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Abstract

Advanced Driver Assistance Systems (ADAS) have become integral to developing new automotive
vehicles due to increasing safety and comfort requirements in the driving experience. An essential
task of an ADAS pipeline is semantic segmentation, which must meet real-time requirements
while operating in a power-constrained environment. Using the 3D point cloud generated with
light detection and ranging (LiDAR) or images, convolutional neural networks (CNN) such as
SalsaNext and SemanticFPN can perform semantic segmentation. Although it is possible to
run these computationally expensive and highly parallel algorithms on Graphics Processing Units
(GPU), Field Programmable Gate Arrays (FPGA) can be better performing and more power-efficient
alternatives. The CNNs’ performance can be further improved by applying channel pruning at the
cost of accuracy.

This dissertation implements accurate and automatic channel pruning (AACP), an evolutionary
genetic algorithm that automatically performs channel pruning to any CNN using dependency
graphs. Then, it applies the Vitis AI workflow to quantize and generate deployable models
of multiple pruned and unpruned versions of SalsaNext and SemanticFPN to run on the Deep-
Learning Processing Unit (DPU) in a Xilinx Versal ACAP VCK190 FPGA board. The resulting
DPU implementations match the performance on SalsaNext and achieve on average 2.25× better
performance on SemanticFPN while being 10× more energy efficient when compared to a desktop
GPU.
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Resumo

Os Advanced Driver Assistance Systems (ADAS) tornaram-se parte indispensável do desenvolvi-
mento de novos veículos automóveis devido ao aumento dos requisitos de segurança e de conforto
na experiência de condução. Uma tarefa essencial de um ADAS é a segmentação semântica,
que deve cumprir requisitos em tempo real enquanto opera num ambiente com restrições de en-
ergia. Utilizando a nuvem de pontos 3D gerada com light detection and ranging (LiDAR) ou
imagens, convolutional neural networks (CNN) como SalsaNext e SemanticFPN conseguem efetuar
a segmentação semântica. Embora seja possível executar estes algoritmos computacionalmente
dispendiosos e altamente paralelos em Graphics Processing Units (GPU), Field Programmable Gate
Arrays (FPGA) podem ser uma alternativa com melhor desempenho e maior eficiencia energética.
O desempenho das CNNs podem ainda ser melhoradas aplicando a poda de canais, à custa da
precisão.

Esta dissertação implementa o accurate and automatic channel pruning (AACP), um algoritmo
genético evolutivo que efectua automaticamente a poda de canais a qualquer CNN utilizando grafos
de dependência. Em seguida, aplica o fluxo de trabalho Vitis AI para quantizar e gerar modelos
executaveis de várias versões podadas e não podadas de SalsaNext e SemanticFPN para serem
executados na Deep-Learning Processing Unit (DPU) numa placa Xilinx Versal ACAP VCK190
FPGA. As implementações de DPU resultantes mantêm o desempenho em SalsaNext e alcançam
em média um desempenho 2.25× melhor em SemanticFPN, sendo 10× mais eficientes em termos
energéticos, quando comparadas com uma GPU de computador.
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Chapter 1

Introduction

Studies carried out by the World Health Organization show that 1.25 million deaths occur every

year due to road traffic accidents, which lead to a decrease of 1 % to 2 % of gross domestic product

from every country in the world [1]. Due to these high fatality rates and monetary costs, it is

increasingly evident that advanced driver assistance systems (ADAS) — such as lane keeping,

automatic braking, adaptive cruise control, autonomous driving, and many others — need to be an

integral part of a modern vehicle’s safety apparatus.

ADAS can be categorized by the type of sensor they use (figure 1.1) or the level of automation

— as defined by the Society of Automotive Engineers (SAE) J3016 standard, which can be seen in

table 1.1 [1].

ADAS

VisionLiDARRADAR Ultrasonic Others

Stereo
Camera

Monocular
Camera

Infrared
Camera

Figure 1.1: Taxonomy of ADAS based on the type of sensor (adapted from [1]).

Even though fully autonomous ADAS are still years away [2], level three systems are already

seeing use in production vehicles [1].

Traffic scene detection, an integral part of an ADAS pipeline, can be separated into two sub-

tasks: object detection, which aims at distinguishing variously defined objects — such as vehicles,

pedestrians, and traffic lights —, and road/lane detection, which results in a deeper understanding

of the drivable area, including road marking detection, lane detection, and road segmentation [2].

This work focuses on semantic road segmentation since it helps better understand the scene by

predicting a meaningful class label for each sensor point [3].
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Introduction 2

Table 1.1: SAE J3016 levels of driving automation (adapted from [1]).

Level Definition Monitoring of Driving Environment

Zero No automation

Human driverOne Driver assistance

Two Partial automation

Three Conditional automation

SystemFour High automation

Five Full automation

For this task, several sensors can be used to gather information about the scene. Camera-based

systems (monocular or stereo) are the most common vision systems because of their low cost

and similarity to human sight. Nonetheless, they are often unreliable, given the variety of road

appearances, problems with image clarity, and poor visibility conditions. By employing active

sensors such as light detection and ranging (LiDAR) sensors, that measure the distance from the

reflection of emitted laser beams by the time of flight (TOF), semantic road segmentation can

become robust to diverse environmental illumination while achieving higher accuracy [2].

Since ADAS perform safety-critical functions in a mobile environment, accuracy is necessary

while not sacrificing real-time performance and power consumption. To evaluate and compare differ-

ent methods of semantic segmentation, openly available datasets exist, such as the SemanticKITTI,

which provides over 43000 point-wise annotated full 3D LiDAR scans [4], and CityScapes, with

5000 pixel-level annotated RGB images [5].

With developments in advanced deep neural networks (DNN), it was recently possible to achieve

a massive leap in accuracy and reliability in semantic segmentation. However, these models are

computationally heavy, making them unsuitable for real-time deployments. Significant performance

gains can be made using model compression techniques, such as pruning and quantization.

Graphics Processing Units (GPU) are a prominently used platform for parallel computing

(suitable for tasks such as deep neural networks). However, their power consumption is very high,

making them unsuitable for vehicles with limited power supply. Field Programmable Gate Arrays

(FPGA) present a better alternative because of their lower power consumption and ability to perform

massively parallel processing and data on-chip communication [2]. Tools such as Xilinx Vitis AI

aim to provide an integrated development environment that can expedite the implementation of

artificial inteligence (AI) inference on Xilinx FPGAs. The toolchain provides optimized intelectual

property (IP) cores — Deep-Learning Processing Unit (DPU) —, libraries, and tools for this [6].

Objectives

The main objective of this dissertation is to develop hardware implementations of semantic segmen-

tation DNNs with characteristics suitable for autonomous driving.
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In this context, SalsaNext [3], a LiDAR-based semantic segmentation network, is implemented

in a Xilinx Versal ACAP VCK190 FPGA board to obtain real-time performance (10 Hz in the case

of LiDAR, which is the usual output rate of the sensors) utilizing Vitis AI 3.0. To further improve

performance, channel pruning is applied to the model while reducing its impact on accuracy.

In order to verify the workflow, another model, Semantic Feature Pyramid Network (FPN) [7]

with the MobileNetV2 backend, was also implemented.

Furthermore, these FPGA implementations’ performance (latency and accuracy) and energy

efficiency are evaluated and compared against a traditional GPU implementation.

Organization of the dissertation

Chapter 2 presents needed background information about how LiDAR works and the different

interpretations of such signals, and a brief overview on Artificial Neural Networks (ANN) and

FPGAs. It also lays out the state-of-the-art DNNs for semantic segmentation models, methods for

implementing these networks in hardware, and introduces techniques for optimizing them, such as

quantization and pruning.

Having laid out the theoretical background needed, chapter 3 addresses the problems with

pruning a complex DNN and describes in detail the chosen pruning algorithm, accurate and

automatic channel pruning (AACP), an evolutionary genetic algorithm. It also highlights implemen-

tation details, such as an efficient estimation of the computational complexity of a given pruning

configuration and optimizations for managing the system memory when pruning.

Chapter 4 outlines the full workflow to implement the DNN in hardware by going through

modifications made to the chosen models and the different pruning experiments done to them. Then,

it describes the quantization process and the problems encountered when applying it. Finally, the

hardware implementation of the quantized network and the methods for evaluating the final results

are elaborated.

Chapter 5 shows the pruning results obtained from both models. Later, the quantization

accuracy loss of the models’ different pruned and unpruned versions is analyzed. Finally, the DPU

implementation of the quantized models’ throughput performance and energy efficiency of these

different configurations is compared against the floating-point GPU versions.

Chapter 6 concludes the dissertation, taking away the main points of the research and suggests

future work for further improvements for the implementation of FPGA-based inference of semantic

segmentation neural network models.



Chapter 2

Background and State of the Art

2.1 Light Detection and Ranging

LiDAR works by emitting a laser beam at an object and then measuring its TOF, in order to

calculate the distance to an object [1]. By firing such beams in all directions, a 360◦ 3D point cloud

can be generated, typically at 10 Hz [3]. Figure 2.1 shows a visualization of a LiDAR output.

Figure 2.1: An illustration of a camera view and the corresponding LiDAR points (from [2]).

This unstructured data is commonly processed with two methods:

• Point-wise representation, that directly processes the raw 3D points without applying any

additional transformation or pre-processing. These tend to perform well for small point

clouds but do not scale well due to their processing capacity and memory requirement.

• Projection-based rendering, which transforms the 3D point cloud into another format like

voxel cells, multi-view representation, lattice structure, and rasterized images. A common

method is to project the 3D point clouds into 2D image space in a top-down or range-

view (RV), i.e. panoramic view, format. Contrasted with point-wise representation-based

approaches, 2D-rendered image representations are denser, more compact, and easier to

perform computations, as 2D convolutional layers can be taken advantage of [3].

4



2.2 Artificial Neural Networks 5

In order to obtain a 2D RV image, each 3D LiDAR point p̂ = (x,y,z) can be mapped to spherical

coordinates, and finally to image coordinates (u,v) as(
u

v

)
=

(
1
2 [1− arctan(y,x)π−1]w

[1− (arcsin(z,r−1)+ fdown) f−1]h

)
, (2.1)

where the height and width of the projected image are given by h and w respectively, f = fup+ fdown

is the vertical field-of-view of the LiDAR sensor, and r = ||p̂|| is the range of said point.

This image can be further enhanced by combining for each of its (u,v) pixels the original x, y,

z values, the intensity and the range r as different channels, resulting in a [w×h×5] tensor, thus

reducing the problem from point-cloud segmentation to image segmentation [8].

2.2 Artificial Neural Networks

ANNs are a type of computational model that tries to mimic the way the human (or, more generally,

the mammal) brain works by layering interconnected nodes called perceptrons (basic neuron-like

structures, commonly called neurons), which process and transmit information [9]. Each neuron

receives input from other perceptron and applies a transformation, such as a nonlinear activation

function, to produce an output. The output of one layer of neurons is passed as input to the next

layer until the final layer produces the desired output of the network. This structure is shown by the

3-layer example in figure 2.2.

input
layer

hidden
layer

output
layer

Figure 2.2: Visual representation of a fully connected ANN with three input neurons, four hidden
neurons (given this name as their output value is not visible in the network’s output), and two output
neurons.

Every perceptron connection has an associated weight ωi and bias bi, which are linearly

combined with the outputs of the previous neurons x and fed into an activation function f , resulting

in the output y as is shown in equation (2.2).
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y(x,ω,b) = f

(
∑

i
xiωi +b

)
(2.2)

These activation functions have to be non-linear because the opposite would result in being

able to compute each output by a simple linear expression. Therefore generalization of the model

would be impossible to achieve.

Machine learning can be achieved by adjusting these variables to minimize a predefined

cost function. In 1986 a breakthrough in the field came under the name of the backpropagation

algorithm [9], which allowed for the training of the neural networks with input-output samples.

Since a neural network can be seen as a nonlinear parametric function, training a neural network does

not significantly differ from training other parametric prediction models. The necessary components

include training examples, a loss function to measure the model’s accuracy, and an iterative

optimization method like gradient descent to optimize the cost function. Training neural networks

can be challenging due to their complex multilayer structure and difficulty in calculating gradients,

which are necessary for optimization. Initially, the Heaviside activation function was commonly

used in ANNs, which is discontinuous. To address this issue, a differentiable approximation of the

Heaviside function, such as the logistic sigmoid function (shown in figure 2.3), was used for the

development of a practical algorithm for training a neural network.

0

0.5

1

x

y

heaviside
sigmoid

Figure 2.3: The Heaviside function (in red) and a sigmoid logistic function (in blue). As can be
seen, the Heaviside function shows a discontinuity at x = 0.

Other activation functions have been proposed, such as the rectified linear unit (ReLU), defined

as

f (z) = max{0, z}, (2.3)

with its derivative begin equal to one for z > 0 and equal to zero for z < 0. It has been shown

that the ReLU’s non-linearity can speed up the training process when applied to hidden layers of

deep networks due to the derivate not slowing down when approaching small values and due to not

saturating for positive values [9]. However, training freezes when z < 0. To solve this, the leaky

ReLU was proposed, changing the function to have a negative slope α for inputs z < 0, usually set

to a small value such as 1×10−2 [10], and resulting in

f (z) = max{0, z}+α minmax{0, z}. (2.4)
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With the huge leaps in computer power and parallelization due to the use of GPUs, ANNs

with several hidden layers, called DNNs, became widespread. Although more computationally

expensive, they allow for much more complex models, which have allowed them to dominate the

machine learning field since the 2010s [9].

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of neural network that learns features from

data during the training process, rather than using pre-defined feature vectors like traditional

ANNs. They gained recognition for their success in optical character recognition (OCR) tasks in

recognizing handwritten digits [9]. They are named “convolutional” because they use convolutions

in the first layers instead of the inner products used in traditional fully connected networks.

One reason CNNs were developed is that raw data can be too complex and large to be directly

inputted into a network. For example, a one-channel image array with a resolution of 256×256

would produce an input vector of approximately 65000 elements. If the first layer of the network

has 1000 nodes, the number of parameters connecting the input to the first layer would be around

65 million. This number would increase even more for high-resolution images or images with

more channels (such as color images). Such a large number of parameters can lead to overfitting,

meaning the network performs poorly on new data. Additionally, vectorizing the image data also

causes a loss of information about the relationships between pixels (i.e., locality), which can be

crucial for learning [9].

Convolutional networks address these issues by combining multiple convolution layers. These

layers perform their eponymous mathematical operation, which involves passing a filter or kernel

over the data, effectively applying element-wise multiplication, and then summing the results. This

process helps not only to extract crucial localized features from the raw data but also to preserve

the spatial relationships between elements. Each layer can have any number of input and output

channels. As shown in figure 2.4, a window of input data corresponding to the output value is

multiplied element-wise with the kernel associated with the output channel, and the results are

accumulated. Each input channel has as many kernels as the layer’s output channels, and the result

of each input channel is summed into a single set of output channels [9].

The network can learn patterns and features from the data without requiring many parameters

by using them. Some operations can be added to improve the results. The nonlinearity step involves

applying a nonlinear function to the output of the convolution step, and the pooling step involves

reducing the data size by summarizing it in some way, such as taking the maximum or average

value. These steps allow the network to learn more complex patterns and features from the data

while maintaining a manageable number of parameters [9].
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Figure 2.4: Illustration of the convolutional part of a 2D convolutional layer with a single input
channel and three output channels.

2.2.2 Residual Networks

DNNs have become increasingly deep to cope with more complex problems. However, due to the

multiplicative nature of the gradient calculation used in the backpropagation algorithm, if the values

of the parameters get either too small or too big, it can cause phenomena known as vanishing and

exploding gradients. If the gradients get vanishingly small, training can get extremely slow. On

the other hand, if the gradient values explode, the network weights get pushed past their optimal

region [9].

To simplify the weights’ optimization, so-called residual building blocks, shown in figure 2.5,

that combat the vanishing/exploding gradient problems were introduced [9]. These blocks group

several layers and create two parallel paths, one with the standard transformations and one with the

identity operation — often called shortcuts, skip connections, or residual connections. These two

paths are merged together into a single output of the group. If the outputs of both paths do not have

equal dimensions, the shortcut has to be changed from an identity to a matrix multiplication of the

appropriate dimension.
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Figure 2.5: Layout of a CNN with the use of two residual blocks (adapted from [9]).
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2.2.3 Batch Normalization

An essential contrast in the training process of DNN architectures versus single-layer models is

the dynamic nature of the input distribution for each layer, as it changes through each iteration of

parameter updates. This results in a slower training pace as it necessitates lower learning rates. It

also increases the sensitivity of the training to initial parameter settings. One mitigation strategy

for such issues is the application of batch normalization. It is commonly recommended during

preprocessing to standardize input variables to have zero mean and unit variance, as this helps

avoid significant dynamic range variations across the inputs. Batch normalization employs this idea,

enforcing similar scaling on the activation values produced by all the network layers. Variations of

this concept exist, with some implementing normalization before the nonlinearity, others after [9].

More concretely, this operation employs the transformation on the input x

f (x) = γ
x−µx

σx + ε
+β , (2.5)

with γ and β being the learnable parameters usually set to vectors of ones and zeroes, respectively

and ε a very small value to avoid divisions-by-zero (in the order of 1×10−5). µx and εx are the

running estimates of the mean and standard deviation of the input x [9], [11].

2.3 Field Programmable Gate Arrays

FPGAs are configurable integrated circuits that can perform massively parallel computation and

high throughput on-chip data communication. Their main components are configurable logic blocks

(CLB) and look-up-tables (LUT). CLBs contain several LUTs, as well as a configurable switch

matrix, selection circuitry (multiplexers), registers, and flip-flops. LUTs are essentially hardware

versions of truth tables used in CLBs to implement any desired boolean function. They can also be

used as small memories or small random access memorys (RAM). Static Random Access Memorys

(SRAM) blocks can be found throughout the programmable logic (PL) fabric and can be connected

to create larger, deeper memories or RAMs [12].

One of their main advantages is their flexibility. Unlike traditional application specific integrated

circuits (ASIC), designed to perform a specific function and cannot be easily reprogrammed, FPGAs

can be reconfigured to perform a wide range of tasks. This allows for faster design cycles and the

ability to make changes to a system without the need for expensive redesigns of ASICs.

Despite their many benefits, FPGAs have some limitations. They are generally more expen-

sive than general-purpose microprocessors and have a longer development time than traditional

programming, requiring specialized hardware description languages such as VHDL or Verilog. In

addition, FPGAs are not as easily scalable as ASICs, which can be more efficient for large-scale

production.

FPGAs also offer faster performance than a microprocessor — central processing unit (CPU) or

GPU — in certain applications, as they can be optimized to perform specific tasks in parallel rather

than sequentially. They also consume less power and generate less heat than a general-purpose
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microprocessor for specific computational tasks, making them well-suited for use in portable or

battery-powered devices.

Given this, they are ideal for the processing of LiDAR 3D point clouds and the inference of

DNN in a power-constrained real-time environment such as the one in ADAS [2].

There has been a trend towards the integration of PL, CPU — commonly called processing

system (PS) —, and software-programmable acceleration engines into a single device, known as an

Adaptive System on a Chip (SOC). These devices combine the flexibility and performance benefits

of FPGAs with the scalability and cost advantages of ASICs, making them an attractive choice for

a wide range of applications [13].

One such example is Xilinx’s Versal™ Adaptive Compute Acceleration Platform (ACAP)

architecture [13] (see figure 2.6), which offers a large PL (with 900000 LUTs and 158 Mbit of

RAM), a PS with two dual-core ARM CPUs, a Cortex-A72 application processor and a Cortex-R5

real-time processor, digital signal processor (DSP) engines, network on chip (NoC) capabilities,

and 400 AI engines [14].

Processing System Programable Fabric

Arm
Dual-Core

Cortex-R5F

Intelligent Engines

AI Engines

Programmable Network on Chip

Arm
Dual-Core

Cortex-A72

Custom Memory
Hierarchy

DSP Engines

Accelerator RAM

PCie
CCIX

DDR
LPDDR

32Gb/s
Transceivers

40G Multirate
Ethernet

MIPI

LVDS

3.3V GPIO

Figure 2.6: Versal architecture diagram (adapted from [15]).
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2.4 LiDAR 3D Point Cloud Semantic Segmentation

Semantic segmentation of 3D LiDAR point clouds has seen significant progress in recent years, with

notable improvements in both the accuracy and speed of processing [3], [8], [16]–[20]. However,

the field continues to grapple with the challenge of achieving the optimal balance between these

two conflicting objectives.

The availability of large datasets is essential for the progress of computer vision. Since there

was a lack of such a dataset for LiDAR point cloud semantic segmentation in automotive scenes,

Behley et al. [4] introduced a dense point-wise annotated version of the KITTI Vision Odometry

Benchmark, called SemanticKITTI, which consists of 22 sequences of real LiDAR scans (using the

Velodyne HDL-64E sensor) of roads in and around Karlsruhe, Germany, making up 43000 scans.

These scenes were annotated with 28 classes of interest for ADAS. This dataset is relevant not only

for developing new models but also for their benchmarking to properly compare them in speed and

accuracy under the same conditions.

The most widely used metric in this field, popularized in [21], is the mean intersection-over-

union (mIoU), is defined as

mIoU =
1
C

C

∑
c=1

TPc

TPc +FPc +FNc
, (2.6)

where TPc, FPc and FNc are, respectively, the number of true positive, false positive, and false

negative predictions for a given class c, and with C being the total number of classes [4].

The methods for LiDAR point cloud semantic segmentation differ in their network structure

and how they represent the data, as was explained in section 2.1. Point-wise methods benefit from

the fact that they do not require pre-processing of the data and are shown to achieve good results

with the original PointNet [22] network and its subsequent version, PointNet++ [23]. However,

these were shown not to scale computationally well enough for high-resolution scans.

Projection-based methods, on the other hand, involve transforming the 3D point cloud into a

2D representation. Some methods, like PolarNet [23], use birds eye view (BEV) projection in polar

coordinates, while others, like the SqueezeSeg familly [17]–[19], RangeNet++ [8] and SalsaNext [3]

use a spherical projection to an image, which is then processed using standard 2D convolutional

networks for semantic segmentation. To attain state-of-the-art results in 3D LiDAR semantic

segmentation, SalsaNext [3] implemented several improvements to the SalsaNet [20] network,

such as the incorporation of a new global context block and enhancements on the encoder-decoder

blocks.

As seen in the accuracy comparison in table 2.1, projection-based approaches tend to perform

better, and SalsaNext’s results stand out.
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Table 2.1: LiDAR-based semantic segmentation mIoU results on the SemanticKITTI test dataset
(adapted from [24]).

Type Model mIoU (%)

Point-based

PointNet 14.6

PointNet++ 20.1

SPGraph 20.0

SPLATNet 22.8

TgConv 37.0

RLNet 50.3

Projection-based

SqueezeSeg 29.5

SSG-CRF 30.8

SSGV2 39.7

SSGV2-CRF 39.6

BiseNet 41.4

SalsaNet 45.4

RangeNet21 47.4

Xie et al. 47.9

RangeNet53 49.9

RangeNet53++ 52.2

SSGV3 55.9

SalsaNext 59.5

2.5 Hardware implementation of Semantic Segmentation Networks

Due to the real-time requirements of ADAS, they are often implemented in embedded platforms

such as mobile CPUs/GPUs processors, FPGAs, and ASICs [24]. However, the inference process

of DNNs is very computationally expensive, as it depends on a vast number of multiply and

accumulate (MAC) operations — equation (2.2) —, and requires at least two input values (the

connection weight and the output value of the preceding neuron) that must be fetched from memory.

Similarly, the inference of convolutional layers is costly due to its matrix-multiplication nature.

Therefore, CPUs are not enough for large models since they perform operations sequentially. GPUs,

which were initially designed to perform massive matrix operations for graphical rendering, can be

very performant for this use case, especially on the high end, but exceed in many cases the power

envelope for embedded applications [25].

On the other hand, FPGAs and ASICs are very flexible, which can lead to considerable gains in

performance when compared to the former two. Great research effort has been targeted at FPGA

implementations of DNNs due to their reconfigurable nature and ease of design when compared to

ASICs.
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Several high level synthesis (HLS) tools were developed for synthesizing DNN inference

accelerators to improve performance and further explore the possible design space of such imple-

mentations, such as Haddoc2 [26], fpgaConvNet [27], FINN-R [28], hls4ml [29], NVDLA [30] and

Vitis AI [6]. These aim at turning a high-level description of the network (FINN-R, NVDLA, and

Vitis AI can even take models built with standard machine learning frameworks like PyTorch and

TensorFlow) into optimized deployable accelerators.

Xilinx’s Vitis AI [6] is designed to fully utilize the potential of the AI engines present in the

Versal ACAP architecture and provides optimized IP cores — DPUs —, tools, libraries, models,

and example designs to simplify the development process. It also contains tools such as the Vitis AI

Optimizer, which can, with a combination of pruning and finetuning, reduce the model’s complexity

without degrading its accuracy; and Vitis AI Quantitizer, which reduces the model’s precision from

32-bit floating-point weights to fixed-point that not only require less bandwidth but also can better

leverage the resources present in the FPGA. It offers a complete design flow as seen in figure 2.7.

Figure 2.7: Vitis AI development stack (from [6]).

The DPUCVDX8G is engineered to optimize inference on general-purpose CNN on Versal

ACAP devices. It is made of a combination of both AI Engines and PL components. The

convolution process is entrusted to the AI Engines in the FPGA, with data transfers between the

AI Engine memory tiles and the PL facilitated by the AI Engine interface tiles. In certain high-

performance Versal devices, groups of contiguous AI Engines make up the AI Engine groups for

enhanced computational performance. The PL component, on the other hand, provides a scheduler

module, global memory dedicated to shared weights, and batch handlers for some basic operations.

Figure 2.8 shows a top-level block diagram of the DPU.
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Figure 2.8: Top-level block diagram of the DPUCVDX8G (from [31]).

Szántó et al. [32] benchmarked Vitis AI accelerators for the MobileNet, InceptionNet, Mo-

bileDet, and Yolo4 models on a Versal ACAP device, and compared them to the same models

running on an NVIDIA Jetson AGX Xavier, a GPU-based embedded system on a module for AI

inference. From the results shown in figure 2.9, it can be concluded that depending on the model,

the Versal-based implementations can have extensive performance and power efficiency gains over

the AGX Xavier ones. However, this is less than half the theoretical potential of the AI engines. It

should be noted that these models only used the quantization process provided in Vitis AI, and did

not employ any pruning techniques.

Xie et al. [24] with an FPGA-targeted (Xilinx Zynq UltraScale+ MPSoC ZCU104) CNN using

an NVDLA [30] architecture, were able to achieve a mIoU of 46.4 % with a frame processing time

of 17.76 ms — an improvement by a factor of 2.17 when compared to the same network running

on a high-end desktop GPU — when evaluating on the SemanticKITTI benchmark. Inspired by

ContextNet, BiSeNet, and SalsaNext, the proposed model used a multi-branch design, combining

extracted spatial and contextual features. The input pre-processing (projecting the raw LiDAR

points) was done in software running in the PS and then passed to the inference accelerator via the

AXI4 bus. This work shows great promise for the further development of such an approach, since

Xilinx’s more recent Versal ACAP, with its AI engines, could increase the gains in performance

and allow for more complex networks, leading to better accuracy.
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Figure 2.9: Xilinx Versal vs NVIDIA AGX Xavier AI inference benchmarking results (adapted
from [32]).

2.6 Deep Neural Network Optimization for Hardware Implementa-
tions

Several optimization techniques exist for accelerating neural networks on FPGAs and ASICs,

including weight pruning, quantization, and model compression. They aim to reduce the compu-

tational complexity and power consumption of neural networks, allowing them to meet real-time

goals and making them more suitable for deployment in resource-constrained environments such as

embedded systems for ADAS [25].

2.6.1 Quantization

Quantization is a technique used to decrease memory and computing requirements by converting

continuous or large sets of data into a smaller, discrete set through the use of a linear or non-

linear function. By reducing the precision of values, the number of bits needed to represent them

is reduced, making it possible to reduce memory consumption and bandwidth and utilize more

efficient logic [25].

According to the IEEE 754 standard, a 32 bit floating-point value (−1)s ·m ·2e−127 is represented

by the bit string made up of the 1 bit sign s, the 23 bit exponent e and the 28 bit mantissa m. This

makes it possible to represent numbers ranging from 10−38 to 1038. On the other hand, fixed-point

representations in two’s complement have an integer part (of width I) and decimal part (of width

D, called the scale factor), where D determines the position of the decimal point and the precision

of the representation. This makes them able to represent numbers from −2I to (2I−1−2−D), with

a quatitization step of 2−D. Since the size of D is flexible, this representation can be tailored for
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specific ranges. This is useful for neural networks because it allows adaptation to different ranges

of weights and activations in different layers.

However, quantization can lead to a decrease in the model’s accuracy. Therefore, the quantized

weights and the scale factors must be fine-tuned after the quantization of the model.

2.6.2 Pruning

Some connections and neurons in an ANN may have a negligible contribution to the final output.

Network pruning works by removing such connections, thus reducing the computational complexity

of inference while trying to minimize accuracy loss as much as possible. There are essentially two

pruning methods, seen in figure 2.10: fine-grained and coarse-grained pruning [25], [33].

(a) Original network (b) Fine-grained pruning (c) Coarse-grained pruning

Figure 2.10: Visualization of fine-grained and coarse-grained pruning. Connections and neurons in
gray dashes represent pruned elements.

Fine-grained pruning, also known as sparse pruning, removes redundant weights, which results

in the creation of sparse matrices. However, it requires specialized hardware and techniques

for weight skipping and compression. At this time, Vitis AI has not implemented this type of

pruning [33] due to their DPU not supporting weight skipping.

Coarse-grained pruning, some times referred to as structured pruning, on the other hand,

involves the elimination of neurons that do not significantly contribute to the accuracy of the

network. When applied to convolutional layers, it is called channel pruning. This method involves

pruning entire convolution channels, i.e., changing the number of either input or output channels.

Its advantage is that it does not require the use of specialized hardware for the acceleration of

inferences.

Pruning always reduces the accuracy of the original model. Retraining or fine-tuning can be

used to adjust the remaining weights to recover the accuracy.

Kang [34] introduced a new pruning scheme for CNNs that takes into account ASIC and FPGA

sparse accelerator architectures, since inefficiencies may arise when not taken into consideration,
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such as internal buffer misalignments and load imbalances. Therefore, it aims at balancing weight

fetching for simultaneous activations by keeping the same number of weights in each group.

Li et al. [35] proposed AdaPrune, a novel approach for the same problem that promises

to improve both performance and energy efficiency while not degrading accuracy. It uses two

techniques: input and output channel group pruning. By alternating between these two, it aims at

evenly distributing the zeros in each weight-fetching group.

MetaPruning [36] is a channel pruning approach that requires the training of a PruningNet, a

meta-network that can generate weights for any network pruning configuration. Then, by applying

an evolutionary procedure, it tries to maximize the inference accuracy of the population.

Lin et al. [37] proposes ABCPruner, an Artificial Bee Colony (ABC) algorithm that tries to

find the optimal channel pruning structure by first shrinking the search space by randomly pruning

an upper-bounded percentage of the channels of each layer and then using the ABC algorithm to

optimize the structure while fine-tuning each candidate for better inference accuracy estimation.

Li et al. [38] introduces EagleEye, a pruning algorithm that randomly generates pruning strate-

gies and chooses the winner based on Adaptive Batch Normalization, which works by recalibrating

the model’s batch normalization layers and then calculating the accuracy on the dataset. As such, it

avoids training and substantially speeds up the candidate’s fitness calculation since no backpropaga-

tion is needed to update the batch normalization statistics. Xilinx Vitis AI Optimizer implements

this method, although it is proprietary, and no results have been published.

AACP [39] implements a proposed improved diferential evolution (IDE) genetic algorithm

to search through the possible configurations of the model. The method prunes the model until

reaching a target number of floating-point operations (FLOP) and parameters by randomly selecting

a layer and removing the channel one with the lowest L1 norm — the sum of all weights — to

generate an individual. Then, to determine the fitness of a said individual, Lin et al. proposes the

Pruned Structure Accuracy Evaluator. This technique follows the same procedure as Adaptive

Batch Normalization in [38].

Most pruning algorithms have to be implemented or customized for a specific model, which

can be difficult for large ones with many interdependencies, such as residual connections. Fang

et al. [40] tackles the problem of structurally pruning an arbitrary architecture by introducing

Dependency Graph, a fully automatic method for implementing a generic pruner for any network.

The paper also proposes a pruning method called GroupNorm, which prunes channels based on the

Ln norm of an interdependent group of layers instead of a single one.

The comparison in table 2.2 shows that AACP obtains good accuracy while providing a flexible

architecture that can be further explored. GroupNorm also stands out since, despite having a simple

method for searching the optimal architecture, it provides good results due to being group-based

by implementing Dependency Graph. The results of EagleEye could not be directly compared

since the paper does not provide the original accuracy of the models. However, it shows promising

results since it achieves 77.1 % and 76.4 % and 74.2 % with pruning rates of 25 %, 50 % and 75 %

on the ResNet-50 model with the ImageNet dataset.
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Table 2.2: Pruning methods comparison with ResNet-50 and MobileNetV2 models on the ImageNet
Dataset (adapted from [39], [40]).

CNN Method FLOPs(%) Base
Top-1(%) ∆Top-1(%) Base

Top-5(%) ∆Top-5(%)

R
es

N
et

50

ThiNet-70 36.80 72.88 -0.84 91.14 -0.47

AACP 42.00 75.94 -0.06 92.74 -0.1

FPGM 42.20 76.15 -0.56 92.87 -0.24

HRank 43.80 76.15 -1.17 92.87 -0.54

SRR-GR 44.10 76.13 -0.37 92.86 -0.19

DMCP 46.30 76.60 -0.40 — —

PFS 51.20 77.20 -1.60 — —

AutoSlim 51.20 76.10 -0.50 — —

MetaPruning 51.20 76.60 -1.20 — —

AACP 51.70 75.94 -0.48 92.74 -0.43

GroupNorm 51.82 76.15 -0.32 — —

FPGM 53.50 76.15 -1.32 92.32 -0.55

ABCPruner 54.30 76.01 -2.15 92.96 -1.27

SRR-GR 55.10 76.13 -1.02 92.86 -0.51

ThiNet-50 55.80 72.88 -1.87 90.02 -1.12

M
ob

ile
N

et
V

2

MetaPruning 27.70 72.00 -0.80 — —

AMC 29.70 71.80 -1.00 — —

AutoSlim 29.70 74.20 -1.20 — —

DMCP 29.70 74.60 -1.10 — —

Uniform 0.75x 30.00 71.80 -2.50 90.5 -1.7

PFS 30.00 72.10 -1.20 — —

AACP 30.20 71.80 -0.69 90.5 -0.6

GroupNorm 54.55 71.87 -3.41 — —

MetaPruning 57.58 74.70 -6.50 — —



Chapter 3

Development of the Channel Pruning
Algorithm

A custom version of the AACP [39] algorithm was implemented for pruning the DNN models. Lin

et al. provide a repository containing the source code of their implementation. However, the authors

tailored this code to work with the models they studied in their original paper, and, therefore, it

could not be used for the development of the work of the dissertation, even though it proved helpful

to have a deeper understanding of the algorithm.

This algorithm uses an improved version of diferential evolution (DE) (an evolutionary genetic

algorithm) to find an optimal model architecture in a search space given by a set of constraints,

such as the number of FLOPs required for the model’s inference or the number of parameters in its

weights.

The model’s channel architecture represents the solutions generated by the AACP algorithm,

which is expressed in vector form as C = [c1 c2 . . . cL ], with ci referring to the output channel

number of the i-th convolutional layer of the model. This representation allows for more general

and straightforward manipulation of the underlying architecture instead of dealing with the complex

representations of the layers in the commonly used machine learning frameworks (such as PyTorch

or TensorFlow).

For the example given in figure 3.1, the architecture of the model is represented by the vector

C1 = [32 32 64 ]. By pruning the first layer in half (i.e., going from 32 to 16 output channels), the

architecture vector would be transformed to C′1 = [16 32 64 ].

Most complex ANN models do not follow an exclusively sequential structure. Instead, they of-

ten incorporate residual connections (section 2.2.2) or other interdependency mechanisms, creating

dependencies among the multiple layers. If these dependencies are not adequately addressed, the

resulting representation vector of the network, post-pruning, may be rendered invalid. More con-

cretely, for the example in figure 3.2, the initial architecture vector remains C2 =C1 = [32 32 64 ].

With the same pruning strategy as the previous example, the result would be C′2 =C′1 = [16 32 64 ].

However, the input of the third layer is an aggregate of the outputs of the first and second layers.

19
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Figure 3.1: Example of pruning of a simple sequencial CNN model. Layer 1’s number of output
channels is pruned from 32 to 16.

This creates a discrepancy in the dimensionality of the outputs (16 channels cannot be summed

with 32 channels), rendering the model invalid.

Moreover, it is typical for other parameterized layers to be present in the model, be they in the

middle of convolutional layers, such as batch normalization layers, or at the end, as is usual with

fully connected layers. These layers also need to be resized to keep the model’s integrity.

In order to solve this problem in the original AACP, Lin et al. [39] studies the ResNet and

VGG models, whose well-defined repeating structure is easy to distill into a configuration array.

Such an approach makes the method not very generalizable since DNNs have become increasingly

complex structures and might be made of different sub-networks, as in transfer learning methods,

thus limiting its ease of use.

A more general approach involves creating a graph of the dependencies of every layer in the

network. The recently-released VainF/Torch-Pruning [41] PyTorch library provides an easy-to-

use application programing interface (API) for breaking down a complex DNN into independent

groups of inter-dependent layers by constructing and analyzing a dependency graph of the ANN. In

addition, it also provides methods to prune specific channels of a group, dealing with the complexity

of keeping the model dimensionally coherent, and methods to determine the importance of the

group’s channels by calculating the Ln-norm. This library was instrumental in implementing the

pruning algorithm.

Some inference platforms like the DPU for the Xilinx Versal ACAP can process multiple

channels of a layer in parallel [42]. However, pruning the layer to yield a number of output channels

not divisible by the platform’s parallel-processing capability leads to inefficiencies. For example, a

platform capable of processing 16 channels in parallel will not speed up if a 32-channel layer is

pruned to 17 channels since it still requires two processing passes, one for 16 channels and another

for the remaining channel. Therefore, the genetic algorithm’s search space is confined to pruning

configurations that adhere to these considerations.
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Figure 3.2: Example of a naïve approach to pruning a CNN model with a residual connection.
Layer 1’s output is pruned from 32 to 16 channels. However, Layer 3’s input depends on both
Layer 1 and Layer 2. Therefore, this pruning strategy is incorrect since summing 32 channels with
16 channels is impossible.

3.1 Description of the Algorithm

The AACP algorithm, described in algorithm 1, is a genetic algorithm using IDE [39]. The

population is a list of individuals Pi, with i being the current iteration (i.e., generation) of the

genetic algorithm:

Pi = {Pi
1 Pi

2 . . . Pi
N } (3.1)

Each individual has a set of genes corresponding to each interdependent layer group’s number

of output channels.

In the following sections 3.1.1 to 3.1.6, each step of the algorithm is explained.

3.1.1 Initialization

Every individual at iteration i = 0 is initialized to have the same configuration vector as the original

model and is then pruned as described in algorithm 2.

The L1 norm was used as the metric to choose which channel to prune in a group to achieve a

lower drop in accuracy.
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Algorithm 1 Implemented AACP algorithm

Input: FLOPs prune ratio R f , population size N, number of iterations I, differential weight F ,
crossover rate CR, reinitialization rate R, pruning step S, original model M

Output: Optimal pruned model M′

1: P0←INITIALIZEPOPULATION(M,N,R f ,S) — section 3.1.1
2: for i = 1, . . . , I do
3: for n = 1, . . . ,N do
4: MUTATION — section 3.1.2
5: CROSSOVER — section 3.1.3
6: BOUNDING — section 3.1.4
7: SELECTION — section 3.1.5
8: REINITIALIZATION — section 3.1.6
9: return M′ = argmax

p∈PI
FITNESS(p)

3.1.2 Mutation

From three randomly selected individuals from the previous iteration, Pi−1
x , Pi−1

y and Pi−1
z , a

candidate for the iteration i is generated:

Ai
n = Pi−1

x +F× (Pi−1
y −Pi−1

z ), (3.2)

with F ∈ [0,2] being the diferential weight.

3.1.3 Crossover

Each gene only has a probability CR of crossing over to the individual of the next iteration, thus

introducing gene-level variety. By generating a random number RANDOM() from a uniform

distribution between 0 and 1, the gene j is only passed on with a probability CR ∈ (0,1],

Bi
n[ j] =

{
Ai

n[ j], if RANDOM() <CR

Pi−1
n [ j], otherwise.

(3.3)

Algorithm 2 Prune until target

Input: Individual p, FLOPs prune ratio R f , pruning step S, original model M
Output: Pruned individual ppruned

1: while FLOPS(p) > (1−R f )× FLOPS(M) do
2: j← RANDOM(0, LEN(M))
3: if p[ j]> S then
4: p[ j]← p[ j]−S
5: return ppruned = p



3.2 Implementation Considerations 23

3.1.4 Bounding

The generated candidate might not be inside the search space, i.e., with the channel number not

being a multiple of S, the pruning step, or not be below the targeted number of FLOPs. Therefore,

the number of output channels in each group j is rounded down to the nearest positive integer

multiple of S and then pruned until the targeted number of FLOPs is reached if the candidate is

above the threshold:

Ci
n[ j] = max

{⌊
Bi

n[ j]
S

⌋
×S, S

}
, ∀ j (3.4)

Di
n =

{
Ci

n, if FLOPS(Ci
n)< (1−R f )×FLOPS(M)

PRUNEUNTILTARGET(Ci
n,R f ,S), otherwise.

(3.5)

3.1.5 Selection

The candidate is compared to the previous generation’s individual, and the one with the highest

fitness value is chosen. The calculation of the fitness is done in two steps:

1. Zero the batch normalization layer’s parameters and do a forward pass of a few thousand

samples without needing to calculate the gradients for backpropagation, but keeping the

model in training mode so that the running means and standard deviations are calculated.

2. Do another forward pass of the dataset and calculate the model’s fitness based on accuracy or

any other metric. Cross entropy loss was chosen for this, with lower values being interpreted

as fitter than higher ones.

Pi
n =

{
Di

n, if FITNESS(Di
n)> FITNESS(Pi−1

n )

Pi−1
n , otherwise.

(3.6)

3.1.6 Reinitialization

In order to explore new locations in the search space and not get stuck in local optima, AACP,

as a final step in the iteration, reinitializes the individual to a random position if it has remained

unchanged for the past R iterations:

Pi
n =

{
INITIALIZEINDIVIDUAL(M,R f ,S), if Pi

n = Pi−1
n = · · ·= Pi−R

n

Pi
n, otherwise.

(3.7)

3.2 Implementation Considerations

The algorithm was implemented in Python with the target of pruning PyTorch models. It was given

a modular interface, allowing it to be used for any CNN model without any modifications. For this

reason, the pruner expects some model-specific parameters:
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• the unpruned PyTorch model;

• a sample input in order to create the dependency graph with VainF/Torch-Pruning [40] and

calculate the number of FLOPs;

• a function to calculate of a given PyTorch model;

• a function to update the batch normalization layers;

• a function that generates a list of layers that should be untouched by the pruner.

The latter parameter must be a function and not simply a list since, internally, the pruner creates

a copy of the model. If this were not the case, the modules referenced by the list would point to the

original model, not the copy.

Appendix A shows the full algorithm implementation.

3.2.1 FLOPs Estimation

The initialization and bounding step proved to be unexpectedly computationally expensive due

to the necessity of recalculating the number of FLOPs for every pruning step when performing

the prune until target operation, as described in algorithm 2. Since PyTorch models are defined in

runtime and are independent of the size of the input, the most common way to calculate the number

of FLOPs performed when inferring is to attach a pre-hook function (a function that runs before a

module’s execution) to each module. This pre-hook function calculates the FLOPs based on the

type of module. Then, a forward pass of the model is performed, and the results of the pre-hook

function calls are accumulated. Since it occupied a significant percentage of the algorithm’s runtime,

an estimator for the change in the number of FLOPs after pruning an arbitrary amount of channels

in an interdependent group of layers was devised.

Assuming that the majority of the inference computation of a CNN is spent on convolutional

layers, targeting a pruning ratio of the number of FLOPs of the whole model is approximately the

same as targeting the same ratio of just the convolutional layers.

In a 2D convolutional layer j, the result of the channel i is

out(Cout
j
i ) = bias j(i)+

C j
in−1

∑
k=0

weight j(i,k)⋆ input j(k), (3.8)

where C j
in and C j

out are the number of input and output channels, respectively [43] and ⋆ is the

2D cross-correlation operator. Also assuming that the bias summations are much lesser than the

FLOPs of the cross-correlation part, the whole layer’s amount of FLOPs is approximately linearly

dependent to the number of input and output channels.

Therefore, starting from a complete calculation of the original model’s layer j’s quantity FLOPs,

f j, using the pre-hook method, a constant factor

Fj =
f j

C j
inC j

out
(3.9)
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can be calculated. With this constant, the estimated number of FLOPs after pruning is

f ′j = Fj(C
j
in−∆C j

in)(C
j
out−∆C j

out). (3.10)

The estimator was implemented with the Flopth [44] library by using its internal methods and

classes that generate a list of leaf modules and the corresponding quantity of FLOPs. A dictionary

indexed by the module’s name stores the quantity of input and output channels, the original number

of FLOPs, and the calculated constant factor Fj of each convolutional leaf module. When pruning a

group, the estimator goes through every model, updates the internal channel counters if they are to

be pruned (determined by the VainF/Torch-Pruning library), and calculates the FLOPs estimation

with equation (3.10).

In order to verify the performance and effectiveness of the estimator in comparison to the

method of adding the pre-hook functions and doing the forward pass, a test was devised in which

the prune until target function (algorithm 2) was run 50 times for both methods and varying the

target prune ratio on the ResNet18 and ResNet101 models [45] with the CIFAR-10 dataset [46]

input size. For each run, the achieved pruned ratio and the process time (the sum of system and

CPU times of the process, measured with Python’s time library [47]) were measured and averaged,

with the results shown in table 3.1. The tests were performed on a computer with an AMD Ryzen

Threadripper 1920X 12-Core Processor, with 64 GiB of system memory and an NVIDIA GeForce

RTX 2070 8 GB.

Table 3.1: FLOPs estimator verification test results on the ResNet-18 and ResNet-101 models using
the CIFAR-10 dataset.

Model Method R f (%) Process
Time(s)

Achieved
R f (%)

Relative
Error(%) Speedup

R
es

N
et

-1
8

Forward
pass

25 4.45 25.11 -0.42 1×
50 10.24 50.08 -0.15 1×
75 21.67 75.02 -0.02 1×

Estimator

25 0.21 24.80 0.80 20.82×
50 0.45 49.52 0.97 22.81×
75 0.96 74.29 0.94 22.55×

R
es

N
et

-1
01

Forward
pass

25 234.11 25.01 -0.03 1×
50 548.96 50.00 -0.01 1×
75 1007.53 75.00 0.00 1×

Estimator

25 3.06 24.65 1.40 76.47×
50 7.12 49.31 1.37 77.15×
75 13.16 73.98 1.35 76.53×

As expected, the speedup achieved by using the estimator is very substantial. This is even

more noticeable in the ResNet101 network because it is deeper than the ResNet18 and thus has a
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more considerable inference latency. Even though the estimator causes the method to undershoot

the target, due to the average relative error being relatively small (under 2 %), it was deemed an

acceptable tradeoff.

3.2.2 Memory Management

In each iteration and for every individual, at least one copy of the original PyTorch model is made

(if the reinitialization step is executed, an additional one is made) and uploaded to the GPU when

using CUDA for accelerating the updating of the batch normalization layer’s running means and

standard deviations, and the fitness calculations. Therefore, after the fitness calculation, the model

and all references to it should be deleted to avoid running out of Video Random Access Memory

(VRAM). Through testing, it was noted that memory consumption in the GPU was very high and

tended to increase up to a point, and for larger models such as SalsaNext, it exhausted the VRAM

of an NVIDIA A100 40 GB.

To fix this issue, a routine to free the model from the GPU was implemented. Before deleting

the model, it transfers it to the CPU and empties the CUDA cache. This procedure forced the GPU

to remove the model from its memory and thus reduce memory consumption tremendously.



Chapter 4

Design and Evaluation Methodology

This chapter focuses on the methodology and implementation of the inference for semantic seg-

mentation CNNs in the target FPGA Xilinx Versal ACAP VCK190, as well as the evaluation of the

outputs. After training, the two chosen models, SalsaNext and SemanticFPN, are pruned in order

to increase performance. These models are then quantized and compiled using Vitis AI, and their

executable model for the inference platform is generated. Figure 4.1 shows this workflow.

Model Definition Train Prune

Quantize Compile
FPGA-

Runnable model

Figure 4.1: Operations order to get an FPGA-runnable model. The blue and green paths show the
workflow with and without pruning, respectively.

Section 4.1 explores the chosen models, SalsaNext and SemanticFPN, discussing their imple-

mentation and subsequent modifications necessary for hardware inference. Section 4.2 provides

a detailed insight into the employed pruning process and parameter selection. Next, section 4.3

outlines the quantization procedure.

Section 4.4 details the implementation of the pruned and quantized models onto the Xilinx

Versal ACAP VCK190 platform using Vitis AI. Lastly, section 4.5 delineates the evaluation metrics

and methods, providing an understanding of the performance and efficiency of the implemented

models.

4.1 Models

Two models were selected for study in this dissertation, the camera-based SemanticFPN with the

MobileNetV2 backend and the LiDAR-based SalsaNext. They were chosen due to having good

accuracy, being complex models, and having their source code and results available on Xilinx’s

27
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Vitis AI Model Zoo [48], which guaranteed the feasibility of the project. However, the quality of

the source code of both models differed tremendously.

Models on the Model Zoo repository have a list of versions, each targeted for a specific platform:

the GPU version, which has the original source code used to train, infer and evaluate the model, the

floating-point weights of the trained model (for PyTorch models, the .pth file) and the quantized

model; and multiple for the various target FPGA models (such as the VCK190), containing the

compiled Xilinx Intermediate Representation (XIR) xmodel files, which have the model description

and quantized weights ready to be deployed in the DPU. Therefore, the GPU version was used as

the basis for the implementation in this dissertation.

4.1.1 SalsaNext

Vitis AI Model Zoo provides a version of SalsaNext with a proclaimed pruning rate of 75 %.

However, the repository, whose code is based on the original paper, was not in a working state

out of the box since it relied on older PyTorch libraries than the ones distributed in the Vitis AI

development environment. Moreover, the provided floating-point weights appeared to be random,

having a near-zero mIoU score, requiring the model’s training from scratch, meaning the results in

the Model Zoo performance table could not be replicated precisely.

Comparing the original model with the one provided by Xilinx, it was clear that some changes

were made:

• All LeakyReLU layers had its negative slope changed from the PyTorch’s default 0.1 to

0.101565. This is due to Xilinx’s DPUs only supporting this value [6];

• The order of all BatchNorm and LeakyReLU operations was swapped. Because of the way

Vitis AI Quantizer fuses layers, Xilinx recommends doing the operations in the following

order: Convolution, BatchNorm and finally ReLU/LeakyReLU [49];

• Xilinx’s DPUs don’t support the PixelShuffle operation used in SalsaNext. To remedy this,

they replaced it with a transposed convolution operator, followed by BatchNorm and a

LeakyReLU.

• All output channels of all layers were halved from multiples of 32 to multiples of 16, except

for the last convolution, whose output channels represent the value of each label class. Xilinx

also added a convolutional layer before this last one to maintain the same number of input

channels of the last convolutional layer.

From the latter, it can be concluded that the pruning was done manually and not using the

proprietary Xilinx Vitis AI Optimizer. This conclusion meant that the provided model could not be

used for testing the pruning algorithms since they would be pruning an already pruned network. As

such, the results would not be representative of their capabilities.

Thus, the original model source code provided by Cortinhal et al. [3] was altered using all

the modifications made by Xilinx, except for the manual pruning change, thereby obtaining an
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unpruned model that can be deployed to a DPU. This model was then trained from scratch on the

SemanticKITTI dataset for 150 epochs with the same parameters used in the original publication,

serving as the basis for all pruning experiments on SalsaNext.

4.1.2 SemanticFPN with MobileNetV2 Backend

For the SemanticFPN model, Model Zoo’s repository provided fully working source code and

unpruned floating-point weights trained on the CityScapes dataset [5] with both a ResNet18 and

a MobileNetV2 backend. The latter was chosen since it had a better mIoU score, despite worse

throughput performance. The repository also contained code to perform the quantization step,

which made this model’s implementation very straightforward.

4.2 Pruning

In both implemented models, SalsaNext and SemanticFPN, two distinct pruning methods were

employed: the AACP algorithm, whose details and implementation are described in chapter 3, and

the GroupNorm pruning algorithm from the VainF/Torch-Pruning library. The latter one was used

in order to have a baseline for comparison. Experiments were conducted at pruning rates of 25%,

50%, and 75%, each representing the proportion of FLOPs removed from the models.

For the implementation of the AACP algorithm, specific parameters were selected based on

the ones used in the original paper [34]: with a population size of 10 individuals, 200 iterations

were made, doing the mutations with a differential weight 0.5 and a crossover rate of 0.8. The

reinitialization rate was set to 5 instead of 3 due to the overly frequent reinitializations observed

under the original parameter setting, which suggested that the neighborhood of the position of an

individual in the search space was not being properly explored. The fitness function applied in

this process is the inverse of the loss function used for the training of each model, and in order

to improve the speed of the process, it was used a subset of 1000 samples of the training set of

SemanticKITTI for the SalsaNext model, and 2000 samples of the training set of CityScapes for

SemanticFPN.

Concerning the GroupNorm pruning algorithm, provided by the VainF/Torch-Pruning library,

was used for global pruning without sparsity learning. This algorithm works by iteratively removing

the channels with the lowest importance calculated by the L1 norm from the whole model until the

target accuracy is reached. The algorithm keeps the model’s integrity thanks to the Dependency

Graph [40] implemented in the same library and also used in AACP.

Both the AACP and GroupNorm pruning methods were conducted with the pruning step set

to 16. This ensured that the number of output channels remained a multiple of 16 after pruning,

optimizing the resulting models for performance on the Xilinx Versal ACAP VCK190. The DPU is

capable of processing the outputs of 16 channels in parallel, and as such, this parameter guarantees

that pruning without improving throughout does not take place.

After pruning, both models were fine-tuned in order to regain lost accuracy. For this, the models

were trained for 10 epochs, and the one with the highest validation accuracy was picked.
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4.3 Quantization

Using the Vitis AI Quantizer [6], the weights of the network are quantized from 32 bit floating-point

numbers to signed 8 bit integers. Its post-training quantization method utilizes the cross-layer

range equalization algorithm proposed in [50] and the batch normalization tuning and AdaQuant

algorithms proposed in [51].

The quantizer first analyses the model by analyzing the modules that compose it. Each module

is then replaced with an equivalent quantized version defined in the library (that can be directly

mapped to a DPU instruction), quantizes the weights, fuses the convolutional layers with the

proceeding batch normalization layers, and optimizes the model for the target DPU. The model

then needs to be calibrated with only a small subset of the training data through a single forward

pass and without needing to perform backpropagation by utilizing batch normalization tuning. This

outputs the calibration data that is loaded on subsequent runs of the quantizer. An evaluation of the

new quantized and calibrated model is done to determine the loss in accuracy, and the model can be

exported to a quantized PyTorch model or an uncompiled XIR model (a graph-based intermediate

representation of a neural network model that is framework-independent). Figure 4.2 shows a flow

chart describing the aforementioned workflow.

Float Model

Preprocess

Quantize Weights
&

Calibrate Activations

Evaluate Quan-
tized Model

Deploy Model
(model name.pth)

(model name.xmodel)

Quantized Model

Calibration
Dataset (with-
out labels)

Vitis AI Quantizer

Figure 4.2: Vitis AI Quantizer workflow (adapted from [6]).

However, SalsaNext’s operations could not be allocated to the DPU, having the padding in-

structions mapped to the CPU. This is not ideal since the model would be divided into multiple
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sub-graphs, some assigned to the DPU and others assigned to the CPU. Not only would the CPU

execution be slower, a prohibitive throughout cost would be paid due to the transfer of data between

the DPU and CPU in each change of subgraph. Through debugging and investigation, it was

discovered that PyTorch changed the implementation of the padding operation to be fully imple-

mented in C. There are four padding modes: constant, reflect, replicate and circular.

Previously, when calling the pad operator, PyTorch had a Python implementation that would route

each mode to a corresponding C implementation. Vitis AI Quantizer would translate the layer

to the quantized version through the names of these mode-specific padding functions (although

currently only supports constant and replicate padding modes). However, after the change,

the routing happens in C, and therefore the quantizer only detects the generic pad function, which

it can not parse. Therefore, a patch to the Vitis AI Quantitizer parser had to be made by adding the

routing function shown in listing 1.

Listing 1 Patch for Vitis AI Quantitizer to handle new padding operator implementation, applied
onto the module pytorch_nndct.parse.op_dispatcher.

def pad(self, input, pad, mode, value=0.0):
if mode == 'constant':

return self.constant_pad_nd(input, pad, value)
elif mode == 'replicate':

return self.replication_pad2d(input, pad)
else:

raise ValueError('Only supports constant and replicate modes')

Vitis AI Quantitizer also provides fast finetuning, which implements the AdaQuant algorithm,

which tries to optimize the weights and the quantization parameters [51]. This slow process

requires large amounts of RAM, especially for large models. Because of this, it was not possible to

execute this technique for the SalsaNext model, being only able to perform the operation on the

SemanticFPN model.

Therefore, for each given model, quantized models were obtained from the several pruning

experiments described in section 4.2 and from the unpruned version. For SemanticFPN, fast

fine-tuning was also applied on an additional quantization run.

4.4 Hardware Implementation

The implementation was made on a Xilinx Versal ACAP VCK190 Evaluation Board, running the

DPUCVDX8G targeted reference design. This board image contains the DPU and a PetaLinux

installation with the Vitis AI Runtime (VART).

In order to run the quantized models on the DPU, the XIR models have to be compiled using

the Vitis AI Compiler. The compiler first splits the graph into several subgraphs if some operations

can not be executed on the DPU. It then performs architecture-aware optimizations of the inference

execution of the model by efficiently scheduling the instructions in order to promote parallelism and
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data reuse. Finally, the refined graph containing essential data and directives for VART is converted

into a compiled XIR xmodel file [6].

The compiled models were executed on C++ programs made with the Vitis AI Library, a high-

level API for AI inference built on top of VART, with algorithm libraries for multiple applications,

such as 2D and 3D segmentation, and benchmarking facilities [6]. The test programs were cross-

compiled with the PetaLinux Software Development Kit (SDK) for the Cortex A72/Cortex A53

SoC.

4.5 Evaluation

In order to compare the effectiveness of the usage of dedicated inference hardware and the applied

model compression techniques, several evaluations were made, such as measurements of accuracy

metrics (global accuracy and mIoU) of the models in the various pruning states (no pruning and

25 %, 50 %, and 75 % pruning rates) and before and after quantization, as well as the inference’s

throughput performance, power consumption, and power efficiency on the targeted FPGA and on a

GPU baseline. The models were evaluated using the SemanticKITTI and the CityScapes dataset for

SalsaNext and SemanticFPN, respectively.

For measuring the throughput performance and power consumption on the GPU, two threads are

run concurrently, one that executes the inference of the model continuously in a loop and measures

the time taken for each execution, and one that measures the power consumption of the GPU every

5 s with the CUDA API. Then, the averages of the inference time and power of a 5 min run are

calculated. Since the time measurement is taken using the CUDA Event API, it is only relative to

the processing time of the GPU. It, therefore, is not influenced by the power measurement thread’s

execution. An NVIDIA RTX 2070 TI GPU with 8 GB of VRAM was used for this benchmark.

A similar approach is used for the Xilinx Versal ACAP VCK190 measurements. However, the

power consumption data is only available on the board’s separate System Controller SoC [52]. As

such, while running the performance benchmarking program on the ACAP processor for 5 min,

a program running the System Controller logs to a comma-separated values (CSV) file the total

power consumption of the whole system, as well as the consumption of the PL power domain,

every 5 s, using the built-in poweradvantage Python library. The PL power domain contains both

the power consumption of the programmable logic fabric, in which the DPU is implemented, as

well as the fixed-function building blocks, such as the AI engines [53]. It thus encompasses the

power consumption of the neural network’s inference.



Chapter 5

Results and Discussion

5.1 Pruning

Tables 5.1 and 5.2 show the pruning results of the SalsaNext and SemanticFPN with MobileNetV2

backend, respectively, with both the custom group-based implementation of AACP and the Group-

Norm algorithm. With post-pruning finetuning included, on SalsaNext, AACP took on average 26 h

and GroupNorm 5 h.

Table 5.1: Comparison of SalsaNext pruning results with AACP and GroupNorm, with target
pruning ratios of 25 %, 50 % and 75 %. The starting model had 88.10 % accuracy and 54.70 %
mIoU when evaluated on the SemanticKITTI dataset.

Method FLOPs Parameters FLOPs(%) Params(%) ∆Acc(%) ∆mIoU(%)

— 131.17 G 6.94 M 0.00 0.00 0.0 0.0

AACP (25 %) 94.64 G 5.42 M 27.85 21.98 0.6 6.8

GN (25 %) 96.59 G 4.75 M 26.36 31.56 2.1 8.0

AACP (50 %) 61.15 G 3.94 M 53.38 43.22 2.4 6.8

GN (50 %) 51.42 G 2.38 M 60.80 65.75 4.9 7.0

AACP (75 %) 30.73 G 2.44 M 76.57 64.85 6.4 17.3

GN (75 %) 32.05 G 1.45 M 75.57 79.13 5.3 14.1

It is clear that AACP, when compared to GroupNorm, achieves good results since it consistently

outperforms its peer in terms of accuracy and mIoU. The only outlier is in the pruning of SalsaNext

with the 75 % target, where GroupNorm shows lower degradation. This can be explained by the

fact that both algorithms are stochastic, and thus performing multiple runs of the algorithms or

increasing the number of iterations on AACP could improve the reliability of the results.

However, when compared to the manually-pruned SalsaNext model trained from scratch

available on Vitis AI ModelZoo, with a reduction of 75 % of the FLOPs, with 54.3 % mIoU and

87.3 % of accuracy, both of the automatic methods result in worse solutions. Nonetheless, the time

and computing power required to train the model (it is not stated in the documentation, but from
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Table 5.2: Comparison of SemanticFPN pruning results with AACP and GroupNorm, with target
pruning ratios of 25 %, 50 % and 75 %. The starting model had 94.57 % accuracy and 68.67 %
mIoU when evaluated on the CityScapes dataset.

Method FLOPs Parameters FLOPs(%) Params(%) ∆Acc(%) ∆mIoU(%)

— 9.51 G 3.78 M 0.00 0.00 0.00 0.00

AACP (25 %) 7.26 G 2.85 M 23.68 24.47 2.49 11.50

GN (25 %) 6.97 G 2.58 M 26.74 31.67 5.29 22.87

AACP (50 %) 5.37 G 2.76 M 43.47 27.00 19.08 48.00

GN (50 %) 4.31 G 1.79 M 54.69 52.66 32.42 55.42

AACP (75 %) 3.52 G 1.89 M 62.93 49.89 38.13 58.56

GN (75 %) 1.1 G 1.45 M 88.47 61.72 78.67 67.18

the training configuration present in the repository, the training was performed for 400 epochs), and

the need for specialized manual intervention, makes this approach expensive.

The relationship between accuracy and mIoU is not linear since, for example, by analyzing the

results from AACP with pruning targets of (25 %) and (50 %) in SalsaNext, an almost 2 % drop in

accuracy occurs, and the mIoU is not changed. So, AACP could achieve better results by modifying

the fitness function of AACP to optimize the mIoU instead of the accuracy.

In SalsaNext, in contrast with SemanticFPN, the expected overshooting of the FLOPs estimation

used for AACP was not present. This can be attributed to the convolutional part of SalsaNext being

much more pronounced than the non-convolutional part, and thus, the estimator error is minor.

5.2 Quantization

For the quantization of the models, tables 5.3 and 5.4 show the impact of the process in the accuracy

and mIoU on the various pruning experiments from section 5.1. SemanticFPN is not significantly

affected much by the quantization, and the fast-finetuning algorithm further reduces the loss.

Moreover, in the pruning configurations with the highest pruning rate, the quantization improves

the accuracy performance, probably due to the low starting accuracy of the pruned floating-point

models.

SalsaNext’s accuracy and mIoU suffer more by the quantization of the model. This could be due

to the deepness of the model, causing the layer-wise quantization error to be compounded. Using

batch normalization tuning with the fast-finetuning method could yield more favorable results at

the cost of a computationally-heavy and memory-intensive process. This is confirmed by the values

reported in the Vitis AI ModelZoo, where no quantization loss happens in their manually-pruned

version of SalsaNext.
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Table 5.3: Impact of the quantization of SalsaNext for the unpruned model and the various pruning
experiments.

Quantization Loss Total Loss

Experiment Quant. Acc(%) mIoU(%) ∆Acc(%) ∆mIoU(%) ∆Acc(%) ∆mIoU(%)

Unpruned
Float32 88.1 54.7 0.0 0.0 0.0 0.0

Int8 82.5 46.7 5.6 8.0 5.6 8.0

AACP (25 %)
Float32 87.5 47.9 0.0 0.0 0.6 6.8

Int8 80.1 41.1 7.4 6.8 8.0 13.6

GN (25 %)
Float32 86.0 46.7 0.0 0.0 2.1 8.0

Int8 82.3 44.5 3.7 2.2 5.8 10.2

AACP (50 %)
Float32 85.7 47.9 0.0 0.0 2.4 6.8

Int8 75.8 40.7 9.9 7.2 12.3 14.0

GN (50 %)
Float32 83.2 47.7 0.0 0.0 4.9 7.0

Int8 69.6 39.6 13.6 8.1 18.5 15.1

AACP (75 %)
Float32 81.7 37.4 0.0 0.0 6.4 17.3

Int8 78.9 35.5 2.8 1.9 9.2 19.2

GN (75 %)
Float32 82.8 40.6 0.0 0.0 5.3 14.1

Int8 72.8 34.4 10.0 6.2 15.3 20.3
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Table 5.4: Impact of the quantization of SemanticFPN for the unpruned model and the various
pruning experiments. The original Float32 model is compared with the quantized Int8 model with
and without using the Fast-Finetuning (FT) method.

Quantization Loss Total Loss

Experiment Quant. Acc(%) mIoU(%) ∆Acc(%) ∆mIoU(%) ∆Acc(%) ∆mIoU(%)

Unpruned

Float32 94.6 68.7 0.0 0.0 0.0 0.0

Int8 94.3 67.3 0.3 1.4 0.3 1.4

Int8 (FT) 94.5 68.3 0.1 0.4 0.1 0.4

AACP
(25 %)

Float32 92.1 57.2 0.0 0.0 2.5 11.5

Int8 91.3 54.0 0.8 3.1 3.3 14.6

Int8 (FT) 91.9 55.6 0.2 1.5 2.7 13.0

GN (25 %)

Float32 89.3 45.8 0.0 0.0 5.3 22.9

Int8 88.5 43.9 0.8 1.9 6.1 24.7

Int8 (FT) 89.1 44.8 0.1 1.0 5.4 23.8

AACP
(50 %)

Float32 75.5 20.7 0.0 0.0 19.1 48.0

Int8 74.8 20.2 0.7 0.5 19.8 48.5

Int8 (FT) 76.0 20.6 -0.5 0.0 18.6 48.0

GN (50 %)

Float32 62.2 13.3 0.0 0.0 32.4 55.4

Int8 61.5 13.2 0.7 0.1 33.1 55.5

Int8 (FT) 62.3 12.8 -0.2 0.4 32.3 55.8

AACP
(75 %)

Float32 56.4 10.1 0.0 0.0 38.1 58.6

Int8 56.9 9.9 -0.4 0.2 37.7 58.8

Int8 (FT) 56.4 10.1 0.1 0.0 38.2 58.6

GN (75 %)

Float32 15.9 1.5 0.0 0.0 78.7 67.2

Int8 16.9 1.6 -1.0 -0.1 77.7 67.1

Int8 (FT) 16.4 1.5 -0.5 0.0 78.2 67.1
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5.3 Throughput and Efficiency

Running the throughput performance and power consumption benchmarks on the DPU for the

Xilinx Versal ACAP VCK190 and on an NVIDIA RTX 2070 8 GB GPU yielded the results seen in

tables 5.5 and 5.6 for SalsaNext and SemanticFPN, respectively. Comparing the measured speedups

relative to the unpruned models with the expected from the FLOPs reduction, it can be seen that it

does not follow a linear relation. This is because there are operations that are independent of the

number of channels, such as data transfers and other layer-specific execution overheads. Moreover,

it can be noted that the power consumption of the models through the different pruning rates

remains somewhat consistent on the DPU and decreases with higher rates on the GPU — more

noticeable in table 5.6.

Table 5.5: SalsaNext’s performance and power consumption inference benchmark results on the
DPU for the Xilinx Versal ACAP VCK190 and on an NVIDIA RTX 2070 8 GB GPU for the various
pruning experiments.

DPU on Versal ACAP VCK190 RTX 2070 GPU

Experiment FLOPs
Speedup

Throughput
(FPS)

Power
(W) Speedup Throughput

(FPS)
Power

(W) Speedup

Unpruned 1.00 30.77 23.10 1.00 29.31 171.52 1.00

AACP (25 %) 1.39 37.77 22.54 1.23 37.03 166.84 1.26

GN (25 %) 1.36 37.30 23.64 1.21 35.06 167.68 1.20

AACP (50 %) 2.15 44.05 22.79 1.43 48.75 165.41 1.66

GN (50 %) 2.55 45.71 22.74 1.49 52.99 165.18 1.81

AACP (75 %) 4.27 61.90 22.75 2.01 77.23 162.18 2.64

GN (75 %) 4.09 64.87 22.26 2.11 75.52 162.44 2.58

Table 5.6: SemanticFPN’s performance and power consumption inference benchmark results on
the DPU for the Xilinx Versal ACAP VCK190 and on an NVIDIA RTX 2070 8 GB GPU for the
various pruning experiments.

DPU on Versal ACAP VCK190 RTX 2070 GPU

Experiment FLOPs
Speedup

Throughput
(FPS)

Power
(W) Speedup Throughput

(FPS)
Power

(W) Speedup

Unpruned 1.00 279.62 21.61 1.00 140.02 122.65 1.14

AACP (25 %) 1.31 334.29 21.55 1.20 154.80 85.77 1.80

GN (25 %) 1.36 344.63 21.10 1.23 159.48 79.39 2.01

AACP (50 %) 1.77 519.55 21.74 1.86 196.76 75.81 2.60

GN (50 %) 2.21 518.10 21.09 1.85 232.44 74.00 3.14

AACP (75 %) 2.70 643.94 20.96 2.30 272.27 71.41 3.81

GN (75 %) 8.68 793.71 21.47 2.84 353.86 68.34 5.18
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As illustrated in figures 5.1 and 5.2, the power efficiency of the DPU in the Xilinx Versal ACAP

VCK190 is far superior to the NVIDIA RTX 2070 8 GB GPU. In SalsaNext, the two devices have

similar performances. However, for the SemanticFPN model, the DPU consistently outperforms

the GPU by a large margin.
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Figure 5.1: Comparison between SalsaNext’s inference throughput and power efficiency perfor-
mance for the unpruned models and the various pruned configurations, running on the DPU in a
Xilinx Versal ACAP VCK190 (red) and an NVIDIA RTX 2070 8 GB (green).
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Figure 5.2: Comparison between SemanticFPN’s inference throughput and power efficiency
performance for the unpruned models and the various pruned configurations, running on the DPU
in a Xilinx Versal ACAP VCK190 (red) and an NVIDIA RTX 2070 8 GB GPU (green).



Chapter 6

Conclusions and Future Work

FPGA-based inference implementations of semantic segmentation CNNs based on Vitis AI show

great promise for ADAS applications. The Xilinx Versal ACAP VCK190 with the DPUCVDX8G IP

core-based implementations of the SalsaNext and SemanticFPN models resulted in performance that

matches (SalsaNext) or surpasses by 2.25× (SemanticFPN) a desktop-class GPU while providing

more than 10× better power efficiency. The achieved inference throughput results for SalsaNext

successively exceed the typical frame rate of LiDAR sensors, 10 Hz [3].

Channel pruning further increases the throughput capabilities of such implementations at the

cost of accuracy. These model compression techniques yield better results when applied to larger

models such as SalsaNext, suggesting more redundancies in the neural network. Through the

implementation of group-based pruning with the help of a layer-dependency graph, channel pruning

can be applied to any CNN without manually describing the model’s internal dependencies, making

this process much more streamlined and removing the need to have specialized knowledge of the

model’s inner architecture. Using an evolutionary genetic algorithm (AACP) resulted in better

pruning strategies than a simple norm-based approach, indicating the methodology’s effectiveness.

However, Vitis AI is not yet a mature tool to generate these hardware implementations, requiring

manual modifications to the source models due to unsupported operations and, thus, necessitating

computationally-expensive training. The quantization process needed for inference on the DPUs

introduces some accuracy loss, which the fast-finetuning method tries to remedy. The amount of

memory needed for this correction process gets prohibitive for larger models with heavy datasets,

such as SalsaNext, limiting its applicability.

6.1 Future Work

The following future research vectors were identified during the development of the dissertation:

1. Exploration of the impact of different fitness functions for the pruning genetic algorithm.

Since different problems have different key target metrics, such as the mIoU for semantic

segmentation, targeting AACP to optimize for specific metrics could further improve results.

40
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2. Tune the parameters of the pruning algorithm. These were chosen to match the original paper.

However, they could be optimized to provide faster (i.e., require fewer iterations to reach an

optimal solution) and increase the pruning accuracy results.

3. Research DPU-specific throughput estimation, taking into account its architecture. Although

this dissertation has already considered the number of channels that can be processed in

parallel, other improvements could be made, such as optimizing the size of the layers’ weights

to facilitate more efficient internal transfers.
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Appendix A

AACP implementation

import copy

import time

import numpy as np

import torch

import torch.nn as nn

import torch_pruning as tp

from torch_pruning.importance import GroupNormImportance

from loguru import logger

from flops_estimator import PrunedFlopsEstimator

from avgmeter import TimeEstimate

import gc

class AACPruner:

def __init__(self, model: nn.Module, dummy_input: torch.Tensor,

device: torch.device, calc_fitness, update_batchnorm,

log_dir: str, checkpoint_dir, ignored_layers):

"""

Construct a new Prunner object

Args:

model: pytorch model to be pruned

dummy_input: dummy input for calculating the complexity

device: device to run the model

calc_fitness: function to calculate the fitness of the model

update_batchnorm: function to update the batchnorm

log_dir: directory to save the log

47
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checkpoint_dir: directory to load the checkpoint

ignored_layers: function to determine the ignored layers of

given model

"""

self.original_model = model

self.dummy_input = dummy_input

self.device = device

self.update_batchnorm = update_batchnorm

self.calc_fitness = calc_fitness

self.ignored_layers = ignored_layers

dep_graph = tp.DependencyGraph().build_dependency(

self.original_model, example_inputs=self.dummy_input)

groups = list(

dep_graph.get_all_groups(

ignored_layers=ignored_layers(model),

root_module_types=(tp.ops.TORCH_CONV,))

)

self.arch = np.zeros(len(groups), dtype=int)

for i, group in enumerate(groups):

self.arch[i] = len(group.items[0].idxs)

self.flops_estimator = PrunedFlopsEstimator.from_model(

self.original_model, [self.dummy_input])

self.log_dir = log_dir

self.checkpoint_dir = checkpoint_dir

def run(self, pr_flops: float, iterations: int=200, pop_size: int=10,

F: float=0.5, CR: float=0.8, R: int=3, step: int=16) -> nn.Module:

"""

Run the prunning algorithm

Args:

pr_flops: target prunning rate

iterations: number of iterations

pop_size: population size

F: differential weight

CR: crossover probability

R: reinitialization interval

step: step size

Returns:

pruned_model: pruned model

"""
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assert pr_flops <= 1 and pr_flops >= 0

assert iterations > 0

assert pop_size > 0

assert F >= 0 and F <= 2

assert CR >= 0 and CR < 1

assert R > 0

assert step > 0

logger.info("="*20)

logger.info("Running AACP")

logger.info(f"Prunning rate: {pr_flops}")

logger.info(f"Iterations: {iterations}")

logger.info(f"Population size: {pop_size}")

logger.info(f"Differential weight: {F}")

logger.info(f"Crossover probability: {CR}")

logger.info(f"R: {R}")

logger.info(f"Step size: {step}")

logger.info("="*20)

self.individual_init_e = TimeEstimate(pop_size)

self.individual_iter_e = TimeEstimate(iterations*pop_size)

self.pr_flops = pr_flops

flops = self.flops_estimator.flops

target_flops = flops * (1 - pr_flops)

if self.checkpoint_dir:

logger.info("Loading checkpoint")

iteration, population, global_best, global_best_arch = \

self.load_checkpoint(self.checkpoint_dir)

else:

iteration = 0

population = self.init_population(

pop_size, target_flops, flops, step)

global_best = np.inf

global_best_arch = None

for i in range(iteration, iterations):

logger.info("Iteration {}/{} ({})",

i, iterations, self.individual_iter_e.get_estimate())

idx, fitness = self.iterate(

population, target_flops, flops, F, CR, R, step)

if fitness < global_best:

global_best = fitness
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global_best_arch = population[idx].genes.copy()

logger.info("Global Best: {:.3f}", global_best)

self.save_checkpoint(i + 1, population, global_best, global_best_arch)

individual = self.Individual(pruner=self)

individual.genes = global_best_arch

individual._update_model()

individual._update_batchnorm()

pruned_model = individual.model

pruned_model.eval()

return pruned_model

def init_population(self, pop_size, target_flops, original_flops, step):

"""

Initialize the population

Args:

pop_size: population size

target_flops: target flops

original_flops: original flops

step: step size

Returns:

population: population array with individuals

"""

population = []

logger.info("Initiating population")

for i in range(pop_size):

self.individual_init_e.start()

logger.info("Individual {}/{} ({})",

i, pop_size, self.individual_init_e.get_estimate())

individual = self.Individual(pruner=self)

individual.init_individual(

target_flops, original_flops, step=step)

individual.free_model()

population.append(individual)

self.individual_init_e.stop()

return population

def iterate(self, population, target_flops, original_flops, F, CR, R, step):

"""

Runs one iteration of the algorithm

Args:
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population: population array with individuals

target_flops: target flops

original_flops: original flops

F: differential weight

CR: crossover probability

R: reinitialization interval

step: step size

Returns:

best_idx: index of the best individual

best_fitness: fitness of the best individual

"""

old_gen = np.array([individual.genes.copy()

for individual in population])

best_fitness = np.inf

best_fitness_idx = 0

for i in range(len(population)):

start_time = time.time()

logger.info("Individual {}/{} ({})",

i, len(population), self.individual_iter_e.get_estimate())

r1, r2, r3 = np.random.choice(len(population), 3, replace=False)

# mutate

new_genes = (old_gen[r1] + F *

(old_gen[r2] - old_gen[r3])).astype(int)

# crossover

for j in range(len(new_genes)):

if np.random.rand() < CR:

new_genes[j] = old_gen[i][j]

# bound

for j in range(len(new_genes)):

if new_genes[j] <= step:

new_genes[j] = step

elif new_genes[j] % step != 0:

new_genes[j] = round(new_genes[j] / step) * step

new_individual = self.Individual(pruner=self)

new_individual.set_genes(new_genes, recalculate=False)

new_individual.prune_until_target(

target_flops, original_flops, step=step)

new_genes = new_individual.genes

# selection

new_individual.set_genes(new_genes)
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if new_individual < population[i]:

population[i] = new_individual

else:

new_individual.free_model()

population[i].stay += 1

# reinitialize

if population[i].stay >= R:

logger.info("Reinitializing individual {}", i)

new_individual = self.Individual(pruner=self)

new_individual.init_individual(

target_flops, original_flops, step=step)

population[i] = new_individual

population[i].free_model()

if population[i].fitness < best_fitness:

best_fitness = population[i].fitness

best_fitness_idx = i

self.individual_iter_e.update(time.time() - start_time)

logger.info("Current Best: {:.3f}", best_fitness)

return best_fitness_idx, best_fitness

def save_checkpoint(self, iteration, population, global_best, global_best_arch):

"""

Saves a checkpoint of the algorithm

Args:

iteration: current iteration

population: population array with individuals

global_best: global best fitness

global_best_arch: global best architecture

"""

checkpoint = {

'iteration': iteration,

'population': list(map(

lambda individual: individual.state_dict(), population

)),

'global_best': global_best,

'global_best_arch': global_best_arch

}

logger.info("Saving checkpoint to {}", f'{self.log_dir}/aacp_checkpoint')

torch.save(checkpoint, f'{self.log_dir}/aacp_checkpoint')

def load_checkpoint(self, checkpoint_path):

"""

Loads a checkpoint of the algorithm
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Args:

checkpoint_path: path to the checkpoint

Returns:

iteration: current iteration

population: population array with individuals

global_best: global best fitness

global_best_arch: global best architecture

"""

checkpoint = torch.load(f'{checkpoint_path}/aacp_checkpoint')

iteration = checkpoint['iteration']

global_best = checkpoint['global_best']

global_best_arch = checkpoint['global_best_arch']

population = []

for individual_state in checkpoint['population']:

individual = self.Individual(pruner=self)

individual.load_state_dict(individual_state)

population.append(individual)

return iteration, population, global_best, global_best_arch

class Individual:

def __init__(self, pruner):

"""

Constructor for the Individual class

Args:

pruner: pruner object

"""

self.original_model = pruner.original_model

self.arch = pruner.arch

self.dummy_input = pruner.dummy_input

self.device = pruner.device

self.original_flops_estimator = pruner.flops_estimator

self.flops_estimator = copy.deepcopy(pruner.flops_estimator)

self.stay = 0

self.model = None

self.genes = None

self.dep_graph = None

self.groups = None

self.pruner = pruner

def free_model(self):

"""

Frees the model from memory (CPU and GPU)

"""

if hasattr(self, 'model') and self.model is not None:
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self.model.cpu()

del self.model

if hasattr(self, 'dep_graph') and self.dep_graph is not None:

del self.dep_graph

if hasattr(self, 'groups') and self.groups is not None:

del self.groups

torch.cuda.empty_cache()

gc.collect()

def init_individual(self, target_flops, original_flops, step):

"""

Initializes the individual

Args:

target_flops: target flops

original_flops: original flops

step: step size

"""

if self.model is not None:

self.model.cpu()

del self.model

self.genes = self.arch.copy()

self.model = copy.deepcopy(self.original_model)

self.model.to(self.device)

self.dep_graph = tp.DependencyGraph().build_dependency(

self.model, example_inputs=self.dummy_input)

self.groups = list(

self.dep_graph.get_all_groups(

ignored_layers=self.pruner.ignored_layers(self.model),

root_module_types=(tp.ops.TORCH_CONV,)

)

)

self.prune_until_target(

target_flops, original_flops, step=step)

self.set_genes(self.genes)

def prune_until_target(self, target_flops, original_flops, step):

"""

Prunes the individual until the target flops is reached

Args:

target_flops: target flops

original_flops: original flops

step: step size

"""

ops = self.flops_estimator.flops
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logger.info("Pruning until target ratio: {}",

1 - target_flops / original_flops)

while ops > target_flops:

i = np.random.randint(0, len(self.genes))

if self.genes[i] <= step:

continue

self.genes[i] -= step

idxs = np.arange(

self.genes[i], self.genes[i] + step, dtype=int).tolist()

self.groups[i].prune(idxs)

ops = self.flops_estimator.prune(self.groups[i], step)

logger.debug("Pruning finished at ratio {}",

1 - ops / original_flops)

def set_genes(self, genes, recalculate=True):

"""

Sets the genes of the individual. If recalculate is True, the

model' fitness is recalculated

"""

self.genes = genes

self._update_model(dumb=not recalculate)

if recalculate:

self._update_batchnorm()

self._update_fitness()

def _update_model(self, dumb=False):

if hasattr(self, 'model') and self.model is not None:

self.model.cpu()

del self.model

if hasattr(self, 'dep_graph') and self.dep_graph is not None:

del self.dep_graph

if hasattr(self, 'groups') and self.groups is not None:

del self.groups

self.model = copy.deepcopy(self.original_model)

gnorm = GroupNormImportance(p=2)

self.dep_graph = tp.DependencyGraph().build_dependency(

self.model, example_inputs=self.dummy_input)

self.groups = list(

self.dep_graph.get_all_groups(

ignored_layers=self.pruner.ignored_layers(self.model),

root_module_types=(tp.ops.TORCH_CONV,)

)

)

self.flops_estimator = copy.deepcopy(self.original_flops_estimator)



AACP implementation 56

groups = enumerate(self.groups)

if not dumb:

for i, group in groups:

importances = gnorm(group)

# get the indices of the channels to prune (lowest importance)

idxs = torch.argsort(importances, descending=True)[

self.genes[i]:].tolist()

# prune the channels

group.prune(idxs)

self.flops_estimator.prune(group, len(idxs))

else:

for i, group in groups:

idxs = np.arange(

self.genes[i], len(group.items[0].idxs), dtype=int).tolist()

group.prune(idxs)

self.flops_estimator.prune(group, len(idxs))

def _update_batchnorm(self):

logger.debug("Updating batchnorm")

self.pruner.update_batchnorm(self.model)

def _update_fitness(self):

logger.debug("Updating fitness")

self.fitness = self.pruner.calc_fitness(self.model)

def __lt__(self, other):

return self.fitness < other.fitness

def __gt__(self, other):

return self.fitness > other.fitness

def __eq__(self, other):

return self.fitness == other.fitness

def state_dict(self):

return {

"genes": self.genes,

"fitness": self.fitness,

"stay": self.stay,

}

def load_state_dict(self, state_dict):

self.genes = state_dict["genes"]

self.fitness = state_dict["fitness"]

self.stay = state_dict["stay"]
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