

processing does not incur a large performance penalty, for instance when compressing independent

data. This case is of limited interest however, as real information sources are seldom usefully

modeled as independent. A more interesting example is compression of data that is not required

to be independent. In lossless compression, a message is to be represented in compact form with

no loss of information. It is well known that the best lossless encoding will produce on average

a number of bits about equal to the minus log of the joint probability that has been assigned to

the message [124]. However, it is difficult to work with the set of all messages, even if we restrict

consideration to those of a fixed moderate length. By simply writing the joint probability as a

product of conditional probabilities of the individual letters, we can achieve the same compaction

sequentially by using the optimum number of bits for each letter. The order in which we encode

the letters can be arbitrary, though often a natural ordering is suggested by the application.

The key to effective sequential lossless data compression lies in finding the right conditional

probabilities to use. This generally requires that some structure or model be assumed, and that

the probabilities be estimated from the data with respect to that model. Thus, the problem of

lossless compression is really one of modeling the sequence of conditional probability distributions.

It is natural to seek to generalize this strategy to applications besides lossless data compres-

sion, hopefully in a way that likewise approximates the performance of joint processing. This

thesis proposes that the generalization be accomplished through the use of high-order conditional

probabilistic modeling.



1.1 Conjoint Processing

We use the term conjoint processing to refer to the sequential processing of data according to a

corresponding sequence of conditional probability laws chosen such that their product approxi-

mates the joint probability law. This approach to processing information has been advocated by

Rissanen [108, 1111. Our choice of term is somewhat arbitrary, but it is convenient to have a short

way of describing this style of processing. The dictionary definition of "conjoint" is not much

different from that of "joint;" both can be taken in our context to mean roughly "taking the other

values into account." Since "joint" is already claimed, we instead appropriate the term "conjoint"

for our purpose. A related term coined by Dawid [30] is prequential (for predictive sequential), but

it has come to be used in a relatively narrow statistical sense, rather than to describe a general

style of processing information.

There are many areas in which conjoint processing is currently being employed, though not

always to the full potential afforded by its framework. We have already considered lossless com-

pression. What would be required to extend the technique effectively to lossy compression, where

the message need not be reconstructed perfectly? In most applications of interest, we would need

to be able to model and estimate conditional probability laws accurately when the data are con-

tinuous or well approximated as continuous. If the lossless case is any indication, the accuracy of

such modeling will have great impact on the performance achieved by a conjoint lossy compressor.

To begin to take full advantage of the conjoint processing framework then in a general setting, we

must be able to model conditional densities accurately.

This thesis proposes a technique for accurately modeling conditional densities (Chapter 3). The

technique combines aspects of decision trees and mixture densities to achieve accurate modeling

by appropriately partitioning conditioning space, while exploiting the known smoothness of the

underlying probability law. An important feature is that it adjusts its complexity automatically

to an appropriate level for the data, avoiding overfitting while still allowing sufficient flexibility to

model the data effectively.

Conjoint processing can be used successfully in applications other than data compression. This

is shown in Chapter 4, where it is applied to texture synthesis and image restoration in addition to

compression. In the texture synthesis application, it is found that conjoint processing can result

in synthesized textures that have characteristics more realistic than those obtained using standard



Horizontal band 1

Vertical band 0

Vertical band 1

Vertical band 2

Figure 1.2.1: Separable 3 x 3 uniform-band subband decomposition of the luminance component
of the standard 720 x 576 test image Barbara. A jointly localizing, quasi-perfect-reconstruction,
critically sampled analysis filter bank designed using the method described in [92] was used. The
non-DC bands have been shifted and scaled in amplitude for display. Strong spatial and spectral
interdependence of subband pixels is evident, yet the empirical correlation is nearly zero among
pairs of non-DC pixels for a variety of displacements, both within and across subbands. It may
be concluded that there is a great deal of nonlinear dependence.

techniques. It is also shown to perform effectively in image restoration because of its ability to

model nonlinear relationships over relatively broad spatial areas.

1.2 Independence in Image Subbands

In subband coding, an image is broken up into several frequency bands called subbands, after which

each is subsampled spatially. The subsampled subbands are then lossy-compressed as if they were

independent - that is, by using techniques which are known to work well under the assumption

that the data are independent. After decoding, the reconstructed subbands are pieced back together

to form an approximation to the original image. Subband coding will be described more fully in

Section 2.1, and an explanation will be given there for why the subband pixels are usually modeled

as approximately independent, or more precisely, uncorrelated.

12
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In practice, pixels in subbands formed from an image of a natural scene are far from indepen-

dent. An example is shown in Figure 1.2.1. Recently, there has been growing interest in extending

the traditional subband coding approach to take advantage of this dependence. One approach is to

group subband pixels into disjoint sets and to quantize the pixels in each set jointly, ignoring any

interdependence between sets. This approach to subband coding is an active area of research; see

the recent paper by Cosman et al. [25] for an extensive survey. Also described there are techniques

that we might call conjoint, except that, as far as I am aware, the conditional distribution is either

modeled only implicitly as in [126], or explicitly but using fairly restrictive models as in [73]. It

would be interesting to see whether an explicit, powerful conditional density model such as that

described in Chapter 3 might be used advantageously in such systems. This question is considered

in Chapter 5.

The purpose of the subband decomposition, which is clear when independent compression of

the subbands pixels is employed (see Section 2.1), is less clear when joint or conjoint compres-

sion is allowed. The question of what filter characteristics are best to use in this case must be

answered on the basis of practical rather than theoretical considerations. This is because most

subband decompositions that one would normally consider for use today are reversible or nearly

so, implying that all are equally good (or in this case, equally without effect) when unconstrained

joint compression is allowed. When restrictions are placed on the complexity and dimensionality

of the processing, as they must be in practice, the problem becomes one of joint optimization of

the subband decomposition and the characteristics of the subsequent processing. Such an opti-

mization can be feasible if the system is sufficiently constrained; for example, Brahmanandam et

al. [11] have considered jointly optimizing an affine block transform and a vector quantizer. A more

general optimization procedure for a fixed encoding scheme might be to select a structure for the

subband decomposition, then search over filters to use in that structure that achieve varying levels

of tradeoff between spatial and spectral localization. Such a search is also considered in Chapter 5.

Evidence is presented there to support the conjecture that in some applications, preprocessing

filters that achieve greater spatial localization are required when joint or conjoint processing is

used than are required when independent processing is used.



CHAPTER 2:

Background

This chapter provides background information relevant to subband-domain processing and density

estimation.

2.1 Subband-Domain Processing

Subband-domain processing is a generic term given to a family of procedures that operate by divid-

ing the frequency spectrum into approximately disjoint regions called subbands, processing each,

and combining the results to get a desired output. The division into subbands is called analysis

and the recombination is called synthesis. A good general reference on the subject is the textbook

by Vetterli and Kovacevic [138]. We shall briefly summarize the essentials, explain why subband

pixels tend to be approximately uncorrelated, and summarize how subband decompositions have

traditionally been used in image compression.

Critically Sampled Filter Banks

The basic building-block in analysis and synthesis is the critically sampled filter bank, a special

case of which is shown in Figure 2.1.1. It is a special case because in general the subsampling

factors need not be equal; however, the sum of their reciprocals must equal unity if they are to be

critically sampled. Critical sampling refers to retaining the minimum number of samples necessary

to reconstruct the filter outputs under the assumption that the filters are perfectly frequency-

selective. If the output is equal to the input in the event of no intermediate corruption of the

subbands, then the filter bank is said to have the perfect-reconstruction property. The filters

need not be perfectly frequency-selective in order for the perfect-reconstruction property to hold.

Henceforth, all of the filter banks considered will be assumed to have the perfect-reconstruction

property.

The subsampling operations indicated by the blocks labeled 4 K involve discarding all samples

except every Kth one. To describe this operation precisely, it is necessary to specify a subsampling

phase, which indicates the offset of the retained sample indices relative to the multiples of K. The

upsampling operations denoted by t K replace the retained samples into their original sequence

positions, filling in zero for the other samples. It is important to realize that the subsampling
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Figure 2.1.1: A critically sampled filter bank, consisting of an analysis and a synthesis stage.
The system shown is for processing a one-dimensional signal; it may be applied to images by
applying it in the horizontal and vertical directions separately.

phases can be and often are different for every band. A trivial perfect-reconstruction critically

sampled filter bank can be obtained by taking every filter to be an identity operation and the

subsampling phases to be a permutation of (0,... , K - 1). Henceforth, subband will refer to the

filtered signal after subsampling.

The foregoing description assumes one-dimensional signals. The structure can be extended to

two or more dimensions in a general way. A simpler alternative, which is standard practice in image

subband coding, is to perform two-dimensional subband analysis and synthesis by performing the

one-dimensional operations separately in the horizontal and vertical directions. Two-dimensional

critically sampled filter banks that can be implemented in this way are termed separable. Consid-

eration will be restricted to separable critically sampled filter banks throughout this thesis.

Often, an unequal division of the frequency spectrum is desired. One can be obtained by

using a more general filter bank with an appropriate choice of filters and subsampling factors.

However, here we restrict consideration to uniform-bandwidth critically sampled filter banks. Using

these, an unequal spectral division can be obtained by recursively performing subband analysis on

selected subbands, resulting in a tree-structured decomposition. Often, only the lowest-frequency

subband is recursively subdivided. In this case, when the analysis is carried out separably in

the vertical and horizontal dimensions, the decomposition is termed a subband pyramid, or just a

pyramid (see Figure 2.1.2). Such a structure can also be used to implement certain discrete wavelet

transforms [138]. We will restrict consideration to pyramids obtained by using the same two-band

critically sampled filter bank to carry out all of the analyses. Moreover, the filter banks considered

will be orthogonal in the sense defined by Simoncelli and Adelson [131).



Horizontal Frequency

Figure 2.1.2: Construction of a three-level subband pyramid. An image is analyzed into four
subbands as shown in (a) by applying a two-band critically sampled filter bank separately in the
horizontal and vertical directions. These four subbands constitute the first level of the pyramid.
The analysis is then repeated on the low-horizontal, low-vertical frequency subband, resulting in
the two-level pyramidal decomposition shown in (b). Repeating the analysis once more on the new
low-horizontal, low-vertical frequency subband results in the three-level pyramidal decomposition
shown in (c). Because all of the subbands are critically sampled, the total number of pixels in the
pyramidal representation is equal to that in the original image.

4n ii L t L 24 4 4 L L L a 2: 2 

Figure 2.1.3: A spectral-domain illustration of within-subband uncorrelatedness. A hypothetical
signal having the lowpass magnitude spectrum shown in (a) is input to an ideal four-band critically
sampled filter bank. The spectrum of the output of H 2(z) before subsampling is shown in (b),
while that after subsampling (scaled in amplitude by a factor of four) is shown in (c). Note that
after subsampling, the spectrum is relatively flat, implying that pixels within a given subband are
approximately uncorrelated. Assuming a smooth input spectrum, flatness increases as the filters
get narrower, which in a uniform filter bank corresponds to increasing the number of bands. For
natural images, the assumption of smooth spectrum is grossly violated in the lowest-frequency
(DC) band, so that the DC band in general cannot usefully be modeled as uncorrelated.

Uncorrelatedness of Subband Pixels

An important property of subband representations is that subband pixels for natural images tend

to be approximately uncorrelated, both within and across subbands. Uncorrelatedness across sub-

bands can be understood by viewing the subband decomposition as a generalization of an energy-

compacting orthogonal block transform, where the basis vectors are allowed to extend beyond the

block boundaries. For an orthogonal block transform, diagonalization of the covariance matrix oc-

curs as a by-product of maximizing energy compaction subject to the constraint of constant total

energy [62]. Therefore, to the extent that an orthogonal subband decomposition achieves energy

compaction, pixels are uncorrelated across subbands.

4 4

Horizontal Frequency Horizontal Frequency



Approximate uncorrelatedness within subbands can be easily understood in the frequency

domain. The spectra of natural images are often modeled as smooth, except at near zero-frequency

(DC) where there tends to be a strong peak. Assume that the analysis filters have nearly ideal

narrow brickwall frequency responses. Then for any subband except the one containing DC, the

spectrum of the output of the analysis filter will be approximately flat within the passband and

zero outside the passband, as shown in Figure 2.1.3 (b). To show that the correlation of pixels in

the subband is nearly zero, it is sufficient to show that after subsampling, the magnitude spectrum

is nearly flat across the whole spectrum [84]. Let u[n] denote the output of the analysis filter and

let v[m] denote the result of subsampling u[n] by a factor of K, so that

v[m] = u[Km].

For simplicity, a subsampling phase of zero has been assumed; a nonzero subsampling phase would

result in an identical magnitude spectrum. By using the fact [114] that

K-1
- K if n 0(modK);

k=0 e 0 otherwise,

we can express the z-transform of v[m] in terms of that of u[n] as

IK-1 27k1K)

V(z) = ( U(e-ikz1|K
k=0

which corresponds to a discrete-time Fourier transform of

1 K-1
V(w) = K U([w - 27rk]/K).

k=0

In this way, the filter passband is mapped onto the entire spectrum [-7r, 7r], which under the stated

assumptions results in an approximately flat spectrum as indicated in Figure 2.1.3 (c). Thus, pixels

within the subbands are approximately uncorrelated.

The approximate uncorrelatedness within and across subbands does not imply approximate

independence of the subband pixels, as previously noted in Chapter 1.

Subband coding of images

Subband and subband-pyramid decomposition are often used in lossy compression. Subband-based

lossy compression is termed subband coding. Subband coding was first applied to speech [62] in the

seventies and extended to images in the mid-eighties [143]. Much of the underlying motivation and



theory carries over directly from an older technique called transform coding [56]. As mentioned

above, a block transform is a special case of subband decomposition. The basic idea behind image

subband coding is now reviewed briefly.

The analysis of an image into subbands by a critically sampled filter bank results in an exact

representation of that image with no reduction in the total number of pixels. Although no com-

pression occurs in the decomposition, it is an empirical fact that for natural images the subbands

tend to be easier to compress than the original image. In particular, a subband decomposition

generally results in a predictably uneven distribution of energy among the subband pixels, so that

the available code bits can be allocated among the subband pixels in accordance with how much

they are needed. In addition, the subband pixels are nearly uncorrelated as discussed above, so

that they can be quantized independently using scalar quantization with reasonable efficiency.

Typically, subband pixels are modeled as having a variance that changes slowly over space

and spatial frequency. Suppose that the subband pixels have been grouped into subsets, each

characterized by a local variance o?. The pixels in each subset are typically taken to be nearby

one another in both space and spatial frequency. Assuming independent scalar quantization, high

rate, small quantization bins, and smooth densities, the mean-square per-pixel quantization error

for each subset can be approximated as Eo?2- 2Ri , where Ri is the average rate allocated to subset

i and c is a performance factor which depends on both the type of quantizer and on the marginal

distribution of the pixels [62]. If the variances are large enough so that no negative rate allocations

would result, then the method of Lagrange multipliers can be used to derive the asymptotically

(high rate) optimal rate allocation

1
RR + -log 2 of (2.1.4)

2

where RO is a constant selected to meet the constraint on the total available rate. In this case, the

improvement in mean-square error (MSE) over quantizing the original pixels can be approximated

by the ratio of the arithmetic to the geometric mean of the variances [62]. Neither (2.1.4) nor this

formula for the improvement is valid in the important case where one of more of the variances are

nearly zero, as this would result in negative rate allocations which would violate the assumption

behind the use of Lagrange multipliers. In such situations, an optimal iterative rate allocation

procedure can be used instead [58, 127], but a simple formula for the improvement in MSE no

longer exists in general.



Alternatively, rate can be allocated implicitly by entropy-coded uniform-threshold scalar quan-

tization (see Section 2.3). In this case the rate allocated to each subband is determined by the

activity of the subband pixels and by the stepsize of the quantizer. Using the same stepsize for all

subband pixels can be shown to result in a nearly optimal implicit rate allocation with respect to

mean-square error [42, 93]. A frequency-weighted mean-square error criterion can be easily accom-

modated by varying the stepsizes across subbands, as is implicitly done in JPEG [101]. Perceptually

optimized rate allocation has been considered by Jayant et al. [61] and Wu and Gersho [144].

As mentioned previously, subband pixels exhibit a great deal of statistical dependence de-

spite their near-uncorrelatedness. This dependence may be exploited for coding gain in a number

of ways [25]. In Chapter 5, we will consider exploiting the dependence by conjoint processing;

specifically, by sequential scalar quantization with conditional entropy coding.

2.2 Density Estimation

This section introduces ideas and notation related to probabilistic modeling in general and to

density estimation in particular.

Heuristic Introduction

In general terms, the problem of density estimation is to infer the probability law hypothesized

to govern a random object on the basis of a finite sample of outcomes of that random object as

well as on any available prior information. The term "random object" will be defined later in

this section. Density estimation is an example of a problem in inductive inference, and inherits

all of the well-known foundational difficulties attendant to that class of problem [23, 105, 136,

139]. In particular, induction is not deduction: it is not possible on the basis of observing a finite

sample to show analytically that a particular density estimate is correct or even reasonable, unless

strong assumptions are made that reach beyond the information present in the available data. The

following thought experiment, presented with a sampling of the more popular ways of approaching

it, will help to clarify this point.

Imagine being presented with a large opaque box, perhaps the size of a refrigerator, and told

that it contains a large number of marbles of various colors. You reach your hand in and pull

out ten marbles, one at a time (but without replacement). Suppose that the first nine are red

and the tenth is blue. Based on this sequence of observations, you wish to infer the proportion of

every color represented among the remaining marbles in the box. This is essentially the density



estimation problem in the discrete case. (A continuous version, discussed later in this section,

might involve the weights of the marbles instead of the colors.)

A starting point would be to assume that the order in which the marbles are observed is irrele-

vant. This assumption of independence (or exchangeability in Bayesian parlance [43]) is reasonable

if the box had been shaken before you reached in, and if the number of marbles in it is in fact very

large. Relaxing this assumption will be considered later.

At this point there are several ways in which you might proceed, and none can be shown

analytically to be superior to another without making additional assumptions about the contents

of the box. Fisher's celebrated maximum likelihood (ML) principle gives the proportions as 9/10

for red, 1/10 for blue, and zero for any other color. To be useful in practice, this principle must

usually be modified; often this is accomplished by adding a penalty term [129, 130]. Laplace's rule

of succession [85] requires that you know the possible colors beforehand; if there are (say) five of

them, then his rule results in the estimated proportions 2/3 for red, 2/15 for blue, and 1/15 for each

of the three remaining unseen colors. The minimum-description length (MDL) principle chooses

the proportions that result in the shortest possible exact coded representation of the observed

data, using an agreed upon prefix-free code for the empirical distribution itself [3, 109]. See [137],

p. 106 for an interesting criticism of this approach. In this particular example, again assuming

five possible colors, Laplace's rule and MDL happen to agree on the estimated proportions when

the prior probability of each empirical distribution is taken to be proportional to the number of

possible sequences of marbles that support that distribution; 1 that is,

10!
P (Nred, Nblue 510 (Nred)!(Nblue)! ...

where the N's are constrained to be integers between 0 and 10 inclusively. (It is easiest to demon-

strate that Laplace's rule and MDL give the same result in this case by computer simulation; the

optimized description length turns out to be about 20.6 bits.) Both in this case and typically, the

MDL principle functions by initially "lying" about the empirical proportions, then subsequently

correcting the lie when the observed sequence of ten marbles is specified exactly using an ideal

(with respect to the lie) Shannon code. This particular version of MDL assumes a simple two-part

model/message lossless encoding of the observed data, and corresponds to Rissanen's earliest work

on MDL [106]. His subsequent work generalizes the MDL principle considerably, removing the

strict model/data separation, and allowing variable precision representation of the model param-

1 In other words, proportional to the cardinality of the type class [26].
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eters [110]. It should be emphasized that the immediate goal of the MDL principle is inference,

not data compression: the hope is that the lie turns out to be a more accurate description of the

remaining contents of the box than the truth.

Another point of view is the Bayesian; it is quite different in its motivation from those men-

tioned above, and involves the following sort of reasoning. You believe that the box was carried up

from the basement, where you know you had stored two boxes: one containing an equal number

of red and blue marbles, and the other containing only red. Since a blue marble was among those

observed, you reason that the proportions must be 1/2 red and 1/2 blue. In a more fully Bayesian

setting, the two boxes would have possibly unequal chances of being picked, but this is a minor

point. The main Bayesian leap (from Fisher's point of view, not Rissanen's) is to view the propor-

tions themselves (or more generally, anything that isn't known with certainty) as being described

by a probability distribution. Rissanen uses a prefix-free code, which amounts to the same thing

via the Kraft inequality [41].

It is even possible to argue coherently for estimating a lower proportion of red than blue. A

rule that does so is termed counterinductive [136]. One way to justify such an estimate would be

on Bayesian grounds, using a suitable prior. Another justification, valid in the case of a small total

marble population, would be on the grounds that more red marbles than blue have been used up

by the observation sequence. Misapplying this reasoning to the case where the sampling is done

with replacement, or where the population is infinite, leads to the well known gamblers' fallacy of

betting on an infrequently observed event because "it is due to occur."

The main reason for presenting the foregoing brief survey of the differing major views is to

emphasize that there really is no generally agreed upon best way to perform density estimation,

and also to underscore the crucial role played by assumptions and prior information.

Assumptions become even more important in the continuous case. Suppose now that the

distribution of the weights of the marbles, rather than their colors, is in question, and that all

of the ten marbles drawn differ in weight slightly. The added difficulty now is that there is no

natural a priori grouping of events into like occurrences; instead, one must be assumed. Usually,

this is done implicitly in the form of a statement like, "if one-ounce marbles are frequent, then

marbles weighing close to an ounce must also be frequent." A statement of this type amounts

to a smoothness assumption on the density, with respect to an adopted distance measure in the

observation space.



So far in this example, we have considered only a single characteristic of the marbles at a time;

that is, we have considered only scalar density estimation. An example of multivariate or joint

density estimation would be when not only the weight of the marbles, but also their size and perhaps

other characteristics, are brought into question. These characteristics may of course interact, so

that each combination of characteristics must be treated as a different occurrence (unless and until

it is found out otherwise). The added complication here is quantitative rather than qualitative:

as the number of characteristics or dimensions grows, the number of possible combinations grows

exponentially, as does the requisite number of observations required to obtain a reliable density

estimate. In the continuous case, it is the volume of space that grows exponentially rather than

the number of possible combinations, but the effect is the same. The general term used to refer

to difficulties ensuing from this exponential growth is the curse of dimensionality (see [120], pp.

196-206 for a good discussion).

A similar problem plagues conditional density estimation, which refers to the estimation of

proportions within a subpopulation satisfying a specified condition. An example would be esti-

mating the proportion of marbles that are about an inch in diameter among the shiny ones that

weigh about an ounce. Since the number of possible conditioning classes grows exponentially in the

number of characteristics conditioned on, exponentially more observations are likely to be required

before a reliable conditional estimate can be obtained.

A final complication arises when the order in which the marbles are observed is considered to

be significant; that is, when successive observations are regarded as dependent. In such cases, it is

natural to view the sequence of observations as constituting a sample path of a random process [48,

84]. In this framework, the marbles are assumed always to come out of a given box in the same fixed

sequence, but the box itself is assumed to have been selected at random from a possibly infinite

collection or ensemble of boxes, according to some probability distribution. This is not the same as

the Bayesian point of view described above, since in this case there is only one level of randomness.

Since only a single box is observed, it is necessary that certain assumptions be made so that the

observations over the observed sequence can be related to statistics across boxes. The chain of

inference must proceed from the specific observed initial subsequence, to the ensemble statistics

across boxes for the subsequence, to the ensemble statistics for the whole sequence, and finally to

the statistics of the remainder of the sequence in the particular box at hand. To enable such a chain

of inference, strong assumptions must be made about the random process. At the very least, it must

be assumed that the relevant statistics across boxes can be learned by looking at the contents of



only a single box; roughly speaking, this is to assume that the process has the ergodic property [45].

In addition, in practice some sort of assumption regarding stationarity (invariance of statistics to

shifts in time) and the allowed type of interdependence among observations must be conceded.

Many specialized processes, each defined by its own set of assumptions, have been proposed over

the years; of these, the most useful have been ones in which dependence is limited and localized.

The simplest is the stationary Markov process of order m, in which the conditional density of

each observation given the infinite past is stipulated to equal that given the past m observations,

and, moreover, this conditional density is assumed unchanging over the entire sequence. Such

a model is readily generalized to two-dimensional sequences by the notion of Markov random

field, which has been used extensively in texture and image processing [60]. Relaxation of strict

stationarity can be introduced in a controlled and extremely useful manner via the concept of the

hidden Markov source [102] and its various generalizations, which have found application in speech

processing, gesture recognition, and other important areas. Interestingly, hidden Markov models

were discussed in the context of source coding by Gallager [41, Chapter 3] more than a decade

before they became popular in speech processing.

For the remainder of this chapter, successive observations will be assumed to be independent.

This is not as restrictive as it may sound, because the observations will be allowed to be multivari-

ate and high-dimensional. In particular, the estimation of high-order conditional densities will be

considered extensively. High-order conditional densities are those in which many conditioning vari-

ables are used. In the applications to be considered in subsequent chapters, the conditioning orders

range between zero and fourteen. Conditional densities can be used to characterize a stationary

mth-order Markov process by simply sliding a window of length m +1 along the observed sequence,

and, at each position, taking the observations that fall within the window as the observed vector.

Subsequent chapters will employ this device often, extending it as necessary to multidimensional

sequences (e.g., image subbands).

Basic Terms and Notation

Since the topic at hand is probability density estimation, it seems appropriate to begin the techni-

cal discussion by briefly reviewing relevant terms and concepts from elementary probability theory.

Besides making the presentation more self-contained, such a review offers the opportunity to in-

troduce notation in a natural way, and will also allow us to develop a slightly simpler, albeit more

restrictive, notion of density than is usually presented in textbooks.



A rigorous, measure-theoretic approach will not be taken here, for three reasons. First, the

density estimation techniques to be discussed involve complex, data-driven procedures such as

tree-growing and -pruning, for which a theoretical analysis would be difficult, though considerable

progress has been made in this general area - see the recent work by Lugosi and Nobel [74],

Nobel [81), Nobel and Olshen [82] and Devroye et al. [34, Chapters 20-23]. Second, the techniques

and analyses to be presented were arrived at through practically motivated, somewhat heuristic

reasoning, and it is desirable from a pedagogical standpoint not to obscure this path through

post hoc theorizing. Finally, the added precision afforded by a formal approach would have bearing

mostly on asymptotic analysis, whereas in practice near-asymptotic performance is seldom reached,

especially in the high dimensional setting. Although some theoretical analysis is in fact possible

in the case of finite samples, the resulting conclusions would necessarily be given in terms of a

probability measure which, in practice, remains at all times unknown. 2 In other words, a precise

and rigorous theoretical analysis would ultimately require that the true distribution be known,

either explicitly, or else implicitly as contained in an infinitely large sample.

Proceeding informally then, we begin by defining a random object to be an experiment which

produces, upon each performance or trial, a result called an outcome. The random object is

hypothesized to be governed by a fixed probability law which specifies, for any set A of interest, the

probability Prob[A] that the outcome will lie in A on any trial. It is assumed that Prob[] satisfies

the usual requirements of a probability measure: nonnegativity, normalization, and countable

additivity [2]. The quantity Prob[A] can be interpreted as (but need not be defined in terms of)

the limiting relative frequency of values that lie in A in a hypothetical, infinitely long sequence of

trials. 3

A random variable is a random object having scalar-valued outcomes, and a random vector

is a random object having vector-valued outcomes. It will be assumed throughout that all vector

2 Such assumptions can be self-serving, as Rissanen points out in Chapter 2 of [110]. For
instance, if a lossless source code produces 5000 bits in encoding a particular sequence of 1000
binary outcomes, then it should come as little consolation when the designer of the code claims

(even if correctly) that the expected code length is only 200 bits.
3 Although there is now nearly universal agreement about what the axioms in a mathematical

theory of probability ought to be (though there remains some dissent - see [38]), there is compar-
atively little agreement about what the interpretation of probability ought to be. The frequentist
and subjectivist interpretations, which underlie traditional and Bayesian statistics respectively, are
the two most familiar opposing views; there exist others as well. For an overview of viewpoints and
issues, the interested reader is referred to the engaging book by Weatherford [140]. The variety
in viewpoints regarding the interpretation of probability closely reflects those regarding statistical
inference, some of which are touched upon elsewhere in this section.



outcomes lie in Euclidean space of the appropriate dimension. Occasionally, the word "point"

will be used in place of "vector." The coordinates of a random vector are jointly distributed

random variables, so termed because the probability law of each coordinate generally depends on

the outcomes of the other coordinates.

A random variable will generally be denoted by an uppercase math italic letter, and a partic-

ular outcome by the corresponding lowercase letter. Random vectors and their outcomes will be

distinguished in the same way, but in boldface. In general, the dth coordinate of a random vector

Z or outcome z will be denoted by Zd or Zd, respectively. Occasionally, a D-dimensional random

vector Z will be written explicitly in terms of its coordinates as

Z = (Z, ... , ZD),

and analogous notation will be used to express a particular outcome in terms of its coordinates.

Vectors will be treated at times as rows and at other times as columns; the appropriate inter-

pretation should always be clear from the context. An object in a sequence will be identified by

a parenthesized superscript; for example, the nth observation in a sequence of observations of Z

will be denoted z('). The sequence itself will be denoted by (z(n))N_1, or, if N is understood

or unspecified, simply by (z(n)). In general, sequences will be represented by calligraphic letters.

Analogous notation will be used for sequences of scalars, matrices, and functions as needed. When

no potential for conflict exists, a subscript will sometimes be used to index a sequence instead of

a parenthesized superscript. The dth coordinate of z(n) will be written z (), while the element in

the ith row and jth column of the nth matrix A(n) in a sequence will be written a .

The probability law governing a D-dimensional random vector Z can be summarized by the

cumulative distribution function Fz, defined as

Fz(z) = Prob[{z' E RD Z< zi and z' < z 2 and ... and z' < ZD}]-

If the probability law is such that the limit implicit in the right-hand side of

fz(Z) = (2.2.1)
Ozi az2 -. 19zD

exists everywhere except possibly on a set that is assigned zero probability, then Z is said to be

continuous. For vectors that are suspected to be continuous on physical grounds, an assumption

of continuity is always tenable in the practical density estimation setting in that it is operationally

non-falsifiable: it cannot be refuted on the basis of a finite sample of outcomes. Under the assump-

tion of continuity, fz(z) as defined in (2.2.1) is called the probability density function or PDF or



simply the density of Z, and serves as an alternative means of specifying the governing probability

law. In particular, for any set A C RD of interest,

Prob[A] = LcAfz(z)dz. (2.2.2)

We arbitrarily take fz(z) to be zero whenever z lies in the zero-probability set for which the limit

in the right-hand side of (2.2.1) fails to exist. When it is desired that the dependence on fz be

indicated explicitly, the left-hand side of (2.2.2) will be written as Prob{A Ifz}. Also, the notation

Z ~ fz will be used to indicate that fz is the PDF for Z. Analogous assumptions and definitions

are made in the scalar case. When no confusion is likely to result, the subscript identifying the

random object referred to by F or f will be omitted, and the argument will be specified as an

outcome or a random object, depending on whether it is to be regarded as fixed or indeterminate,

respectively. For example, f (X) refers to the PDF of X, while f (x) refers to the value of that PDF

evaluated at the point X = x. The notations f(z) and f(zi, ... , ZD) will be used interchangeably,

the latter being convenient when it is necessary to indicate that some coordinates are fixed others

indeterminate.

If {d, ... , di} c {1, . . , D}, then the marginal PDF f (Zdi,. . . , Zdi) is obtained by integrating

f (z) over those coordinates indices not in {di,. . . , di}. For any two disjoint subsets {di,..., di}

and {d',..., d', } of coordinate indices, and for any conditioning vector (z) ,... , z,) such that

f (zd, . . . , z,) # 0, the conditional density f (Zd, ... , Zd Izdi,... , z ,) is defined as

fZ' (Za', . .if azg, a,

f~~~ (Zdi ... . .d , ZZd'z, , . . ,zd,)=
f ( dJI .. Z i ~d' 1 dl)2 f (zd' , . ... ,zd ,)

To facilitate moving back and forth between discussion of joint and conditional density estima-

tion, it will prove convenient to regard Z as being formed by concatenating two jointly distributed

component vectors,

Z = (X,Y)

where X has dimension Dx and Y has dimension DY = D - Dx. That is, we posit the correspon-

dence
( Xd if 1 < d < Dx;

Zd = d-Dx if Dx < d < D.

The component vectors X and Y will be termed independent and dependent, respectively, while the

vector Z itself will be termed joint. This terminology is suggested by the roles that will generally

be played by these variables. In particular, x will usually be observed, and a value of Y will be



estimated, generated, or encoded, as appropriate to the task at hand, according to the conditional

density f(Y Ix). In such cases it will always be assumed that f(x) : 0. When DY = 1, we will

write Z = (X, Y).

The assumption that underlies (2.2.1) cannot hold when the outcomes are restricted to assume

values in a discrete alphabet. In such cases, the random variable or vector is termed discrete, and

the governing probability law can be specified by the probability mass function or PMF, defined in

the vector case as

Pz(z) = Prob[{z}],

and analogously in the scalar case. As with the PDF, the subscript will be omitted when no

confusion is likely to result.

The expectation of a function g of a random vector Z, denoted E[g(Z)], is defined as

E[g(Z)] = f g(z)f (z)dz and E[g(Z)] = Eg(z)P(z)
z

in the continuous and discrete cases, respectively. When the probability law with respect to which

the expectation is to be computed is not clear from context, it will be indicated by a suitable

subscript to the expectation operator E.

For a random vector, the mean pz is defined as

pz =EZ,

and the autocovariance matrix Kz as

Kz = E[(Z - pz)(Z - pz)T,

where (Z - pz) is a column vector and the notation xT indicates the transpose of x. In the scalar

case, the mean and variance are defined respectively as

pz = EZ and Oz = E(Z - z)].

An estimate of the density function f will be denoted by f. Similarly, if the density is deter-

mined by a parameter 0, then 6 will refer to an estimate of 6. When necessary to avoid ambiguity,

a subscript will be introduced to indicate the particular method of estimation (this may be in

addition to an existing subscript identifying the random object).



The term density estimation will be used to refer to the construction of an estimate f of f
from a finite sequence of observations that are regarded as independent outcomes of a random

object having the density f. Specific estimation criteria will be considered in Section 2.3. The

term model will be used to refer either to a specific estimate or to a class of estimates. Generally,

the observed sequence (z(n)) of outcomes of Z, termed the training sequence, will be denoted by L

and its length by |1. When there is occasion to consider several training sequences simultaneously

as in Chapter 3, a specific one will be distinguished by writing L with an appropriate subscript.

Parametric, Semiparametric, and Nonparametric Density Models

In practice, a necessary first step in density estimation in both the continuous and infinite-alphabet

discrete cases is model specification, wherein the estimate is constrained to be of a specified func-

tional or procedural 4 form having limited degrees of freedom. The inevitability of this step is

perhaps best appreciated by contemplating its omission, which would require that f be estimated

and specified independently at each of the infinitely many (uncountable, in the continuous case)

possible values of its argument.

Models having a fixed small number of degrees of freedom are generally termed parametric.

The best-known and most important example is the Gaussian density, which is given in the scalar

and vector cases respectively by

fGz = e-z-i(z)2 /( 2 ) (2.2.3)
/27r&2

and

fG (z) = (27r)Dz/ 2 |Kz|-/ 2 e _ i (z_-A z) z (z - 1tz)]. (2.2.4)

Models having arbitrarily many degrees of freedom (but still a fixed number of them) are termed

semiparametric. A simple but important univariate example is the uniform-bin histogram estimate,

which partitions a segment of the real line that covers all observations into M cells or bins of equal

width, and assigns to each a uniform density proportional to the number of occurrences in L that fall

into that bin. The histogram functions by explicitly grouping observations into like occurrences,

essentially transforming the continuous problem into a discrete one. A good reference for the

asymptotic properties of histogram and other estimates is the recent book by Devroye et al. [34].

Another important semiparametric density model is the finite mixture, defined in the vector case

4 Not all models are specified analytically; some are defined by computer programs; e.g., regres-
sion trees. Hence the term "procedural."



M
f(x) = Z P(m)fm(x),

m=1

where (fm )M 1 is a sequence of component densities (usually parametric), and P is a PMF over the

components. Mixture models will be discussed in greater detail later, particularly in Sections 2.4-

2.6.

Finally, a model having a number of degrees of freedom that varies with the amount of training

data is generally termed nonparametric.5 An important example of such a model is the kernel

density estimate [49, 120], which in the scalar case is given by

111 II z - z(n)
f(z) = hL E 2K (h), (2.2.5)

n=1

where h > 0 is called the bandwidth parameter (usually chosen to depend on II), and typically the

kernel K is itself selected to be a valid PDF. Extension to the multivariate case is straightforward;

see Section 2.4 or, for a more general approach, [120] pp. 150-155. Histogram, kernel, and mixture

estimates are compared heuristically in Section 2.4.

Some general observations can be made regarding the relative complexity, estimability, and ex-

pressive power of models in each of these three categories. Generally speaking, parametric models

are the least complex and easiest to estimate, but are comparatively lacking in expressive power.

They are most suitable in situations in which the assumed parametric model has a strong physical

justification, or when simplicity and mathematical tractability are considered paramount. At the

other extreme are nonparametric models, which are extremely flexible in the sense that they can

typically approximate any density that lies within a broad class (e.g., all densities that meet a

specified smoothness criterion). However, nonparametric models require large amounts of training

data for good performance, and their complexity (as measured by representation cost in a given de-

scriptive framework, for example) is correspondingly large. Semiparametric models lie somewhere

in the middle. More flexible than parametric models, they are also more complex and correspond-

ingly more difficult to estimate. However, unlike nonparametric models, their complexity does not

necessarily grow with increasing ILI. In exchange, the complexity of such models must be carefully

selected as part of the estimation procedure (see Section 2.3).

5 This taxonomy is not universally observed. In particular, the distinction between semipara-
metric and nonparametric models is not always made; instead, the term "nonparametric" is often
used for both. Moreover, the dividing line between "parametric" and "nonparametric" is itself not
always clear. See [120], p. 44 for a discussion of this latter point.



The role of probabilistic modeling

Semiparametric and nonparametric density estimation are very much products of the computer

age, owing to their representational and computational complexity, but their recent emergence also

reveals an evolution in thought about the role of probabilistic modeling. In engineering, statistics,

and science in general, one of the chief goals of modeling is prediction, and some models that have

been extremely and consistently predictively accurate have come to be termed laws. Maxwell's

equations, for instance, are considered "laws" of electromagnetism, though their justification is

wholly empirical [19]. The most general form of prediction involves specifying the degree of confi-

dence that ought to be placed in the predictions, and this can be accomplished in a natural way

via a sequence of predictive probability distributions. 6 Another commonly sought goal, more im-

portant perhaps in science than in engineering, is explanation. This goal is somewhat subjective

and therefore difficult to state precisely. Roughly speaking, "explanation" refers to the model's

serving to further human understanding of the phenomenon being modeled. Explanation is often

tied to the notion of simplicity, which is itself subjective or at least language-dependent (with

"language" intended here in its broadest sense, referring to any framework for description). In

many instances, simplicity is thought to be consistent with the goal of predictive accuracy, but

there is no reason to suppose that the putative consistency is necessary [118]. Indeed, some of

the most successful techniques for regression and classification currently in use involve extremely

complex semiparametric models and procedures that do not seem to lend themselves well to human

interpretation [12]. There is no reason to suppose that the situation should be any different for

density estimation.

Our goal in modeling subbands is clear: to improve the performance of compression and

other systems that operate in the subband domain. This generally translates directly into a

goal of predictive accuracy (as will be made more precise in Section 2.3). Explanation is really

not a goal; if it were, then we would be better off working in the original domain, since the

subbands are deterministic but rather complicated functions of the original signal. Simplicity is

therefore of secondary importance, and the model to be preferred is simply that which performs best

predictively. Such models tend to be semiparametric or nonparametric, and relatively complex.

6 Besides providing a descriptive framework, sequential probabilistic modeling can also serve as
the basis for a powerful inferential framework [30, 108].
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2.3 Evaluation Criteria for Density Estimation

As discussed Section 2.2, in a practical setting there is no analytic justification of preferring one

density estimate or estimation procedure over another. Therefore, any such justification must be

empirical. The ultimate test of a density estimate is how well it will perform when used by a system

to carry out a specific task, but unfortunately this criterion is of little use at design time because it

depends on future (i.e., unavailable) data. A reasonable recourse is to view the available training

sequence E as being representative of future data, and to adopt accordingly an evaluation criterion

that is a function of 1. Specific function forms for such an evaluation criterion are considered later

in this section; for now, the requirements on the criterion will be discussed in general terms.

Regularization and Crossvalidation

An important use of an evaluation criterion is as a target function to be optimized in removing the

degrees of freedom from the model; that is, in training the model. Models having many degrees of

freedom, such as semiparametric and nonparametric ones, can usually be trained to fit the training

sequence quite well in terms of any criterion that is solely a function of E. However, as the number

of degrees of freedom in the model increases, it becomes less likely that a training sequence of

a given length is truly representative of future data in those aspects that are important to the

model. The empirical criterion then becomes less reliable as an estimate of performance on future

data, generally resulting both in an optimistic performance estimate, and in a trained model that

overfits the training sequence at the expense of future performance. Sometimes this phenomenon

is explained in terms of bias and variance. Roughly speaking, bias refers to the inflexibility of the

model, while variance refers to the unreliability of the training. Inflexible models can generally be

trained reliably (high bias, low variance), while flexible models tend to be more difficult to train

reliably (low bias, high variance).

Several approaches are commonly used to combat overfitting in the training process. One is

simply to obtain a longer training sequence, but in many situations this may not be practical. Also,

lengthening the training sequence doesn't address another potential cause of overfitting that can

occur even when the model has few degrees of freedom: one or more singularities in the model like-

lihood being coincident with individual training points. To illustrate, consider a one-dimensional

mixture with two components, one having a broad variance, and the other a vanishingly small one.

If the latter component happens to lie on a training point, the likelihood will be large, and such a

model is grossly overfit. This type of overfitting can be prevented by regularization or detected by



crossvalidation, but merely lengthening the training sequence provides neither a preventative nor a

diagnostic effect. In any event, it would remain desirable to minimize when possible even the lesser

degree of overfitting resulting from the use of a longer training sequence. A widely used strategy

is to incorporate a penalty or regularization term into the criterion to discourage overfitting; such

a penalty term may be regarded as an embodiment of prior knowledge about the density being

estimated. Regularization is the basis for every approach mentioned in Section 2.2, as well as one

not mentioned there: Akaike's information criterion [116], which will not be discussed except to say

that it is similar to MDL [110]. Parameter estimates obtained by optimizing regularized criteria

can, in certain cases, be shown to have desirable asymptotic theoretical properties, such as con-

sistency [4, 110]. However, unpenalized ML is also fine asymptotically, but notoriously unreliable

on small samples, so it is not clear exactly what consistency per se really buys us in a practical

setting.

An important and somewhat different approach, applicable to semiparametric models, is cross-

validation. The idea is to identify a low-dimensional (usually scalar) structural metaparameter M

that controls the flexibility of the model (and hence its propensity to overfit), then to adjust its

value empirically. This metaparameter is usually selected to be directly reflective of the complexity

of the model. For instance, in a mixture model, a natural choice for M would be the number of

components. The model is trained for each of several candidate values of M, and the performance

in each case is estimated using an evaluation criterion which is also based on L, but which is chosen

to be largely independent of the training of the model. One way of achieving this independence

is to divide L into two segments, one slated for training and the other for selection of M. In

this approach, known as holdout crossvalidation, the term training sequence and the symbol L are

redefined to refer to one of the two segments of the original training sequence, while term test

sequence and symbol T are used for the other.

A variation on this technique, known as ILI-fold crossvalidation, involves training the model

for a given value of M a total of ILI times, each time using a (ILl - 1)-long training sequence

that consists of the original training sequence with a different observation deleted. Although

this is also known as the "leave-one-out method;" we adopt the terminology used by Breiman et

al. [13] because we use their notation elsewhere extensively. Each such trained model for that

M is then evaluated for performance, taking as T the single observation that was deleted in

training. The results of these ILI evaluations are then averaged to obtain the overall evaluation

criterion for M. This approach doesn't quite meet the desired goal of having the evaluation of



M be independent of training, since the selective deletion process generally results in a unduly

pessimistic estimate (but overfitting is avoided a fortiori). Also, unlike holdout crossvalidation,

its use is limited to sequences of independent observations (assumed here anyway). Nevertheless,

ILI-fold crossvalidation has proven very useful for the purpose of selecting model complexity, and

is extremely parsimonious with the training sequence, allowing useful inference of M even when

ILI is quite small (e.g., ILI ~ 30). For this reason, ILI-fold crossvalidation will be a valuable tool

in the fitting of one-dimensional mixture densities to leaves in the tree-based methodology to be

described in Chapter 3. The requirement that M be low-dimensional is to prevent overfitting of

the model complexity with respect to the independent evaluation criterion. Conceivably, a second

level of crossvalidation could be performed for M, but since the structural metaparameter usually

has only one degree of freedom, overfitting of M seldom occurs as a result of selecting it in either

of the ways described above.

While the foregoing discussion has focused specifically on the use of crossvalidation in selecting

model complexity, it should be pointed out that the general strategy of testing on different data

than was used in training is useful whenever an honest estimate of future performance is sought.

Any such testing will generically be referred to as crossvalidation.

Specific Criteria: Likelihood and Relative Entropy

We now discuss the choice of functional form of the evaluation criterion for a density estimate f of

f based on a particular training sequence, considering joint density estimation first. In theoretical

analyses of density estimation [33, 120], where the training sequence and therefore f are considered

random, the usual L, norms for functions are often used, where

L,(f, f) = [J f(z) - f(z) Jdz] '. (2.3.1)

The most frequently used values of p are 1 and 2, with the square of L2 usually referred to in

the density estimation literature as integrated square error (ISE). A related criterion that is often

easier to manipulate [120] is the average of the ISE, called mean integrated square error (MISE):

MISE = EC J[f(z) - f (z)] dz . (2.3.2)

Although MISE can be viewed as a special case of L2 with an appropriate choice of integration

measure, we follow the convention used in Scott's book [120] of taking L, to be with respect

to Lebesgue measure, so that MISE is distinct. The above criteria are useful when f is known

or can reasonably be assumed, or when a convergence statement is sought relative to f (as when
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demonstrating consistency), but in the practical density estimation setting, none of these conditions

is satisfied. The MISE is perhaps a bit closer than L, to being useful in the practical setting, since

the expectation may be brought inside the integral and approximated by a sample average, but the

interaction of f and f in the cross term of the integrand limits its use as well. Another disadvantage

of the above criteria is that they are not particularly well tailored to densities; for instance, no

special penalty or weighting is given by (2.3.1) or (2.3.2) to extremely small (relative to f) or even

slightly negative values of f; all that is measured is the absolute deviation from f. Of course,

in the asymptotic analyses where these criteria are typically applied, some sort of convergence

to f is usually demonstrated, and that convergence can often be used to establish convergence

with respect to other metrics. However, this requires that the density estimate become essentially

perfect in an appropriately defined limiting sense, which of course does not happen in the practical

setting where ILI is finite.

What is really needed is an empirical criterion that remains meaningful when f is not known,

and that predicts the performance of a real system that uses the density estimate. For our purposes,

it is not required that the criterion be a metric between f and f. It is emphasized that estimating f

is a practical problem of inductive inference rather than a theoretical exercise. One approach would

be to implement or simulate the system that will employ the density estimate, then use its empirical

(crossvalidation) performance as the evaluation criterion for density estimation. While desirable

on purist grounds and workable in some situations, this approach generally has two disadvantages.

The first is computational complexity: having a simulated system in the loop may make training

unacceptably slow. The second is a potentially rough optimization error surface, owing to the

real-system effects of quantization, integer code length constraints, and the like, hampering the

training process.

We now consider as a possible criterion the likelihood of the model given the training data. Note

that for fixed training data, the likelihood is independent of f, as desired. It will be argued that the

log likelihood is a reasonable predictor of system performance in certain important applications.

This is particularly easy to show in the case of lossless compression of a sequence of independent

observations of a discrete-valued random vector Z having PMF P(Z). The number of bits produced

by an arithmetic coder [68, 112] is likely to be close to the ideal Shannon code length of

ILI

- Z log 2 P(z(n)) (2.3.3)
n=1



bits, which is simply the negative log likelihood. For IL large, this in turn is likely (with respect to

P) to be close after dividing by |I to the expectation - Ez P(z) log 2 P(z), which can be thought

of as representing average future performance. Thus, the problem of designing a lossless compressor

is actually equivalent to that of estimating the governing probability law. This was long known to

be true in principle, but became true in practice primarily through the advent of arithmetic coding

in the late 1970s [113, 86]. The excess of the expectation over the entropy, which is the achievable

lower bound for compressing independent, identically distributed (i.i.d.) sources, turns out to be

the relative entropy between P and P, which is denoted and defined in the discrete case as

P(z)D(PIIP) = - P(z) log 2 - (2.3.4)
P(z)

The relative entropy is not a true metric between densities because it is not symmetric and does

not satisfy the triangle inequality [26]. On the other hand, it behaves in many ways like a metric

and has a similar geometric interpretation in many problems [27]. Note that we cannot estimate

D(PI P) directly because P is never known, but we can estimate the difference in relative entropies

for two competing density estimates, since P appears in

1 I P(z(n))
D (P||P) ~ _ log 102 15( ()

only as an additive constant, approximately the negative of the entropy, which is common to

the relative entropies for both estimates. In other words, we can compare relative entropies by

comparing average log likelihoods. Contrast this with the discrete analog of the MISE criterion

given in (2.3.2), in which the interaction between P and P would prevent such a comparison

without knowledge of P.

To motivate the adoption of the likelihood criterion in the general lossy compression setting

is more difficult because the degree of compression achieved for a given source is not a function

of just the assumed probability model, but also of the choice of distortion measure and the al-

lowed level of distortion with respect to that measure. The approachable bound on performance in

the lossy setting is given by the rate-distortion function (RDF) [125], which is known analytically

for comparatively few sources and distortion measures [41, 6], and in general must be computed

numerically [10]. Therefore, it would be difficult to make a strong case for the crossvalidated

likelihood criterion (or any other criterion) by attempting to relate it to actual or even best-case

system performance in any sort of general way. Instead, we shall be content to show that maxi-

mizing likelihood is the right objective for a specific method of encoding and distortion measure,



at least in the high-rate portion of that method's operational rate-distortion curve. In particular,

we consider entropy-constrained scalar quantization (ECSQ), using the mean-square error (MSE)

distortion measure. ECSQ is a simple but important and widely used method of quantization

that performs fairly well for i.i.d. sources. For example, forms of it are used in both JPEG and

MPEG. Later in this section, and also in Chapters 4 and 5, this technique will be extended to

apply to non-independent sources by employing conditional instead of marginal density estimates,

i.e., Markov sources.

Mathematically, a scalar quantizer is a function q that maps a continuous-valued input z into

a discrete and often finite sequence of representation levels (ri), according to the relationship

q(z) = ri : di < z < di+,

where the cells in the sequence ([di, di+1)) form a partition of the real line (in the case of a finite

partition, the first cell is taken to be open on the left at -oo). The di's are termed decision levels

or thresholds. It will be convenient to define the input-to-cell indexing function

i(z) = i : di < z < di+,

so that q(z) = ri(z). Note that the entropy of i(Z), which is the entropy of the quantizer output

q(Z), is generally finite even when the number of cells is not.

It is well-known that under an entropy constraint, uniformly spaced thresholds are asymptot-

ically optimal for small levels of distortion with respect to several measures (including MSE), for

a broad class of i.i.d. sources [46, 7]. Uniform spacing has also been found experimentally to be

nearly optimal at all rates for several important sources and distortion measures [94]. Accordingly,

we assume a uniform cell width of A. For tractability, we further assume that there are infinitely

many cells, and that the representation levels are the midpoints of the cells. The latter assumption

incurs some loss in MSE-performance, generally significant only at low rates. If A is small and if

f is continuous and smooth (see [18, 80] for rigorous statements of these conditions), the quanti-

zation error at high rates will be nearly uniform on the interval [-A/2, A/2], so that the MSE will

be very close to A2/12, largely independent of the actual rate. Approximations of this type were

first developed by Bennett [5]. The average rate R (in nats) per sample produced by ideal entropy



coding of the quantizer output for the training sequence, assuming that f(q(z("))) > 0 Vn, will be

1 LI ~d
R = - E In((n>>1 f (z)dz

1CI
1 In A (q(zf"))) (2.3.5)
I In=1

1 LCI
S-InA -n f (q(z(")))

which is the negative of the average log likelihood plus a constant. Thus, the likelihood criterion is

directly relevant to uniform ECSQ, and hence to the method of lossy compression to be considered

in subsequent chapters. It is instructive to continue the chain (2.3.5) with the approximation

R ~-lnA - f (z) In f(z)dz

- In A + h(Z) + D(fI|f),

where h(Z) = f ! f(z) ln f(z)dz is the differential entropy of Z, and D(f II) is the continuous

version of relative entropy [261, defined as

D(f|zf) = fzf(z)#o f(z) ln dz if Prob{z :f(z) = 0 If} = 0 (2.3.6)
1 +00 otherwise.

As in the discrete case, the difference in average log likelihoods for two competing density estimates

will approximate (with a sign reversal) the difference in relative entropies. Again, D(f I If) can be

thought of as measuring the discrepancy between the two densities f and f.

While the foregoing justification of the likelihood criterion for lossy compression does not

extend in direct way to vector sources, we can assume (with some further loss in performance)

that scalar quantization is performed sequentially on the vector coordinates, leading again to the

likelihood criterion for vectors via the chain rule for densities.

In both the lossless and lossy compression systems described above, the i.i.d. assumption may

be relaxed and a stationary mthorder Markov model assumed. The average rates for both the

lossy and lossless systems are then obtained by substituting P(y(,) I x(n)) and f(y(n) I x(n)) for

P(z) and f(z) in (2.3.3) and (2.3.5) respectively, where (y(n)) is the sequence of observations

and z(n) is defined as the m-vector whose ith coordinate is y(n-m-ii) (the dimension of x(n)

is reduced as necessary near the boundary n = 0 by omitting coordinates of z(n) that would

correspond to negative values of n). The rates are minimized by maximizing the corresponding

total log conditional likelihoods, which are Ei log2 ^(y() I X(")) and E ln f(y(n) I z(n)) for
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the lossless and lossy cases, respectively. Thus, adoption of the average log conditional likelihood

criterion is well motivated for sequential compression of a Markov source. As in the unconditional

case, differences in likelihood for two competing models can be related to differences in relative

entropy, but the appropriate version of relative entropy is now in terms of conditional density.

We consider only the continuous case. Define D(fyi.Jxfy1,) to be the relative entropy between

f(YIX = x) and f(Y|X = x). Then the average conditional relative entropy between fylx and

fyjx is defined as

D(fyIx||fyix) = ExD(fylxllfyx) if Prob{y : f(ylx) = 0 Ifx} = 0
+oo otherwise.

So far, only compression has been considered. Although classification will not be explicitly

considered in detail, the likelihood criterion is easily justified by its role in the (empirical) Bayes

risk. Likelihood is also an appropriate criterion when seeking to synthesize textures by generating

pseudorandom numbers according to an appropriate conditional distribution (i.e., synthesis by

typical sequence generation), as will be considered in Chapter 4. However, there are two applica-

tions to be considered in subsequent chapters in which likelihood is not as well motivated: image

restoration and deterministic texture synthesis. In these, a sequence of estimates of pixel values

is needed, rather than a sequence of estimates of the distribution of values. While knowledge

of the latter is generally sufficient for computing the former, it is seldom necessary for doing so,

and (to paraphrase Vapnik [137]) a performance penalty may result from attempting to solve a

harder problem (density estimation) as an intermediate step towards solving an easier one (func-

tion approximation). The same comment can be seen to apply to classification. While likelihood

is indeed well motivated by considering Bayes risk, estimating the entire density is usually not.

What matters are the classification region boundaries, and this usually depends on the behavior

of class-conditional densities only in the vicinity of those boundaries. The behavior elsewhere is

largely irrelevant to determining the shape of the boundaries, and hence to the classification task.

Allocating precious model resources to characterize the entire densities may be wasteful in this

application. On the other hand, knowing where the decision boundaries lie requires some knowl-

edge of the class-conditional distributions. These considerations suggest that for efficient density

estimation in the classification setting, the estimation criteria should target discrimination rather

than representation. A good example of this is the work by Pudil et al. [100], wherein the dimen-

sions providing the greatest discriminatory power are modeled separately for each class, while those

dimensions with less discriminatory power are modeled by a common "background" distribution.



In concluding this section, it is worthwhile to compare the ontological status of f with that

of f. For a particular training sequence, f is a fixed function in the usual sense, and may, for

example, be realized at least approximately in a computer program. 7 On the other hand, f is

merely hypothesized to exist, and in any case remains at all times unknown. Fortunately, f enters

the picture only tangentially. In the foregoing discussion, crossvalidated likelihood gained its sig-

nificance in two ways: operationally from its relation to the average number of bits produced by

actual encoders, and conceptually from the inductive belief that the training sequence is represen-

tative of future data. The density f was necessary only in defining relative entropy, which, though

intuitively appealing, is dispensible from the point of view of arguing for adoption of the likelihood

criterion. It is slightly ironic that a notion of a true governing probability law is unnecessary

for the term "density estimation" to be meaningful, but perhaps no more so than in those other

situations in inference and coding that can be approached without positing a true distribution or

even a probability space [28, 30, 77, 108].

2.4 Histogram, Kernel, and Mixture Density Models

A probabilistic model should both generalize and summarize the training sequence. Generalization

refers to the property that performance on future data will be comparable to that observed on the

training sequence; that is, it refers to the absence of overfitting. 8 Summary refers to the process

of extracting and representing in the model only the information in the training sequence that

is actually relevant to the information source (the sufficient statistics, where applicable). These

objectives are not intrinsically at odds with each other; indeed, a model that uses only (and all of)

the relevant information in the training sequence necessarily generalizes. On the other hand, the

terms are not synonymous, since a model can generalize without being parsimonious. To illustrate

how these two objectives are typically met to varying degrees in practice, we compare three well-

known models - histogram, kernel, and mixture density estimates - in a simple two-dimensional

example involving discrete-amplitude pixel data taken from a natural texture.

7 Contrast this with the interpretation of f as a random object, necessary in theoretical analyses.
Such an interpretation derives from the training sequence being regarded as random instead of fixed.

8 Of course, this definition implies that generalization is as much a property of the future data
as it is of the model. This dichotomy parallels one that underlies the inductive hypothesis, which
asserts that the future data will resemble the past in all the ways that count. Here, the "ways
that count" are determined by the flexibility of the model, which is under our control, while the
assertion "will resemble the past" is up to nature and can only be hypothesized [136].



Figure 2.4.1: A training sequence was obtained by successively centering the pictured neigh-
borhood at every pixel location (in raster order) on a 150 x 150 subimage of the 512 x 512 8-bit
Brodatz texture D1. The 1502 - 300 - 148 = 22, 052 vectors for which both coordinates fell
within the subimage boundaries were retained. Three different density estimates for the vectors
are shown in Figure 2.4.2.

As described in the caption to Figure 2.4.1, a training sequence of two-dimensional vectors

was obtained from the Brodatz texture D1. Although the values of these observed vectors are

restricted to a discrete alphabet of cardinality 2562, they may be viewed as having originated from

the quantization to 8 bits per coordinate of a hypothetical original sequence of continuous-valued

vectors . Thus, the number of occurrences in the training sequence of a particular vector value can

be interpreted as the occupancy of a corresponding bin in a histogram density estimate performed

on the hypothetical continuous data. In particular, the number of occurrences of (z1, z2 ), assuming

z1, z2 V {0, 255}, can be viewed as representing the occupancy of the square 1 x 1 bin in R 2

centered at (z1 , z2). Because the histogram is two-dimensional, it may be conveniently displayed

as an image, as in done in Figure 2.4.2(a). The logarithm of the density has been taken to render

the tail regions more clearly. It should be noted that most of the bins are empty; this is to be

expected because there are 65,536 bins and only 20,052 observed points. Moreover, many of the

empty or nearly empty bins occur near populous ones; this is evidence of the histogram failing to

generalize adequately the observed training points to surrounding regions of space. The speckled

overall appearance indicates that this particular histogram estimate is unreliable, again owing to

low average bin populations. The problem is worse in higher dimensions; for example, if triples

of pixels were used instead of pairs, then at most about 1% of the bins could be nonempty. This

manifestation of the curse of dimensionality has been dubbed the empty space phenomenon by Scott

and Thompson [121]. An alternative would be to use larger bins so that more observations fall into

each, or equivalently, coarser quantization. This would result in better generalization, but at the

expense of resolution, and the tradeoff achievable in this way by the histogram generally becomes

unacceptable in higher dimensions. Another approach would be regularization, such as Laplace's

rule as discussed in Section 2.2. In this example, applying that regularizer would correspond

to adding a constant background value to the histogram image shown in the figure, eliminating

empty cells, but doing little to reduce the apparent noisiness (speckling). The main problem with



the histogram is that it imposes a hard categorization, attempting to transform a metric-space

observation into a categorical one. In doing so, it fails to make good use of prior knowledge of

the smoothness of the underlying distribution, and this failure is exacerbated in high dimensions.

While various modifications have been proposed to mitigate this problem [120], none seems entirely

satisfactory, and consequently the appropriateness of the histogram and its close variants seems

restricted to the scalar case.

255 (a) 255 (b) 255 (c)

Z2 Z2  Z2

0 0 0

0 255 0 255 0 255
Z1  Z1  Z1

Figure 2.4.2: Three different density estimates for the two-dimensional data described in Fig-
ure 2.4.1 are shown after taking the logarithm. Estimate (a) is a histogram estimate, where the
bins have been defined implicitly by the 8-bit amplitude resolution of the source image. Estimate
(b) is an economized kernel estimate based on 128 randomly selected points using an isotropic
Gaussian kernel function having a variance of o2 = 30 in each dimension. Estimate (c) is a mix-
ture density estimate also having 128 components, trained using the generalized Lloyd algorithm
as described in Section 2.5.

Kernel density estimation is an important technique with a well-developed supporting the-

ory [34, 49, 120], much of it focusing on the asymptotic properties as the training sequence becomes

arbitrarily large [33]. The one-dimensional kernel density estimate (2.2.5) mentioned in Section 2.2

can be extended in a straightforward way to multiple dimensions, by employing isotropic kernels

which are themselves two-dimensional densities:

1IL
fK(z) = E fK(z -z(n)) (2.4.3)

10n=1

In this notation, the bandwidth parameter in (2.2.5) has been absorbed into the kernel function

fK. The kernel density estimate exploits the assumed smoothness of the underlying distribution

by radiating probability to the space immediately surrounding the observations, resulting in direct

generalization without hard categorization. However, it does not summarize: unlike the histogram,

the kernel estimate retains the precise locations of the observations instead of pooling them into

bins. Additionally, the summation in (2.4.3) is over the entire training sequence, which in this

example consists of 20,052 points. Thus, both the representational and computational complexities



of the kernel estimate are quite high, and this level of complexity is not justified by the length of

the training sequence. 9 The complexity of the histogram is also unreasonably high in this example,

but it is fixed independently of the training sequence. A modification to the kernel estimate would

be to use fewer training points by randomly subsampling the training sequence. In this way, the

complexity M of the kernel estimate can be controlled independently of [L I provided that M < [C|,
making it a semiparametric rather than nonparametric technique. For the data at hand in this

example, using an isotropic Gaussian kernel function with a variance of o2 = 30 in each dimension

and selecting the number of kernel locations to be M = 128, the density estimate depicted in

Figure 2.4.2(b) was obtained. The result is free of the speckling that plagues the histogram

estimate, but its resolution is apparently lower. The tradeoff can be controlled by adjusting the

width of the kernel, just it can be controlled in the histogram by adjusting the bin size. It should

be noted however that the kernel estimate, after subsampling, does a poor job in characterizing

the tail regions. This is because the kernel estimate relies on sampling from the distribution that

it is trying to model, and improbable regions are represented by correspondingly few samples

in the subsampled training sequence. Increasing the length of the subsequence would help in

the representation of the tails, but would also increase the representational and computational

complexity of the model.

A natural further modification would be to select specifically a set of locations for the kernels

that are deemed representative, rather than to rely on random subsampling. In this way, the kernel

estimate can be made to summarize the training sequence. Two useful additional modifications

would be to allow the shapes of the kernels to adapt to the local characteristics of the density, and

to allow unequal weighting of the kernels in the summation. These changes would transform the

kernel estimate into the mixture density estimate, which was discussed briefly in section Section 2.2:

M

fmix(z) = J Pmix(m)fmix(zlm) (2.4.4)
m=1

The kernel functions {fmix(zlm)} are known in this context as the component densities or simply

components, and the probability masses {Pmix(m)} which act as weighting factors are called mixing

parameters or mixing probabilities. A mixture density estimate using M = 128 components for this

9 For several semiparametric model classes for discrete data (e.g., the multinomial PMF), the
natural complexity of the model grows approximately with the logarithm of the length of the
training sequence. This observation provides a basis for two-part universal coding [29] as well as
an intuitive justification of Rissanen's stochastic complexity measure of ! log ILI [110]. A similar
dependence might hold for continuous densities.



example is shown in Figure 2.4.2(c), where the components and mixing parameters have been

selected in the manner to be described in Section 2.6. It can be seen that the mixture model does

a better job of characterizing the source than either the histogram or the kernel estimates, by both

summarizing and generalizing the training sequence well.

Historically, the main use of mixture models has been in classification and clustering, wherein

the structure of the model is regarded as reflective of the physical process by which the data were

generated or observed [76]. An alternative view of mixtures is as general-purpose semiparametric

density estimators, not necessarily reflective of the structure of the data source [37, p. 118ff]. This

interpretation, which is the one adopted here, has been steadily growing in popularity in recent

years, particularly among researchers interested in artificial neural networks [51, 9]. However, the

important distinction between density estimation and function approximation is often blurred in

that literature; see [95] for a brief discussion.

For general-purpose density estimation, a reasonable and popular choice for the form of the

component densities is the Gaussian PDF (2.2.4), which can be written in mixture-specific notation

as

fmix(zlm) = (27)-2/2|K|1/2exp[±(z - pm)TKal(z - m)2

As will be discussed in Section 2.6, there are often advantages to restricting the covariance matrices

to be diagonal. The resulting components are termed separable, and may be written

Dz

fmix(zlm) = 1 fmix(zdIm),
d=1

where fmix(zdlm) is a one-dimensional Gaussian as given by (2.2.3), with mean Am,d and variance

&2 Henceforth, mixtures components will be assumed to be separable Gaussian densities unless

otherwise stated.

Estimating the mixture components and mixing probabilities is in general a complex task.

Several approaches have been proposed over the years [35, 40, 76, 104, 135], and the topic con-

tinues to be an active area of research today. Much of the work has focused on low-complexity

mixtures. When mixtures of high complexity are required or allowed, as they are here, robustness

and computational complexity of the training process become important considerations. In the

next section, a heuristically justified method of mixture estimation based on clustering is presented.

Following that, an iterative ML-seeking approach will be discussed.



2.5 Mixture Estimation via the Generalized Lloyd Algorithm

As mentioned in the previous section, a mixture density estimate can be viewed as an economized

kernel estimate in which the kernel locations are chosen to be representative of the training data.

Selecting a set of representative points for a given set of data is precisely the problem of codebook

design in vector quantization. It is natural therefore to consider the adaptation of algorithms

normally used for codebook design to the task of mixture density estimation.

The generalized Lloyd algorithm (GLA) [45], which is the best known 10 and perhaps most

widely used of these algorithms, involves iterating the following two steps after initializing the

codebook:

(1) Assign each training point to the nearest entry in the current codebook, and

(2) update the codebook by replacing each entry with the centroid of the points just assigned to

it.

The word "nearest" is used in the Euclidean sense. It can be shown that the sum of the

squared distances between training points and their nearest codebook entries does not increase as

the algorithm progresses, and in fact converges (to some value) in a finite number of iterations [45,

pp. 363-368]. Once the codebook has been designed, it can be used for mixture density estimation

in a straightforward way. In particular, a component density can be fit to the portion of the

training data that falls into each cell in the nearest-neighbor partition induced by the codebook,

and the mixing parameters can be taken to be the normalized cell populations. When the mixture

component densities are separable Gaussians, fitting can be accomplished simply by computing the

sample means and variances in each dimension separately for the mth cell in the induced nearest-

neighbor partition, and taking these as Am,d and &2, respectively. It has been found that slightly

better performance (likelihood) often results by setting &2 to be slightly larger than the samplem d

variance; see [95, Appendix B] for a possible explanation.

The GLA was the real "work horse" algorithm for most of our earlier work in applying mixture

models to texture and image processing applications [96, 97, 95]. Later, an improvement was gener-

ally obtained in all applications by following the GLA with a few iterations of the computationally

more expensive expectation-maximization (EM) algorithm (to be described in Section 2.6), but

10 In the clustering literature, this algorithm has come to be known as k-means. However, the
term "generalized Lloyd algorithm" may be more appropriate, for the reasons cited in [45, p. 362].



the degree of improvement was usually slight, e.g., not more than about two tenths of a bit per

pixel when applied to the lossless compression of natural images.

The main difficulty we encountered in running the GLA was the well-known problem of the

assignment step occasionally resulting in one or more empty cells. Two methods described in [45]

for handling this situation were tried. Both involved replacing the empty cell's codebook entry

with a slightly perturbed version of another entry whose corresponding cell was deemed to be a

good candidate for splitting into two. In one method, the most populous cell was split; in another,

the one with the greatest sum of squared distances from member points to its centroid was split.

Neither method worked perfectly in all cases, but the latter was found to be the more reliable of

the two in getting the algorithm to use all of the allocated components.

A partial distance search [45, pp. 479-480] technique was employed to expedite the assignment

step, resulting in significant computational savings (typically, a factor of 2) for large M. The

philosophy behind this technique was also adapted to the task of speeding up the EM algorithm,

as described in Section 2.6 and more fully in Appendix A.

Initialization of the codebook (cluster locations) for the GLA appears to be somewhat less

critical than for EM. The main goal is to have the initial cluster locations well spread out over the

region of space occupied by training points. Having them spread out in this way makes it relatively

unlikely that a Voronoi cell will be empty during the early iterations, and may speed convergence by

possibly reducing the length of the migration path to be followed by each cluster as the algorithm

converges. Two commonly used initialization strategies are random assignment to training points

and LBG splitting [45]. We have found that random assignment often leads to empty cells, possibly

because the initial clusters are occasionally insufficiently spread out. Traditional LBG splitting is

appropriate when the number of clusters is a power of two, because each split doubles the number

of clusters. Here, it is desired that any number of clusters be allowed. The following initialization

was found to yield consistently reasonable initializations for any number of clusters less than the

number of training points. Begin by setting the collection of cluster locations to contain only one

element: a vector selected at random from the training set. Then, take as the location of the next

cluster a training point that maximizes distance to the nearest cluster among the subset already

determined. Repeat this until the desired number of clusters has been obtained. It should be

clear that this technique results in a set of locations that approximately minimizes the maximum

distance of each training point to its nearest cluster. To be able to find a set of locations that is truly

locally optimal in this minimax sense, it is sufficient to be able to find the smallest hypersphere



containing a given set of points. For if this can be accomplished, then the desired local optimum

could be found by substituting the center of the minimum sphere containing a cluster's member

points for the centroid in each iteration of the GLA. Unfortunately, an efficient algorithm does not

seem to exist for finding such a sphere.

While use of the GLA is suggested heuristically by the desire to center the mixture components

on representative points, generally it does not result in the adopted criterion of likelihood being

maximized. Direct solution of the mixture likelihood equations appears to be hopelessly intractable,

even for relatively small mixtures in low dimensions [104]. A possible numerical approach is gradient

search [72], but the gradients involved are complex enough to make this technique computationally

unattractive for large M.

2.6 Mixture Refinement via Expectation-Maximization

The EM algorithm [9, 31, 104] provides an alternative gradient-free means of locally maximizing

the likelihood over the mixture parameters, and has come to be a standard method of parameter

estimation in mixtures and related models. When applied specifically to mixture estimation, the

EM algorithm amounts to a softened version of the generalized Lloyd algorithm. In particular,

the hard assignment of each training point to a single cluster that is carried out during each

iteration of the GLA is replaced in EM by a weighted assignment to all clusters, with the weights

corresponding to the current estimate of the posterior PMF over clusters for that training point.

This soft assignment constitutes what is called the expectation step. The other step, maximization,

involves re-estimating all of the parameters. Let {P' }, {fA( g}, and {& (i} d

parameters at the beginning of the ith iteration. The EM update rule [104, 9] can be written as

Mn x(m)d 1fmix(Z~ d &~ 1 <Kn <|EI, 1 <Km K M;(2.6.1a)
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where pm is an intermediate quantity that represents the strength of membership of the nth

training point to the mth mixture component. Expression (2.6.1a) constitutes the expectation

step, while the remaining expressions in (2.6.1a) constitute the maximization step. It is readily
(n)seen that if a nearest-pi indicator function is substituted for pm , then the EM algorithm becomes

the generalized Lloyd algorithm; hence the interpretation of EM as a soft version of the GLA. A

consequence of the softening is that in EM, every training point effectively belongs to every cluster,

making the computational cost of EM about M times that of the GLA.

In practice, particularly when M is large, it is almost always the case that only a small fraction

of the cluster-membership weights for a given training point turn out to be significant. Thus,

the majority of terms in the likelihood calculation and the maximization-step sums are usually

negligible, and may be safely omitted without appreciably affecting either the final likelihood or

the final mixture parameter estimates. Properly exploited, this can result in substantial savings in

the maximization step. The rub is that discovering which terms may be safely omitted is itself a

potentially expensive procedure.

A method for taking advantage of this potential savings is now proposed. Computationally

inexpensive discovery of which terms are insignificant may be accomplished in a manner analogous

to the partial search mentioned briefly in Section 2.5. In that technique [45], to speed up the

search for the codebook entry or cluster nearest to a given training point, the partial Euclidean

distance is tested after each coordinate's contribution is accumulated into the sum, and a candidate-

nearest cluster is eliminated from further consideration as soon as it is discovered that the partial

sum exceeds the minimum of the previously computed distances. An analogous procedure for early

discovery and elimination of negligible clusters in EM would require that the posterior probability of

cluster membership for a given training point be suitably upper-bounded in terms of an appropriate

incrementally computable quantity. In the case of separable mixture components, a suitable upper

bound may be given in terms of the partial likelihood, and this upper bound may be tested

sequentially after each coordinate's contribution is accumulated. If, after a particular coordinate is

processed, it happens that the bound falls below a specified threshold, then the candidate cluster

can be deemed insignificant without any need to process the remaining coordinates, resulting in

computational savings (the additional cost of the comparison operations is usually more than offset

by the resulting savings in likelihood computation). A difference between this procedure and the

partial distance method used in the assignment step of the generalized Lloyd algorithm is that

the latter does its job with no approximation; it finds the nearest cluster. However, it does not



estimate the posterior PMF. In contrast, the proposed technique does estimate the posterior PMF,

but does so only approximately.

A slight complication arises from the need to adjust the significance threshold for each cluster

according to the partial training-point likelihood from previously processed clusters, so that the

amount by which the resulting approximate likelihood underestimates the exact likelihood may be

strictly bounded. A new, economized EM algorithm based on this strategy, suitable for estimating

mixtures having separable components, is described more fully in Appendix A.

Two major difficulties were encountered in applying the EM algorithm to mixtures having

many components. The first has already been mentioned: high computational complexity. The

economized version of the EM algorithm described in Appendix A results in modest savings, but

the execution time per iteration is still several times that of the GLA. Therefore, the use of EM was

mostly restricted to a few iterations (seldom more than 10) to refine a mixture estimate obtained

via the GLA.

The second difficulty was EM's propensity to overfit the data by shrinking the variances down

to zero on components that coincide with training points, causing the likelihood to increase without

bound. Crossvalidation can detect this, but detection alone does not provide a solution, since this

sort of overfitting is not necessarily a symptom of excessive model complexity. For a given level

of complexity, there might well be (and usually is) a better, less-overfit estimate that EM missed

along the way to finding the local degenerate optimum. One workable solution is to place a lower

limit on the allowable variance in each dimension, which is a form of regularization. However,

when this is done, it is no longer clear precisely what criterion EM is attempting to optimize. A

completely satisfactory treatment of this problem does not appear in the literature, and in light

of the comments in Section 3 of [104] regarding the conceptual and practical difficulties associated

with ML mixture estimation, perhaps one should not be expected. The approach settled upon in

this thesis was pragmatic. A lower limit of 1/1000 of the maximum coordinatewise sample variance

of the training data was enforced on the variances in all dimensions to prevent severe overfitting. It

is recognized that the resulting estimate is unlikely to be optimal in any meaningful sense when the

resulting estimate lies on this variance constraint boundary. Nevertheless, the technique resulted

in mixture estimates that performed well in their intended applications, as will be described in the

subsequent chapters.



Although the use of unconstrained (i.e., possibly nonseparable) Gaussian mixture components

might allow an estimate of a given complexity to fit the data better, doing so could introduce

difficulties with overfitting. This is because there are many more ways in which the determinant of

the covariance matrix can vanish, and many more degrees of freedom in the model. The number

of degrees of freedom in each covariance matrix increases from Dz to Dz(Dz + 1)/2, resulting in

correspondingly less reliable estimates of the covariance matrices given a fixed amount of training

data. It is clear that in situations where there is linear dependence in the data, allowing nonsepa-

rable components can be advantageous. However, frequently such linear dependence is global, and

as such can be removed simply by rotating the coordinate system by appropriate linear prepro-

cessing. For these reasons, it is not clear whether allowing arbitrary covariances results in any real

advantage in general. Investigation of this issue in depth is left as a topic for future research. Only

separable-component mixtures were employed in the experiments to be described in this thesis.

2.7 Conditional Density Estimation using Finite Mixtures

In many situations, what is needed is an estimate of the conditional density f(y I x) rather than

of the joint density f(x, y). These two entities are of course related by the formula

f(x y)
fy I x) = f,Y'), (2.7.1)

f_" f (x, y')dy"

which is valid whenever f (x) # 0.

When estimates rather than the true densities are substituted into (2.7.1), the formula is no

longer an identity, but rather a recipe for obtaining a conditional density estimate from a joint

one. For example, when the mixture (2.4.4) is used for the form of f(y I x), the conditional density

estimate suggested by 2.7.1 becomes

M 1 Pmix(m)fmix(x, y m)
fmix(y |X) = ,

f Z= 1 Pmix(j)fmix(X, y' | i)dy'
M Pmix(mn) mix (x Im)

= M Pmix (y x, m) (2.7.2)
M-1 fmi(x)

M

=E Pmix(m I X)fmix(y I x, m),
m=1

which simplifies to
M

mix(Y X) = Pmix(m I X)frmix(y I m) (2.7.3)
m=1

when the mixture components are restricted such that y is conditionally independent of x given

m, as is true for example when the components are separable. Note that the conditional density



estimate is itself a mixture, where the component densities are one-dimensional and the mixing

parameters are the posterior probabilities of cluster membership after observation of x.

At issue is the quality of such an estimate of the conditional density when the GLA or EM is

used to train the joint density estimate. A simple example will illustrate that for a fixed number of

mixture components M, approximately maximizing the joint likelihood via the GLA or EM does

not make the best possible use of the available complexity from the point of view of conditional

density estimation.

(a) (b)
y y

a x a x

(c) (d)

Y fy|x(y a)

a

Figure 2.7.4: Failure of EM to capture conditional structure. A density having the equiproba-
bility contours shown in (a) is fit by a two-component Gaussian mixture using the EM algorithm
as indicated in (b). The corresponding conditional density estimate along the line x = a, shown
as the dashed line in (d), misses the bimodal conditional structure. Using the mixture compo-
nents indicated in (c) would result in a better conditional density estimate (the solid line in (d)),
although in this case the components are centered on low probability regions, which are shunned
by EM.

Consider a true distribution having the equiprobability contours shown in Figure 2.7.4. For a

Gaussian mixture of allowed complexity M = 2, the GLA or EM would result in the components

indicated in Figure 2.7.4(b). The corresponding conditional estimate f m ix(y I x) evaluated along

the indicated line x = a is unimodal, as indicated by the dashed line in Figure 2.7.4(d). A clearly

better choice for the components would have been as indicated in Figure 2.7.4(c), resulting in the

desired bimodal distribution indicated by the solid line in Figure 2.7.4(d). However, these are

centered on regions having almost zero probability, so that neither the GLA nor EM would ever

find such a solution, or even consider such a solution to be desirable.



The question is how such a solution can be found in an automatic way, and for problems

of arbitrary dimensionality. Qualitatively, one difficulty is that maximizing joint likelihood tends

to focus the model's resources on the dependent and independent variables evenly, even when

some of the independent variables are irrelevant (or conditionally irrelevant, given others) to the

distribution of the dependent variable.

It is important to note that the mixture components indicated in Figure 2.7.4(c) could be

shifted to the left or right, and their widths increased or decreased, without appreciably damaging

the quality of the estimate f mix(y I x). This implies that the conditional log-likelihood surface does

not have a distinct localized peak in the space of mixture parameters; instead, the optimal region

is relatively broad, and in general includes parameter values that may not be desirable on practical

grounds. For example, infinite widths for the ellipses in Figure 2.7.4(c) would be acceptable from

the point of view of conditional likelihood, but not from the point of view of implementation.

Thus, any direct search would have to be constrained or regularized in some way. An approach

based on a three-layer neural network implementation of a mixture is considered in [9]. It requires

careful parameterization of the mixture parameters, and its apparent complexity indicates that it

may not scale well to large problems.

Since the EM algorithm is well-suited to mixture estimation for joint densities, it is reasonable

to ask whether it might be applied fruitfully to conditional density estimation. EM is traditionally

used when some of the data can be regarded as missing. When estimating joint densities using

mixtures, the mixture component labels are taken as the missing data. However, when estimating

conditional densities, taking the "true" component labels to be the missing data can result in an

inefficient use of mixture resources, as shown in the example of Figure 2.7.4. It is therefore not

clear what expectation should be computed in the E-step. A number of ad hoc modifications to

the E-step have been tried in joint work with Tony Jebara with limited success; see Section 3.9.

Based on these experiences and on discussions with Michael Jordan [65], it seems to me unlikely

that a completely satisfactory EM algorithm for conditional-density mixture estimation will be

found, but more research is required.

A plausible approach to the conditional-density mixture estimation problem is suggested if we

take a step back and reconsider the problem once again in abstract terms. The possible values

of x are the conditioning states within each of which it is sought to characterize the distribution

of y. For continuous x, it is not meaningful to consider these values in isolation; instead, it is

necessary both in concept and in practice to impose some sort of grouping of conditioning values



into categories. The grouping can be accomplished in either a hard or a soft manner. The structure

of the conditional mixture density estimate (2.7.3), at least potentially, strikes a compromise

between these two. A finite grouping into M categories is defined by the densities {fmix(y I m)},

and the final estimate fmix(y I x) is obtained by linearly combining these using weights that depend

on x. This interpretation suggests that the first order of business is to determine a good choice

for the M categories. That the weighting factors appear as posterior probabilities of category

membership suggests that the categories themselves be subsets of the conditioning space for which

the posteriors are both meaningful and practically estimable. One possibility is to take as the

categories cells in a partition of the conditioning space. The immediate problem then becomes

one of finding a partition for which the average conditional log likelihood is maximized. Recalling

the close relationship between likelihood and entropy discussed in Section 2.3, an approximately

equivalent formulation is: find a partition for which the conditional entropy of y is minimized.

This formulation is suggestive of a partioning technique proposed by Breiman, Friedman,

Olshen, and Stone [13] as part of a tree-structured approach to classification and regression. In

their methodology, here generically termed CART@, a fine partition is initially grown by recursively

splitting cells to achieve the greatest stepwise reduction in a specified empirical measure of impurity.

Though not strictly required in principle, in most implementations the splits are required to be

binary, and such that the splitting boundary is always perpendicular to one of the axes. The

cells of the resulting partition correspond to the leaves of a binary tree, where the root node

represents the original conditioning space, and each interior node represents an intermediate cell

that is subsequently refined. Each splitting operation corresponds to a comparison of one of

the conditioning coordinates with a threshold; the coordinate and threshold are jointly chosen to

provide the greatest immediate reduction in impurity for the given cell being split. After the initial

tree is grown, it is pruned in a bottom-up manner by selectively undoing some of the splits, to

obtain a tree that is of an appropriate complexity for the data. Classification of a new observation

is then accomplished by first finding out to which cell in the partition it belongs, then taking as the

class label that which occurred most often (for example) in that cell in the training data. A similar

procedure is used for regression, but the representative value is taken to be the sample average of

the values assumed by the dependent variable among the training points falling into that cell.

One way to apply this technique to density estimation would be to treat the dependent variable

as categorical rather than ordinal, and use a standard CART classification tree to estimate posterior

class-membership probabilities using leaf histograms. The use of such trees to estimate posteriors



for categorical data is actually discussed in some detail by Breiman et al. [13] (see Section 3.9

of this thesis), and a nearly identical approach is presented by Rissanen [107] in the context of

conditional PMF estimation for universal data compression. The difficulty with such a strategy is

that by quantizing the dependent variable and treating it as categorical, advantage is not taken of

the meaning of its value. In particular, smoothness and metric space assumptions are not exploited,

and this is too much to throw away.

In the early stages of development of the CART classification methodology, the empirical en-

tropy was used as a substitute splitting criterion for the empirical misclassification rate, because

the latter was found to be ill-behaved in a number of respects [13, pp. 94-98]. Later, other sub-

stitute criteria (notably, the Gini index) were used and even preferred. In at least one respect,

then, matters are simpler for tree-structured density estimation than for classification: The natural

criterion, empirical entropy, is known to be well-behaved and therefore a substitute need not be

sought. However, in order to adapt the CART methodology to conditional density estimation, or

more specifically to the problem of estimating mixture parameters for conditional density estima-

tion, several important issues must still be resolved. These are discussed briefly below, and in more

detail in Chapter 3.

First, a simple example is considered to illustrate how a tree-structured approach might work,

and to set the stage for identifying the major issues. Consider the hypothetical mixture of six

isotropic Gaussians, with the locations and variances as indicated by the equiprobability spheres

shown in Figure 2.7.5(a). Data obeying this distribution are observed, and it is desired to esti-

mate the conditional density of Y given any observation (X1 , x 2) using a four-component Gaussian

mixture. Using EM results in the estimate (d), which misses the bimodal conditional structure in

the foreground region. In contrast, the estimate (e) captures the conditional structure everywhere.

To obtain it, two levels of axis-perpendicular splitting are performed. The first divides condition-

ing space into two half-planes by comparing x 2 with a threshold, separating the four foreground

blobs from the two background ones. This encapsulates the conditional irrelevance of xi in the

foreground. However, in the background cell, xi is still relevant; this is reflected by the choice of

the next split, which is shown in (c). Finally, one component each of the four-component model is

allocated and fit to the two rear cells, while the two remaining components are fit to the foreground

cell. In this example, the mixture was allowed to have only four components. If six or more were

allowed, then both methods could be made to fit the data perfectly.
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Figure 2.7.5: Fitting a four-component mixture model to a six-component distribution. The
true distribution is shown in (a), and a corresponding four-component mixture density estimate
obtained via EM is shown in (d). Two levels of recursive partitioning are shown in (b) and (c).
A corresponding four-component mixture estimate is shown in (e). Joint likelihood is maximized
by the EM result (d), while conditional likelihood by (e). Numerical results based on simulation
for this example are presented in Table 3.8.1.

A number of issues must be resolved to make the method outlined in this example workable.

First, unlike in the case of classification trees, the dependent variable is continuous rather than

categorical, so that it is not so clear how empirical entropy or likelihood should be estimated when

considering candidate splits or pruning. One answer might be that they should be computed with

respect to the final estimated model that would have resulted from selecting each split, but that

would involve training two mixtures (one for each subcell after splitting) for every candidate thresh-

old considered for every coordinate, which would not be feasible computationally. The second issue

is the determination of when to stop splitting. Here, the CART strategy carries over intact: split

until an extremely large tree is obtained, then prune back to an appropriate size using weakest-link

cutting with respect to a cost-complexity tradeoff, where cost in this case is measured in terms of

crossvalidated likelihood. A final issue is the determination of appropriate leaf-conditional density

estimates. Since the leaf cells are constrained to be rectangles by the splitting process, little would

be gained by allowing anything other than unimodal separable densities for the conditioning-space

dimensions, or by allowing the conditioning-space characteristics for multiple components allocated

to a single cell to differ. Consequently, it is reasonable to stipulate that the leaf-conditional densi-



ties be expressible as the product of a separable unimodal density in the conditioning coordinates

with a mixture in the dependent variable. The question then remains of how to best determine

the appropriate complexity of the dependent-variable mixture. In this example, two components

were selected for the foreground cell and one for each of the two background cells, but in general

an automatic procedure for such complexity allocation is needed. Each of these issues will be

addressed in the next chapter.

2.8 Chapter Summary

Background information about subband-domain processing and probabilistic modeling was pro-

vided. Joint and conditional density estimation were considered in both abstract and practical

terms, and various approaches were discussed and compared. Special attention was focused on

mixture density models because of their potential to model arbitrary distributions. For such

models, it was shown that good joint density estimates cannot always be used to obtain good

conditional ones. Fitting of the mixture for the purpose of conditional density estimation requires

specialized training; in particular, the standard EM algorithm is not well suited to the task. A

suitable training method will be proposed in the next chapter.



CHAPTER 3:

Partitioned Conditioning via Decision Trees

A tree-structured methodology for conditional density estimation, dubbed partitioned conditioning

via decision trees (PCDT), is described in detail in this chapter. First, some useful notation and

terminology specific to trees will be introduced.

3.1 Trees: Basic Concepts, Notation, and Terminology

Notation will closely follow the conventions established in [13], with some minor additions and

modifications. Towards making the presentation self-contained, discussion begins with some basic

definitions.

A directed graph is an ordered pair (F, g), where F = {tj} is a collection of primitive elements

called nodes, and g : F x F -+ {0, 1} is a boolean function defined on pairs of nodes. 11 Let t and

t' be any two nodes in F. If g(t, t') = 1, then we say that a directed arc connects the two nodes,

originating in t and terminating in t'. Conversely, if g(t, t') = 0, then we say that no such arc

exists. The notion of "arc" is particularly useful when depicting and manipulating directed graphs

pictorially. A path is a connected sequence of one or more directed arcs, and the length of a path is

defined as the number of directed arcs that constitute it. A directed graph is termed acyclic if, for

every node t E F, there does not exist a path both originating and terminating in t. The fan-out

of a node t E F is defined as the number of arcs that originate in t; similarly, the fan-in is defined

as the number that terminate in t.

A tree is a directed acyclic graph in which each node has a fan-in of unity, except for exactly

one node, called the root, which has a fan-in of zero. A node that has a fan-out of zero is termed

a leaf. A tree will generally be denoted by the symbol T, its root node by A(T) or simply A if T is

understood, and the set of its leaf nodes by the notation T. Nodes that are not leaves are termed

interior nodes. A K-ary tree is one in which each node has a fan-out of at most K, and a complete

K-ary tree is one in which each interior node has a fan-out of exactly K. A directed graph or tree

that has a finite number of nodes is termed finite.

Let T = (FT, gT) be a tree. The notation t E T will be used as a shorthand for t E FT. For

any two nodes t, t' E T, if there exists a path originating in t and terminating in t', then that path

11 If F is finite, then g can be specified by an incidence matrix.



is unique (because the fan-in at each node is at most unity), and t is said to be an ancestor of

t'. This relationship is indicated symbolically as t < t'. Note that the root node is an ancestor

of every other node, and that the ancestor relation < is a strict partial order on FT (see [79], p.

69ff). The depth of a node is defined to be the length of the path from the root to that node. A

finite complete K-ary tree in which all of the leaves have the same depth is termed balanced. The

notation t < t' indicates that either t < t' or else t = t'. If t is an ancestor of t', then t' is said to be

a descendant of t, indicated as t' > t. The notation t > t' indicates that either t > t' or else t = t'.

In the special case where the path length between t and t' is unity, t is termed the parent of t',

indicated as t = t'p. In this case, t' is termed a child of t. In a complete binary tree, each interior

node t has two children, a left child and a right child, denoted tL and tR, respectively. Thus, in a

complete binary tree, (tL)p = (tR)p = t for every interior node t E T.

For any node t C T, let 07, denote the set that consists of t and all of its descendants in T.

Let g, be the restriction of gT to FT, x IF,. Then the branch Tt, defined as Tt = (FT, gTt), is

the tree obtained by "snipping off" the arc coming into t, then taking t as the root. Similarly, the

tree obtained by deleting or pruning Tt from T, denoted by T - Tt, can be defined precisely as the

ordered pair (FT-T , gT-T), where rT-T, is the relative complement of FT, in FT, and 9T-T, is

the restriction of gr to rT-r, x FT-Tt If a tree T' can be obtained from T by performing zero or

more such prunings, then T' is called a subtree of T, and we indicate this relationship symbolically

by T' - T or T > T'. If both T' -< T and T' 5 T, then T' is termed a proper subtree of T, and we

indicate this by either T' -A T or T >- T'.

3.2 Tree-Induced Partitions and the Hard PCDT Model

Henceforth, we restrict consideration to finite complete binary trees. For a given such tree T,

we associate with each interior node t two numbers d E {1,.. ., D.} and Tr* E R, termed the

splitting dimension and splitting threshold respectively. These determine a recursive partitioning

of conditioning space according to

UX = RD_;

UtR = {x E Ut : Xd; < rt*1}; Utl = Ut - UtR, t C T - ({A} U T).

For every node t C T, we define Lt = {(x , Yt())} to be the subsequence of the training sequence

,C = {(x(n), y(n))} obtained by deleting each observation (x(n), y(,)) for which X(n) V Ut. Thus, for



every subtree T' -< T, {Ut : t E T'} is a partition of RD- and {ft : t E T'} is a "partition"12 of g.

We define the conditioning-to-leaf indexing function i: RDz -> T as

t(x) = t E T: x E Ut.

Finally, we associate with each leaf node t E T a one-dimensional density function f(y I t), and

define the hard PCDT (PCDT-H) conditional density model as

f (y | X) = (y | ix)). (3.2.1)

This model is parameterized by the structure of the tree, the splitting dimensions and thresholds,

and the leaf densities. We now describe the estimation of all of these from the training sequence.

Later, it will be described how the model can be softened by mixing leaf densities in the fashion

prescribed by (2.7.3).

3.3 Growing the Initial Tree

In the CART methodology, the splitting dimensions and thresholds are determined in a greedy

fashion as the tree is initially grown, and the structure of the tree is finalized when this initial

tree is pruned back to an appropriate level of complexity. Adapting this process to the conditional

density estimation setting requires that the issues raised at the end of Section 2.7 be addressed.

We first consider growing the initial tree. The process begins by starting with a tree that

consists of just the root, which is therefore also a leaf. For a given current tree T, a new tree

is obtained by splitting each leaf node that satisfies a splitting eligibility criterion (which will be

described later). The process is repeated until none of the leaves is deemed eligible to be split.

The resulting maximum-complexity tree is denoted Tmax.

In this process, a leaf node t is split in the following way. For each dimension d E {1,... , Dx}

and candidate threshold value r E{x : x = z(n) for some n E {1, ... , CtI}}, an estimate q(t, d, T)

is computed of the negative partial log likelihood

[CtL ICtRI

#(t,d, r) [- E In f(ytL I tL) - InfR (3-3-1)
n=1 n=1 . d*=d; r* =r

where the dependence on d and r is implicit in the definitions of LtL and LtR in terms of £t, d*,

and T*. Dividing # by |Et| provides an estimate of the empirical entropy as alluded to earlier, but

12 The term is in quotes because £ is a sequence, not a simple set. It is tempting to treat L
as a set to simplify notation, but since some of its elements can repeat, it must be treated as a
sequence.



referring to it in terms of likelihood emphasizes that it is as much a functional of the leaf density

models as it is a function of the training sequence.

An estimate of # must be used instead of the actual value because f(Y I t) and f(Y | tR)

have not yet been determined. Values of d and T that jointly result in the least value of # are

selected as d* and rt* respectively. Since this process involves searching over joint values of d and r,

the latter of which assumes values in a set of cardinality typically in the thousands, it is important

from a practical standpoint that # be simple to compute. Of course, it is also important that it

be a good estimate of #.

Of several candidates considered, the choice for # finally settled on was the one obtained by

substituting fH for f in (3.3.1), where fH is a leaf-conditional histogram density estimate for y,

defined in several steps as follows. First, let Ymin be defined as

ymin = min y : y = y(n for some n C {1,..., |1E},

and let ymax be defined analogously. Let Mt' be an integer histogram complexity parameter

associated with leaf t. A suitable value of MtH must be determined for each leaf, as will be

discussed shortly. The interval [ymin, Ymax] is partitioned into bins of uniform width

A Ymax - Ymin

indexed via a binning function qt : [Ymin, Ymax] -+ {1,..., Mt"}, defined as

At 1 [y - ymin] + 1 if Ymin < Y < Ymax;

q(y) =
M if y = ymax-

Letting Nt(m) denote the number of observations (xi, Yt")) in Lt for which qt(y ")) = m, we

estimate the leaf-conditional probability mass function over the bins by

Nt(m) + m
|E4|+ MtH

where ( > 0 is a regularizer. 13 When ( > 0, Pt is not an unbiased estimate of Pt, but when ( and

Mt' are finite, it is asymptotically unbiased as ILt| -+ oo and consistent because it converges to

13 Note that omitting ( yields the ML estimate, which is prone to overfitting. The choice ( = 1
corresponds to a straightforward generalization of Laplace's rule of succession [85] to the multi-
nomial setting, while the choice ( = 1/2 corresponds to what has come to be known as the
Krichevski-Trofimov estimator in the universal coding literature [142]. In a Bayesian setting,
choosing ( can be shown equivalent to selecting parameters for a Dirichlet prior on Pt [43], though
such an interpretation is not essential. More will be said about ( later.



the ML estimator. Finally, the desired leaf-conditional histogram density for Y is defined as

fH(y I = ft Pt(qt(y)) if Ymin Y Ymax;
0 otherwise.

Thus, the final form of # is

0(t, d,T) = - H (y |t) - In H(n t) (3.3.2)[ ~t Zlf~8S lfH(Y~~tR)1
n=1 n=1

where fH is as defined above. The main advantage of using the histogram density estimate instead

of a mixture or kernel estimate for computing # lies in its property that for a given d, it is possible

to arrange the search over T so that recomputing # for each successive candidate r involves merely

shuffling one term from the second summation in (3.3.2) to the first. To arrange this, all that is

essentially required is to sort Lt in ascending order of Xd once for each dimension d before searching

over T, which speeds up but does not affect the outcome of the search. It is interesting to note that

if Mt' were constant, then the function 0(t, d, T) could be used to estimate information-divergence

cost, which is listed by Chou [20, Appendix A] as satisfying conditions necessary for a particular

method of fast search more general than the search for thresholds considered here.

The complexity parameter Mt' must be optimized if # is to be a good estimate of #, and this

is where the regularizer ( comes into play. Were ( taken to be zero, then the likelihood would be

optimized trivially by taking MtH to be as large as possible. On the other hand, it is easy (albeit

tedious) to show that the best Mt' for ( > 0 is always finite. Crossvalidation (in either form

mentioned in Section 2.3) isn't a viable solution, as it ends up requiring that no bins be empty

in the leaf's training sequence that are not also empty in its test sequence, leading to an overly

conservative and grossly suboptimal choice for MH.14 Moreover, the application of simple rules to

determine MJ' directly from IEt| independently of the data, such as Sturges' rule [120]

Mt = 1 + log 2 |Et l,

work when |LtI is sufficiently large, but this is precisely when they are not needed. For large |EtI

the exact value of MtH becomes unimportant, and may safely be set to a maximum resolution level

that reflects the precision of the data.

It has been found experimentally using both synthetic and real image data that setting ( to

be anywhere in the range of 1.0 to 3.0 tends to result in reasonable values of MJ' (as judged by

14 Although it would be possible to combine regularization with holdout crossvalidation, regu-
larization alone has been found to be adequate for the purpose of determining a suitable value of
MtH.



the overall likelihood performance of the resulting PCDT model). The choice ( = 1 (Laplace's

rule) was arbitrarily selected for use in all subsequent experiments. For efficiency, the search over

values of Mt' was accomplished using a multiresolution grid search, which works because # tends

to be approximately unimodal in Mt". To further improve computational efficiency in the initial

stages of growth where the leaf populations tend to be large, the search was bypassed in favor of

the heuristic rule

MH = min{1Et1, Mmax

whenever |Lt| exceeded a fixed population threshold Nmax. Usually, the values q = 0.1, Mmax =

512, and NHax = 2000 were used, but occasionally more liberal values were employed to speed

program execution.

To complete the description of the growing of the Tmax, the criterion used to decide whether

or not a particular leaf should be split is now specified. A leaf t is declared ineligible for splitting

when either of the following conditions is satisfied:

(1) The values assumed by y in Lt lie in an interval of width less than v;

(2) |Lt| < Nmin.

The following values were usually found to be suitable: v = 10-3 and Nmin = 80. Automatic

determination of appropriate values from the data for these and other algorithmic parameters is

left as a topic for future research.

3.4 Determination of Appropriate Tree Complexity (Pruning)

The overall complexity of the PCDT model is distributed among the complexity of the tree itself

and the complexities of the individual mixtures that are fit to the leaves. There is a tradeoff to

be made here. At one extreme, the tree would consist of a single node, and all of the complexity

would be in the mixture assigned to that node. With the restriction (2.7.3) imposed by the PCDT

approach, this would correspond to using a finite mixture to estimate the marginal density of Y,

completely ignoring X. At the other extreme, the tree might be taken to be so large that the

resulting leaf populations would not support mixtures having more than a single component each.

This would correspond to a regression tree in the usual sense (albeit based on an unusual splitting

criterion), with the error explicitly modeled as Gaussian for each cell. For interesting distributions,

the optimum is somewhere in the middle.



The question is how to determine the appropriate tradeoff between tree complexity and leaf-

mixture complexity. The solution appears to be very difficult if we take the point of view that a

given allotment of complexity is to be divided between the tree and the leaf mixtures. Fortunately,

there is another approach. We can appeal directly to the likelihood criterion to get the tree

to determine its own optimal complexity. Once this complexity has been established, the leaf

complexities can then be optimized independently.

To determine the best tree complexity, we prune Tmax back to a subtree using minimum

cost-complexity pruning, as described in [13], taking crossvalidated likelihood as the cost criterion.

Since the leaf mixtures have not yet been determined, we must approximate the likelihood with

an estimate, just as when splitting. By assuming that the leaf mixtures would fit the data in the

best possible way without overfitting, the estimate can try for the same goal, thereby achieving

the desired approximation. We can therefore use the same criterion in pruning as was used in

splitting, but with crossvalidation. Crossvalidation will also be used later in determining the best

complexities for each leaf.

Note that # can be made to correspond to the mutual information functional listed by Chou

et al. [22, Table I] by making a suitable choice of probability measures (namely, the regularized

histogram estimates). Consequently, it satisfies the conditions necessary for the more general

pruning algorithm described there to be used, wherein tree-complexity measures other than the

number of leaf nodes can be employed. Investigation of more general pruning methods for tree-

based conditional density estimation is a topic for possible future work.

To accomplish the crossvalidated likelihood estimation using the histogram estimate, the es-

timate needs to be regularized. Let C be the first 2/3 of the available data, and let T be the

remaining 1/3. Growing Tmax is done on the basis of C; this results in a histogram (of varying

complexity) for each node. We can use these histograms, with regularization, to obtain a cross-

validated likelihood estimate by evaluating the histograms on the leaf populations corresponding

to T. We then apply minimum cost-complexity pruning in the usual way [13, pp. 66-71], using

the negative crossvalidated likelihood for cost. The tree with the best crossvalidated likelihood is

selected.

The process is illustrated best by an example. Consider the six-component mixture of isotropic

Gaussians having the parameters given in Table 3.4.2. The equiprobability spheres are shown in

Figure 3.4.1(a). The true conditional differential entropy h(Y I X1, X 2) in nats is shown by
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Figure 3.4.1: Four six-component Gaussian mixture densities, each differing in the parameters
of the right-rear component, were used to generate 10,000 pseudorandom vectors each. The
parameters for each are given in Tables 3.4.2 and 3.4.3. The resulting sequences were split into
training and test sequences, using a 2/3-1/3 training/test ratio, and a PCDT model was trained
on each. The tree-induced partition in each case is indicated qualitatively in the X1-x2 plane.

Table 3.4.2: Parameters for Mixture Density Shown in Figure 3.4.1(a)

m P(m) pin) 2 (m)
M ~ P() l 2 AY___

1 1/8 64 64 64 100

2 1/8 64 64 128 100

3 1/8 192 64 64 100

4 1/8 192 64 128 100

5 1/4 64 128 64 100

6 1/4 192 128 64 100

Table 3.4.3: Parameter Differences from Table 3.4.2 for Figures 3.4.1(b-d)

Figure Part (6) 2 (6)

(b) 64 30

(c) 74 100

(d) 128 100

the finely dotted horizontal line in Figure 3.4.4(a). The average resubstitution (splitting) cost is

indicated by the lower curve in the same graph, while the crossvalidated (pruning) cost is indicated

by the upper curve. If a decision were to be made based on the lower curve, the maximum
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Figure 3.4.4: Empirical resubstitution (splitting) and crossvalidated (pruning) costs, measured
as minus average log regularized leaf-histogram likelihood, versus tree complexity for training
sequences sampled from each of the densities shown in Figure 3.4.1. The uneven spacing of points
along the complexity axis reflects the fact that entire branches can be pruned off at once, and
these vary in size.

complexity would be selected. The crossvalidated curve, however, achieves its minimum when

the tree has two leaves; the corresponding cells are indicated by the foreground and background

half-planes of the X1-X2 plane in Figure 3.4.1(a). As can be seen in both the resubstitution and

crossvalidation curves, there is great advantage to making this split. All other splits suggested by

the training data, however, were found not to hold up to crossvalidation's scrutiny.

To see how the tree adapts to changes made in this distribution, we consider adjusting the

parameters of the right-rear (6th) component Gaussian. First, we reduce its variance from 100 to

30, as indicated in row (b) of Table 3.4.3. This results in the same example that was considered

when introducing mixture-based conditional density estimation in Section 2.7, and three leaves are

obtained as expected, shown in Figure 3.4.1(b). The incremental numerical advantage of the second

split can be seen in the crossvalidation curve of Figure 3.4.4(b). Note that a traditional regression



tree would not have introduced this second split, because although the conditional distribution of

Y is different in the left and right parts of the rear half-plane, the conditional mean is constant

throughout that half-plane. This shows clearly by example that a simpler splitting cost function

such as sample variance (mean-square regression error) could not have been used.

We next consider changing py instead of a2 (6). Specifically, we keep the variance at 100 but

shift the component up by 10, as shown in Figure 3.4.1(c). This also creates an advantage to the

second split, and a qualitatively identical partition results. The numerical advantage to this second

split is actually slightly greater than for when the mean was the same but the variance differed, as is

evident by comparing the graphs in Figures 3.4.4(b) and (c). Finally, as the component continues to

migrate upward, there comes a point at which the structure of the tree catastrophically changes as

shown in Figure 3.4.1(d). This example illustrates that the greedy approach to splitting sometimes

misses good splits by not looking ahead. In this case, Y and X2 are actually independent when a

value for X1 has not been specified, so that a top-level split on X2 would result in no improvement

in conditional likelihood. Therefore, the top-level split is on X1 , resulting in a left-right division.

The next level of splits then divides each of these into a front and back part, resulting in a total

of four leaves. It can be seen that the two front-most cells could be combined without hurting

performance, but pruning the greedily split tree cannot do this. It would have been better had the

first split been on X2, as that would have resulted in an equally well performing tree using only

three leaves (front, left-back, and right-back), but the greedy technique is not able to find such

a tree. However, the likelihood cost of the final PCDT tree is comparable to that of the optimal

tree, and the complexity is only slightly greater than what it should ideally be (four leaves instead

of three). In real applications, the ideal tree complexity is unknown, so it is not as clear what

the tree-complexity cost of greedy splitting is in actual practice. The size of the trees encountered

in the real applications to be described in the subsequent chapters ranged from approximately 20

leaves to 400 leaves, with the depths after pruning ranging between approximately 4 and 10.

A final useful observation can be made from this example. As expected, the resubstitution

estimates are consistently much better than the true differential conditional entropy, even for

complexities near the optimum small values. The curves do not shoot off to negative infinity

however, as they would if the regularization parameter 6 were set to zero. Equally interesting

is the size of the gap between the lowest point on the crossvalidation curve and the differential

entropy line. Had computational considerations not required the use of an easily (re)computable

estimate of likelihood, then these could be made to shrink. For example, the PCDT performance



data to be shown in Table 3.8.1 indicates that the gap in Figure 3.4.4(b) is made close to zero

when a mixture is used instead of the histogram.

3.5 Fitting the Leaves

The differences discussed so far between the PCDT methodology and that of traditional CART

can be traced almost entirely to the specialized requirements that PCDT places on the splitting

and pruning criteria. Structurally and philosophically, the CART paradigm has thus far carried

over largely intact, though it has been motivated from a different angle.

Fitting densities to the leaves of the pruned tree is where PCDT becomes substantially more

complicated, and issues arise that have no parallel in the established CART methodology. In

both classification and regression, the hard part for CART is finding the tree; once that is done,

choosing the representative value (either the class label or the estimate of the dependent variable)

is comparatively straightforward. In the conditional density estimation setting however, matters

are different. All of the usual considerations that make density estimation a difficult problem apply

to fitting the leaves, plus there is now the additional apparent complication that the complexities

of the models must be appropriately balanced among the leaves.

As discussed previously, the leaf densities {f(y I t(x))} in (2.7.3) are chosen to be finite

mixtures of Gaussians in the PCDT approach, because of the expressive power and generality of

such models. We have already visited the problem of fitting mixtures in Sections 2.5 and 2.6, and

have noted that the task is generally nontrivial. We are now faced with the problem of fitting

dozens and sometimes hundreds of mixtures in a single PCDT model. The one saving grace is

that the densities are now one-dimensional, so that training is much easier than in the scenarios

previously considered.

The approach finally settled on is now described; a flow chart is given in Figure 3.5.1. In

this description, "cost" refers to average negative log likelihood. For each leaf t, mixtures ranging

in complexity Mt = 1,. . . , Mmax, where usually Mmax = 25, are each trained on a training set

via the Lloyd algorithm, 15 with the number of iterations limited to iL, typically 10. If one or

more empty cells appear on an iteration, then that iteration is not counted towards the limit iL,

and an attempt to replace the cell(s) is made by splitting the cell(s) with the largest contribution

to distortion. If ir such attempts fail, then the Lloyd algorithm is aborted, and the complexity

15 Not "generalized" here because it is applied to one-dimensional data, which was considered by
Lloyd [70].



Figure 3.5.1: Flow chart of leaf-mixture complexity determination and fitting. See Section 3.5
for a detailed description and for the parameters values used in most of the experiments reported
in this thesis.

search is also terminated. Usually, ir is taken to be 10. If there are no empty cells or if the

replacement succeeds, then the resulting mixture is handed off to the EM algorithm, which is

allowed to run for iem,1 iterations, where iemi is usually set at 5. Next, the crossvalidated cost



using the resulting model is calculated, using LCt-fold crossvalidation when |Lt| < Ncv (normally

60), and (for computational efficiency) holdout crossvalidation otherwise. This value is recorded,

and the next complexity tried, until the crossvalidated costs for all of the candidate complexities

have been obtained. The minimum of these costs is then determined, and an acceptance threshold

set at //VN above this minimum, where # is usually set at 0.3, and N = |Tt| when holdout

crossvalidation is used and N = |LtI when |KtI-fold crossvalidation is used. The smallest-complexity

mixture whose crossvalidated cost is less than this acceptance threshold is then tentatively selected

as Mt. The corresponding mixture is then refined by running the EM algorithm until one of the

following conditions is satisfied: (1) the number of iterations exceeds iem,2 (usually 20); (2) the

algorithm is judged to have converged because the per-observation log likelihood has increased by

less than 10~5 nats; or (3) the mixture develops a singularity by shrinking one of the variances

below a threshold ogjm (usually set at 10-). Termination because of condition (2) has been never

been observed. If termination occurs because of condition (3), then successively lower complexities

are tried until the EM algorithm no longer results in a singularity. The resulting mixture is taken

as f(y I t). This completes the description of the leaf-density fitting procedure that was used in

all of the experiments to be discussed henceforth.

Ideally (from the traditional statistical point of view), the acceptance threshold should be set

according to the standard error of the empirical cost, but this would require assuming a particular

distribution for y. Even if such a distribution could reasonably be assumed, deriving the standard

error would be intractable, because it would require averaging over independent trainings of mixture

models (treating the mixtures as random objects) as well as over test samples. However, because

the observations are assumed to be independent, the square of the standard error can be assumed

to be inversely proportional to the number of terms used in computing the crossvalidated cost;

hence the formula for the acceptance threshold given in the previous paragraph. An alternative

would be to estimate the standard error empirically, over many trainings. This was not attempted,

because there seems to be little potential advantage in doing so, and the technique described above

seems to work adequately.

The above procedure can be illustrated with a simple example. We consider fitting a mixture

in the above manner to the leaf corresponding to the foreground cell in Figures 3.4.1(a)-(c).

Conditioned on being in this cell, the true density of y is a mixture of two equally weighted and

equal-variance Gaussians, one centered at 64 and the other at 128. Thus, the best complexity for

the mixture assigned to this node t, given an infinitely long training sequence, would be Mt = 2.
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Figure 3.5.2: Example of how leaf mixture complexities are determined in PCDT. Samples of size
20 (a), 40 (b), and 80 (c) are drawn from the Gaussian mixture density corresponding to the first
four components listed in Table 3.4.2, with the mixing probabilities appropriately renormalized.
The empirical costs (resubstitution and crossvalidated) costs are shown, along with the theoretical
optimum cost (the differential entropy), and the complexity acceptance band. The algorithm
shifts from |Ct |-fold crossvalidation to 2/3-1/3 holdout crossvalidation for computational efficiency
reasons whenever |[C I exceeds a threshold; in this case, the transition has occurred between (b)
and (c), causing the acceptance band to widen to reflect a test sample size of 80/3 - 27.

The graphs in Figure 3.5.2 show how the above procedure selects an appropriate level of complexity

for a leaf mixture while simultaneously training the mixture. In the leftmost graph, |Lt| = 20.

Therefore, |Et -fold crossvalidation is performed to make maximal use of this small sample in

estimating cost. The minimum cost occurs when Mt = 2, and this is also the smallest complexity

for which the corresponding cost lies below the acceptance threshold (in fact, it is the only one).

In the middle graph, |Lt| has been increased to 40. Again, the complexity that minimizes cost is

also the only complexity whose cost is below the acceptance threshold. Had the cost corresponding

to Mt = 3 squeaked in under the threshold, Mt = 2 would still have been correctly chosen, since it

is the smaller of the two. The rightmost graph is a bit more interesting. Here, the leaf population

has been increased to |Lt| = 80. Since this is above the cutoff for |LtI-fold crossvalidation of 60,

2/3-1/3 holdout crossvalidation is employed. As a result, the acceptance band has widened back

almost to its width in the leftmost graph, reflecting the test sample size of I'TIl = 27. This widening

allows the value of Mt = 2 to once again be correctly selected. Note that the range of complexities

which have nearly the minimum cost has broadened and hence more candidate complexities lie

below the acceptance threshold. This broadening is to be expected; it simply reflects the fact

that a more complex model does no worse than a less complex one unless it is overfit, and the

availability of more data in (c) lessens the chance of overfitting. The actual minimizing value of

Mt = 7 is rejected in favor of the correct choice Mt = 2, whose performance just makes it in under

the threshold.



of Possible Leaf Complexity Allocations

In some situations, it may be desirable to find the best PCDT estimate when the equivalent

mixture complexity EZgj Mt has been constrained in advance. In the procedure described above,

each leaf node determines its own best mixture complexity Mt independently, according to the

degree of complexity demanded by Ct and justified by crossvalidation. While it is not difficult

to imagine modifications to the above procedure to accommodate such a prior constraint, it is

interesting to consider the feasibility of a more substantial change that involves combining the

pruning and leaf-complexity allocation procedures to meet the constraint directly. Assume that

the tree has not yet been pruned, and that the total leaf complexity is constrained a priori to satisfy

Zcj; Mt = M for some fixed M > 0. This constraint restricts the allocation to subtrees of Tmax

having at most M leaves, implicitly pruning away a potentially large portion of Tmax. The total

number of possible allocations among all remaining feasible subtrees is given by the recursively

defined function

( 1 if M = 0 or M = 1;
0 (M) = 1 +Eg #(i)#(M - i) otherwise,

which can be obtained by noting that there is one way to allocate the complexity when IT = 1

(namely, put MA = M), and when |TI > 1, there are $(i)@(M - i) ways to allocate M among TAL

and TAR for each of the M - 1 possible allocations i to TAL. Table 3.5.3 lists O(M) in the range

1 < M < 10. For values of M less than six or seven, O(M) is small enough so that brute-force search

of the best pruning/allocation combination is feasible (using holdout crossvalidation, for instance).

For larger values of M, O(M) can be seen to grow faster than exponentially (note that the entries

in the third column of Table 3.5.3 exceed unity for M > 3), making the brute-force strategy quickly

impractical. In particular, this approach would not be appropriate for attempting to optimize M

itself, because in practice the optimizing value can turn out to be quite large (typically between

200 and 1,200 in the applications to be discussed in subsequent chapters). However, it may be

M V)(M) In _ (M)

1 1 0

2 2 0.693147

3 5 0.916291

4 15 1.09861

5 51 1.22378

6 188 1.30462

7 731 1.35797

8 2950 1.39515

9 12235 1.4225

10 51822 1.44351

Table 3.5.3: Number



possible to find some more clever way to combine the pruning and leaf-complexity determination

stages that is not susceptible to such explosive growth in computation; investigation of this is left

as a topic for future work.

3.6 Variations on PCDT: Softening the Splits and Hybrid Modeling

Two simple but generally very useful modifications to the hard PCDT technique described are now

presented. The first involves essentially softening the PCDT partition by mixing the leaf densities

together according to the posterior probabilities of leaf membership, as suggested by (2.7.3). This

is accomplished simply by taking f(x I t) to be a separable Gaussian, taking the cell-conditional

sample means and variances as the parameters, and by using the normalized leaf populations for

the mixing parameters. Thus, the softened version of PCDT corresponds directly to a joint density

that is a mixture of separable Gaussians that has been trained in a manner specifically tailored

to the conditional density estimation problem. Henceforth, the abbreviation PCDT will be used

to refer to this softened version, as will PCDT-S. The hard version will always be identified as

PCDT-H.

The second modification is to compute first a linear least-squares regression estimate of Y

based on x, then to use PCDT to conditionally model the residual, where the conditioning is on

the original x. This procedure provides a decomposition of the modeling into a linear and nonlinear

part. Since the linear part has only Dx + 1 = Dz degrees of freedom, this added complexity is

a small price to pay for the insurance it provides against possibly having to spend much more

complexity in the PCDT model to capture any global linear dependence (for which PCDT is

not well suited). However, there are situations (mostly artificial) in which the removal of the

global linear dependence actually requires the complexity of the PCDT model to increase; in fact

every distribution in Figure 3.4.1 except (d) is an example where this happens. Fortunately, the

complexity is only slightly increased in such cases and drastically reduced in most real applications,

so the insurance premium is probably worth paying in practice. Note that this approach doesn't

actually require that the regression be linear or that the conditional model be PCDT. However,

these were found to work exceptionally well together. The resulting hybrid technique is termed

LIN/PCDT.



3.7 Implementation Considerations

Overall, the implementation complexities of PCDT and those of standard EM are comparable.

We have found that most of the training time in PCDT is taken up by crossvalidation in fitting

the leaf mixtures. PCDT-H and PCDT-S take roughly the same time to train; in fact, the only

additional operation required for training the PCDT-S model is computing the leaf-specific means

and variances for X, which is a negligible incremental burden. Using the parameter values listed

in this chapter, the overall training time for PCDT was roughly equal to that of EM for the same

dimensionality, model complexity, and length of training sequence.

Note that the PCDT-S model can conveniently be represented and implemented as a mixture

of separable Gaussians. Both the computational complexity and storage complexities are thus

comparable for PCDT-S and traditional separable mixtures. PCDT-H however can be applied

considerably faster, because no influences from adjacent leaves are required in computing the

conditional density, so that the conditioning vector can simply be sent down the tree to its leaf

and the corresponding simple one-dimensional leaf mixture evaluated. On the other hand, PCDT-

H has generally not performed quite as well as PCDT-S, though the difference has always been

observed to be small. Note that the storage cost of PCDT-S is actually less than that of an

arbitrary mixture of separable Gaussians having the same number of components, because in

PCDT-S multiple components in a leaf are constrained to be coincident in X and they share the

same diagonal covariance matrix in the X-plane.

The training, storage, and application complexities of the LIN/PCDT hybrid model are typi-

cally not much more than those of non-hybrid PCDT. The number of linear regression coefficients

is equal to the dimensionality of the joint space (counting the offset term), which is small relative

to the number of parameters in the tree and leaf mixtures. Also, least squares regression fitting can

be carried out quickly using standard linear algebra packages, so that there is little implementation

reason not to use the hybrid scheme in general.

3.8 More Examples

We conclude our discussion of tree-structured conditional density estimation with two more ex-

amples. The first was introduced in Section 2.7; it involves samples drawn from the distribution

specified by row (b) of Table 3.4.3. The empirical relative-entropy performance of PCDT-S is

compared for this example with that of EM in Table 3.8.1 when the complexity of the equivalent



mixture is limited to M = 4, for both the joint and conditional cases. The length of the training

sequence was 10,000. As expected, EM does much better for joint density estimation, and PCDT

does much better for conditional. Although this example is admittedly contrived, it is interesting

to note that in this case PCDT was able to model the conditional density essentially perfectly

using four components. Had six components been allowed instead of four, then both would have

worked perfectly in the conditional case, although PCDT would have elected to use only four of

the allowed six. It is not known whether PCDT always performs at least as well standard EM

for conditional-density mixture estimation in terms of conditional likelihood, but in all of the ex-

periments done in this thesis, involving both real and synthetic data, PCDT was always found to

perform better than EM in terms of conditional likelihood when the complexities of the mixtures

were comparable. However, in the texture synthesis application to be discussed in Chapter 4, EM

was generally found to result in more pleasing textures than PCDT; see the discussion at the end

of Section 4.4.

Table 3.8.1: Example Performance of PCDT vs EM

Training Method (In In *

EM 0.267 nats 0.265
PCDT-S 0.605 0.001
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Figure 3.8.2: An example Gaussian density in three dimensions, represented by its one-a- ellip-
soid, clipped off at xi = ±200 to show the orientation more clearly. Note that xi is irrelevant to
the prediction of y, and that the dependence of y on X2 is linear but noisy. The covariance matrix
is given in the text.



(a) (b)
0.6 . 40 PD - 3 .P.DT-

0.5 -- 5 3 - LRPCDT-

LR/PCDT-S--'-

25-

CIC

0.0

CS T
EM.2 -CTH - 20 - -

PCT1 5 -M- -

.0

0.4

1 0 -

0.2

-0.10

00-- - -- --- -- -- 0

100 1000 10000 100000 le+06 100 1000 10000 100000 1e+06

Length of Training Sequence: Nr

Figure 3.8.3: Empirical conditional relative entropy costs for three versions of PCDT and two
EM-trained mixtures of separable Gaussians, as a function of the amount of training data.

The second example involves samples drawn from the inclined three-dimensional Gaussian

distribution shown in Figure 3.8.2, whose covariance matrix is K = ADAT, where

400 0 0 ~ 1 0 0 -
D 0 100 0 and A= 0 Vf/2 - V/2 .

0 0 10 [ 0 v2/2 v-/2 .

The performance and complexity of each of several conditional density estimation techniques is

shown in Figure 3.8.3. Mixtures of separable Gaussians tend to require many components (high

complexity) and also large amounts of training data to perform well on distributions such as

the one in this example, because a large number of separable mixture components are needed

to characterize the correlation of X2 and y (corresponding to the inclination of the ellipsoid in

Figure 3.8.2), and because some of the components are wasted on the irrelevant conditioning

variable X 1. This is an example where of course allowing nonseparable Gaussians would result

in a substantial improvement in likelihood while actually reducing complexity, but the general

use of nonseparable Gaussians in other situations may risk a loss in training robustness, for the

reasons mentioned in Section 2.6. Note that LIN/PCDT-S does nearly perfectly, with very low

complexity, for all but the smallest training samples. Both PCDT-H and PCDT-S can be seen to

outperform both EM-trained mixtures, at comparable or lower complexity and with less training

data. Further, note that PCDT-S performs better than PCDT-H; that is, interpolating smoothly

between leaf model densities results in a performance advantage. Finally, note that the complexity

of PCDT adapts in an interesting way to the size of the training sample. The complexity is small

for small learning samples, in seeming observance of Rissanen's dictum: "make as much use as

possible of the information in the data, and as little use as possible of information not in the



data" (personal communication). As the amount of data increases, the model complexity at first

increases, as expected, but then decreases. It is not clear whether the decrease constitutes a trend

or an anomaly in this example; more investigation would be required. However, it does seem clear

that in general, the complexity growth of PCDT is source-dependent, and that the large-sample

asymptotic complexity of a PCDT model will be finite for sources that really are finite mixtures

of separable Gaussians. No attempt will be made to prove the latter conjecture however.

3.9 Discussion of New Work Relative to Prior Work

Semiparametric and nonparametric statistical testing traces its roots to work done by Wilcoxon,

Mann, and Whitney in the 1940's, as recounted in [103]; however, application of the ideas to multi-

variate density estimation became conceivable only with the advent of powerful digital computers

in the 1960's. The most popular existing techniques have already been discussed in the early

sections of this chapter.

The most obvious relevant prior work is the use of CART trees to estimate the posterior

class-membership probabilities, which is discussed in the original work by Breiman et al. [13, pp.

121-126]. There, the objective adopted was mean-squared error between the true and estimated

PMFs, i.e., a discrete version of the MISE criterion. Restricting the estimated probabilities to be

normalized counts, the appropriate splitting criterion for that choice of objective was shown to be

the Gini index of diversity, which is similar in form to the Hellinger- and Bhattacharyya distances.

In that approach, there is no need to determine the complexity of the leaf probability models; it

is always fixed and equals the number of classes. Because of this, and because the discrete MISE

criterion doesn't treat incorrect probability estimates of zero specially, there is no need for either

regularization or crossvalidation in estimating the leaf models. This is one important difference

between class-probability trees and PCDT. But more substantially, PCDT pays attention to and

exploits the meaning of the dependent variable. In building and using a class-probability tree, the

meaning of the class label, if any, is ignored. This makes that technique in a sense more general than

PCDT, since it doesn't rely on metric space or smoothness assumptions for the dependent variable.

On the other hand, this generality comes at the expense of performance in those applications in

which failure to exploit such assumptions severely limits the model's ability to generalize; one such

application is conditional density estimation for continuous-valued observations. Recently, class

probability trees have been adapted for use in a system that simultaneously performs compression



and classification by Perlmutter et al. [90], where the criterion adopted was a weighted sum of

Bayes risk and MSE on the observations.

The Context algorithm for universal lossless coding proposed by Rissanen in [107] is similar to

the CART class-probability tree, but is adaptive (i.e., "on-line"). However, as with class-probability

trees, it is also inherently discrete. Adapting it to continuous sources in a way that exploits prior

knowledge of smoothness (as is done naturally by mixtures in PCDT) has apparently not yet been

done. 16

Nong Shang, a former student of Breiman, has proposed applying the CART paradigm to the

general problem of multivariate density estimation [123]. In that approach, constant probability

is assigned to the cells of a CART tree; that is, the density itself plays the role of the dependent

variable. Each leaf model is therefore represented by a constant, and these constants are ultimately

determined by the relative populations of the cells. Therefore, the approach can be viewed as a

multivariate histogram in which the cells are tailored to the training data via CART splitting

and pruning. The criterion employed for this was a local "roughness" measure, which in turn

was derived from the MISE objective. From this point of view, the technique seems to solve

a difficult problem (adaptive design of histogram bins in higher dimensions) in an original and

potentially locally-optimal way (at least with respect to MISE). However, there are a number

of questions regarding this technique which must be answered before its relevance to conditional

density estimation can be properly gauged. The obvious one regards the choice of MISE as the

objective, the appropriateness of which has been commented on previously. Another question

is technical in nature but potentially important, and relates to the justification of the derived

roughness criterion after MISE has already been adopted. Specifically, the derivation of the

roughness criterion involves several steps which seem to make strong and restrictive but unstated

assumptions about the true underlying probability law. This issue aside, the main point to be made

here is that the technique proposed by Shang [123] focuses on the joint rather than conditional

density estimation problem, and seems to do so by what amounts to an adaptive-bin histogram.

In 1968 Henrichon and Fu [54] proposed a recursive partitioning technique for mode sepa-

ration which is similar in several respects to both CART and projection pursuit (see the final

paragraph in this section), and therefore deserves mention. Their technique is summarized by

16 An attempt is made in [141], but the approach makes use of the application-specific assumption
that image pixel differences are Laplacian-distributed. While tenable for an i.i.d. model of pixel
differences, this assumption is arguably too restrictive in a system that is allowed to adapt. In any
case, this approach adapts the problem to the Context algorithm, not the other way around.



Devijver and Kittler [32, chapter 11]. Briefly, it involves sequencing through the eigenvectors of

the covariance matrix for the data, proceeding from largest to smallest, partitioning space with

eigenvector-perpendicular splits between modes whenever they are detected. To detect the modes,

the data points are projected onto the current eigenvector being considered, then a histogram den-

sity estimate is formed and its bins are searched for valleys. Once a partition has been obtained in

this way, the entire procedure is repeated for each cell in the partition. The process is continued

until all cells are unimodal.

Determining model complexity is an extremely important issue in practice. PCDT determines

its complexity automatically, but the result is specific to that method of training, and the cross-

validation procedures it uses are computationally intensive. An important problem is determining

the appropriate complexity of mixture models more efficiently and in a more general setting. Sardo

and Kittler have recently investigated efficient methods for determining the appropriate complex-

ities of separable-Gaussian mixture density estimates, particularly for small samples. In a recent

paper [118], they invoke Dawid's notion [30] of calibration of the predictive performance of a model

specifically to detect underfitting. In addition to avoiding the computational burden of crossvali-

dation, their approach does not seem to suffer from the propensity towards oversimplistic models

that is sometimes associated with MDL and related information criteria. In another recent pa-

per [117], the same authors focus on the situation in which the data are correlated, and develop a

maximum penalized likelihood criterion with a free parameter termed a relaxation factor. Based

on experimental data, they postulate that the appropriate choice of the relaxation factor (hence,

model complexity) depends more on the intrinsic dimensionality of the data than on the degree of

correlation. These findings may have important implications on PCDT and other techniques when

it is desired to bypass the computationally intensive crossvalidation procedure used in fitting the

leaf mixtures while still having the model complexity automatically determined according to the

data.

As mentioned in Section 2.7, there has been some prior work in direct optimization of mixtures

for conditional density estimation using gradient-based techniques. The technique described in [9]

implements the mixture as a three-layer neural network, and involves a carefully chosen parameter-

ization of the weights. The resulting gradient expressions appear to be computationally complex,

perhaps limiting the applicability of that technique to mixtures having relatively few components

and to low-order conditional densities. The technique has the advantage though of attempting to

optimize the desired criterion directly without recourse to PCDT's artifice of explicitly partition-



ing conditioning space. Its application to large mixtures should therefore be investigated, and the

results compared with those obtained with PCDT.

Recently, Tony Jebara has proposed a fixed-point maximization technique [63, 64] which seems

to show promise for conditional density estimation, again primarily in the case of low-complexity

mixtures. The development mirrors that of ordinary EM [31], but the conditional density is sub-

stituted for the joint density when lower-bounding the per-iteration likelihood improvement via

Jensen's inequality. The resulting lower bound requires what essentially amounts to a mini-EM

loop for its maximization with respect to the mixture parameters, making the computational com-

plexity of the technique greater than that of ordinary EM (hence the hypothesized restriction of its

suitability to small mixtures). The method has been applied in the context of computer vision to

learn a mapping between facial feature locations and image data, yielding results superior to those

obtained using EM-estimated joint densities [63]. However, convergence even to a local optimum

is not reliable; typically several initializations must be tried before convergence is obtained. It

is not known whether convergence can always be obtained by repeatedly retrying with a differ-

ent initialization. One possible explanation for the unreliable convergence is that an inequality

conjectured to hold in demonstrating convergence might occasionally fail, removing the guarantee

of convergence in some cases. This issue requires further investigation. Nevertheless, when the

technique does converge, it usually results in a better conditional density estimate than would be

obtained by straight EM. An appropriate use of Jebara's method might be to refine an initial guess

obtained by the seemingly more robust PCDT method, in the same way that EM can be used to

refine a joint density obtained via the GLA.

Stephen Luttrell has proposed two different semiparametric methods for multivariate den-

sity estimation that should be mentioned, though they relate more to the general topic of high-

dimensional density estimation than to PCDT specifically. The first, dubbed partitioned mixture

distributions, pertains potentially to any situation wherein a large array of separate mixture models

are required to be represented simultaneously. Specifically, in [75], a scheme is presented whereby

the individual mixtures are made to share structure (interpreting the mixtures as three-layer neu-

ral networks), thereby saving representation cost and presumably improving training reliability (at

some expense of modeling flexibility). The second technique, called the adaptive cluster expansion,

involves combining several conditional density estimates for a given dependent variable that are

based on different conditioning variables. A maximum-entropy approach is used, and it is sug-

gested that the technique be carried out hierarchically. This would be another means for obtaining



a high-order conditional density estimate that would be interesting to compare performance-wise

to PCDT. A philosophically similar technique, without the hierarchical component, was proposed

independently in [98]. Recently the same idea has been developed and analyzed extensively in the

discrete case by Christensen et al. [24]; its extension to the continuous case, where its performance

with PCDT could be compared, is a topic for possible future research.

An important nonparametric technique in multivariate density estimation that has not yet

been mentioned is projection pursuit [57, 39]. In that technique, a multivariate (i.e., joint) density

is expressed as a background density (which must be assumed) multiplied by the product of M

univariate functions of linear combinations of the coordinates. The estimation technique is an

iterative procedure to determine suitable univariate functions and linear combinations of the coor-

dinates to maximize likelihood. The linear combinations of the coordinates are usually constrained

to be projections; hence the name "projection pursuit." Just as the multivariate mixture model

was adapted to conditional density estimation by a particular training method (PCDT), projec-

tion pursuit might likewise be adapted so that it can be used as an alternative model in conjoint

processing. This idea was not investigated in this thesis, but would be a worthwhile area of future

research.

3.10 Chapter Summary

In response to the observation made at the end of Chapter 2 that good joint density estimates

cannot always be used to get good conditional ones, a technique specifically tailored to the gen-

eral problem of conditional density estimation was developed. The two main advantages of the

technique are its suitability specifically for high-order conditional density estimation, which is re-

quired in conjoint processing, and its ability to automatically determine its appropriate level of

complexity.

The technique combines aspects of decision trees, histograms, and mixtures. Specifically, it

attempts to make best use of the conditioning information by first finding a suitable tree-induced

partition of the conditioning space, and then fitting one-dimensional mixture densities to each leaf.

In order to do this, the greedy tree-growing and minimum cost-complexity pruning of the CART

methodology were adapted to the task by developing an appropriate splitting and pruning criterion

that employs a histogram-based approximation to the model likelihood. An additional problem

that had to be solved, not addressed by the traditional CART paradigm, was that of fitting the

leaf-conditional mixture densities. The solution presented here integrates the task of training the



leaf mixtures with that of automatically determining the best level of complexity based on the

data.

Two modifications, which may be used in tandem, were described, one in which the partition

is softened, and the other in which the technique is used in conjunction with linear regression.

The functioning and performance of PCDT was illustrated through several examples involving

simulated data, and it was found to outperform mixture models trained via EM in those examples.



CHAPTER 4:

Conjoint Image and Texture Processing

In this chapter, the versatility afforded by having high-order conditional density estimates is demon-

strated by applying some of the models developed in Chapters 2 and Chapters 3 to image com-

pression, image restoration, and texture synthesis. The methods to be considered operate directly

on the pixels, without preprocessing. In Chapter 5, preprocessing will be considered. Some of

the ideas to be explored here are independent of the precise choice of conditional density model,

provided that it is able to capture high-order, nonlinear statistical interaction. Except in the case

of texture synthesis, results for both EM-trained mixtures and PCDT models will be presented.

A comment is in order regarding the performance figures to be presented. Images tend to

consist of separate regions differing in their characteristics. Therefore, in order to perform well, an

image processing system has to employ an adaptive model. A fixed conditional density estimate,

high-order or not, is adaptive only inasmuch as the supplied conditioning information allows it

to be. If appropriate adaptation information is not available in x, then it will not be exploited.

Therefore, the performance figures reported in this chapter may not reflect the full potential of

conjoint processing when used with more fully adaptive models.

4.1 Lossless Compression of Greyscale Images

There are many situations in which lossless (i.e., noiseless; reversible) compression is necessary

or desirable. For natural-scene images digitized to usual spatial and amplitude resolutions, the

lossless compression ratios typically achieved are quite modest: a two-to-one ratio generally would

be regarded as quite good. Better ratios might reasonably be expected when the source has been

digitized at a high spatial resolution, or when the images are especially "clean" as in computer-

generated graphics. Our main motivation for considering lossless compression is that it serves as

a particularly pure test of probabilistic modeling, as was discussed in Section 2.3.

When a model is explicitly available, arithmetic coding [112] provides a means of using that

model directly to perform lossless compression. The performance achieved is nearly perfect with

respect to the model; if the model happens to match the source, then the actual bit rate will be

very close to the entropy rate. Thus, the availability of arithmetic coding transforms the lossless

compression problem into a probabilistic modeling problem.
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Figure 4.1.1: An arithmetic coder is a lossless compressor that allows the probability model
to be explicitly separated from the encoder and the PMF to be specified independently for each
pixel encoded. The PMF can be conditioned on anything that the decoder will have access to
prior to the time of decoding.

One of the first published applications of arithmetic coding was a scheme for lossless compres-

sion of binary images [69], which is depicted in Figure 4.1.1. Pixels (which can be either black

or white) are scanned in raster order and fed to an arithmetic coder, along with a corresponding

estimate of the conditional PMF. The arithmetic coder then produces a compact sequence of bits

from which the original image may be recovered exactly. The critical step is estimating the condi-

tional PMF. For each pixel to be encoded, a neighborhood like one of those shown in Figure 4.1.2

is centered on the pixel. The pixel to be encoded corresponds to y, while those that are to serve as

conditioning values correspond to the coordinates of x. For some pixels to be encoded near the top

and left boundaries of the image, one or more of the specified conditioning pixels would lie outside

the image. In such cases, those pixels are assumed arbitrarily to be white. The neighborhoods

are required to be such that the conditioning pixels precede y in raster order. This ensures that

x is available to the decoder prior to its recovery of y, so that both the encoder and decoder can

use the same sequence of PMFs, which is a necessary condition for correct decoding. Because

the pixels are binary valued in the images considered by Langdon and Rissanen, the size of the

alphabet of x for any of the neighborhoods shown in Figure 4.1.2 is small enough that it is feasible

to estimate the conditional PMF for each x by counting x-specific occurrences of the values of y.

Several variations of such a count-based estimation procedure are described in [69].

Count-based PMF estimation is not appropriate for greyscale images, because the number of

conditioning states becomes prohibitively large for even moderate-size neighborhoods. Also, that

method of estimation when applied to scalar observations does not exploit the relationship between

nearby amplitude levels. As an alternative, any of the techniques for high-order conditional density

estimation presented in Chapter 2 and 3 provides a means of directly extending the Langdon-

Rissanen framework to work on greyscale images. Specifically, the observed pixels may be regarded
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Figure 4.1.2: Pixel-extraction neighborhoods that can be used when processing an image se-
quentially in raster order. The x 's serve as the coordinates of a conditioning vector x, while the
center pixel y is taken to be the dependent variable.

Figure 4.1.3: The 256 x 256, 8 bpp monochrome cman test image (left) and the 512 x 512 8
bpp monochrome Lenna test image (right).

as uniformly quantized versions of hypothetical continuous-valued pixels, each quantized value

corresponding to the center of its quantization region. Assume that the pixel values are represented

by integers as usual, so that the quantizer stepsize is unity. Then the estimated conditional density

can be used to obtain an estimate of the conditional probability mass as follows:

y+1/ 2 ,
P( ) = Iy-1/2 fy|x(y' I x)dy'.

Once the PMF has been estimated, it can be supplied to an arithmetic coder that has been designed

for a pixel alphabet of the appropriate size. As mentioned, it is a property of arithmetic coding

that the resulting compression will be good if the model is accurate in terms of relative entropy.

This approach was used to losslessly compress the standard 256 x 256, 8-bit cman image using

each of the neighborhoods shown in Figure 4.1.2. Training was carried out on 131,072 (x, y) pairs

extracted at pseudorandom locations from a quilt of 26 natural images that did not include the

cman test image. Simulated compression results in average number of bits per pixel (bpp) are

shown in Table 4.1.4 for each of three methods of conditional density estimation described in

Section 2.6 and Chapter 3. Conditioning values corresponding to locations outside the image were



taken arbitrarily to be 128. For comparison, we note that the entropy of a discrete i.i.d. source

corresponding to the histogram of cman is about 6.9 bpp. The marginal rates achieved here are

greater than this, which is expected because the training was carried out on a set of images having

a different combined histogram. 17 The estimated bit rate for lossless compression of the 512 x 512

monochrome (Y component) version of Lenna using this scheme was 4.26 bpp, which is only about

0.05 bpp worse than that recently reported by Weinberger et al. [141] for a modified version of

Rissanen's Context algorithm [107].

Table 4.1.4: Lossless Compression Rates (bpp) for the cman Image

Neighborhood EM-128 PCDT-S LIN/PCDT

(a) 7.96 7.94 7.94

(b) 5.54 5.50 5.51

(c) 5.24 5.22 5.21

(d) 5.17 5.09 5.11

4.2 Conjoint Scalar Quantization

We next consider how the modeling techniques described in Chapter 3 might be applied to lossy

compression. The most general and powerful lossy compression method, at least in principle,

is to quantize the pixels jointly rather than separately; i.e., to use vector quantization (VQ) on

the whole image. A more feasible alternative would be to divide the image into non-overlapping

equal-size blocks and apply VQ to each one. Unlike the scheme to be presented, VQ can always

approach the rate-distortion bound in the limit of large vector dimension [6], which is the optimum

achievable curve (distortion-measure dependent) in the rate vs. distortion plane. However, VQ

can be complex to design and, at the encoding end, to implement.

The ability to model high-order conditional densities effectively allows a system to quantize

and encode pixels sequentially while still retaining some (though not all) of the advantages of

processing the pixels jointly. Specifically, the spatial interdepence among pixels can be exploited,

as can the shape of their joint distribution [71]. Space is not filled with representative points as

efficiently as it would be were the pixels processed jointly, but the penalty for this can be small in

many applications.

17 Note that we could have encoded the image-specific histogram as a header to the code bits,
allowing us to encode at a rate close to 6.9 bpp. Such a technique and variants of it are termed
universal. Recently, several strategies for universal coding of images were proposed and investigated
in [36]; these techniques appear to hold considerable promise.



The proposed method of lossy encoding is uniform scalar quantization with conditional entropy

coding, wherein both the quantizer and the entropy coder are adapted on the basis of previously

decoded pixels. The system is shown in Figure 4.2.1. It is a form of predictive coding, but the

function of the prediction is not the traditional one of minimizing the residual's variance and

correlation. To understand this, note that in the proposed system the unconditional variance of

the residual does not directly affect either the average distortion or the average rate, and that

correlation in the residual can be exploited when the quantizer outputs are entropy coded using

a conditional model. Instead, the real purpose of prediction in this system is just to shift the

mode of the conditional density (when it has just one mode) to lie in the center of the innermost

quantization cell, making the conditional entropy of the quantizer output small (arbitrarily close

to zero for sufficiently large stepsizes). This has two related and desirable effects, both at low

rates. First, it reduces average distortion by making it more likely that the nearest representation

level will be close by. Second, it minimizes the chance that a narrow mode will be split by a

quantization threshold, which would significantly increase the conditional entropy and hence the

rate. At high rates, the prediction y[n] could be set to zero and the system would still perform

well, which demonstrates that the role played by the prediction is not the usual one. When the

conditional density has two or more modes of comparable probability, shifting the distribution in

this way does not necessarily reduce the conditional entropy of the output of the quantizer, but

there is no reason to believe that it increases it either. The predictor really comes into play at low

rates.

In many (but not all) versions of predictive coding, the prediction is a linear combination of

previously decoded values [45, 62]. Such prediction is termed linear. From this point of view, the

prediction made by the proposed system is potentially highly nonlinear, since it can be an arbitrary

functional of the estimated conditional distribution. In the experiments presented here and in the

following chapter, the conditional mean was used as the predictor.

Note that the distortion incurred by this scheme comes entirely from the lossy encoding of r[n].

This system has the advantage of strictly bounding instantaneous error to the range [-A/2, A/2],

provided that there are enough levels to avoid overload.

To train the model, samples that have been quantized by the system are needed to make

up the x values. Unfortunately, the quantization depends on the model through the predictor,

and hence quantized values are not available at the time of training. A way around this problem

is to simulate the effect of quantization without actually performing it. When the quantizer has
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Figure 4.2.1: Nonlinear predictive coding system that employs a high-order conditional prob-
ability model. The predictor is allowed to be any functional of the predictive (i.e., conditional)
density for y[n]; in the experiments presented here, the conditional mean was used. Scalar quan-
tization with entropy coding is employed, which is reasonably efficient when the residual r[n] is
memoryless or, as in this case, the memory has been modeled so that the entropy coding is con-
ditional. The probability model P for the arithmetic coder makes use of the numerical meaning
of the quantizer output, which is an important feature not usually achieved by models used with
arithmetic coding (e.g., that employed by the Q-coder [87]). The true function of the predictor is
a bit subtle here. See the main text for an explanation.

uniformly spaced representation levels, as is henceforth assumed, the simulation of quantization can

be accomplished by adding i.i.d. noise uniformly distributed on [-A/2, A/2] to y[n]. It is important

to note that the input to the quantizer is not continuous because the predictor is a function of

quantized data, implying that this model of the effect of quantization is not strictly justified, even

at high rates. Nevertheless, the instantaneous error is confined to the interval [-A/2, A/2] even if

it is not uniform on that interval; moreover, it has been observed in all applications tested that the

quantization error variance is close to the value of A2/12 predicted by the uniform-error model.

To see how the system performs, we first test it on a very useful signal model in image, video,

and speech processing: the autoregressive (AR) source. Perhaps the simplest source that exhibits

memory (statistical dependence among successive observations), the AR source is both analytically

tractable and easy to simulate, thus facilitating both conceptual and experimental testing of a new

system. For this source, we know both the theoretical performance limit and the theoretically

optimum conditioning order.
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Figure 4.2.2: The predictive coding scheme described in Section 4.2 was used to encode a
sample sequence of a third-order Gaussian autoregressive process having coefficients ai = 0.9;
a2 = -0.8; and a3 = 0.7. The quantizer stepsize was set at 0.185, resulting in a nearly constant
signal-to-noise ratio of 30.05 ± 0.05 dB. Rate versus specified conditioning order (memory) are
shown for: no prediction, EM-trained mixture models at two levels of complexity, the PCDT
model, and the linear/PCDT hybrid model. To obtain the curves, holdout crossvalidation was
employed on a 131,072-long original synthesized sequence, with a 2/3-1/3 training-test split. For
reference, also shown is the rate-distortion bound at 30.05 dB. Note that the performance of
both the PCDT and linear/PCDT hybrid models is approximately maintained as the specified
order is increased beyond the optimum value of 3, while that of each of the EM-trained mixtures
diminishes significantly. Note also that the hybrid is only about 4.48 - 4.21 = 0.27 bits/sample
worse than the rate-distortion bound. Assuming an ideal predictor, the residual for this process
is i.i.d. Gaussian. Therefore, using ideal entropy-coded scalar quantization with ideal prediction
would result in the gap width being 2 log 2(7re/6) ~ 0.255 bits at high rates, which is not much
better than that achieved here by LIN/PCDT.

A discrete-time Gaussian autoregressive process {Y[n], n = 0, 1, .. .} of order m is described

by the recursion
m

Y[n] = ( aiY[n - i] + V[n] (4.2.3)
i=1

where V[n] is a sequence of i.i.d. Gaussian random variables, such that future V's are always

independent of current and previous Y's [6]. For simplicity, it is assumed that the V's have zero

mean and unit variance. Figure 4.2.2 presents an example of applying the proposed system to a

Gaussian AR source described by the coefficient values a1 = 0.9; a2 = -0.8; and a3 = 0.7, using

several different conditional density estimation techniques. The caption provides the details. Note

that LIN/PCDT performs best, which in view of the linear autoregressive nature of the source is

not surprising. Simple linear prediction with a Gaussian residual would have done as well in this



case, but it is significant that the much more flexible LIN/PCDT scheme knew enough to constrain

itself, so that no penalty had to be paid for the added flexibility.

It is useful to compare performance with Shannon's distortion-rate function. For a Gaussian

autoregressive source of order m and assuming mean-squared distortion, this limiting R-D curve

is given parametrically by the following expressions [47, 6]:

DO =- min [, 1]dw,
27r -,g(w)

and
1 f 1 __1

RD max0, - lg2 d,277r 2 Og(w)
where

m 2
g(w)= 1- E aie-jw

Varying 6 from zero (corresponding to zero distortion) to infinity (zero rate) traces out the rate-

distortion bound. The integrands in these expressions were found to be sufficiently well-behaved to

allow good trapezoidal-rule approximation using no more than a few hundred terms. The calculated

bound is indicated in Figure 4.2.2 as the dashed horizontal line at the bottom of the graph. It is

at about the expected distance of 0.25 bits below the LIN/PCDT curve, serving as a check that

the system is performing properly.

We now apply the system to the cman image. Training is carried out on the same data as for

the lossless case, except now the conditioning values are taken from the output image instead of

from the original. Since they are not available for training (they depend on the model through

Q[n]), the effect of quantization is simulated by adding the appropriate level of uniform noise

to each coordinate of x. The resulting rates are shown in Table 4.2.4 for three quantization

stepsizes and for the various methods of conditional density estimation. It is interesting to note

that the performance of EM flattens out and even worsens as the neighborhood size increases, in

part because it expends model complexity on coordinates of x that are conditionally irrelevant

to y given certain values for the other conditioning coordinates. In contrast, the performance of

PCDT and its hybrid does not degrade with more conditioning, perhaps because it allocates model

complexity on the basis of relevance to predicting y.

Note that if the scalar quantizer q is chosen such that its set of representation levels contains

the union of the source alphabet and the set of all pairwise differences of elements of the source

alphabet, then the system depicted in Figure 4.2.1 can be made into a lossless compression system



Table 4.2.4: Lossy Compression Rates (bpp) for the cman Image

STEPSIZE = 10 (PSNR Z 39dB)

Nbd. EM-128 PCDT-S LIN/PCDT

(a) 4.65 4.70 4.70

(b) 2.50 2.48 2.40

(c) 1.99 1.90 1.94

(d) 2.00 1.81 1.86

STEPSIZE = 20 (PSNR P 33dB)

Nbd. EM-128 PCDT-S LIN/PCDT

(a) 3.63 3.64 3.64

(b) 1.78 1.71 1.77

(c) 1.07 1.02 1.03

(d) 1.16 1.03 1.02

STEPSIZE = 40 (PSNR t 27dB)

Nbd. EM-128 PCDT-S LIN/PCDT

(a) 2.61 2.65 2.65

(b) 1.26 1.03 1.05

(c) 0.61 0.62 0.60

(d) 0.66 0.50 0.51

by selecting the predictor g(fyl,) to be the composition of any real-valued functional of fyi, with

q. The system is lossless because the residual is among the representation levels, so that nearest

neighbor quantization preserves its value. The system described in Section 4.1 is then actually a

special case, resulting from the choice g(fyil) = 0 (which is legal because of the stated condition

on q).

It is interesting to compare the proposed conjoint scalar quantization system with traditional

VQ. In the proposed system, model complexity is determined by the discovered complexity of the

source, to the extent allowed by the amount of available training data. In contrast, the complexity

of unconstrained fixed-rate VQ is determined by the target rate and the desired dimensionality.

For example, to achieve a rate of 2.0 bits per coordinate for 10-dimensional vectors, a VQ codebook

of size 220 would be required. For this reason, operating at medium or high rates is difficult to

achieve with VQ when the dimensionality is high. In the proposed system, arbitrarily high rates

can be achieved simply by reducing the quantization stepsize sufficiently.

Another point of difference is the bounding of instantaneous error, which the proposed sys-

tem accomplishes while achieving respectable MSE-versus-rate performance. Thus, the proposed

system may perform well with respect to Loo in addition to L 2. Traditional VQ targets only MSE-

versus-rate performance, without bounding the instantaneous error. Lattice vector quantization

can bound instantaneous error, provided that the lattice is not truncated in a way that allows

quantizer-overload distortion. In fact, the proposed system can be interpreted as a sliding-block

entropy-coded Z-lattice VQ in which the lattice is shifted to center the input distribution on the

center of the innermost quantization cell.

Finally, note that the proposed system provides a unified approach to prediction and con-

ditional entropy coding. Traditionally, entropy coding in lossy compression systems is based on

probabilities estimated from occurrence counts of quantizer output values. Doing so does not take

full advantage of prior knowledge that the quantizer output values are related to the input and to



D1: aluminum wire mesh

D15: straw synthetic D15 (SAR)

D103: loose burlap synthetic D103 (SAR)

synthetic D15 (EM-512)

synthetic D103 (EM-512)

Figure 4.2.5: For each of three textures selected from the Brodatz collection [14], a 256 x 256
patch (left column) was extracted from the original 512 x 512 8-bit image. A simultaneous
autoregressive (SAR) model [67] was trained on each of these using a 21 x 21 estimation window.
The resulting SAR model was then used to synthesize the texture shown in the middle column.
The order of the SAR model was 12, corresponding to a 5 x 5 neighborhood. The right column
shows the result of synthesis by sequentially sampling from a 1oth-order conditional distribution
estimated by a 512-component, EM-trained mixture of separable Gaussians. The neighborhood
shown in Figure 4.1.2(d) was used to extract the training data from the corresponding original
full-size image.

each other, in that they lie in a metric space. In contrast, the conditional density model used by

the entropy coder in the proposed system effectively makes use of such prior knowledge by focusing

on the quantizer input rather than output.

synthetic D1 (SA R) synthetic D1 (EM-512)



4.3 Sequential Texture Synthesis

Imagine taking the decoder portion of the lossless compression system of Section 4.1, and feeding

it random coin flips instead of a code-bit sequence for an actual image, until an image comes out.

If this were repeated many times, it would be noticed that it almost always takes about the same

number of coin flips to get an image out. This is one of the properties of typical sets - they all

have about the same probability or ideal code length. The "decoded" image will very likely be a

member of this typical set. Thus, this is a way to peek into the mind (or more precisely, model) of

a compression system, to see what its "view of the world" is. If the compression system is efficient

for the source it is designed for, then decoding random bits will result in images that resemble the

original in all of the ways that the model thinks are important. By training the compression model

on a natural texture, random bits will be decoded into an image that resembles a texture.

Decoding random coin flips is not the only way to generate typical outputs, although it is

efficient in usage of coin flips. We could just as easily write a random number generator routine

that samples from the appropriate conditional distributions. However, the decoding interpretation

allows us to draw an interesting parallel with a well known method of texture synthesis: passing

white noise through a linear shift invariant system. Here, we are also starting with a kind of noise,

albeit binary, and passing it through a system to generate a texture. However, the system is no

longer linear. Results for this technique are shown in Figure 4.2.5 when the conditional density

estimate is a GLA-trained mixture model. The neighborhood shown in Figure 4.1.2(d) was used,

so the conditioning order of the model was 10. For comparison, also shown is the result of a 12th

order simultaneous autoregressive model 18 (SAR) synthesis [67] which corresponds to a filtering of

white noise. The proposed nonlinear technique based on high-order conditional density estimation

is able to capture much more of the characteristics of the textures that are visually important than

is the SAR model. However, like the SAR model, it misses some of the large-scale structure of

the textures. We also note that the computational cost of training and synthesis in the proposed

conjoint approach is greater than for the SAR model; estimation and synthesis of each of the SAR

textures shown took about 15 minutes combined on an otherwise unloaded HP 725 workstation,

while the conjoint training and synthesis took about 110 minutes combined on the same unloaded

machine.

18 Fang Liu kindly provided the code for generating these.



4.4 Multiresolution Texture Synthesis

Since the dimensionality of the conditioning vectors grows as the square of the diameter of the

pixel neighborhoods, the size of neighborhood is effectively constrained in the above approach on

practical grounds. However, to better capture interdependence that might exist on a larger spatial

scale, it would be advantageous to include in the neighborhood pixels at large displacements

from y. One way to approximate the effect of this is to synthesize the pixels in a coarse-to-fine

order, resulting in a progressive synthesis. The idea is to first synthesize a subset of the pixels

spaced widely apart in the image, then fill in more pixels in between them, continuing in this way

until all of the pixels have been assigned values. For this to work, we cannot get by with just

a single conditioning neighborhood, since the pixels used for conditioning in this process are no

longer always in the same locations relative to the pixel being synthesized. The fact that multiple

neighborhoods are needed implies that multiple conditional models are also needed. The flip side is

that this provides a means of combining multiple models together in a divide-and-conquer fashion.

(a) (b) (c)

Figure 4.4.1: Conditioning neighborhoods used in multiresolution texture synthesis for each of
three classes of synthesized pixel defined by their position relative to the subsampling lattice.

There is another way to look at this process when the synthesis order described above is

sufficiently regular. In such cases, the synthesis can be thought to occur at different resolution levels

in a recursive subsampling of the finest resolution image. The synthesis proceeds in a coarse-to-fine

manner. Initially, a small, coarse texture is synthesized using the method described in Section 4.3.

This texture is then upsampled by a factor of two in each dimension, with blank pixels filling

in the gaps. Next, these blank pixels are filled in by sampling from an appropriate conditional

distribution. The conditioning can be on any of the pixels that have already been synthesized.

This includes all of the pixels carried over from the coarser level, plus any that have already been

synthesized at the current level. Since some of the pixels carried over follow the current pixel in

raster order, we have achieved a relaxation in the strict spatial causality requirement. In the case

of 2 x 2 subsampling, there are three neighborhoods that must be defined (and three corresponding



multiscale synthetic D1 (RAN)

D15: straw

D22: reptile skin

multiscale synthetic D15 (RAN) multiscale synthetic D15 (DET)

multiscale synthetic D22 (RAN) multiscale synthetic D22 (DET)

Figure 4.4.2: Two different multiresolution approaches to texture synthesis based on the high-
order conditional density modeling using mixture models trained with the EM algorithm as de-
scribed in Chapter 2. Originals are shown on the left. The textures in the middle column were
synthesized by generating each pixel as a random number that obeys fyix, while pixels in the

textures in the right column were sequentially set to arg maxy fyix. See the main text for a
description of the models, neighborhoods, and training process.

models trained), since there are three pixels that must be filled in for every one carried over, and

each is in a different position relative to the subsampling lattice. Examples of such multiresolution

texture synthesis are shown in the middle column of Figure 4.4.2. The three neighborhoods shown

in Figure 4.4.1 were used, so that the conditioning order was 13. EM-trained 512-component

Gaussian mixtures were used to estimate the conditional densities. In order to obtain enough

multiscale synthetic D1 (DET)D1: aluminum wire mesh



Figure 4.4.3: Evolution of resolution in deterministic version of texture synthesis. In raster
order, the images are: a patch from the original D1 aluminum wire texture, followed by the
results of deterministic multiresolution synthesis at successively finer resolution levels. The details
of training and synthesis are the same as for the rightmost column in Figure 4.4.2. Note the ability
of the method to capture complex phenomena such as occlusion and bending in the wire - this
is normally not seen in statistical methods.

training data at the coarsest resolutions, all of the possible subsampling phases were used. The

right column shows the result of the same texture synthesis procedure, but where the arg max

of fy is used instead of a pseudorandom number obeying that distribution. Note the high-level

structure that is evidently captured by this technique as the resolution increases, as shown in

Figure 4.4.3 for D1. Note also that there are small regions in which the synthesis appears to be

corrupted, for instance at the bottom center of the highest-resolutions (bottom right) image. It is

believed that this phenomenon is triggered at a coarser level when the pixels generated at that level

in a local area are atypical with respect to the joint model with the next highest resolution level.

Because of their low likelihood, the conditional models are not optimized for such conditioning

pixels, so that the new pixels generated in that local area at the next level are likewise atypical.

The effect is that this is perpetuated through all the subsequent levels of synthesis, resulting in

the anomalies in the figure.

We first presented the above methods of texture synthesis in 1993 using a discretized mixture

of Gaussians trained by the GLA [96]. The results shown here use a continuous model trained



by EM, allowing less complex models for comparable visual quality in the multiresolution case,

and resulting in noticeably better visual quality in the single-resolution case. The multiresolu-

tion texture synthesis technique will be generalized in the next chapter to use filtering with the

subsampling, instead of subsampling alone.

PCDT has been tried in the texture synthesis application, but thus far the results obtained

using PCDT have not been as visually similar to the originals as those obtained using EM. An

initial effort was made to try to characterize the differences in the visual characteristics of the

synthesized textures resulting from the two approaches, but this preliminary investigation was

inconclusive; more research is required.

4.5 Image Restoration

As mentioned in Section 2.3, if all that is required is an estimate of the dependent variable for a

given condition value, then estimating its entire distribution might be wasteful. But does estimat-

ing the density as an intermediate step necessarily incur a performance cost as well? Consider the

PCDT-H technique. Had the squared-error criterion been used in splitting and pruning, a regres-

sion tree would have resulted essentially for free. If the leaf-conditional distributions happen to be

unimodal Gaussians, as is often assumed in regression, then PCDT-H would find that out (unless

the data were anomalous), and absolutely no harm would be done. Thus, the tree is no worse than

it would have been without the added step of leaf-mixture fitting. The risk really is that PCDT

may mistakenly model the residual as more complex than it really is. There are safeguards built

in against this (extensive crossvalidation), but slight overfitting is possible. On the other hand,

if the leaf-specific density is much different from Gaussian, then PCDT will react by assigning a

more complex mixture to that leaf. The added complexity would be wasted, since in the end, the

global y-mean of Lt is selected by both methods (assuming least-squares regression). But PCDT

has not done any harm from a performance point of view.

A good example problem to illustrate the effective use of complexity-controlled conditional

density estimation in the function approximation setting is image restoration, which we now con-

sider. Given a patch in a degraded image, what is the best estimate of the original, undegraded

pixel that was at the center of that patch? High-order conditional density estimation can be ap-

plied to this problem by trying to learn the relationship between a patch of degraded pixels and

the corresponding original pixel, using for example one of the neighborhood pairs shown in Fig-

ure 4.5.1. Note that the dependent variable is taken from the original image for training and its
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Figure 4.5.1: Pixel-extraction neighborhood pairs used for image restoration based on the use of
a high-order conditional model. Note that spatial causality is not required, as the entire degraded
image is assumed available at once.

Figure 4.5.2: Example of image restoration using high-order conditional modeling. See the main
text for an overall description of the experimental set-up. In raster order, the images are: original,
degraded, optimum linear restoration (Wiener filtering) using a (nonseparable) 7 x 7 FIR filter,
restoration using an EM-trained 256-component mixture model and the neighborhood shown in
Figure 4.5.1(a), restoration using LIN/PCDT with the same neighborhood, and finally restoration
using LIN/PCDT with the neighborhood shown in Figure 4.5.1(b). In raster order, the PSNR
values are infinity, 28.09, 29.32, 29.25, 30.98, and 30.69. Note that the bottom three results are
conjoint - that is, they are based on sequential processing using high-order conditional density
estimation.

estimated value is placed in the output image during restoration, at the location corresponding to

the center of the degraded-pixel neighborhood.



We now consider a specific example. Twenty-six (original, degraded) pairs of natural images

were prepared such that the degradation consisted of additive zero-mean white Gaussian noise

having a variance of 150 (the pixels themselves range from 0 to 255). The resulting set of vectors

was pseudorandomly subsampled to reduce the number of training vectors to the more manageable

number of 131,072, and conditional density models were trained on the resulting set. The cman

image, which was not included among the training images, was likewise degraded, and used as

the test image. Figure 4.5.2 shows the results of restoration using several models. The top right

attempt corresponds to standard linear regression using a square 7 x 7 neighborhood for the

degraded conditioning pixels, which is equivalent to linear shift invariant filtering. In fact, it is

equivalent to Wiener filtering, though viewed in the spatial domain. The bottom three examples

result from conjoint processing. Note that they all appear to be sharper than the result of Wiener

filtering. Note however that Wiener filtering does slightly better than the EM-trained mixture in

terms of PSNR, though the EM-trained mixture result using the neighborhood pair Figure 4.5.1(a)

appears to be less noisy, though somewhat blotchy. The formula used for PSNR was

2552
PSNR = 10 logo 2.

error variance

The LIN/PCDT hybrid also using neighborhood pair (a) does about 1.6 dB better than either of

these in terms of PSNR; it is sharper than the linear technique and slightly less blotchy than the

EM result. On the other hand, the EM result appears to have slightly less noise. Using a larger

degraded-pixel neighborhood with LIN/PCDT (bottom right) actually results in a slight reduction

in PSNR, but the subjective quality is slightly better on the diagonal edges; for instance the camera

man's jaw-line. None of the methods is adaptive, so the results may not be great in absolute terms,

but the comparison is fair. The tentative conclusion is that there is a performance advantage to

the sort of nonlinear processing that high-order conditional density estimation affords. Also, it

appears that the added flexibility provided by density estimation over function approximation

need not result in a performance penalty. On the other hand, we have informally estimated the

computational cost of the conjoint methods to be about two orders of magnitude greater than that

of Wiener filtering for training, and about one order of magnitude greater for application. The

latter cost might be greatly reduced if schemes such as lookup tables are used in implementing the

conjoint methods.



4.6 Relationship to other methods

The applications we have considered are intended only as examples to illustrate the potential

applicability of sequential processing using conditional density estimation to real problems; we

were not trying to solve those problems. Therefore, we consider only the prior work in these areas

that seem to relate to the approaches considered here.

The lossless compression scheme of Weinberger et al. [141] is based on explicit probability

estimation and therefore deserves mention. Their technique is inherently adaptive owing to its use

of Rissanen's Context algorithm [107]. That algorithm is count-based and hence requires categorical

data. In an attempt to make use of prior knowledge that the underlying probability law is smooth

for natural greyscale images, pixel differences are formed and used for the conditioning contexts.

These differences are modeled as Laplacian, which may be appropriate in nonadaptive systems,

but such an assumption needs to be justified in an adaptive system. In contrast, both the EM-

and PCDT-based conjoint methods of lossless compression proposed here make direct use of prior

knowledge of smoothness when estimating the densities.

There is a vast amount of literature on lossy compression. Connections can be drawn between

the proposed conjoint scalar quantization system and several variations on VQ, including predictive,

multistage, and nonlinear interpolative VQ [45]. Perhaps the most relevant prior work is the

conditional entropy-constrained VQ technique proposed by Chou and Lookabaugh [21]. In that

technique, entropy coding of VQ codewords is carried out conditionally using a first-order Markov

model estimated from codeword histograms (occurrence counts). The authors report a significant

improvement using this technique over unconditional entropy coded VQ in compressing linear

predictive coefficients for speech. The main points of difference between their approach and the

one presented here are (1) we use high-order density estimates that directly exploit smoothness

(which occurrence counts don't do), and (2) they use VQ in their approach, which is more general

but more complex to implement than the scalar quantization proposed here.

Markov random mesh models based on parametric conditional densities have been studied

extensively for use in texture and image modeling. In 1965 Abend et al. [1] applied such models to

binary images. Besag [8] studied consistency requirements to allow the use of conditional rather

than joint probability models to specify a two-dimensional stochastic process, and considered

several exponential-family parametric conditional models. In 1980, Kanal [66] summarized and

reinterpreted the earlier approach of Abend et al., and traced the early development of Markov



random field (MRF) models for image processing. The explicit use of MRFs for textures, again

using parametric conditional models, was proposed in 1980 by Hassner and Sklansky [50]. Much

of the research in MRFs has focused on the problem of estimating model parameters; see for

example the 1987 paper by Pickard [91]. The texture synthesis methods described here fit into

the Markov random mesh framework in the sense that textures are generated according to locally

conditioned probability models. However, the conditional models are not required to be of the

simple parametric form assumed throughout the MRF literature.

A texture synthesis method using pyramid structures has recently been proposed by Heeger

and Bergen [53, 52]. In their approach, a texture is synthesized by iteratively transforming the

marginal distributions of subbands in a steerable-pyramid decomposition [133] of a pseudorandom

noise image to match those of a given texture sample. The marginal distributions are estimated

by histograms. Although the histogram matching is done on the individual subsampled pixels, the

synthesis filtering causes that matching to affect spatial dependence in the reconstructed image,

resulting in a synthetic texture that strongly resembles the original. A subtle additional difference

between their method and our multiresolution one derives from the iterative nature of their proce-

dure. It would not be quite enough to match the histogram in the subbands prior to synthesis; an

additional requirement imposed in their method is that re-analysis into subbands maintain that

marginal distribution. As suggested to me by Olshausen [83], this may have the effect of forcing

the subband phases to line up to match the original phase after synthesis as well. Zhu et al. [145]

have proposed a technique similar to that of Bergen and Heeger, invoking the principle of maxi-

mum entropy to relate the joint and marginal distributions. In contrast to both of these methods,

the synthesis techniques proposed here operate directly on the original pixels and capture spatial

interdependence explicitly via high-order conditional density estimates. As will be discussed in

the next chapter, it is not clear at this time whether combining high-order density estimation with

extensive filtering can result in a strong improvement over either one alone.

4.7 Chapter Summary

Mainly to show the power and flexibility afforded by the conditional density estimation techniques

developed in the previous chapter, this chapter considered the application of such techniques to

selected image and texture processing problems by working directly in the original pixel domain.

The use of high-order conditional densities of the type considered here represents a break from

tradition, as the resulting systems are neither linear nor based on simple parametric assumptions.



In particular, it was shown in this chapter that high-order conditional density estimation can be

used for predictive sequential compression in an effective and straightforward way. In both cases,

the derived probability mass functions used by the entropy coder made use of both conditioning

(memory) and prior knowledge of smoothness of the underlying distribution, the latter of which is

not typically used by entropy coding systems in image compression. Texture synthesis was consid-

ered next. One method involved generating pixels as pseudorandom numbers with the appropriate

conditional distribution in raster order. While performing much better than a standard linear

technique of comparable conditioning order, it was evident that more spatial context would have

to be employed to capture the macroscopic properties of the textures. To this end, a modifica-

tion of the ordering was considered, and interpreted in terms of coarse-to-fine processing. Also,

a variation in which the pixels were assigned values in a deterministic rather than random man-

ner was presented. The technique was found to capture complex structure not usually associated

with statistical approaches. Finally, we considered the problem of image restoration. The conjoint

approach, which is nonlinear, was found to yield a sharper image than optimum linear filtering

in the example considered, but at greater computation cost for both training and application.

Also in that example, an objective improvement as measured by PSNR was achieved by using the

linear/PCDT hybrid instead of either EM-trained mixtures or Wiener filtering. More research is

required to characterize the performance relationships and computational efficiencies achievable by

the various approaches more generally.
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CHAPTER 5:

Preprocessing

All of the conjoint processing described in the previous chapter was carried out directly on the pixels

themselves; no preprocessing was done. We now consider conjoint processing when preprocessing

is allowed. Ultimately, we are interested in gaining insight into the question of what filters should

be used in a conjoint subband-pyramid coding system. Since there are many parameters in such

a system, including the ordering through the subband-pyramid and the choice of conditioning

structures used by the models, working in that application is not chosen as the best way to build

insight. Instead, we consider first a much simpler application system which can be interpreted

(albeit loosely) as a one-band subband coder. Surprisingly, it can achieve objective coding gain in

its intended domain of applicability.

5.1 One-band Subband Coding

The one-band subband coding system shown in Figure 5.1.1 was first proposed as a means for

robust quantization in [99]. There, it was demonstrated that (1) minimum-MSE fixed-rate scalar

quantization (here referred to as Lloyd-Max quantization) can be made robust, i.e., insensitive to

modeling errors, by appropriate choice of the pre- and post-filter; and that (2) for several important

sources, the MSE-versus-rate performance of such a system is actually better than that of direct

Lloyd-Max quantization of the original source. Here we are concerned with (2).

The way that the system achieves coding gain for certain sources is now described. Two i.i.d.

model sources commonly used in image and speech coding are the Laplacian (two-sided exponential)

and gamma densities. Fixed-rate scalar quantization is known to perform relatively poorly on these

sources with respect to MSE when compared with either VQ or variable-rate scalar quantization.

In fact, the MSE-performance of Lloyd-Max quantization is worse for these sources than for the

Gaussian source, actually resulting in a reversal of the performance ordering indicated by the rate-

distortion bounds for these three sources. By temporarily transforming the original signal into one

that has an approximately Gaussian amplitude distribution, the system of Figure 5.1.1 achieves

an overall SNR comparable to that of Lloyd-Max quantization of a Gaussian source at the same

rate, which is an improvement for the two sources mentioned. The amplitude distribution is made
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Figure 5.1.1: Robust quantization system originally proposed in [99]. The dispersive all-pass
filter H(z) temporarily transforms the amplitude distribution of an arbitrary i.i.d. input to be
approximately Gaussian via Liapunov's central limit theorem, allowing a Lloyd-Max quantizer
for a Gaussian source to be employed. As an added bonus for certain sources, the overall MSE-
performance after inverse-filtering is actually better than that of direct, correct-model Lloyd-Max
quantization, at the cost of some delay due to filtering.

14

12

Length of Filter Impulse Response

Figure 5.1.2: Empirical MSE-performance as a function of impulse-response length for H(z) of
the robust quantization system of Figure 5.1.1, applied to an i.i.d. gamma source at a rate of 2.0
bits/sample, using vector quantization. The filtered signal u[n] is blocked into vectors of varying
dimension, then full-search vector-quantized at fixed rate using a GLA-designed codebook. A
filter length of unity corresponds to no preprocessing, while a dimension of unity corresponds
to Lloyd-Max quantization. For reference, the rate-distortion bound (computed via the Blahut
algorithm [10]) is also shown. Note that preprocessing helps performance when the simplest VQ
is used, but is actually harmful when higher dimensionality is permitted. This qualitative result
has been observed at all rates tried (of which 2 bpp was the maximum, because of the exponential
growth of the VQ codebook as a function of rate).

approximately Gaussian because the output of H(z) is the sum of a large number of independent

random variables whose variances are not too different.
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It is ironic that there should be an improvement, because as mentioned the rate-distortion

bound is worse for a Gaussian than for a Laplacian or a gamma source. Had we been willing to use

joint or conjoint quantization instead of fixed-rate scalar quantization, we would have been better

off not filtering, as shown for 2 bit/sample fixed-rate VQ in Figure 5.1.2. Note that increasing VQ

dimensionality improves performance for all filter lengths. However, both the improvement and

absolute performance of high-dimensional VQ are greater when filtering is not used, i.e., at the

extreme left of the graph. In this example, fixed-rate VQ was used instead of conjoint SQ, because

Lloyd-Max quantization is conveniently a special case of fixed-rate VQ but not of conjoint SQ,

which is entropy-coded. The formula used for SNR was

variance of x

variance of r'

5.2 Filter Banks for Conjoint Subband Coding

Traditionally, subband pixels have been treated as if they were independent. In recent years,

there has been growing interest in taking advantage of the nonlinear statistical dependence among

subband pixels [17, 25, 55, 89, 88, 122, 126]. Recall from Section 2.1 that a simple but effective

traditional approach to subband image coding is to employ entropy-coded uniform-threshold scalar

quantization on the subbands, maintaining the same stepsize when quantizing all of the pixels in all

of the subbands. In this section, we assume that the subband decomposition is a pyramid structure

of the type shown in Figure 2.1.2. Subband regions of high activity or variance will cause the

quantizer to have greater output entropy, resulting in greater rate being implicitly allocated to those

regions and subbands. As mentioned in Section 2.1, it can be shown that such a simple strategy

results in a nearly MSE-optimal rate allocation [42, 93], without the need for a computationally

intensive rate-allocation procedure. Of course this assumes that the probabilistic model upon

which the entropy coding is performed is accurate.

Traditionally, non-DC subband pixels have been modeled as independent random variables

that are identically distributed with a distribution (typically Gaussian or Laplacian) that is known

except for an activity factor or variance that changes relatively slowly over space and spatial

frequency. The DC subband, which is in many ways just a smaller version of the original image,

is often quantized and encoded at at fixed rate of 8 bits per pixel. Because in a pyramid the DC

subband accounts for only a small fraction of the total number of samples, treating it in this way

does not appreciably increase the total bit rate. If conjoint processing is employed, then more

complex statistical relationships among the non-DC subband pixels can be exploited by training
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and applying high-order conditional density models. Specifically, we define a total ordering on the

pixels in the pyramid. Corresponding to any specific such ordering is a collection of conditioning

neighborhoods that satisfy causality constraints with respect to that ordering. Using the conjoint

scalar quantization system of Section 4.2, we can compress an image by fixing a quantizer stepsize

and quantizing subband-pyramid pixels sequentially in the adopted order, entropy-coding each

quantized value according to a probability law that is conditioned on previously encoded pixels.

In designing such a system, one has considerable freedom in selecting the ordering, the neigh-

borhoods, and of course the training and structural parameters of the conditional models. Of

present interest is the change (if any) of the role played by the filter bank in determining the

performance of such a system. Note that decorrelation and energy-compaction are no longer the

manifest goals of the filter bank. Indeed, correlation or even statistical dependence among the sub-

band pixels can be exploited by the conditional entropy coding. Moreover, in such a system, high

rate is no longer implicitly allocated simply to high-activity regions, but rather to either moderate-

or high-activity regions that are relatively unpredictable by the model (recall the material on rate

allocation from Section 2.1). Conversely, a low rate can be allocated even to a high-activity region,

provided that the conditional model is able to predict adequately the subband pixel values in that

region. Thus, both the predictive accuracy of the model and the choice of conditioning neighbor-

hoods can be expected to exert substantial influence over the performance of such a system.

As was explained in the last paragraph of Section 1.2, the question of what filter characteris-

tics are best to use in a given subband coding system must be answered on practical rather than

theoretical grounds. One way to begin to understand how the requirements on the filter bank

might change when joint or conjoint quantization is allowed is to perform an experiment wherein

filters achieving different degrees of tradeoff between spatial and spectral localization, but which

are structurally identical, are each tried in an otherwise fixed conjoint subband coding system.

The characteristics of the low-frequency analysis band of a set of such two-band critically sam-

pled filter banks are shown in Figures 5.2.1 and 5.2.2, and their impulse responses tabulated in

Appendix B, where the procedure used to design the set is also given. That procedure attempts

to minimize a weighted sum of spatial and spectral localization, where the relative importance of

spatial localization is specified as a parameter a. As is typical for two-band critically sampled filter

banks, the analysis filter for the high-frequency subband is obtained simply by reversing the sign

of the odd-indexed samples of the impulse response of the low-frequency filter. As a result, the

frequency response of the high band mirrors that of the low band, and the spatial energy spread
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Normalized Frequency (w/ir)

Figure 5.2.1: Frequency-Magnitude responses of the low-band filter in a set of two-band crit-
ically sampled filter banks that can be used in an experiment to gauge the appropriate tradeoff
point between "no filtering" and "a lot of filtering" preferred by a subband coding system. See
Appendix B for details. For reference, the curve for the DCT (which in this two-band case is also
the Haar) is also shown. The impulse filter corresponds to a = oo.

a =5.0 a =1.0 a = 0.5 a = 0.1

Figure 5.2.2: Impulse responses for the low-band filters whose frequency responses are shown
in Figure 5.2.1. Note the increasing spatial dispersiveness, as confirmed by Table 5.2.3. Here, the
definition of dispersiveness is the second central spatial moment; a formula is given in the text.

Table 5.2.3: Spatial Dispersiveness of Filters Shown in Figures 5.2.1 and 5.2.2

a Dispersiveness
00 0

5.0 0.271678
1.0 0.361359

0.5 0.452197

0.1 0.726879

or dispersiveness, as measured by the second central spatial moment

L

Dispersiveness = E n2h2(n),
n=-L
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Figure 5.2.4: Average rate versus filter dispersiveness for conjoint and independent subband
pyramid coding of the cman and Lenna test images, using the system described in Section 4.2
with a quantizer stepsize of 10.0, for a near-constant PSNR of about 39 dB. See the text for
details and an interpretation.

is the same for the low- and high-frequency analysis filters. The synthesis filters in these filter

banks are the same as the analysis filters. The initialization for the optimization procedure used

in generating these filters was the 9-tap filter bank proposed by Simoncelli and Adelson [131], and

like that filter bank, the subsampling phases differ for the low- and high-frequency bands.

Figure 5.2.4 shows the average rate in bits/pixel versus filter dispersiveness for both indepen-

dent and conjoint quantization of subband pixels in a four-level pyramid using the filters of Fig-

ures 5.2.1 and 5.2.2. Quantization and entropy coding were carried out using the system described

in Section 4.2, with independent quantization achieved by taking the conditioning dimension in the

model to be zero. The conditional models themselves were EM-trained mixtures of 256 separable

Gaussian components. Different models were used at different levels; that is, no assumption of

statistical self-similarity across scale was made. However, such an assumption would have been

reasonable and might have simplified training. An ordering of pixels in the pyramid was defined

as follows. First, all of the DC subband pixels were encoded. Next, for each subsampled spatial

location in the coarsest level of the pyramid, the three pixels corresponding to each of the three

oriented subbands were encoded in the following order: horizontal, vertical, and diagonal. After

looping over all such spatial locations in raster order, the four subbands in the coarsest level of

the pyramid were combined to yield the DC band of the next higher resolution level. This then

served as conditioning information for encoding the three oriented bands at that level. The pro-

cess was continued in this manner until all pixels in the pyramid were encoded. In the conjoint

106

(b) Lenna(a) cman



Synthesis Analysis

uG[n] -{- T - G1(z) E K H1z v1[n]

Figure 5.2.5: By treating the subbands as input and performing the synthesis first, a critically
sampled perfect-reconstruction filter bank can be used as what amounts to a frequency-domain
multiplexer. If the lowest-frequency input band is given but the others are not, then the syn-
thesized image will be lacking in detail. By generating the higher-frequency input subbands in

a way that is consistent with a statistical model that chacterizes interdependence both within

and across subbands, realistic detail can be "invented" in the synthesized image. This general
idea was first suggested by Pentland and explored by Holtzman [55], who used implicit models
determined by VQ codebooks to increase the resolution of natural images. Here, we apply the
technique to texture synthesis, using explicit conditional density models.

case, the conditioning neighborhoods for each of the four subbands at a given level were taken to

consist of the nearest thirteen pixel locations that preceded the current location in the specified

ordering, where Euclidean distance in the four-dimensional space of spatial and subbands index

offsets was used to determine nearness. In all cases, conditioning values that fell outside of the

subband image boundaries were integrated out of the joint density prior to computing the condi-

tional density. The quantizer stepsize was fixed at 10.0, so that the overall MSE was anticipated

to be approximately 100/12 8.33, corresponding to an anticipated PSNR of 38.9 dB. The actual

PSNR values observed ranged between about 38.5 and about 40.2 dB for the twenty points in the

graphs. The models were trained on pyramids formed from a set of 32 512 x 512 8 bpp natural

monochrome images that did not include the two test images. While it is not possible to draw

general conclusions from such a limited experiment, the curves do seem to suggest (1) that the filter

characteristics play a greater role when traditional, independent processing is performed than when

conjoint processing is performed, and (2) that conjoint processing in this case performs better by

about 0.25 bit/pixel than independent processing, though at greater computational cost. Contrary

to our expectation, the curves do not seem to indicate that less spatial dispersiveness is called

for in conjoint subband coding, although any conclusion would have to await additional experi-

ments in which the orderings, neighborhoods, conditioning dimensionalities, model complexities,

and quantizer stepsizes were varied.
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Simoncelli-Adelson

Figure 5.2.6: Effect of filter spatial-spectral localization tradeoff in subband-pyramid texture
synthesis of the Brodatz texture D1. See the main text for details. The leftmost texture has
been synthesized without filtering, in the multiresolution fashion described in the previous chap-
ter. The middle and right textures were synthesized using the two-point DCT and the 9-tap
Simoncelli-Adelson filters [131], respectively. The spatial dispersion factors for these filters are:
zero (subsampling), 0.25 (DCT), and 0.48 (Simoncelli-Adelson).

5.3 Conjoint Subband Texture Synthesis

We now consider the potential role of preprocessing in multiresolution texture synthesis. It is

possible to reinterpret the texture synthesis method presented in Section 4.4 in terms of filling in

pixels in a subband pyramid wherein out-of-phase subsampling and identity (i.e., impulse) filters

are employed. Pixels are synthesized sequentially in the same order that pixels are encoded in the

conjoint subband coding system described in Section 5.2.

At each higher-resolution level of the pyramid, the synthesis can be thought of in terms of

adding in detail to the image from the previous level. To accomplish this, the coarser image is

taken to be the low band input to a synthesis filter bank viewed as a frequency-domain multiplexer,

as shown for one dimension in Figure 5.2.5. Viewing it in this way emphasizes that the bands can

be specified independently: no constraint is imposed by the filter bank structure as to what values

may be used for the subbands. In two dimensions, there are three non-DC subbands. Pixels in

these higher-frequency bands are synthesized sequentially to be statistically consistent with the low

band and with the previously synthesized pixels in the higher bands as determined by the set of
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conditional models. As was described in Section 4.4, the pixels can be synthesized as pseudorandom

numbers or by using a fixed functional of the conditional distribution such as the conditional mean.

Coarse-to-fine synthesis proceeds as follows. First, the DC subband is synthesized using the

technique described in Section 4.3. Next, pixels in the three remaining subbands at that resolution

level are synthesized, in the order described in Section 5.2. Note that this ordering allows the

conditioning neighborhoods defined in Figure 4.4.1 to be used. Once all four subbands have been

synthesized at that level, they are fed into the synthesis bank, resulting in the low-band image at

next higher resolution level. The process is repeated until a texture of full resolution is obtained.

Note that although the same neighborhoods can be used at different levels, each level must have

its own set of models, for corresponding to each neighborhood.

An example of conjoint subband texture synthesis is shown in Figure 5.2.6. A five-level subband

pyramid was used. In synthesizing the low band at the coarsest level, a conditioning neighborhood

that consisted of the nearest 13 pixels that preceded the current one in raster order was used. The

three neighborhoods shown in Figure 4.4.1 were used in synthesizing the other subbands, with

Figure 4.4.1(a) used for horizontal, (b) for vertical, and (c) for diagonal. The conditional models

were EM-trained mixtures of 256 separable Gaussians. Although a strong conclusion cannot be

drawn from this single example, the results do seem to suggest that a greater degree of filtering

(as measured by spatial dispersion factor, for example) results in the synthesized texture itself

appearing to have been filtered, i.e., exhibiting what appear to be blurring and ringing artifacts.

The results obtained by Heeger and Bergen [52, 53] suggest that using different filters - specifically,

oriented ones - may result in an improvement over the filtered synthesis results shown here while

using relatively simple probabilistic models for the subbands. However, as indicated in Section 4.6,

their approach cannot be simulated simply by generating subband pixels as pseudorandom numbers

that obey the appropriate marginal distributions, because the phase of each subband is adjusted

implicitly by their iterative synthesis procedure.

Conjoint subband texture synthesis is not limited to visual textures. In joint work with Nico-

las Saint-Arnaud [115], a one-dimensional version of the technique described above was used to

synthesize sound textures. In that work, it was found that the technique resulted in some realistic

renditions of steady-state textured sounds such as the applause of a crowd, but had difficulty in

capturing the onset and decay of dynamic sounds such as those made by an automatically fed

photocopier. As discussed in Chapter 4, incorporating adaptivity into the models is expected to

improve the ability to handle such dynamic behavior.
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5.4 Chapter Summary

We have considered three examples in which the role of preprocessing appears to change when

conjoint processing is employed. In two of these examples, one-band subband coding and subband

texture synthesis, conjoint processing seems to work best when the filtering is minimal. The

remaining example, conjoint subband coding of images, was inconclusive in this regard. These

results lead us to conjecture that in systems that employ linear filters for preprocessing, the best

spatial-spectral tradeoff may shift in favor of spatial localization when conjoint or joint processing

is used instead of independent processing.

In the subband image coding example, it was further observed that the filters played a lesser

role in determining system performance when conjoint processing was used than when independent

processing was used. Finally, in both the one-band subband coding and conjoint subband image

coding examples, it was found that conjoint processing offered a definite objective performance

advantage over independent processing.
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CHAPTER 6:

Recommendations for Further Work

This chapter suggests topics for further research involving PCDT, conjoint processing in general,

and conjoint subband coding in particular.

6.1 PCDT

The PCDT methodology could be improved and generalized in many ways. The most obvious would

be relaxing the separability constraints on the leaf mixtures. Another interesting modification

would be the combining of pruning and leaf-complexity allocation, the possibility of which was

discussed at the end of Chapter 3.

Another important improvement would be handling the situation in which one or more con-

ditioning coordinates are either unreliable or missing. The CART methodology uses surrogate

splits for this. Whether this technique carries over to PCDT, and whether it is the best way to

accomplish the objective, needs to be investigated. In the case of PCDT-S, an equivalent joint

distribution is available in analytic form. Thus the EM framework, which is exactly suited to filling

in missing data, might be more appropriate. In fact, in the form of PCDT-S considered where the

leaf-conditional densities are separable in x as well as (x, y), the result actually amounts to ignor-

ing the missing value, which is simple enough to implement. However, only the leaf-conditional

separability of x and y (from each other) seems essential in the formulation of the methodology.

As mentioned in Section 3.3, the regularized histogram splitting/pruning cost function used in

PCDT appears to have the necessary properties that Chou [20] and Chou et al. [22] list as allowing

efficient and more general tree growing and pruning strategies to be used. In particular, it may be

feasible to allow splitting by arbitrary hyperplanes instead of restricting the splits to hyperplanes

that are perpendicular to the coordinate axes. Allowing more general splits might allow for better

data fitting at a given level of model complexity and should therefore be investigated.

Splitting could be expedited at the higher levels of the tree by using a random subset of the data

passed to the node in computing # instead of working with the entire data, since at these higher

levels, there is usually more data than necessary. However, it is important that such subsampling

not be done on either the crossvalidated pruning or on the fitting of mixtures to leaves, since this is

111



where the complexity of the model is being automatically determined on the basis of the available

data.

Another topic that should be investigated is the simultaneous use of crossvalidation and regu-

larization in determining the appropriate splitting/pruning leaf-model complexity instead of using

only regularization. The choice of # itself can probably be improved, and there is certainly room

for improvement if one recalls the sizes of the gaps in the curves of Figure 3.4.4 between true

relative entropy and crossvalidated cost. Recall that the main restriction on # is that it be easy to

recompute as samples are shuffled from the right child to the left, as this shuffling must be done

tens of thousands of times. There may be a way around this by finessing the search in some way.

Even if there is not, it may be possible to find some sort of kernel estimate which shares the fast

recomputability property of the histogram.

It was mentioned in Chapter 2 that there has been significant progress recently by Lugosi and

Nobel [74], Nobel [81], Nobel and Olshen [82] and Devroye et al. [34, Chapters 20-23] in establish-

ing various asymptotic properties of tree-structured and other data-driven statistical techniques.

Typically, the proofs involved in demonstrating such properties require that the cells in the parti-

tion shrink to zero volume as the sample size gets large. It is not clear whether this condition is

met in PCDT, as splits are made only if doing so will increase the average conditional likelihood

of Y. More research is required to determine whether such asymptotic properties as consistency

in L 2 can be established for PCDT, and if so, under what assumptions on the true underlying

probability law.

In developing the PCDT algorithm, a number of choices were made for pragmatic reasons based

on the assumption that current general-purpose workstations would be used. Certain operations are

inherently parallelizable, such as the fitting of leaf mixtures. Further research may reveal specialized

architectures that might make PCDT or related techniques more attractive computationally.

The Gaussian mixing posteriors used in PCDT-S occasionally exhibit the anomalous behavior

of weighting leaves far-away in conditioning space more heavily than nearby ones. Specifically, this

occurs when the tail of a far-away large-variance component becomes greater than that of a nearby

narrow-variance one. The same phenomenon occurs in the version of Jacob and Jordan's mixtures-

of-experts architecture [59] proposed by Gershenfeld et al. [44]. Although consistent with the view

of conditioning space consisting of multiple classes, each characterized by a Gaussian density, this

type of weighting is inconsistent with the locality-of-experts motivation that underlies much of
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the original mixture-of-experts framework. Characterizing, and if necessary compensating for the

effect of, this non-local weighting may lead to an improvement in the performance of PCDT-S.

Perhaps the biggest question surrounding the PCDT methodology is how it might be made

adaptive. A possibility is to use HMMs or stochastic context-free grammars to characterize and

accommodate dynamics in the spatial domain. Often, it is desired that the adaptation take place

on something besides the immediate observations, e.g., the estimated state in a hidden Markov

model. One could in principle encode that state as an independent component of x and then

have an adaptive model. PCDT-H would allow this, but the Markov mechanism would have to be

specified separately.

6.2 Applications

Because the local statistics of natural images tend to vary from region to region, the lossless and

lossy compression systems described in Sections 4.1 and Section 4.2 would need to be made adaptive

in order to perform better. In the conjoint processing framework, such adaptivity would be most

naturally achieved by making the conditional models themselves be adaptive.

Note that the image restoration procedure described in Section 4.5 was not as general as it

might have been within the conjoint framework. In that application, incorporating feedback into

the conditioning would help in certain cases. For example, in inverse-halftoning, the conditioning

vectors formed from the "degraded" image have binary-valued coordinates, and therefore index

into a restrictive set. Allowing feedback would introduce more greylevels into the restored image

by requiring the restored pixels to be statistically compatible with the previously restored ones.

The multiresolution processing that was so successful in synthesizing textures can probably

be applied advantageously in lossless compression and restoration (it has already been applied to

lossy compression in Chapter 5). To apply it to lossless compression, use might be made of the fact

that the system in Figure 4.2.1 can be made lossless in a straightforward way, as was discussed in

Section 4.2. Multiresolution restoration seems particularly promising in light of the recent work by

Simoncelli and Adelson on coring [132], wherein small-amplitude subband pixels are set to zero in a

manner that the authors interpret in terms of a statistical model of the nonlinear interdependence

of subband pixels.
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6.3 Subband Coding

As mentioned in Chapter 5, the performance of a conjoint subband coding system depends on many

factors, including the filter bank structure and the filter coefficients themselves, the order in which

subband pixels are processed, the conditioning neighborhoods used, the complexities and types of

conditional models, and the quantization parameters. Further research is required to determine

the interaction of these factors, and to draw conclusions about the characteristics of a filter bank

best suited to conjoint subband coding.
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CHAPTER 7:

Conclusions

Motivated by the possibility of combining the implementation advantages of sequential processing

with the performance advantages of joint processing, the potential use of high-order conditional

density estimates in conjoint processing was investigated.

To enable effective conjoint processing, a suitable conditional density model had to be devel-

oped. The selected performance criterion for the model was predictive accuracy as measured by

empirical conditional relative entropy. The CART methodology was used to partition conditioning

space in an appropriate way; mixture densities were then fit to each leaf in the tree. A suitable

splitting/pruning cost was developed, and suitable means were devised to determine the complex-

ity of the tree and the leaf mixtures automatically from the data. This was accomplished using

a histogram approximation to the would-be current mixture likelihood for the splitting/pruning

cost and crossvalidation to determine the appropriate complexities of the leaf mixtures as well as

that of the tree itself. It was found that a suitable complexity for the histogram approximation

to the current likelihood could be selected reliably using Laplace's rule for regularization. This

basic technique was then softened by estimating the posterior leaf membership probabilities using

another mixture of Gaussians in the conditioning space, fitting exactly one component to each leaf,

then multiplying by the leaf populations in the training data and normalizing to get the posteriors.

These were then used as weights in mixing together the leaf-specific conditional densities, thereby

in effect softening the splits. Finally, the technique was preceded by an initial linear regression step

in a hybrid scheme. The technique and its two variants were found to perform well in experiments

while having the additional desirable characteristic of automatically controlling their own com-

plexity in an appropriate way. In examples involving simulated data and later in real applications

involving images and textures, the proposed approaches were found to consistently outperform

mixtures trained by standard algorithms, which we and others in the lab had been using previ-

ously. Gratifyingly, little if any performance cost seems to result from the added flexibility, though

in general more training data is required for a given level of performance than in models that

make more restrictive correct prior assumptions. Of course, if the restrictive prior assumptions are

incorrect, then the more flexible scheme we have proposed enjoys a strong advantage.
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The conjoint processing experiments on natural images and textures were successful and en-

couraging. We had no expectation of beating the best performance reported in the literature for

the applications considered, because our models were not designed to adapt to changing source

statistics. Still, the performance of conjoint lossless and lossy compression was respectable even in

absolute terms. In the texture synthesis application, the conjoint approach was found to perform

surprisingly well, resulting in synthesized textures which in some cases exhibited much more real-

istic structure than those obtained using standard approaches. Multiresolution texture synthesis

using multiple neighborhoods and models and a coarse-to-fine pixel ordering was found to perform

exceptionally well. In Chapter 5, the multiresolution texture synthesis procedure was reinterpreted

in terms of filling in subband pixels in a pyramid. Based on the example presented there, it is

conjectured that the visually best textures result from using the simplest (i.e., identity) filters.

It is believed that simpler filters work better in this application because nonlinear dependence is

easier for the conditional density models to discover or understand in the original pixel domain.

Another example of apparently the same phenomenon was observed in the case of a filter-aided

quantization system applied to broad-tailed i.i.d. sources. There, filtering that was beneficial when

independent processing was used became significantly detrimental when joint processing (this time,

vector quantization) was allowed. Based on these examples and the apparent mechanism of spa-

tial smearing behind the phenomenon, it is conjectured that the best filters for conjoint or joint

subband coding will have less frequency selectivity and more spatial selectivity than the filters

considered best for standard subband coding. Although the experimental performance curves for

conjoint subband coding presented there did not confirm this, those curves were based on a single

choice for the many orderings, neighborhoods, and parameter values possible, and it is therefore

difficult to draw any strong conclusions. The curves did seem to suggest, however, that the precise

characteristics of the filter bank is less critical for conjoint than for traditional subband coding, and

that conjoint subband coding can offer a performance advantage over traditional subband coding.

Finally, we note that the research described in this thesis has begun to find application in

research done by other groups within the Media Lab. Application of our multiresolution method

of texture synthesis to sound textures in joint work with Nicolas Saint-Arnaud [115] has already

been noted in Chapter 5. Recently, Judith Brown [15] adapted our conjoint texture classification

technique [96] to the problem of identifying musical instruments from sound samples, with en-

couraging results [16]. Eric Metois [78] and Bernd Schoner [119] trace the development of their

Cluster- Weighted Modeling work [44] with Neil Gershenfeld to ideas gleaned from our papers on the
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application of mixture models to high-order conditional density estimation for texture synthesis [96]

and compression [98].
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APPENDIX A

Economized EM Algorithm for Mixture Estimation

This appendix presents a computationally economized, approximate version of the expectation-

maximization (EM) algorithm for mixture density estimation, based on the standard version pre-

sented in Section 2.6. The degree of computational savings achieved is strongly data dependent,

and it is even possible that the technique will result in no savings at all on a given training sequence.

However, on the image data and image subband data considered in this thesis, the technique has

generally resulted in a computational savings of between 10 and 25 percent. The fractional savings

appears to increase slightly with the dimensionality of the observation space and the number of

mixture components, but this dependence appears to be negligible relative to the effect of variations

in the specific training sample.

The economized algorithm requires that the mixture component densities be separable and

bounded. For concreteness, it is also assumed here that the components are Gaussian, though this

assumption can be obviated by making minor modifications.

The savings is achieved in part by curtailing the computation of each posterior probability

in the E-step as soon as it can be determined that that probability will be negligible. Once

insignificant clusters have been so identified in the E-step, further computational savings is achieved

in the M-step by simply eliminating the corresponding insignificant terms from the parameter-

update summations. The latter savings is straightforward; the more interesting part is the E-step.

To describe it, it is sufficient to consider the processing of a single training point z. As elsewhere,

the dimensionality of z is denoted by Dz, and the number of mixture components by M.

There is necessarily a degree of arbitrariness in selecting the threshold value of posterior

probability required for a cluster to be deemed significant. It will prove convenient to specify the

criterion for significance through a parameter ( E [0,1), as defined below. This parameter will be

seen to have two related interpretations: as an upper bound on the fraction of the training-point

likelihood that might be discarded by neglecting insignificant clusters (see the final inequality

in (A.4), below), and as an absolute threshold such that clusters having posterior probabilities

greater than (/M are guaranteed to be retained. The converse is not true; clusters having posterior

probabilities less than ( are not guaranteed to be discarded.
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Figure A.1: The economized approximate EM algorithm typically results in a modest but
useful computational savings over the exact algorithm, with greater savings occuring in the case
of more complex mixtures. These graphs illustrate the difference in computational cost between
the exact and approximate EM algorithms, for training data consisting of 5 x 5 neighborhoods
(treated as 25-dimensional vectors) randomly selected from a collection of 26 monochrome natural
images. Graph (a) corresponds to a training set of size |L| = 5, 000 and a mixture complexity
of M = 16, while for graph (b) ILI = 50, 000 and M = 64. The computational savings in these
cases, measured at the time of program termination at equal likelihood, are (a) 11.3%, and (b)
15.7%. The algorithms were compiled using Gnu C++ version 2.7.2 with the -02 optimization
flag specified, and executed on an HP 9000/755 workstation. The compuational costs in CPU
seconds were calculated from actual counts of CPU clock cycles specifically used by the processes.

With ( E [0, 1) fixed, each cluster is considered in sequence. For the mth cluster, a set of

cluster indices Mm and a partial likelihood Qm are defined recursively as

Mm = i < m : P(i)f(zIi) ;> +Qi} (A.2a)

Qm = S P(i)f (zli) (A.2b)
iEMm

with Mo taken to be the empty set. Mm is the set of indices of the clusters deemed significant

among those considered thus far, while Qm can be interpreted as the portion of the training-point

likelihood f(z) accounted for by those clusters. Trivially, the following inequalities hold for every

E [0, 1) and every m {1,..., :

0 < Qm ! f(z) (A.3a)

0 g Mm {1,..., M} (A.3b)

Note that in order that the upper bounds hold with equality, it is sufficient (but not necessary)

that = 0 and m = M.
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Now let Mmc denote the complement of Mm with respect to {1, ... , M}. Then QM satisfies

f (z) = P(m)f (zlm) + E P(m)f (zlm)
meMM mEM MC

M

Ef(z) (A.4)
mEMM C

(1 - )f (z)

This chain of inequalities establishes that, for small (, QM is a good approximation to the training-

point likelihood f (z). Thus, equations (A.2a) and (A.2b), along with the initial condition M 0 = 0,

define an algorithm for approximating the likelihood with bounded fractional approximation error.

After MM and QM have been computed in a first pass through the clusters, the posterior

probability P(mlz) for each cluster may be approximated in a second pass as

P (mlIz) P(m)f(zm)/QM if m C MM
0 otherwise.

Note that if P(mlz) > (/M, then f(z) > QM&/M, so that clusters with significant posteriors

are in fact guaranteed to be retained, albeit with approximated posterior cluster-membership

probabilities.

If z is such that |M M I < M (which is usually the case if M is large), then the comparison called

for in (A.2a) can be carried out efficiently as follows. Separability, boundedness, and Gaussianity

of the mixture components are now assumed. The likelihood of the mth component density is

Dz1
f(zlm) = JJ (27ro )- exp(--(zd - m)2 d)

d=1

Define the auxilliary quantity o-2md for d = 0,.D, - 1 as

E2 = minf o2 }

The boundedness of f(zIm) implies o > 0. To determine whether P(m)f(zm) Qm-1, only

the first dom coordinates of z need be considered, where

dom = min{d : (27rm)P(m) - _1d f (zj) < - Qm-} if such an n exists;
Dz otherwise.

This is the part of the economized algorithm that effectively generalizes the partial distance method

[45] of fast codebook lookup to the probabilistic setting, as alluded to in Section 2.6.
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A remaining issue concerns those training points which are initially outliers for every cluster.

Even when the mixture parameters are initialized by the generalized Lloyd algorithm using Voronoi-

cell-specific statistics, it occasionally happens that f (z) is vanishingly small so as to cause numerical

difficulty in evaluating the summation called for in (A.2a). In such cases, the numerical difficulty

can be removed by replacing Qm with

' max {P(i)f(zli)},

then working in the logarithmic domain. This substitution has been found to result in a useful

estimate of the posterior cluster-membership PMF for outliers, although the final inequality in

(A.4) is no longer automatically satisfied.

Note that an infinitessimal value for f(z) is not inconsistent with a meaningful posterior

cluster-membership PMF. In fact, such outliers should be allowed to - and are expected to -

exert considerable influence on the evolution of parameter values of the clusters to which they

belong.
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APPENDIX B

Variable-Localization Filter Banks

To facilitate study of the effect of the space-frequency localization tradeoff on the performance of

systems that employ criticially sampled filter banks, it is desirable to have a collection of filter

banks which differ in this tradeoff but which are otherwise as identical as possible. The uncer-

tainty principle for continuous signals [128] limits the degree of localization that can be achieved

simultaneously in the spectral and spatial (or temporal, in the case of audio signals) domains. It is

well known that signals with a Gaussian envelope achieve the limit when the product of the second

central moments in the two domains is used as the joint localization criterion. For discrete-space

or discrete-time signals, such a product is minimized trivially by any filter having a single nonzero

coefficient and a correspondingly flat spectrum; hence the motivation for Gaussian envelopes does

not carry over to discrete time. In particular, sampled Gaussian-envelope responses are not guar-

anteed to be optimally localizing in any usual sense of the term (though qualitatively they may

seem reasonable). More importantly for present purposes, given the absence of a corresponding

localization criterion, there does not seem to be a natural way of incorporating the objective of

near-Gaussianity into a design procedure for filter banks.

An alternative joint-localization criterion directly applicable to the discrete case was proposed

by Slepian [134], and one we specifically devised for the design of nonuniform filterbanks for image

processing was proposed in [92]. The latter criterion is quite complex in its generality, but simplifies

greatly in the case of a uniform two-band orthogonal filter bank, becoming a weighted sum of the

spatial and spectral second central moments. A numerical procedure for designing such filter

banks is summarized below. At the end of this appendix, a set of resulting filter banks varying in

localization tradeoff is tabulated; these were used in the experiments described in Chapter 5.

It is assumed that the filter bank is as shown in Figure 2.1.1, with K = 2, and the subsampling

performed out-of-phase. That is, the even samples are retained in one band and the odd in the

other. Let the region of support be {-L, ... , L} for all of the filters. Subject to the constraint of

perfect overall reconstruction and the additional constraints

hi(n) = gi(n) = (-1)"g2 (n) = h2 (n), n E {-L,...,L}; (B.1)

hi(n) = hi(-n), n E {-L,). .. , L}; (B.2)
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L

Sh'(n) = 1; (B.3)
n=-L

L

E h2(n) = 0, (B.4)
n=-L

the object is to choose {hi(n)} to minimize the joint-localization criterion

7r L

w2|H(W)|2dW + a L n2h2(n), (B.5)
n=-L

where
L

HI(w) = S hi(n)e--jn,
n=-L

and where a is a parameter intended to control the tradeoff between spatial and spectral localiza-

tion. Constraints (B.1) and (B.3) together imply strict orthogonality, while (B.4) ensures that DC

doesn't leak into the high band. The symmetry constraint (B.2) is necessary for the filters to have

zero phase, which is generally desirable in image processing applications.

Since the gradient of (B.5) is readily computable, the required optimization search is straight-

forward. The adaptive hill-descending technique described in [92 was used to obtain filter banks

having the low-pass analysis impulse responses tabulated in Table B.6. These responses are also

presented graphically in Figure 5.2.2, while the corresponding magnitude-frequency responses are

shown in Figure 5.2.1. To speed the optimization and to reduce the chances of falling into an

undesirable local minimum, the orthogonal nine-tap filters proposed in [131] were used as initial

guesses after appropriately padding by zeroes.
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Table B.6: Numerically Computed Low-Band Filter Bank Coefficients

n a=5 a=1 a=0.5 a=0.1
-9 -0.000678 0.000025 0.000022 -0.000387
-8 -0.001779 -0.000272 0.000956 0.006392
-7 0.003983 0.000454 -0.001733 -0.007325
-6 -0.005156 -0.002772 -0.004758 -0.017299
-5 0.007218 0.005809 0.010560 0.030681
-4 -0.009002 0.010479 0.021303 0.037582
-3 0.008213 -0.035557 -0.060045 -0.104877
-2 -0.068062 -0.070450 -0.068467 -0.055986
-1 0.334857 0.382826 0.404758 0.435601
0 0.875205 0.833145 0.809056 0.765990
1 0.334857 0.382826 0.404758 0.435601
2 -0.068062 -0.070450 -0.068467 -0.055986
3 0.008213 -0.035557 -0.060045 -0.104877
4 -0.009002 0.010479 0.021303 0.037582
5 0.007218 0.005809 0.010560 0.030681
6 -0.005156 -0.002772 -0.004758 -0.017299
7 0.003983 0.000454 -0.001733 -0.007325
8 -0.001779 -0.000272 0.000956 0.006392
9 -0.000678 0.000025 0.000022 -0.000387
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