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In the era of ubiquitous sensing environment, the modern electronic

system expands our perception of the outside world. Analog/mixed-signal cir-

cuit has played a critical role to bridge the physical and digital worlds. The

boom of Internet-of-Things (IoT), bio-sensing, and digital camera calls for

versatile high-performance mixed-signal circuits and the corresponding auto-

mated design methodology. However, high-performance analog circuits are

area or power hungry. Moreover, the design cost is prohibitively expensive.

To address these challenges, this dissertation explores solutions from both the

design and automation techniques.

Analog-to-digital converter (ADC) is an important subset of analog/mixed-

signal circuits. Continuous time Delta-Sigma modulator (CTDSM) is a popu-

lar design choice for high-speed and high-resolution designs. CTDSMs feature

a higher power efficiency than their discrete-time (DT) counterpart. The first

work presents a high-speed 4th-order DSM featuring the CT-DT hybridization
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and an efficient excess-loop-delay (ELD) compensation technique in the charge

domain. Compared to prior high-order CTDSMs, the proposed hybrid DSM

achieves 4th-order noise shaping with single operational trans-conductance am-

plifier (OTA). Minimized number of OTAs reduces power and enhances stabil-

ity. On top of that, an efficient ELD compensation technique is implemented

by utilizing the inherent capacitor digital-to-analog converter (CDAC) of SAR.

Fabricated in 40 nm CMOS, the prototype ADC achieved a peak Schreier

Figure-of-Merits (FoM) of 176.1 dB, marking 4 dB improvement over prior

arts.

The second project explores the techniques to reduce the area consump-

tion of high-resolution CTDSMs. The performance of existing high-resolution

CTDSMs is limited by the feedback DAC. The stringent non-linearity re-

quirement leads to the large area of DAC. To address this limitation, a low-

complexity hardware-based 2nd-order dynamic-element-matching (DEM) is pro-

posed. The partial sorter applied to the DEM minimizes the hardware cost.

Moreover, feedforward path assisted loop filter adapts the highly-linear inte-

grator design to the low power supply voltage. With these techniques com-

bined, the prototype shows a feasible design pattern to achieve compact-area,

high-resolution design at advanced technology nodes. A prototype fabricated

in 40 nm CMOS measured 95dB SNDR, occupying only 0.37 mm2 area.

After the exploration of pushing the ADC performance boundary, this

dissertation also demonstrates the automated design methodology. The de-

sign cost of high-performance mixed-signal circuit grows exponentially with
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the technology scaling. Existing analog automation techniques cannot han-

dle practical circuit design constraints (e.g. robustness against variations).

The third work presents RobustAnalog, a variation-aware analog circuit opti-

mization via multi-task reinforcement learning (RL) and task-space pruning.

RobustAnalog is mainly designed to tackle the process-voltage-temperature

(PVT) robustness in the analog design. Correlations between similar vari-

ations are modeled and conflicts between distinct variations are mitigated.

With task pruning, a small-sized proxy training task set is formed. The prun-

ing reduces the queries to the full task set. Compared with the popular black-

box optimization methods, RobustAnalog significantly reduces the simulation

cost. Therefore, RobustAnalog shows the staggering progress towards analog

automation techniques that can be applied to real silicon conditions.
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Chapter 1

Introduction

1.1 High-Performance Mixed-Signal Circuit

1.1.1 ADC Background and Applications

Nowadays, we have witnessed an increasing demand for high-performance

mixed-signal circuits. Analog-to-digital converter (ADC), as a typical mixed-

signal circuit, plays an essential role in many applications, as shown in Fig. 1.1.

Today’s world has become a ubiquitous sensing environment. ADC serves as

the portal connecting the physical world to computational intelligence. For

example, trillions of photos are captured by digital cameras in the world each

year. A digital cameras usually demand many ADCs of around 80 dB signal-to-

noise-and-distortion-ratio (SNDR) and a bandwidth of tens of MHz. Moreover,

Internet of Things (IoT), mobile sensing, and bio-sensing have further reduced

the boundaries of sensor data granularity. The way we perceive the world is

no longer restricted to our visual or auditory sense. The boom of received

information is reshaping our understanding of the world. Such minuscular

sensing devices requires ADCs of 60-100 dB SNDR and tens to hundreds of

kHz bandwidth. Unfortunately, high-speed, high-resolution ADCs are costly

in area and power. The gap between such demand and supply motivates us to

develop energy and area-efficient designs.
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bits (and more, if “marketing bits” 
are counted). See  “Converter 
Specifications and Domains.” 

 ■ Video and imaging bandwidth. 
Video converter sample rates are a 
function of the frame rate (typically 
50–60 frames per second) and the 
pixel count: trends to higher defini-
tion imaging have driven both up. 
In the old days of analog compos-
ite video, television channels were 
5–8 MHz of bandwidth, and the 
classic video ADC was eight bits of 
resolution at 20–32 MHz sampling 
rate. Modern high-definition con-
verters may be 12–14 bits of reso-
lution running at 80 MHz or higher 
sampling rates. Note that imaging 
does not just mean consumer appli-
cations like video and digital cam-
eras; it also includes industrial and 
health care imaging—applications 
from digital X-rays to ultrasound, 
MRIs, and CAT scans. 

 ■ Broadband communications appli-
cations. As digital communications 

have sought ever higher data rates, 
communications channels have 
sought to exploit both dimensions 
of “Shannon’s box”—seeking wider 
bandwidth channels (higher sample 
rates) as well as deeper modula-
tion schemes (which require more 
dynamic range). The data convert-
ers in a high-end cellular base sta-
tion tend to be 14–16 bits at  250  
Ms/s–1 billion samples per second 
(Gs/s) [10]. The data converters in 
a cable set-top box have pushed to 
12–14 bits, 2.7–5 Gs/s. Converters 
for 100 G optical communications 
may run 4–6 bits at 50–80  Ms/s 
[29], [30].

Examining the “applications universe” 
shown in Figure 2, it’s possible to 
observe that certain applications 
exist at the “bleeding edge” or perfor-
mance frontier: these are the applica-
tions with the most stringent dynamic 
range requirements at a given band-
width. There will be some premium 
(in price and/or power) that these 

applications are willing to pay to real-
ize this exceptional performance. 
Backing off from the most demanding 
requirements are those applications 
that fall into the performance main-
stream, willing to make some trade-
off between cost and performance. 
Drawing still closer to the origin of 
this performance space, we reach the 
commodity part of the space: “good 
enough” performance is readily real-
ized. There is still ample room for 
innovation in this commodity space, 
but innovation is measured in the 
ability to minimize cost (power, die 
area, or some other consideration). 

It is worth noting that most appli-
cations do not represent a single point 
of performance—there is often a range 
of performance used, depending on 
the specifics of the implementation, 
and the performance of the overall 
system (an expensive CD player might 
have a higher quality audio DAC than 
a low-end model). This variation can 
be the case even when an industry 
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Figure 1.1: ADC application universe [Robertson [2015]]

1.1.2 High-Speed and High-Resolution CTDSMs

Oversampling and noise-shaping ADCs are proposed to achieve high

resolution. Their sampling frequency is much higher than the Nyquist rate.

With proper signal processing, noise shaping, in-band quantization noise can

be largely suppressed. Noise shaping is usually achieved by Delta-Sigma mod-

ulation(DSM). Continuous-time Delta-Sigma modulator (CTDSM) features a

higher efficiency than its discrete-time (DT) counterpart. A generic block

diagram of CTDSM is shown in Fig. 1.2. They generally consist of a quan-

tizer, feedback digital-to-analog converter (DAC), and, importantly, a loop

filter that determines the noise transfer function (NTF). The continuous pro-

2
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Figure 1.2: Generic model of CTDSM

cessing of signals yields lower dynamic requirements on the loop filters. Also,

CTDSM has easier drivability, and probably most importantly, their implicit

signal filtering. The CTDSM gained its popularity in high-resolution de-

sign with sub-MHz bandwidth, as shown in Fig 1.3. High oversampling ratio

(OSR) and moderate order loop-filters are usually used for high-resolution de-

signs. CTDSM has also paved its way to the wideband domain. As evidenced

by Fig. 1.3, CTDSM showed its great power efficiency at the bandwidth of

hundreds of MHz. Low OSR and high loop-filter order are usually the design

choices for high-speed designs. Nevertheless, there are several bottlenecks pre-

venting the power/area efficiency of CTDSM from being further improved. For

high-speed designs, the obstacles to achieve low power come two-fold. First, as

3
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mentioned above, the high loop filter order dictates a large number of OTAs.

The OTAs need to consume a considerable amount of static current to guar-

antee the loop filters’ performance. Second, the high loop filter order demands

excess-loop-delay (ELD) compensation, which is expensive. Therefore, an ef-

ficient high-speed design should minimize the involvement of OTAs and the

price for ELD compensation. For high-resolution CTDSMs, there are two ob-

stacles to compact area designs. First, the distortion target poses stringent

mismatch requirements for the feedback DAC. The feedback DAC has to oc-

cupy a large area to suppress the mismatch error. Second, large capacitors

are required due to the thermal noise requirement. To attain the area reduc-
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tion, it imminently calls for new design patterns for high-resolution CTDSMs.

The new pattern should leverage the advancement of CMOS scaling instead

of being limited by them.

A substantial part of this dissertation is to research and propose new

techniques for power-efficient high-speed CTDSMs and area-efficient high-

resolution CTDSMs. In the discussion of power-efficient high-speed CTDSMs,

the focus is placed on hybridizing CTDSM with passive DTDSM. The sheer

number of power-hungry OTAs is reduced by using a nested noise-shaping

(NS) quantizer. The lower CT NS order also eases the ELD compensation.

Such a combination decouples the trade-off between stability and aggressive

NS of CTDSMs. In the discussion of area-efficient high-resolution CTDSMs, a

high-order mismatch error shaping (MES) is applied to save the resistor DAC

(RDAC) area. The prototype design essentially adapts the high-resolution

DSM to a more digital-intensive fashion, thus unveiling many new possibilities

for area reduction. The research of high-speed and high-resolution CTDSMs

in this dissertation is carried out in two stages, with a prototype ADC taped

out in each stage as proof of concept.

The first prototype demonstrates a hybridized high-order CT-DT DSM.

It presents a design that combines a CT single-amplifier biquad (SAB)-based

2nd-order loop filter with a DT passive 2nd-order NS Successive approxima-

tion registers (SAR). As a result, the prototype ADC uses only one OTA

but achieves 4th-order shaping. The power and area of the NS-SAR can be

made very small owing to the high gain from the SAB filter. Process-Voltage-
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Temperature (PVT) robustness is improved as NS-SAR is immune from PVT

variations. On top of the hybridization, this work implements both ELD

compensation and the direct feedforward path in the charge domain, further

reducing the circuit complexity and the OTA power. The techniques enable

the proposed ADC to achieve 81dB SNDR over 12.5MHz BW with 3.7mW

power, leading to a Schreier FoM of 176dB.

The second prototype explores the area reduction techniques in the

high-resolution CTDSM. This work significantly reduces the total DAC area

by applying a hardware-efficient 2nd-order vector-quantizer (VQ) based dy-

namic element matching (DEM) to the MSB DAC. The 2nd-order DSM not

only suppresses the dominiant MSB DAC mismatch error, but also alleviates

the SNDR kink issue of the 1st-order dynamic weighted averaging (DWA).

Moreover, a direct feedforward-assisted loop filter reduces the integrating ca-

pacitor’s area by 10 times. Overall, this work achieves 95 dB SNDR and 250

kHz BW while consuming 4.7 mW from a 1.1 V supply and having a compact

area of 0.37 mm2.

In the subsequent chapters, the details of these prototypes and their

corresponding techniques will be presented and analyzed. Measurement results

will also be discussed and compared to state-of-the-art statistics.

1.2 Analog Design Automation

Thanks to technology scaling and circuit innovations, analog/mixed-

signal circuits have achieved great advancement in the past twenty years.
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However, the design complexity grows exponentially with technology scaling,

as shown in Fig. 1.4. Nowadays, circuit design is a paramount and extremely

challenging task. The explosive growth of engineering cost in circuit design

calls for a highly automated workflow. Analog, mixed-signal, and RF cir-

cuits are indispensable in modern electronics systems. Implementing analog

circuits is mainly a manual, time-consuming, and error-prone task. In a mod-

ern application-specific integrated circuit (ASIC), analog circuits occupy 30%

of the total area but consumes 70% of engineers’ efforts. Analog design re-

quires a huge amount of human effort and lacks effective automation. A short

turnaround time of analog, mixed-signal, radio-frequency (RF) IC design is

highly desired.
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Typical analog design procedure includes the following steps. First,

designers must determine circuit topology according to the requirements. Sec-

ond, devices are appropriately sized for the targeted performance. Devices in-

clude dimensions of different transistors, resistors/capacitors, and so on. After

device sizing, a corresponding layout is carefully designed to avoid performance

degradation. At last, a comprehensive verification including process-voltage-

temperature(PVT) and Monte-Carlo simulations are performed. There has

been plenty of work on automating analog sizing and layout. For sizing prob-

lems, many simulation-based optimization methods have been explored re-

cently [Liu et al. [2009]; Lyu et al. [2018a]; Wang et al. [2020a]; Settaluri et al.

[2020]]. For the automatic analog/mixed-signal layout synthesis, current pop-

ular methods can be categorized into two kinds: procedural-based methods

and optimization-based methods. Recent works on procedural-based methods

have shown the potential of producing tape-out quality designs [Wulff and Yt-

terdal [2017]; Chang et al. [2018]]. For optimization-based methods, there are

several open-source layout generators [Kunal et al. [2019]; Xu et al. [2019]].

In this dissertation, we focus on the analog circuit sizing which is an im-

portant stage in the procedure. Analog sizing, as an engineering optimization

problem, is hard due to the following reasons: 1) The relationship between

the circuit performances and the design variables is extremely complex and

highly non-linear. In fact, designers spent the most time on the derivation of

circuit performance metrics. For example, noise analysis is non-trivial even for

highly-skilled designers. Designers dive into noise sources and transfer func-
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tions, attempting to obtain insights to design optimal sizings. Tremendous

efforts of such derivation can be avoided by relying on the simulator to pro-

vide the mapping. However, A large number of slow simulations are needed,

which makes this optimization problem computationally expensive. 2) The

solution space is sparse and multi-objective optimization is not easy. Unlike

digital circuits, analog design usually requires transistors to operate in a nar-

row region. For example, transistors in OTAs must be in saturation to provide

proper trans-conductance and output resistance. Moreover, very few combi-

nations of design variables can produce desired circuit performance. The list

of things that can go wrong is long. This problem becomes worse in a more

complicated design that has 20 or more design variables. 3) There are many

constraints that are difficult to be quantified. Designers develop their common

sense from their past experiences. The width to length ratio should not be

either too large or small to save area. Critical transistors should not be biased

into the deep sub-threshold region to ensure PVT robustness. However, in

analog automation, such common sense is blind to the machine unless one ex-

plicitly set a quantized constraint. Machine sometimes presents solutions that

are numerically satisfying but violate some hidden constraints. Debugging

with the machine-generated results and implementing the ad-hoc constraints

is also a laborious and frustrating process.
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1.2.1 Automation Problem Formulation

Circuit sizing can be formulated as a constrained optimization problem.

Given a fixed circuit topology, we search for a circuit sizing that has the optimal

performance.

minimize F0(X)

subject to Fi(X) < Ci, i = 1, . . . , k
(1.1)

where

X = X1, X2, ..., Xn

D = D1, D2, ..., Dn

C = C1, C2, ..., Cm

X, the sizing vector, is an n-dimensional variable which corresponding

to n circuit sizing parameters. D is the domain for X. For example, D1 is

[0, 1] which means the design space of X1 is [0, 1]. C is the constraint set

for all circuit metrics. Because we have m metrics, the number of constraints

is also m. Fi(X) is the ith performance metric of circuit. Fi is a non-linear

mapping between X and the ith metric in the performance. X is the input.

We rely on the circuit simulator to provide this mapping. Circuit design is a

multi-objective design. Thus, F0(X) is a vector. In most existing automation

methods, F0(X) is scalarized. Therefore, our goal is to find an optimal X

that can satisfy any constraints in C. A common variant is to make F0(X)
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a constant and put all objectives into constraints. Thus, the constrained op-

timization problem degenerates to a constraint satisfaction problem (CSP).

The CSP formulation implies that sometimes our target is to satisfy design

requirements rather than maximize the performance.

1.2.2 Optimization Methods

Various research works attempted to tackle the analog automation chal-

lenges with different levels of human involvement. Human designers can help

to narrow down the initial sizing range, which makes the problem easier. Such

simplification requires designers’ expertise in circuit behavior, device technol-

ogy, and past design experiences. The more prior human knowledge we utilize,

the easier the sizing will be. Therefore, existing automation techniques can

be categorized into equation-based and simulation-based methods. Equations

are derived by human experts, characterizing the relationship between sizing

and circuit metrics. Equation-based methods are computationally efficient as

they lump the complex circuit system into multiple equations. However, so-

lutions are not satisfying because equations are inaccurate, which becomes a

more severe problem in the advanced technologies. Simulation-based methods

search the design space for optimal solutions according to the circuit simu-

lation results. The automatic design space exploration can provide solutions

with superior performance to that of human designs. Nevertheless, the ex-

pensive simulations prevent such methods from solving large-scale circuits or

many constraints. This dissertation will talk about improving the efficiency
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and scalibility through various optimization techniques.

As simulation-based methods solely rely on the simulator to provide

sizing-to-performance mappingthe close-form expression of objective function

and constraints can be hardly obtained. In the meanwhile, the simulations are

computationally expensive and time-consuming. Thus, it resembles a black-

box optimization problem. With multiple sizing variables as inputs, the sim-

ulator provides multi-dimensional metrics as outputs. Several black-box op-

timization methods are applied to the analog sizing, achieving different opti-

malities and sample efficiency. They are Evolutionary Strategy (ES), Bayesian

Optimization (BO), and Reinforcement Learning (RL)-guided optimization.

1.2.2.1 Evolutionary Strategy

Evolutionary computation is a global heuristic search method that

mimics the natural evolution process to find approximate solutions for op-

timization problems. ES is a subset of Evolutionary computation. ES works

with vectors of real numbers as representation of solutions. ES solves the trial-

and-error problems based on survival of the fittest. Fitness is usually defined

by our objective function. The evolutionary concepts are inheritance, selec-

tion, mutation, and crossover. A typical ES methodology is shown in Fig. 1.5.

Initially, a set of individual solutions, called population, is randomly gener-

ated to cover the entire range of search space extensively. Then the fitness of

each individual in the population is evaluated. The next step consists of the

selection stage, where the fitness of the individuals is utilized for determining
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Figure 1.5: Evolutionary Computation Flow.

the individuals that will be selected for breeding to generate solutions of the

future generation. A few individuals of low fitness can also be selected to

ensure solution diversity. Diversity can prevent premature convergence and

strike a balance between local versus global search. Next, the reproduction

stage occurs where the selected solutions from the previous step are mated

through crossover and/or mutation. The algorithm is continued until fitness
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values satisfy our requirements.

The advantages of ES are that they are not affected by discontinuous

optimization landscape and are suitable for high-dimensional problems. ES

achieved progress in solving medium-scale problems (20-40 dimensions). In

the context of analog sizing, the scale is corresponding to a circuit building

block that has around 20 devices. ES was applied to analog synthesis as early

as 1997 in [Koza et al. [1997]]. In the work of [Liu et al. [2009]], augmented

Lagrangians are incorporated to solve the constrained sizing optimization. Sur-

rogate modeling has also been introduced to improve sampling efficiency [Liu

et al. [2013, 2014, 2016]]. Recently, Deep neural network (DNN) has been put

into the loop of ES to model the circuit behavior [Hakhamaneshi et al. [2019]].

1.2.2.2 Bayesian Optimization

Bayesian optimization is another sequential design strategy for global

optimization of black-box functions that does not assume any functional forms.

The basic flow is shown in Fig. 1.6. The objective function is evaluated by the

simulator, which is an unknown and expensive process. Bayesian optimization

treats it as a random function and place a prior over it. In each iteration, a

set of function evaluations are collected and used as training data to update

the prior. Then a posterior distribution over the objective function is obtained

from prior. At last, an acquisition function is constructed to determine the

next query point. There are several methods used to define the prior/posterior

distribution over the objective function. Models that describe such distribu-
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Figure 1.6: Bayesian Optimization Flow.

tions are called surrogate model. They not only provides predictive means

but also the corresponding uncertainty estimations. The most common sur-

rogate model is Gaussian Processes. Bayesian optimization is particularly

advantageous in terms of sample efficiency. However, it has high computation

complexity with the number of samples. Considering its computation cost, it
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is a good fit in problems of fewer than 20 dimensions.

BO was introduced to analog sizing problem later than ES. In the work

of [Lyu et al. [2018b,a]], authors view sizing as a multi-objective sizing and

applied BO framework to solve it. Sizing optimization can also benefit from

simulations of different accuracy and speeds [Zhang et al. [2019b, 2020]].

1.2.2.3 RL-Guided Optimization

RL originates from ideas from dynamic system theory, specifically, as

the optimal control of incompletely-known Markov decision problem. We train

a learning agent to achieve a goal by making it interacting with its environment

over time. The learning agent sense the states of the environment and take

actions that affect the state. These three aspects, sensation, action, and goal

echo the sequential decision process in the optimization problem. Beyond the

agent and the environment, there are four main elements of a reinforcement

learning system: a policy, a reward, a value function, and, optionally, a model

of the environment. A policy defines the agent’s behavior at a given state.

The policy can be loosely described as a mapping from perceived states of

the environment to actions. Generally, policies may be stochastic and spec-

ify probabilities for each action. A reward defines the goal of a RL problem.

On each iteration, environment sends a reward, a number, to the agent. The

agent’s objective is to maximize the long-term cumulative reward. Models re-

fer to the environment modeling, which is similar to the surrogate model. They

mimic the environment outputs given the same inputs. Recently, RL methods
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become attractive as they achieved great success in domains including gaming,

autoML, and robotics. Applied to the circuit design automation, RL meth-

ods show the potential to achieve higher circuit performances given enough

explorations [Wang et al. [2018a, 2020a]; Settaluri et al. [2020]]. Moreover, RL

enables transfer- learning across different design conditions, including differ-

ent technologies and pre/post-layout design stage. Moreover, DNNs are being

extensively studied and turn out to be a powerful model of the environment.

They can approximate the complex relation between circuit parameters and

performances. DNNs are tailored to circuit optimizations in the works of [Bu-
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dak et al. [2021]; Yang et al. [2021]]. Graph neural network (GNN) leverages

the circuit connectivity information to improve the model performance [Wang

et al. [2020a]; Zhang et al. [2019a]].

1.2.2.4 Challenges in Practical Analog Optimization

We still have many challenges though there has been great progress in

circuit sizing optimization. There are three directions we can explore. 1) scal-

abity. All existing works have focused on small-sized circuit blocks. To extend

the current methods to larger-scale circuits, we have two potential directions.

First, the single thread of sequential trial-and-error process limits the explo-

ration at each time step. Asynchronous parallelism is a way to best leverage

modern compute power nowadays. Second, hierarchy in large circuit systems

has not been studied. Human designers often start designing in a top-down

fashion. Similarly, how to automate divide and conquer, how to communicate

between high-level and low-level abstractions are essential questions we have to

answer to achieve large-scale optimization. 2) robustness. There are very few

works about optimization under uncertainty. However, the real challenge of

designing the analog circuit is to overcome numerous unpredictable uncertain-

ties in the fabrication and end-user environment. Incorporating uncertainty

into automation flow in a brute force way leads to the explosive simulation

cost increase. 3) generalization. Unlike digital circuits, analog circuits are

usually highly customized. However, there are still many properties analog

circuits share in common (e.g. noise-bandwidth trade-off). Existing methods
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are applied to a small cluster of circuits and can hardly be adapted into a

different kind. To overcome this challenge, a promising way is to discover a

better circuit representation. GNN, as used in [Mirhoseini et al. [2021]], has a

data structure better aligning with the circuit connectivity. With such circuit

representation, offline data could be exploited to achieve few-shot learning.

A substantial part of dissertation is to address the robustness problem

of analog design automation. The challenges of variation-aware automation

come twofold. First, the simulation cost is prohibitively expensive in order

to get accurate variation effects. Second, optimizing circuits under one con-

dition may conflict with the other, making the optimization landscape more

complex. a multi-task RL framework with task-space pruning is presented to

address the above challenges. Variations are viewed as different tasks. Their

correlations are modeled and conflicts are mitigated, leading to an increased

sampling efficiency. A proxy training task set is selected by pruning, reducing

the simulations of the full set. In the subsequent chapter, the correspond-

ing methodology and analysis will be shown. Comparisons between existing

optimization methods and the proposed method will be discussed.
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Chapter 2

High Speed Hybrid CT-DT DSM with

Charge-domain ELDC

This chapter 1 presents a hybrid 4th-order delta-sigma modulator (DSM).

It combines a continuous-time (CT) loop filter and a discrete-time (DT) pas-

sive 2nd-order noise-shaping SAR (NS-SAR). Since the 2nd-order NS-SAR is

robust against PVT, the stability of this 4th-order DSM is similar to that of

a 2nd-order CT-DSM. The CT loop filter is based on single-amplifier bi-quad

(SAB) structure. As a result, only one OTA is used to achieve 4th-order noise

shaping, leading to a high power efficiency. Moreover, this work implements

both ELD compensation and an input feedforward path inside the NS-SAR

in the charge domain, further reducing the circuit complexity and the OTA

power. Overall, this work achieves 81 dB SNDR over 12.5 MHz with 3.7 mW

1This chapter is a partial reprint of the publication: Wei Shi, Jiaxin Liu, Abhishek
Mukherjee, Xiangxing Yang, Xiyuan Tang, Linxiao Shen, Wenda Zhao and Nan Sun,
“A 3.7mW 12.5MHz 81dB-SNDR 4th-Order CTDSM with Single-OTA and 2nd-Order
NS-SAR,” in IEEE International Solid-State Circuits Conference (ISSCC), pp. C170-C172,
February 2021. I am the main contributor in charge of circuit design, layout, and chip
validations.
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power, leading to a Schreier FoM of 176 dB.

2.1 Introduction

The continuous time (CT) delta-sigma modulator (DSM) is a popular

choice in wide-band analog-to-digital converters (ADCs), especially for wire-

less transceivers. Typical DT and CT DSMs are shown in Fig. 2.1. The loop

filter of CT DSM processes the signal before sampling, achieving both noise

shaping and anti-alias filtering. The settling requirement is obviated owing

to the CT-domain operation. Therefore, lower dynamic requirements for the

loop-filter, the inherent anti-aliasing filtering, and an easy-to-drive front-end

are the major advantages that CTDSM has over its DT counterpart. A low

oversampling ratio (OSR) is needed if an energy-efficient CT DSM with high

bandwidth and high resolution is desired. A high-order noise transfer function

(NTF) is usually applied to achieve the target resolution. However, several

challenges are posed to the high-order CT DSMs due to the non-idealities of

practical implementations. First, the CT loop-filter is sensitive to the process

variation [Schreier and Zhang [1996]]. The loop-filter coefficients primarily

depend on the resistors and capacitors whose values vary across PVT varia-

tions. Consequently, extra tuning circuitry is needed. Second, conventional

high-order loop-filters have a large number of OTAs. Multiple cascaded OTAs

cause phase shifts, leading to instability. Third, excess-loop-delay (ELD) in

the CT DSM alters the NTF. The price paid to compensate the ELD is high

in high-order designs. Extra circuit complexity and power consumption dete-
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Figure 2.1: Typical discrete-time and continuous-time structures.

riorate the power efficiency.

In this work, we present a 4th-order hybrid CT-DT DSM that combines

a 2nd-order single-amplifier-biquad (SAB)-based CT filter with a 2nd-order pas-

sive noise-shaping SAR (NS-SAR). With the DT noise shaping immune from

the PVT variation, the hybrid DSM obtains a better robustness. Compared

to the conventional design, the combination of SAB and passive NS-SAR re-

duces the number of OTAs from many to one. The power is saved because

of removing many power-hungry OTAs and the relaxed bandwidth require-

ment. Moreover, the ELD compensation (ELDC) is embedded into the charge

domain. There is minimal extra power and circuitry cost for the ELD com-
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pensation since it is implemented with the small CDAC of the NS-SAR.

This chapter is organized as follows. Section 2.2 reviews the prior high-

order CTDSM designs and introduces the proposed hybrid 4th-order DSM.

Section 2.3 discusses the ELD compensation techniques and introduces the pro-

posed charge-domain ELD compensation with both feedforward and feedback

paths. Section 2.4 describes the design of the prototype ADC and discusses

implementation details. Section 2.5 presents measurement results. Section 2.6

concludes this chapter.

2.2 Proposed 4th-Order Hybrid CT-DT DSM

2.2.1 Prior High-Order CT DSMs

There is extensive research on tackling the challenges in high-order

CTDSM designs. The NTF sensitivity to the RC time constant variation

causes the performance degradation and instability. Leaving design margin

for variation is a feasible solution, which essentially trades noise-shaping per-

formance for better robustness [De Vuyst et al. [2011]; Ho et al. [2015]; Berti

et al. [2016]]. An alternative solution is a corner-adaptive tuning circuit or

off-chip calibration [Pavan et al. [2017]]. The loop-filter implementation is a

determinant for the power efficiency. Gm-C and VCO integrators are proposed

as a low-power alternative for the power-hungry feedback integrators [Mukher-

jee et al. [2020]; Li et al. [2017]]. However, their linearity is limited. To reduce

the total delay of the multiple cascaded OTAs, higher power budget has to be

assigned to meet the stringent OTA bandwidth requirement. OTA bandwidth
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requirements can be relaxed by the ELD over-compensation [Shu et al. [2013]],

but there are still four OTAs for a 4th-order DSM. One way to improve the

power efficiency is to reduce the sheer number of OTAs. SAB has been studied

and used in the CT DSM [Zanbaghi et al. [2013]; Wang et al. [2018b]; Berti

et al. [2016]]. However, unsatisfying loop-filter robustness still remains as an

issue.

Lowering the CT noise shaping order by adding the DT order can be a

strategy to improve both the robustness and power efficiency. A CT front-end

is applied to the DSM, followed by switched-capacitor based filters in [Signore

et al. [1990]]. The large sampling capacitor is avoided by using a first-order RC

integrator. The precise positioning of poles and zeros in the NTF are guaran-

teed by the following third-order DT filter. However, the DT filter still needs

OTA. Thus, the total number of OTAs in the DSM is unchanged. An effective

way to incorporate the DT shaping order is to embed a noise-shaping quantizer

into the DSM loop. Emerging passive NS-SARs are attractive because they

are OTA-free, PVT robust, and energy-efficient [Guo and Sun [2016]; Lo et al.

[2019]]. An RC integrator and a 2nd-order passive NS-SAR is proposed in [Liu

et al. [2019]]. Third-order shaping is achieved by a single OTA. However, the

passive NS-SAR input-referred noise cannot be sufficiently suppressed by the

1st-order CT filter. Even worse, the NS-SAR noise is amplified by four times

because of the direct feedback ELD compensation, which will be discussed in

Section 2.3. Therefore, the resolution is limited to 70 dB SNDR. The work

of [Xing et al. [2020]] adopts a SAB-based filter as front-end and 1st-order
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NS-SAR as the backend quantizer. However, the NS-SAR NTF is mild, and

the current domain ELD compensation is costly. A 1st-order NS-SAR is used

with a 1st-order RC integrator in [Lo et al. [2019]]. The high resolution relies

on the 12-cycle NS-SAR. Nevertheless, the 12-cycle NS-SAR requires a larger

timing budget and area consumption.

2.2.2 Hybrid DSM Architecture

To address the high-order CT DSM design challenges mentioned above,

we propose a 4th-order hybrid CT-DT DSM. Fig. 2.2 shows the architecture of

the proposed hybrid DSM with a 2nd-order CT SAB filter and a passive 2nd-

order DT NS-SAR. The NS-SAR NTF coefficients are set by capacitor and

transistor device ratios [Liu et al. [2019]]. Therefore, the 2nd-order shaping

from the passive NS-SAR is immune from PVT variations, which improves

the robustness of the proposed 4th-order DSM.

The extra thermal noise from the passive NS-SAR prevents it from

achieving a high resolution as a standalone quantizer. In the proposed DSM,

the high gain provided by the SAB filter suppresses the noise of the passive

NS-SAR. Consequently, the power and area of the NS-SAR can be made very

small. In the meantime, the 4th-order shaping is achieved by only one OTA.

The power is saved from the elimination of multiple power-hungry OTAs and

the bandwidth relaxation. Moreover, the ELD compensation is implemented

in the charge domain with minimal circuitry and power overhead.
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Figure 2.2: Proposed hybrid DSM with SAB filter and passive NS-SAR quan-
tizer

2.2.3 Coefficient Sensitivity

Fig. 2.3 compares a conventional 4th-order CTDSM with the proposed

hybrid architecture. In the conventional design, tunable capacitor banks are

added to deal with the variation. Four OTAs are cascaded in the loop-filter

with the corresponding bandwidths BW1−4. The proposed DSM has a single

OTA with bandwidth BW0 and a noise-shaped quantizer. The sensitivity

of the conventional and proposed DSM to the RC time constant variation is

shown in Fig. 2.4. Both DSMs have an NTF with two optimized zeros.

It can be clearly seen that the conventional 4th-order CTDSMs are

highly sensitive to RC time constant variations. It becomes unstable when

the variation in the coefficients (1/RC) goes beyond +8%. In the meantime,

its SQNR drops significantly as the coefficients decreases. By contrast, the

proposed DSM remains stable as long as the coefficients variation is less than
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Figure 2.3: (a) Conventional 4th-order CT DSM, (b) Proposed 4th-order hybrid
CT-DT DSM

+15%, and the slope of the SQNR variation is also milder (e.g., SQNR >80

dB with −30% coefficient variation). The improved robustness leads to the

area and complexity reduction of the tuning circuits.

2.2.4 Finite UGB Effects

The finite UGB of the OTA degrades the stability of the feedback loop.

To investigate how the proposed DSM performs under different BW0, we in-
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Figure 2.4: Coefficient sensitivity comparison between a conventional and the
proposed 4th-order hybrid CT-DT DSM

corporate the OTA UGB into our DSM modeling. The SAB transfer function

is:

H(s) =
k1s+ k2

s2 + k3s+ w2
p

(2.1)

We model the OTA as a single-pole system with a finite DC gain ADC

and a pole frequency ω0. Correspondingly, the UGB is ADCω0. In order to

achieve an ideal SAB filter response, k3 is set to zero by choosing proper
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Figure 2.5: Proposed hybrid CT-DT DSM SQNR with different OTA UGBs

RC values. Therefore, the SAB transfer function with the finite OTA UGB

becomes

H ′(s) =
k1s+ k2

s2 + w2
p + ( s

UGB
+ 1

ADC
)(s2 + k1s+ k2 + w2

p)
(2.2)

Fig. 2.5 shows the SQNR over different UGB of the single OTA. From 0.5fs to

1.5fs, the SQNR improvement is around 10 dB while there is only 2∼3 dB im-

provement from 1.5fs to 5fs. Thus, 1.5fs is chosen as our OTA bandwidth. By

contrast, conventional 4th-order CTDSMs requires 3∼4 fs OTA bandwidth to

make the loop stable [Wang et al. [2020c]]. The relaxation of OTA bandwidth

and the decreased number of OTAs result in significantly reduced power.
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Figure 2.6: ELDC implemented by the direct feedback path

 

Figure 2.7: ELDC implemented by the residual feedforward path

2.3 Proposed ELD Compensation Scheme

2.3.1 Brief Review of ELD Compensation

ELD is a key problem in the CT DSM design. Such delay is bound to

degrade modulator stability and change NTF. ELD compensation techniques

can be used to restore the loop stability and the desired NTF. However, the

price for ELD compensation is high in high-order and high-speed CT DSM

designs. The high cost consists of two parts. First, it adds the extra circuitry

into the DSM. In the conventional designs, a direct feedback path around the

quantizer dictates an extra DAC [Pavan et al. [2017]]. Second, the tuning of

the filter coefficients is needed. To compensate for the delay, we have to in-
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crease the coefficients of lower-order paths in the loop filter. The required filter

UGB is then increased. The OTA bandwidths have to be increased proportion-

ally to maintain the desired filter response. Therefore, the ELD compensation

incurs a significant increase in both circuitry complexity and power consump-

tion. Prior works have dedicated significant efforts to address the high cost

of ELD compensation. The direct feedback path can be embedded into the

flash quantizer [Shu et al. [2013]]. However, the feedback path complicates the

flash quantizer design. If the quantizer is SAR, the feedback path implemen-

tation can be simplified because of the inherent CDAC [Wei et al. [2015]; Wu

et al. [2016]; Liu et al. [2019]]. However, the direct feedback path around

the quantizer increases the loop-filter swing, as shown in Fig. 2.6. The larger

swing degrades the OTA linearity or even exceeds the power supply range. A

dynamic range scaling has to be performed by changing the loop-filter and

quantizer gain. With a reduced filter gain, the noise is amplified. A residual

ELD compensation can avoid the large filter output swing by not feeding the

signal component to the filter output [Ho et al. [2015]; Wang et al. [2020c]].

Fig. 2.7 shows that only noise part is sent to the sum node before the quan-

tizer. However, they are implemented in the current domain. A feedforward

resistor is inserted into the RC integrator, which is shown in Fig. 2.8. The

ELD compensation is affected by the finite UGB of the OTA. Alternatively,

the compensation can also be implemented in the phase domain in a VCO-

based design [Huang et al. [2017]]. Nevertheless, it consumes almost a 1.5-fold

power of the whole loop filter.
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                                                          (b) 
 

Residual ELD Path 

Figure 2.8: (a) Residual ELDC signal flow (b) ELDC path implementation in
the current domain

2.3.2 Proposed Charge-domain ELD Compensation

Thanks to the inherent CDAC of SAR quantizer, we can implement the

residual ELDC in the charge domain easily, as shown in Fig. 2.9. We propose

an efficient charge-domain ELD compensation shown in Fig. 2.10(a). The high

efficiency stems from two reasons. First, the compensation is implemented by

the small CDAC of NS-SAR. The passive capacitor based ELD compensation
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 CDAC 

Figure 2.9: Residual ELDC implementation in the charge domain

adds no extra burden on the OTA. In the meantime, the additional circuitry

on the CDAC is minimal. An extra feedback DAC is not needed. Second, it

implements the residual ELD compensation by combining a feedforward and

a feedback path. Therefore, no dynamic range scaling is needed. The noise

performance degradation is avoided. Fig. 2.10(b) shows the timing and charge

domain operations. The feedback path and feedforward path are implemented

by a sub-DAC, CELDC . The feedback path output is fed into the bottom

plate of CELDC . The feedforward path output is sampled onto the top plate of

CELDC . Note the feedforward signal is also sampled onto the CSAR. This helps

to reduce the SAB output swing further, leading to the linearity enhancement.

The timing of the ELD compensation is the following. During the sampling

phase, the bottom plates of CELDC and CSAR are connected to D[n − 1] and

the inverse of the SAB output −VL, respectively. Their top plates are both

connected to the DSM input, VIN . At the sampling frequency of 500 MHz, all

sampling operations need to finish within 200 ps under 40-nm LP technology.

Fortunately, they do not need to be absolutely accurate, as any sampling error
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Figure 2.10: (a) Signal flow and schematic of proposed charge domain embed-
ded ELD compensation, (b) Timing diagram of ELD compensation operations
on CDAC

is 2nd-order shaped by the front-end SAB. As the SAR conversion phase begins,

their top plates are disconnected from VIN . Shortly after that, the bottom

plates of CELDC and CSAR are reset to Vcm. Consequently, both feedback and

feedforward functions are implemented. Then the SAR conversion is performed

on CSAR.
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Figure 2.11: (a) The UGB increase of the conventional 4th-order filter after
ELDC, (b) The UGB increase of the SAB 2nd-order filter after ELDC.

It is worth noting that lowering the number of CT noise-shaping order

can significantly save the power of ELD compensation. Compared with a 4th-

order loop filter, a 2nd-order filter is easier to stabilize. To compensate for the

same ELD, the UGB increase of the conventional 4th-order filter is significantly

larger that of the 2nd-order SAB filter, as shown in Fig. 2.11. Assuming the

loop-filters are active RC filters, the filter transfer functions with higher UGBs
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need OTAs with higher bandwidths, leading to more power consumption. Note

the frequency response plots in Fig. 2.11 are normalized to fs. It is more

challenging to push UGB even further at a higher fs. Consequently, DSMs of

a higher fs benefits more from lower-order CT shaping because of the reduced

ELD cost.

2.3.3 Feedforward Path and STF

In the high-order CTDSM with multiple OTAs, the full output swing

is handled by the last integrator. The resulting distortion due to the large

output swing is suppressed by the prior stage gain. However, SAB has an

inferior linearity because the single OTA has to handle the full swing and

provides less loop gain to suppress the distortion. The non-linearity becomes

an issue when the target resolution is high (SNDR >80 dB). In this work,

the feedforward path with a gain of kELD and direct feedback DAC is shown

in Fig. 2.12(a). Such organization forms a residual ELDC in Fig. 2.12(b).

Besides the feedforward signal for ELD compensation purpose, the extra signal

is feedforwarded to enhance the filter linearity. This feedforward component,

with a gain of kFF , will modify the STF of the CT DSM. Since STF of the

NS-SAR is unity, we only need to study the STF of second-order CT outer

loop. We can rearrange the signal flow model to separate the CT and DT

transfer functions [Pavan et al. [2017]]. Fig. 2.13(a) shows the signal models.

After the rearrangement, it can be easily shown that the STF is

STF (s) = (LF1(s) + kFF ) ·NTF2(e
sTs) (2.3)
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Figure 2.12: (a) Original CT DSM model, (b) Equivalent residual ELD com-
pensation model.

where LF1(s) is the loop-filter transfer function with ELDC and NTF2 is the

corresponding 2nd-order NTF created by the outer CT loop. STF (s) is shown

in Fig. 2.13(b). LF1(s) is low-pass. Since NTF2 creates notches at multiples

of sampling frequency, STF (s) maintains the anti-aliasing feature. The cost

is a peaking of 6 dB due to the direct feedforward path.
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Figure 2.13: (a) Rearranged model to separate CT and DT domain, (b) STF
Bode plot.

2.4 Circuit Implementations

2.4.1 System Architecture

Fig. 2.14 shows the schematic of the entire DSM. The 2nd-order CT

front-end is implemented by a SAB. To realize the desired biquad response, the

OTA outputs are cross-coupled to its inputs via R1 and C1. Negative feedback

paths are formed by R2 and C2. C1 and C2 are made by adjustable capacitor

banks to further enhance DSM stability against process variations. The passive

NS-SAR achieves 2nd-order NTF by capacitor merging and the multi-input

comparator ratio. The OTA output and one-cycle delayed quantizer output
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Figure 2.14: Schematic and timing diagram of proposed hybrid DSM.

are sampled onto the CDAC bottom plates. ADC input is sampled onto the

CDAC top plates. kT/C noise and capacitor mismatch errors in the NS-

SAR CDAC are significantly attenuated by the 2nd-order shaping provided

by the SAB. Thus, capacitors in the CDAC can be made very small. The

differential CDAC is used for both sampling and conversion. Each half is

only 30 fF. The small CDAC facilitates the high-speed operations in the NS-

SAR, including signal sampling, SAR conversion, and capacitor-merging based

39



residue integration. The power that CDAC draws from the reference is only

0.04 mW, which is 1% of the total ADC power.

2.4.2 SAB Design

In the conventional CT DSM design, the number of OTAs is at least

the number of orders. A number of prior works aim to reduce the number of

OTAs in the loop filter because the OTAs are the main contributors to the

power dissipation. The work of [Zeller et al. [2011]] introduces a cross-coupled

SAB which can achieve arbitrary second-order polynomial in the numerator of

its transfer function. A cross-coupled structure with a simplified RC network

is used in the CT DSM [Ho et al. [2015]]. It only contains one resistor and two

capacitors. Reference [Chae et al. [2013]] uses a structure with only one more

resistor than that of [Ho et al. [2015]] to make a single amplifier resonator.

The work of [Berti et al. [2016]] uses the same structure as that of [Chae et al.

[2013]] but changes the output node to achieve complex poles in the filter

transfer. Therefore, NTF with optimized zeros can be achieved. Because of

the low OSR in our design, we use the same SAB as that of [Berti et al. [2016]].

In our work, the coefficients in (2.1) are:
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k1 =
1

RINC2

k2 =
1

RINR1C1C2

k3 =
1

R1C1

+
1

R2C2

− 1

R1C2

w2
p =

1

R1R2C1C2

(2.4)

Assuming RIN is bounded by thermal noise constraints, the resulting

component values are



R2 =
k2
ω2
p

RIN

R1 =
R2

1 +
(

k2
k1

)2
1
ω2
0

C1 =
k1

k2R1

C2 =

(
k2
k1

)2

(
k2
k1

)2

+ ω2
p

C1

(2.5)

C1 is derived from the condition k3 = 0. Arbitrary combinations of a

second-order and a first-order path can be achieved. However, there is a lack

of a zero-order path in the SAB filter transfer function. The zero-order path

has to be implemented by other circuitry in the CT DSM.

The single OTA is a key circuit block in our DSM design. Thanks to the

system design of the proposed DSM, the tight BW requirement is significantly
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Figure 2.15: The two-stage feedforward-compensated OTA design

relaxed to only 1.5fs. Therefore, a simple two-stage feedforward compensated

OTA is adopted in the SAB filter. Fig. 2.15 shows the OTA schematic. The

cascade of M1−4 and M7 provides a slow but high dc gain path. M8 creates a

fast feedforward path between the input and the output to stabilize the OTA.

The input common-mode voltage of second stage is determined by the output

common-mode voltage of the first stage. Therefore, the current of the second

stage tracks that of the first stage under PVT variations. The constant current
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Figure 2.16: Comparator design

ratio leads to a constant gm ratio between the first and second stage, hence

a high stability. The first stage adopts the current reuse technique in [Song

et al. [2013]], which nearly doubles the gm/Id. The first stage CMFB loop is

implemented by an output resistor divider. The second stage CMFB includes

an extra error amplifier. Overall, this OTA consumes 2 mW under the 1.2-V

power supply, which takes 54% of the total power.

2.4.3 2nd-order NS-SAR Design

The passive NS-SAR is an emerging quantizer architecture. It can

achieve a high resolution by the noise shaping capability while inheriting the

high power efficiency from the SAR architecture. They leverage the charge

sharing between capacitors to implement the integration. The passive NS-

SAR variants have different ways to implement the gain block. Two methods

are capacitor stacking [Lin et al. [2019]; Liu et al. [2020]] and multi-input

comparator [Guo and Sun [2016]; Liu et al. [2019]]. Capacitor-stacking helps
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Table 2.1: Comparison with the state-of-the-art single-loop CT
DSMs.

 

 

 
ISSCC-13 

Shu 

ISSCC-17 

Kim 

ISSCC-19 

Lo  

VLSI-18 

Liu  

VLSI-19 

Weng 

VLSI-20 

Xing  

This 

work 

Order 4 4 2 3 3 3 4 

# OTA 4 2 1 1 3 1 1 

Quantizer Flash  DNSQ 
1st -order 

NS-SAR 

2nd -order 

NS-SAR 

1st -order 

NS-SAR 

1st -order 

NS-SAR 

2nd -order 

NS-SAR 

Process [nm] 28 130 7 40 12 28 40 

Fs [MHz] 640 640 400 500 832 1500 500 

BW [MHz] 18 15 25 12.5 30 50 12.5 

Area [mm2] 0.08 0.17 0.056 0.029 0.058 0.024 0.057 

Power [mW] 3.9 11.4 3.8 1.16 3.2 10.4 3.7 

DR [dB] 78.1 82.9 79.4 73 74.5 80.6 82.2 

SNDR [dB] 73.6 80.4 74 70.4 71.4 74.4 80.9 

FoMs* [dB] 170.2 171.6 172.2 170.7 171 171.2 176.1 

*𝐹𝑜𝑀𝑆 = 𝑆𝑁𝐷𝑅 + 10 ⋅ log10(𝐵𝑊/𝑃𝑜𝑤𝑒𝑟) 

to reduce the comparator noise [Lin et al. [2019]; Liu et al. [2020]]. However,

those NS-SARs have only 1st-order noise shaping and complicate the CDAC

design. Therefore, we choose multi-input comparator based NS-SARs, which

achieves 2nd-order noise shaping and avoids adding circuit complexity.

Fig. 2.14 also shows the architecture of NS-SAR. In our design, 4-bit

conversion is finished during ϕclkc, followed by two integration phases, ϕint⟨0⟩

and ϕint⟨1⟩. The 1st integration phase ϕint⟨0⟩ is merged with the SAR LSB

conversion. Therefore, only the 2nd integration phase ϕint⟨1⟩ takes the extra
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Figure 2.17: Die micrograph

time. Overall, the timing budget of this 4b NS-SAR is equivalent to that of

the standard 5b SAR, but can provide an effective 8b resolution at the OSR

of 20 thanks to its 2nd-order noise shaping.

The robust passive gains are crucial to the NS-SAR, which are deter-

mined by relative gain ratios of the comparator input transistor [Liu et al.

[2019]]. Although the ratios depend on the transistor dimensions to the first

order, they are affected by the common-mode input voltage Vcm variations in

the bi-directional DAC switching [Liu et al. [2019]]. To minimize the Vcm vari-

ation during the SAR conversion, Vcm switching of [Zhu et al. [2010]] is used

in our NS-SAR. The comparator schematic is shown in Fig. 2.16. Note that

the next stage is triggered by the previous stage. The sequential operations
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Figure 2.18: Measured single-tone spectrum

guarantee a consistent pre-amplification gain hence a robust noise performance

against variations.

2.5 Measurement Results

A prototype of the proposed 4th-order hybrid CT-DT DSM is fabricated

in a 40-nm LP CMOS process. Fig. 2.17 shows the die photograph. The active

area is 0.057 mm2. The SAB filter occupies the largest area of 0.035 mm2. The

quantizer is 0.0078 mm2 and RDAC is 0.0065 mm2.

Fig. 2.18 shows the measured output spectrum with a 3-MHz input
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Figure 2.19: Measured two-tone spectrum

signal, showing 4th-order shaping. With the bandwidth of 12.5 MHz, this

DSM achieves SNDR, SNR, and SFDR of 80.9 dB, 81.7 dB and 89.3 dB,

respectively. The RDAC mismatch is addressed by an off-chip calibration.

The two-tone test in Fig. 2.19 shows the IMD3 of -81.3 dB. Fig. 2.20 shows

the measured SNDR and SNR versus the input amplitude. The dynamic range

(DR) is 82.2 dB.

The prototype CT-DT DSM consumes 3.7 mW of power with a 1.2-V

supply. The sampling frequency is 500 MHz. The OTA consumes the largest

portion of total power, which is 2 mW. NS-SAR consumes 0.85 mW power.

RDAC consumes 0.52 mW. The digital circuit power is 0.33 mW. Table 2.1
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Figure 2.20: Measured SNDR/DNR vs. different input amplitudes

summarizes the measurement results and compares them with the state-of-

the-art single-loop CTDSMs. Compared to the prior works, our work achieves

the highest SNDR of 80.9 dB. This work is the only 4th-order DSM with a

single OTA. Owing to the reduced number of OTAs and charge domain ELD

compensation, our high-order DSM also achieves the best Schreier FoM of

176.1 dB. Overall, this paper presents a compact, high-resolution, and energy-

efficient DSM.
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2.6 Conclusion

This chapter presents a 4th-order hybrid DSM with a CT SAB-based

2nd-order loop filter and a passive 2nd-order passive NS-SAR. It combines the

merits of a CTDSM (anti-aliasing filtering and relaxed OTA settling) and

DTDSM (PVT robustness and accurate NTF). The robustness against PVT

variations is improved. The multiple cascaded OTAs are reduced to a single

OTA to achieve 4th-order shaping. Moreover, the ELD compensation and the

input feedforward path are implemented in the charge domain. Therefore,

the power efficiency and area consumption are improved. The proposed CT-

DT DSM is well suited for applications demanding low power, low design

complexity, and high robustness.
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Chapter 3

High Resolution CTDSM with 2nd-order MES

In the previous chapter, we presented techniques that can boost the

energy efficiency and improve the PVT robustness of the high-speed CTDSM.

In this chapter, we will introduce techniques that reduces the power and area

consumption of high-resolution CTDSMs. The mismatch error shaping order is

increased by using a low-complexity dynamic element matching (DEM) hard-

ware. Moreover, the highly linear CTDSM is achieved under a low VDD, which

is friendly to the advantage technology node. This chapter 1 presents a 95dB-

SNDR and 250kHz-bandwidth CTDSM under 1.1V voltage supply, occupying

a small area of 0.37mm2. This work significantly reduces the total DAC area

by applying a hardware-efficient 2nd-order vector-quantizer (VQ) based DEM

to the MSB DAC. The 2nd-order DEM not only suppresses the dominant MSB

1This chapter is a partial reprint of the publication: Wei Shi, Xing Wang, Xiyuan
Tang, Abhishek Mukherjee, Raviteja Theertham, Shanthi Pavan, Lu Jie and Nan Sun, “A
0.37mm2 250kHz-BW 95dB-SNDR with Low-Cost 2nd-order Vector-Quantizer DEM,” in
IEEE Custom Integrated Circuits Conference (CICC), pp. C170-C172, Apr 2022. I am the
main contributor in charge of circuit design, layout, and chip validations.
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DAC mismatch error, but also alleviates the SNDR kink issue of the 1st-order

DWA. To reduce the high hardware complexity of 2nd-order DEM implemen-

tation, a partial-sorter algorithm is proposed. Therefore, aggressive mismatch

error shaping is achieved with minimal hardware cost. The loop filter also

consumes a considerable area, because the tight noise requirement typically

mandates small resistors and hence large integrating capacitors. By using a

direct feedforward path, this work reduces the integrating capacitor’s area by

10 times. Moreover, it largely suppresses the OTA output swing, resulting

in low distortion under a limited voltage supply. Overall, this work achieves

95dB SNDR and 250kHz BW while consuming 4.7mW from 1.1V supply and

having a compact area of 0.37mm2.

3.1 Introduction

CTDSMs with high resolution and bandwidth greater than 200kHz are

needed in industrial, medical, and automotive applications. Such high per-

formance demands very low noise and distortion. The noise and distortion

have to be suppressed even further in advanced technologies due to the low

voltage headroom. Such tight requirements usually result in excessive power

and area consumption. There are three common ways to lower the quantiza-

tion noise level. We can increase the number of NTF orders, increase OSR, or

increase the number of bits of quantizer. A CTDSM with a highly multi-bit

quantizer has many advantages. First, multi-bit quantizer can achieve higher

SQNR at moderate OSRs. Second, multi-bit quantizer-based CTDSM has
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a larger maximum stability amplitude (MSA). Third, multi-bit quantization

reduces the loop filter swing, relaxing the linearity requirements for filters.

The second and third advantages both contribute to superior power efficiency.

Moreover, multi-bit quantization makes CTDSM less sensitive to the clock

jitter.

The major distortion sources are loop filters and feedback DACs. Highly

linear filters are power hungry. Although multi-bit quantization can improve

SQNR and relax the linearity requirements for the loop filters, it mandates

a multi-bit DAC. Unlike the inherently linear single-bit DAC, multi-bit DAC

suffers from the mismatch between elements. DAC area and mismatch is a

fundamental design trade-off. Mismatch errors can be suppressed by using a

large DAC area. Thus, the area cost for a high-resolution multi-bit CTDSM

is non-trivial. An efficient mismatch error shaping is of great practical value.

In conclusion, the large area and power cost of DAC and loop filters turn

out to be the major obstacles in the low noise and distortion design. In recent

high-resolution CTDSMs, 1st-order data weighted average (DWA) is applied

to the multi-bit DAC [Gönen et al. [2020]; Wang et al. [2015]; Theertham et al.

[2020]]. However, 1st-order DWA yields limited mismatch error suppression,

worsens the inter symbol interference (ISI), and suffers from the kink issue.

In [Theertham et al. [2020]], DAC occupies a considerable area. There is also

a kink in the SNDR plot of [Theertham et al. [2020]] at low input amplitudes

due to tones caused by DWA. To reduce the area, the works in [Wu et al.

[2020]; Liu et al. [2020]] use DWA for the MSB bits and mismatch error shap-

52



ing (MES) for the LSB bits. MES enables the binary coded DAC to save the

LSB DAC area. However, the overall DAC’s mismatch-induced distortion is

dominated by the MSB bits. Thus, the approach of [Wu et al. [2020]; Liu et al.

[2020]] yields limited performance benefits due to the relatively mild 1st-order

mismatch error shaping obtained from the DWA operation on the MSB bits.

The limitations mentioned above motivated us to develop a CTDSM with a

Cycle

El
em
en
tI
nd
ex

Element Selection Pattern

Figure 3.1: Selection pattern of DWA.

low complexity 2nd-order MES. It makes use of the partial sorter algorithm to

achieve a hardware-efficient MES. In the meantime, the passive feedforward

path helps to reduce the distortions from the RC integrators under a low VDD.

It leverages faster digital logic and higher bandwidth in advanced technolo-

gies. Therefore, this highly linearized CTDSM has been well adapted to the
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advanced technologies.

3.2 Proposed CTDSM with Low-Cost 2nd-Order Vec-
tor Quantize-based DEM

Figure 3.2: SNDR measurements at different input amplitudes in [Theertham et al.
[2020]]

3.2.1 Prior Mismatch Error Shaping Techniques

Data weighted averaging (DWA) is widely adopted in many DSM de-

signs. Many high-resolution CTDSMs use DWA to achieve 1st-order mismatch

error shaping [Theertham et al. [2020]; Wang et al. [2015]; Wu et al. [2020]].

The element selection pattern is shown in Fig. 3.1. The logic implementation

of DWA is simple since it is only rotational element selection.

However, DWA only offers 1st-order shaping. Considering the strin-

gent distortion requirement in the high-resolution designs, large DACs are
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still needed to have a good raw matching. Moreover, the DWA selection pat-

tern lacks randomness, leading to extra tones at low-amplitude inputs. In the

work of [Theertham et al. [2020]], there is a kink in the SNDR plot, which is

shown in Fig. 3.2.

Complete 
SorterFilters 

d[n]

Vector Quantizer

sv[n]sv[n]
y[n]x[n]

d[n]

Figure 3.3: Conventional VQ-based DEM structure.

To overcome the problem of mild mismatch error shaping and deter-

ministic selection pattern, 2nd-order mismatch error shaping naturally becomes

a design candidate. 2nd-order mismatch error shaping provides stronger er-

ror shaping and a more random selection pattern in principle. Existing 2nd-

order Dynamic element matching (DEM) has two categories: tree structure-

based [Galton [1997]] and vector quantize-based DEM [Schreier and Zhang].

Tree structure has a relatively simpler logic implementation but the shaping

performance turns out to be unsatisfying. VQ, on the other hand, offers the

desired shaping at the cost of high-complexity hardware. Such drawbacks

of existing 2nd-order DEMs prevent them from being used in the CTDSMs.
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Therefore, a key challenge is to reduce the hardware complexity of DEM while

maintaining the desired 2nd-order mismatch error shaping.

3.2.2 2nd-Order DEM with Partial Sorter

In order to lower the hardware complexity of VQ-based DEM, we can

first identify the most hardware-intensive block. As shown in Fig. 3.3, the

complete sorter block contributes most to the hardware complexity.

The complete sorter makes a comparison between any pairs of all ele-

ments, leading to a massive number of comparators needed. For example, 105

comparators are needed for a 15-element sorting. However, complete sorting

is not necessary for the DEM. In the work of [Sun and Cao [2011]], partial

sorting replaces the complete sorting, as shown in Fig.3.4.

Partial 
SorterFilters 

d[n]

Vector Quantizer

sv[n]sv[n]
y[n]x[n]

d[n]

Figure 3.4: VQ-based DEM structure with partial sorter.

Although the order of elements is not completely correct, partial sorter

doesn’t lose much mismatch error suppression but has significantly less hard-
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Figure 3.5: Mismatch error shaping spectrum of VQ-based DEM with complete
sorter and partial sorter.

ware. The number of comparators needed is lower down to 33 given 15 ele-

ments. In the meantime, the shaping spectrum is close to that of the complete

sorter-based DEM. As shown in Fig. 3.5, a comparison of spectrums with com-

plete sorter and partial sorter is made. The one with complete sorter indicates

a simulated 110 dB SNDR without thermal noise. The one with partial sorter

shows 108 dB SNDR. Therefore, partial sorting achieves a better trade-off be-

tween hardware complexity and mismatch error suppression. Fig. 3.6 shows

the partial sorter structure for 15 elements. 15 inputs are divided into 3 groups.

The accurate ranks among 5 neighboring elements and 3 group summations
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are obtained first. The final element rank is the weighted sum of the individual

rank and group summation rank.

Sorter 
For 5Sorter 

For 5

x1-5[n]
x6-10[n]
x11-15[n] Sorter 

For 5

3

Sorter 
For 3

sum
sum
sum

3
3

Adder

y1-5[n]
y6-10[n]
y11-15[n]

Figure 3.6: Partial sorter structure for 15 elements.

Figure 3.7: Spectrum at input of 14 dBFS.

However, partial sorter-based DEM fails at inputs of some amplitudes.
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Suppose that the sorter structure is the same as the one in Fig. 3.6 and there

is a 15-element DAC, there are extra distortions when DAC inputs are 3, 6, 9,

and 12. Fig. 3.7 shows the spectrum with extra distortions.

To diagnose the distortion problem, we can take a deep dive into inte-

grators inside the filter. Fig. 3.8 shows the detailed filter structure.
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Figure 3.8: Filter structure of VQ-based DEM.

Assume that we have a DAC input d[n] = 9. After sorted by the

partial sorter, 3 elements in each group will be selected. Thus, it will cause

mean(sv1−5[n]−d[n]) = 0. Consequently, the group average of the first integra-

tor outputs remains the same from cycle to cycle. For example,mean(sx1−5[n]) =

mean(sx1−5[n − 1]) always holds for the first group. Therefore, mean(sx1−5)

will remain a constant value. If DAC keeps getting the same input, d[n] = 9,

the second integrator output x1−5[n] will overflow with a constant input. The

overflow leads to malfunctions of DEM filters. The root cause of the constant

input is the lack of order information between groups. To fix the issue, we sub-

tract the mean(sx) each cycle, forcing group mean to be zero when inputs are
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3, 6, 9, and 12. As a result, the distortions are fixed and SNDR are restored,

which is shown in Fig. 3.9.

Figure 3.9: Spectrum comparison before and after compensation.

After all, Table. 3.1 summarizes the pros and cons of existing and pro-

posed 2nd-order DEMs. Our proposed 2nd-order DEM has achieved strong

mismatch error suppression at low hardware cost. Fig. 3.10 shows the detailed

structure of proposed DEM. As mentioned above, partial sorter causes the

increased vector quantization noise, hence the degraded stability. To prevent

filters from overflow or saturation, a compensating value SC is subtracted from

the outputs of the 1st-order integrators, as shown in 3.10. SC is the average of
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Table 3.1: Pros and cons of different 2nd-order DEMs.

Complete VQ

Partial VQ(proposed)

Gate count

weakhighTree Structure

Delay

low high
low

Mismatch 
suppression

strong

stronglow low

4

Sorter
Network

DAC 
InputMSB

×15
MSB

z-1

1-z-1
1

1-z-1

×15

z-1

SC1

15

Figure 3.10: VQ-based DEM logic.

the 1st-order integrator outputs within one group. The 2nd-order integrator

outputs are guaranteed to be bounded after SC is removed. 2nd-order DEM

is applied to unary DACs. However, since a N-bit unary has 2N elements,

the number of bits of unary DACs is usually lower than 6 bits. To achieve

a highly multi-bit DAC, segmented DAC is used. The LSB is made binary

and with MES technique [Wu et al. [2020]]. The binary LSB DAC enables

a significant area reduction. Realizing that MSB DAC produces the most of
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Figure 3.11: SNDR loss by mismatch.

mismatch errors, we apply 2nd-order DEM on the MSB DAC and 1st-order

MES on the LSB DAC. Fig. 3.11 shows that smaller MSB DAC contributes

more distortions. In our simulation, the SNDR loss by MSB mismatch error

is 30 dB higher than that by LSB mismatch error. Fig. 3.12 shows the archi-

tecture of the proposed 2nd-order VQ-based DEM. Our DAC input D[8:0] is

segmented into thermometer MSB[3:0] and binary LSB[4:0] with a redundant

bit.

3.3 Loop Filter Design

Since the RDAC area is reduced by the 2nd-order mismatch error shap-

ing, the filter area dominates the whole active area. In prior work [Wang et al.
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Figure 3.12: Architecture of the proposed low-complexity 2nd-order VQ-based mis-
match error shaping.

[2015]], a higher sampling frequency is chosen in 28nm to scale down the RC

time constant to achieve a compact area. However, our CTDSM targets at

250kHz bandwidth, leading to smaller RIN and larger C1 compared to [Wang

et al. [2015]] (24kHz bandwidth). This is problematic as C1 is 82 pF and occu-

pies 0.12mm2 area. Fig. 3.13 shows the integrator structure and the parasitic

capacitance. Moreover, the resulting 2.5-pF parasitic capacitance Cp heavily

loads the OTA, as shown in Fig. 3.15. Furthermore, limited voltage headroom

of OTA output increases harmonic distortion. Instead of increasing sampling

frequency, we can reduce the capacitor directly and add the corresponding
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Figure 3.13: Large integration capacitor due to a small RIN .

attenuation block after the integrator to maintain the same loop gain. In

the meantime, we want to suppress the large output swing of the integrator.

Therefore, a resistive feedforward path is added to lower swing and achieve

attenuation. Fig. 3.14 shows the structure of the loop filter with a resistive

feedforward path. The dividing resistors of the feedforward path and filter

path are set to be a ratio of 9:1, hence the signal attenuation at integrator

output. C1 is reduced by 10 times, leading to both smaller area and parasitic

capacitance. As a result, a compact and highly linear loop filter is achieved

under low voltage headroom with the assistance of the resistive feedforward

path.
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Figure 3.14: Integration capacitor area and OTA output swing are reduced with
the resistive feedforward path added.

3.4 CTDSM Architecture

Fig. 3.15 shows the architecture of the proposed CTDSM. It consists

of an active RC integrator with a chopped OTA, a 9-b NS-SAR, and a 9-b

segmented RDAC. Since the RDAC area is reduced by the 2nd-order mismatch

error shaping, the filter area dominates the whole active area. Virtual-ground-

switching [Theertham et al. [2020]] is used to mitigate the ISI. This section

will illustrate more details of each circuit block.
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Figure 3.15: The schematic of proposed CTDSM.

3.4.1 OTA Schematic

The OTA used in the RC integrator is a feedforward compensated two-

stage OTA. The first stage is chopped at fs/2 and the schematic is shown in

Fig. 3.16. Cascodes are used to increase dc gain of the stage. Gm2 and Gm3

schematics are shown in the Fig. 3.17. They are merged into one five-transistor

amplifier.
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Figure 3.16: Chopped OTA schematic: 1st stage.

3.4.2 NS-SAR Schematic

The passive NS-SAR is implemented with an additional integration ca-

pacitor and multi-input comparator. Fig. 3.18 shows the simplified schematic.

Since any errors from the NS-SAR are shaped by the front-end integrator, we

implement only 1st-order mismatch error shaping on the SAR CDAC. MSB

CDAC is taken care of by the DWA. The 1st-order MES is applied to the

LSB CDAC. Fig. ?? shows the NS-SAR timing diagram. Sampling and reset

phases achieve the MES Shu et al. [2016]. After NS-SAR finishes the conver-

sion phase, the CDAC is merged with the integration capacitor to conduct

integration.
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Figure 3.17: Chopped OTA schematic: 2nd stage.
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Figure 3.18: Simplified NS-SAR schematic.

3.5 Measurement Results

The modulator achieves 95dB SNDR and 250kHz bandwidth with only

0.37mm2 area. Fig. 3.20 shows the measured spectrum with 20kHz input
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Figure 3.19: NS-SAR timing.
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Figure 3.20: Measured output spectra at large-amplitude input with DEM off

at a large amplitude with DEM off. Fig. 3.21 shows the spectrum of the

same amplitude but with DEM on. With a bandwidth of 250kHz, the SNDR

and SFDR are improved from 67dB/69dB to 95dB/103dB, respectively, at

-3dBFS input. Fig. 3.22 shows a spectrum with -47 dBFS where usually
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SNDR kink of DWA happens. Fig. 3.23 shows that a tone-free spectrum at

-47 dBFS can be obtained with our 2nd-order DEM. For the -47dBFS input,

the SNDR and SFDR are improved from 46dB/48dB to 48dB/65dB, respec-

tively. Fig. 3.24 shows the measured amplitude. Fabricated in a 40nm CMOS

process, the prototype ADC consumes 4.7mW (OTA:2.5mW, SAR:0.55mW,

RDAC:1.1mW, digital circuits:0.55mW) from 1.1V at 32MS/s. The pie chart

of power breakdown is shown in Fig. 3.25. The dynamic range (DR) is 96dB.

Table. 3.2 summarizes the results and compares them with the state-of-the-

art high-resolution CTDSMs. The input-referred noise and distortion (IRND)
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Figure 3.21: Measured output spectra at large-amplitude input with DEM on
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Figure 3.22: Measured output spectra at small-amplitude input with DEM off

quantifies the power of in-band noise and distortion normalized to the signal

bandwidth. Compared to the prior CTDSM for audio applications (<25kHz),

our work has 10x larger bandwidth and better IRND. FoMS favors designs

with higher analog VDD because higher input full scale makes higher SNDR.

Compared to the SNDR, noise and distortion (ND) better serves as a res-

olution metric with signal power excluded. Therefore, FoMN is defined to

measure the power efficiency at a certain level of ND and bandwidth. With

the same 250kHz bandwidth, our work has a better FoMN and 7x smaller area

than [Theertham et al. [2020]].
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As shown in Fig. 3.26, our work shows great potential to cut down

the area cost in the high-resolution CTDSMs. The IRND of our work is 1.5x

smaller than prior works of <0.5mm2 area. Our work drastically reduces the

area by 7x compared to the work of [Theertham et al. [2020]]. Therefore,

our work achieves low noise and distortion at a 250kHz BW with minimal

power and area cost. Moreover, this work only requires a 1.1-V voltage supply,

making it a suitable design choice in advanced technologies.
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Figure 3.23: Measured output spectra at small-amplitude input with DEM on
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Figure 3.24: Measured SNDR/SNR vs. different input amplitudes.

3.6 Conclusion

This chapter presents a high-resolution CTDSM with 2nd-order low-

complexity DEM. To obtain a more aggressive mismatch error shaping and

overcome the SNDR kink issue of the commonly-used 1st-order DWA, VQ-

based DEM has been implemented. Partial sorter, together with the proposed

stabilization method, successfully reduces the hardware complexity with trivial

performance loss. Moreover, a resistive feedforward path lowers the filter swing

and reduces the integration capacitor by 10 times. Consequently, the loop filter
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Figure 3.25: Power breakdown.

is highly linear, even under a low power supply. The proposed DEM logic and

CTDSM loop structure shows a promising high-resolution design pattern under

advanced technology nodes.

74



Table 3.2: Performance summary and comparison with state-of-
the-art high-resolution CTDSMs. 

 ISSCC-20 
Wu 

JSSC-16 
Berti 

JSSC-20 
Gonen 

JSSC-15 
Wang 

JSSC-20 
Theertham This work 

Process [nm] 55 160 160 28 180 40 
Analog VDD [V] 1.2 1.6 1.8 3.3 1.8 1.1 
Power [mW] 1.01 0.39 0.618 1.13 24 4.7 

BW [Hz] 4k 20k 20k 24k 250k 250k 
DR [dB] 140 103.1 108.5 100.6 107.5 96.0 

SNDR [dB] 101.9 91.3 106.4 98.5 105.3 94.8 
OSR 128 75 256 500 64 64 

DEM Order 1 1 1 1 1 2 
IRND [nV/ÖHz] 108 218 43.1 179 13.8 28.3 

FoMS[dB] 167.9 168.4 181.5 171.8 175.4 172.1 
FoMN [dB] 169.3 167.3 179.4 163.9 173.3 174.3 
Area [mm2] 0.585 0.21 0.27 0.022 2.85 0.37 

!"#$(!&'()	"+,+--+.	#/01+ + $01)/-)0/&) = (#/01+ + $01)/-)0/&)/67 

8/9! = :#$" + 10 ⋅ log"#(67/A/B+-) 
8/9$ = −10 ⋅ log"#(#/01+	 + $01)/-)0/&) + 10 ⋅ log"#(67/A/B+-) 

 

 
Figure 6. Performance summary and comparison with state-of-the-art high-resolution CTDSMs. 
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Figure 3.26: IRND and area plot of high-resolution CTDSMs.

76



Chapter 4

Robust Analog Design Automation Via

Reinforcement Learning

Previous chapters discussed two high-performance ADC designs. A

large amount of time was spent on tuning the circuit parameters. Therefore,

analog automation is necessary to accelerate the design cycle. This chap-

ter presents an automation technique to design analog/mixed-signal circuits

against PVT variations. Analog/mixed-signal circuit design is one of the most

complex and time-consuming stages in the chip design process. Due to various

process, voltage, and temperature (PVT) variations from chip manufactur-

ing, analog circuits inevitably suffer from performance degradation. Although

there has been plenty of work on automating analog circuit design under the

typical condition, limited research has been done on exploring robust designs

under the real and unpredictable silicon variations. Automatic analog design

against variations requires a large cost of computation and time. To address

the challenge, we present RobustAnalog, a robust circuit design framework

that involves the variation information in the optimization process. Specifi-

cally, circuit optimizations under different variations are considered as a set

of tasks. Similarities among tasks are leveraged and competitions are allevi-

ated to realize a sample-efficient multi-task training. Moreover, RobustAnalog
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prunes the task space according to the current performance in each iteration,

leading to a further simulation cost reduction. In this way, RobustAnalog can

rapidly produce a set of circuit parameters that satisfies diverse constraints

(e.g . gain, bandwidth, noise...) across variations. We compare our method

with Bayesian optimization, Evolutionary algorithm, and Deep Determinis-

tic Policy Gradient (DDPG) and demonstrate that RobustAnalog can signif-

icantly reduce required the optimization time by 14×-30×. Therefore, our

study provides a feasible method to handle real silicon conditions.

4.1 Introduction
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Figure 4.1: Left: Performances under variations form a distribution. Right:
New technologies have larger process variations, vulnerability to environmental
variations, hence higher discarded rate.

Analog circuit design is a paramount but extremely challenging task.

It requires a huge amount of human efforts and lacks effective automations.
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Due to numerous chip manufacturing variations, analog circuits suffer from

non-trivial performance degradation. Addressing such variation issues is con-

siderably challenging. Large manufacturing variations make the circuit per-

formance unpredictable.

In the performance distribution visualized in Figure 4.1, quite a few

proportion of chips are landing in the red regions that are completely defected

and discarded. As the chip fabrication technology advances, variation issues

become even worse, leading to a larger chip failure rate. If such severe variation

issues are not carefully handled, significant economic losses up to the billions

of dollars will occur [McConaghy et al. [2012]]. Hence, an effective variation-

aware circuit design methodology is in high demand.

Traditional solutions to address such circuit variation issues primarily

rely on laborious human expert involvement. Experts manually design the

circuit based on their expertise and the feedback from a large number of circuit

simulations and iterate the process until it passes all variation tests. However,

the burdensome analysis and slow simulations make the manual design process

considerably time-consuming.

Existing automated methods cannot address variation issues effectively.

The black-box optimization algorithms [Cohen et al. [2015]; Lyu et al. [2018a]]

and learning-based automation techniques [Wang et al. [2020a]; Settaluri et al.

[2020]; Wang et al. [2018a]; Liu et al. [2021]] are used to design circuits. How-

ever, they merely focus on the optimization under the typical condition without

variations. None of them can systematically produce a robust design under
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real chip variations. The variation-aware optimization is challenging in two

aspects. First, the simulation cost is prohibitively expensive in order to get

accurate variation effects under many test cases. Second, different variation

conditions might conflict with each other which significantly complicates the

circuit optimization problem. It will cost the solver much more time to find a

feasible solution that meets all performance constraints.

To address the above challenges, in this work, we present RobustAna-

log, an efficient variation-aware optimization framework for automatic analog

circuit design. RobustAnalog largely reduces the simulation cost to design a

robust analog circuit against variations. Here the variation-aware optimiza-

tion is formulated as a multi-task reinforcement learning (RL) problem, where

design for each variation condition is considered as one task. RobustAnalog

includes two stages. At the first stage, we select a representative subset of

tasks as the training set. Specifically, we group the tasks using clustering al-

gorithm and choose one task per group to form the training task set based

on their relative performance to the target performance. At the second stage,

we leverage multi-task deep deterministic policy gradient (DDPG) [Lillicrap

et al. [2015]] to train our RL agent with the selected tasks. During training,

the critic model learns to predict values of state-action pair from each task and

guides the actor to generate a better policy. To alleviate conflicting multi-task

gradients, we apply PCGrad [Yu et al. [2020]] to optimize actor and critic

models.

The core contributions of this work are as follows,
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• We propose an automated optimization framework for variation-aware ana-

log circuit design via multi-task reinforcement learning and adaptive task

space pruning.

• An efficient training with variations is achieved by multi-task RL. The

different PVT corners are formulated as multiple tasks. Sampling efficiency

is largely improved by leveraging the correlations among similar tasks and

mitigating the competition among conflicting tasks.

• An effective task pruning technique reduces the number of training tasks.

With a subset of full tasks, the trained agent can still achieve full tasks

eventually. The number of queries into the full task set is minimized, leading

to a significant simulation cost reduction.

• Extensive experimental results demonstrate that, on real-world circuit de-

sign benchmarks, our method outperforms Evolutionary strategy (ES), Bayesian

optimization (BO), and DDPG methods with 14×-30× simulation cost re-

duction.

4.2 Related Work

PVT Variation and Corners – The major part of variations is PVT varia-

tion. PVT variation usually refers to a combination of global process variation

(P), power supply (V), and temperature (T) variations. Process variations

happen during chip manufacturing, resulting in different transistor character-

istics. There are five transistor models to cover the process variation {TT, SS,
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FF, SF, FS}.

To avoid circuit failures due to uncontrollable PVT variations, we model

all these variations by a set of PVT corners. A PVT corner is a combination

of process, voltage, and temperature values. For example, a fast-process, high-

voltage, and low temperature corner is {Process = FF, Vdd = 1.3V, T = 15°C

}. A robust circuit should maintain desired performances in all of the pre-set

PVT corners.

Automatic Analog Sizing – Automatic analog sizing techniques are attract-

ing more and more research interests these years. The optimization methods,

including Bayesian Optimization [Snoek et al. [2012]; Lyu et al. [2018a]], Ge-

netic Algorithms [Cohen et al. [2015]] formulate the circuit design as a black-

box problem. They show the differences in the sample efficiency and opti-

mality. However, the critical issue is that they have to optimize the circuit

from scratch every time when encountering a new design condition. The lack

of tranferalibity across different conditions prevents them from addressing the

variation issue at an affordable cost. Recently, learning-based methods have

been extensively applied to circuit sizing problems. Deep neural networks

(DNN) [Wang et al. [2020a]; Zhang et al. [2019a]] can approximate the com-

plex relation between circuit parameters and performances. Deep RL methods

show the potential to achieve higher circuit performances given enough explo-

rations [Wang et al. [2018a, 2020a]; Settaluri et al. [2020]]. Moreover, RL

enables transfer- learning across different design conditions, including differ-

ent technologies and pre/post-layout design stage. However, current methods
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cannot reach the design goal under different conditions simultaneously. In this

chapter, our work effectively addresses the variations of real-circuits altogether.

Multi-Task RL – Deep reinforcement learning (DRL) is an emerging sub-

field of RL that can scale RL algorithms to complex and rich environments.

Multi-task RL focuses on enabling the single agent to solve multiple related

problems, either simultaneously or sequentially [Teh et al. [2017]]. Learning

multiple related tasks together should facilitate the learning of each individual

task [Bengio [2012]; Caruana [1997]]. However, it has also been found that

training on multiple tasks can negatively affect performance on each task.

Different kinds of techniques are proposed to solve this issue including new

architectures [Heess et al. [2016]; Devin et al. [2017]], auxiliary tasks [Jader-

berg et al. [2016]], and new optimization schemes [Hessel et al. [2019]; Yu

et al. [2020]]. Besides, choosing which task or tasks to train on at each time

step is also important. The task scheduling [Sharma et al. [2017]] is also dis-

cussed. The idea behind it is to assign task scheduling probabilities based on

relative performance to a target level. Optimized training task selections can

significantly improve model performance [Bengio et al. [2009]]. We explored

both the optimal task selection and multi-task training. They are integrated

together into the framework to boost the sampling efficiency.
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4.3 Proposed PVT Variation-Aware Circuit Sizing

4.3.1 Problem Definition

Given a fixed circuit topology, we search for a circuit sizing vector whose

performance can satisfy the constraints (design targets) across all variations.

Then the problem can be formulated as a constraint satisfaction problem under

different conditions.

minimize 0

subject to Fi(X|Tj) < Ci, j = 1, . . . , k
(4.1)

where

X = X1, X2, ..., Xn

D = D1, D2, ..., Dn

C = C1, C2, ..., Cm

T = T1, T2, ..., Tk

X, the sizing vector, is an n-dimensional variable which corresponding

to n circuit sizing parameters. D is the domain for X. For example, D1 is [0, 1]

which means the design space of X1 is [0, 1]. T is the set of k pre-defined PVT

corners to cover possible variations in the real world. C is the constraint set

for all circuit metrics. Because we havem metrics, the number of constraints is

also m. Fi(X|Tj) is the i
th performance metric of circuit under the jth corner.

Fi is a non-linear mapping between X and the ith metric in the performance.

X is the input, and T is the parameter. We rely on the circuit simulator to
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provide this mapping. Therefore, our goal is to find an X that can satisfy any

constraints in C under any corner task in T . It is worth noting that choosing

which tasks to optimize is also non-trivial. Spending simulations on each task

is wasteful and provides minimal additional information since the correlation

among tasks is ignored. A more interesting way is to conduct the task selection

and multi-task training jointly.

4.3.2 Framework Overview

An overview of the proposed framework is shown in Figure 4.2. We

consider satisfying constraints under one PVT corner as a single task. In

each iteration, (1) RobustAnalog selects a new task subset from all PVT corner

tasks. For the first iteration, a pre-defined nominal corner will be selected as

the first task; (2) The RL agent generates actions and passes them to each

environment in the task subset; (3) The environment denormalizes actions

([-1, 1] range) to actual circuit sizings and refines them. The sizings will

be truncated according to minimum precision, lower and upper bounds of the

technology node if necessary; (4)Simulate the circuit (5) Agent gets the rewards

from corner-specific environments. Optimizations are performed on the actor

and critic networks with PCGrad technique. (6) If all tasks in the subset are

passed during the agent evaluation, the sizing solution will be tested on the

full task set. If it passes all tasks, the loop terminates. Otherwise back to (1).

In the meantime, actor-critic model weights and replay buffers are saved for

the agent to inherit in the next iteration.
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Figure 4.2: RobustAnalog Overview. (1) A pruned task subset is generated
from the full task set (2) Multi-task RL agent is trained on task subset (3)
Training continues until the produced sizing can achieve training tasks. Then
the sizing is evaluated on the full set. If it passes all the tasks, RobustAnalog
returns the result.

4.3.3 Multi-Task RL training

Multi-task RL is a training paradigm in which the agents are trained

with samples from multiple tasks simultaneously. Shared representations are

learnt from a collection of related tasks. These shared representations increase

sample efficiency and can potentially yield a faster learning speed for related

tasks. In our setting, we create a multi-task agent whose critic can predict the

value of task-conditioned action-state pairs. Since the target of the actor is to

look for a sizing that passes all tasks, the actor model is set to be task agnos-
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tic. Another benefit from shared representations is its ability to generalize to

unseen corner tasks, which is useful in Monte Carlo corner tests. There are

more discussions in Section 4.4.

State. The PVT information is embedded in our states, s = (p, v, t), where p

is the one-hot representation of component type, v is the normalized voltage

value and t is the normalized temperature value.

Reward. Our reward is formulated as:

R =

r, r < −0.02

0.2, r ≥ −0.02
(4.2)

r =
M∑
i=1

min{mi −m∗
i

mi +m∗
i

, 0} (4.3)

where mi is the current simulated ith performance metric and m∗
i is

the corresponding constraint. The reward is a measure of the relative distance

between the current performance metrics and the corresponding design targets.

Once the requirements are met, the reward value is fixed at 0.2. This reward

formulation is motivated by the design goal in the real world. Designers tend

not to over-optimize the circuits. It is more important that designers can fulfill

the requirements in a short period of time.

Action. The action vector is a set of values corresponding to the sizing

parameters for each circuit. They include transistor sizes (width, length) and

capacitor values. The details of settings for each benchmark are illustrated in

section 4.4.
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Training. The environment includes the circuit, simulator, and PVT infor-

mation. Each time we query the environment, it simulates the circuit and

returns the performance with PVT information. After agent-environment in-

teractions, samples (s, a, r, zi) will be stored in the replay buffers , where s is

the state, a is the action, r is the reward, and zi is the corner task ID. The

critic neural network takes (s, a, zi) as a input and predicts the corresponding

value for the current corner task. Relying on the insight that performance

under different corners are related, most of critic neural network parameters

are shared across tasks except a few in the input layer. The task ID is removed

from the inputs of the actor neural network. The training process is modified

from DDPG Lillicrap et al. [2015]. Details are illustrated in Algorithm 1. M

is the max optimization episodes and W is the warm-up episodes. N is the

truncated norm noise. Ns is the training batch size. The key difference from

the single-task setting is that we sample a stratified batch from buffers every

time and generate task-specific losses. Also, samples from different tasks are

stored in separated tasks. For the optimization strategy, we use PCGrad Yu

et al. [2020] to address conflicting gradients from different tasks.
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Algorithm 1: Multi-task RL in RobustAnalog

Given critic network Q(S,A, Zi | θQ) and actor network µ(S | θµ)
with critic weights θQ and actor weights θµ ;
Given replay buffers {Pi} ;
for episode = 1, M do

Initialize random process N; Reset all environments S;
if episode ≤ W then

Warm-up: randomly sample an action Ã;
end
else

Select action Ã = µ(S | θµ) +N according to the current
policy and exploration noise;

end

Denormalize and refine Ã with design constrains to get A;
Simulate the A for each task to get rewards {Ri} ;
Store each transition (S,A,R, Zi) in Pi;
if episode > W then

Sample a stratified batch of (Ŝ, Â, R̂, Ẑi) from {Pi} (batch
size = Ns);
Update the critic by minimizing K losses with PCGrad:
Li =

1
Ns

∑Ns

k=1(R̂k −B −Q(Ŝk, Âk, Ẑi | θQ))2
Update the actor using the K gradients modified by
PCGrad:
∇θµJi =

1
Ns

∑Ns

k=1∇aQ(S,A, Zi|θQ)|Ŝk,µ(Ŝk)
∇θµµ(S|θµ)|Ŝk

;

∇θµJi = PCGrad(∇θµJi) ;

end

end

4.3.4 Task Space Pruning

Although multi-task training has improved the efficiency of optimiza-

tion on different corner tasks, we can still reduce the number of simulations

further by selecting a small-sized training task set. Since our final goal is to
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noise limited corners speed limited corners

Figure 4.3: Visualization of corner task clustering and selection for strongARM
Latch. k-means decision boundary is shown, dividing corners into two kinds:
noise-limited corners (blue) and speed-limited corners (brown). The corner
with the worst performance in each cluster is chosen as one of the training
tasks.

pass all the corner tasks, we must be able to iteratively improve our optimiza-

tion results with a series of training task sets, as shown in Fig.4.2. Therefore,

we choose to incrementally train our NN-based RL agent since it has the trans-

ferability and capability of inheriting the trained weights from last cycle [Wang

et al. [2020a]; Settaluri et al. [2020]]. Such transferability makes it compatible

with the following task space pruning technique, which is a major advantage

of multi-task RL methods over other optimization methods like Bayesian op-

timization and Evolutionary strategy.

Choosing a small batch from a large number of tasks is non-trivial. The
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straightforward ways to form a training task set is sampling tasks randomly

from the full set [Dong et al. [2015]; Sanh et al. [2019]]. Human designers tend

to guess the worst-case corners and design against those corners. Inspired

by human design methodology, the work of [Yang et al. [2021]] defines the

lowest-reward as the worst cases and optimize on them correspondingly. The

value of reward, scalarized from a multi-dimensional performance metric vec-

tor, lacks the information to differentiate different low-performance corners.

Low rewards may result from different constraint violations. Therefore, the

lowest reward doesn’t mean one corner’s performance is dominated by others’.

To address the problem mentioned above, we first cluster the corners

based on their multi-dimensional metric vector and rank the corners in the

same cluster by their rewards. Corners in the same cluster have the similar

performance pattern. Therefore, the value of rewards in the same cluster

can better reflect the ”goodness” of one corner’s performance. Since corner

performance patterns are unknown, we perform clustering by using one of

unsupervised learning techniques, k-means [MacQueen et al. [1967]], in the

performance space. After including all the performance patterns, we can train

our agent with a small subset of all corners with confidence that all corners

will still work. We also apply the pruning technique to larger random corner

set, which is detailed in section 4.4.

We take strongARM benchmark as an example. From last cycle, we

have an optimized sizing based on the last batch of training corners. If such

optimized sizing doesn’t pass the full corner test set, we need to select a new
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batch of training corners. The proposed task space pruning contains three

steps: (1) We simulate the optimized on all corner tests to get the correspond-

ing performance distribution. (2) We divide the corners into different clusters

by using the performance metrics as input features. It is shown in Fig.4.3 that

corners of strongARM belong to two clusters. One cluster is noise limited and

the other is speed limited. (3) We select the corner with the lowest reward in

each cluster as one of the training tasks for the next iteration. Cluster-specific

worst corner sets a lower bound of performances within the same group. With

this pruning technique, the task space for multi-task RL training in each it-

eration is pruned to be a significantly smaller scale while still being a good

representation of the full task space. If there is no sizing given at first, a

pre-defined nominal corner will be chosen as the first corner to train on. An

interesting finding from the empirical study results is that the easier corner

tasks help to accelerate the learning of other hard tasks. Therefore, we always

add a nominal corner as an auxiliary task in the training task sets at all time

steps. If all the corners are passed, the loop terminates.

4.4 Experiments

4.4.1 Analog/Mixed-Signal Circuits

We experiment with three real-world analog/mixed-signal circuits. They

are two-stage operational transimpedance amplifier (Two-stage OTA), folded-

cascode operational transimpedance amplifier (Folded-Cascode OTA) and stron-

gARM Latch. They are chosen for three reasons. First, they are the most im-
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portant and common-used blocks in various systems. Engineers usually spend

the longest time optimizing the performance and robustness of these circuits.

Second, they include two representative kinds of analog circuits which are the

static and dynamic circuits. The two kinds are dictated by different physic and

engineering rules. The third reason is that they have different levels of varia-

tions. Two-stage OTA is with 45nm, and the other two are with older 180nm

technology. 45nm has a larger variation. Therefore, we can study the impacts

of different variation magnitudes. Each circuit is a composition of a number

of transistors and capacitors. Each transistor has two parameters, the gate

width and length (w, l). Capacitors have one parameter (c), the capacitance

value. The initial design spaces of these devices are given by human designers.

To minimize the efforts of designers, our design space are set to be very large.

They have 1014, 1027, and 6.4× 1064 possible values correspondingly.

The circuits are simulated on SPICE-based simulators Nagel and Ped-

erson [1973]. Two-stage OTA is on Ngspice and BSIM 45nm predictive tech-

nology. Folded-Cascode OTA and strongARM Latch are on Cadence spectre

and TSMC 180nm technology, a commercial simulator tool.

Two-stage OTA. The topology is shown in Figure 4.4. It has 7 pa-

rameters including 6 transistor widths (w) and 1 capacitor value (c). The range

of w is [0.5, 50]∗1µM and [0.1, 10]∗1pF for c. The total design space is 1014

possible values. The performance metrics are current(i), unity gain-bandwidth

(ugb), phase margin (phm). The corresponding constraints (C) and the PVT

93



corner tests (T) are showed below. There are 30 corners (5× 3× 2).

T = {TT, SS, FF, FS, SF} × {1.0V, 1.1V, 1.2V }×

{0◦C, 100◦C }

C = {i ≤ 5mA, ugb ≥ 15MHz, phm ≥ 60◦}

Folded-Cascode OTA. The topology is shown in Figure 4.4. It has 20

parameters, including 7 transistor widths (w), 7 lengths (l), 2 capcitor values

(c) and 4 transistor ratios (n). The range of w is [0.24, 150]∗1µM , [0.18,

2]∗1µM for l, [0.1, 2]∗1pF , [0.1, 10]∗pF for different c. The total design

space is 6.4 × 1064 possible values. The performance metrics are power(p),

unity gain (g), phase margin (phm), common-mode rejection ratio (CMRR),

power supply rejection ratio (PSRR), noise (n), unity-gain-bandwidth (ugb).

The corresponding constraints (C) and the PVT corner tests (T) are showed

below. There are 20 corners (5× 2× 2).

T = {TT, SS, FF, FS, SF} × {1.6V, 1.8V } × {0◦C, 100◦C }

C = {p ≤ 1mW, ugb ≥ 30MHz, phm ≥ 60◦, n ≤ 30mV,

g ≥ 60dB, CMRR ≥ 80dB, PSRR ≥ 80dB }

strongARM Latch. The topology is shown in Figure 4.4. It has 7 parame-

ters, including 6 transistor widths (w), 1 capcitor values (c). The range of w is

[0.22, 50]∗1µM , [0.15, 4.5]∗1pF for c. The total design space is 1027 possible

values. The performance metrics are power(p), set delay (sd), reset delay (rd),

set voltage (sv), reset voltage (rv), noise (n). The corresponding constraints
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(C) and the PVT corner tests (T) are showed below. There are 20 corners

(5× 2× 2).

T = {TT, SS, FF, FS, SF} × {1.1V, 1.2V } × {0◦C, 100◦C }

C = {p ≤ 4.5uW, n ≤ 50uV, sd ≤ 14ns, rd ≤ 9.1ns,

sv ≥ vdd− 0.05V, rv ≤ 0.05V }

4.4.2 Training Settings

To demonstrate the effectiveness of the proposed RobustAnalog, we

apply RobustAnalog to the above three circuits and record the simulation time

it took to pass all the corner tests. We compare the results of RobustAnalog

with Bayesian Optimization (BO) Snoek et al. [2012], Evolutionary Strategy

(ES) Hansen [2016], and Deep Deterministic Policy Gradient (DDPG). For

the three baselines, the variation-aware circuit optimization is considered as

a single task. The average reward of all corner tasks is used to indicate the

goodness of the current sizing. BO, ES, and DDPG improve the average

reward until it reaches 0.2. In ES, DDPG, and RobustAnalog, the circuit

simulation time accounts for over 95% of the total time. The computation

time of BO becomes comparable with simulation time after many iterations.

We compare these methods in terms of the simulation time. For RL training,

we use a training batch size of 64, replay buffer size of 1000, and exploration

noise standard deviation of 0.2. Actor and critic are all 4-layer multilayer

perceptions (MLPs). For RL methods, we evaluate the agent every 10 training

steps. All the experiments are conducted on a 6 core CPU. RL methods are
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Figure 4.4: Three analog/mixed-signal benchmarks.
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Figure 4.5: Simulation times for each method to take to first hit reward=0.2

implemented with PyTorch Paszke et al. [2019]; Stooke and Abbeel [2019]

4.4.3 Evaluation of the Circuit Optimization

In all three circuit benchmarks, RobustAnalog achieved the smallest

simulation cost to accomplish all the corner tasks. In each benchmark, it

passed all the corners in the runs of different random seeds hence a 100%

success rate. The comparison of simulation costs are shown in Figure 4.5.

RobustAnalog consistently outperforms the baseline methods including ES,

BO, and single-task DDPG. The simulation cost reductions are huge, 26x

in Two-Stage OTA, 30x in strongARM Latch, and 14x in Folded-Cascode

OTA. Note that BO becomes slow after having many samples. We ran

BO for the same time with other methods for fair comparisons. We have
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Figure 4.6: Compare learning curves (average reward vs. # simulation) among
baselines and our proposed RobustAnalog. Reward=0.2 indicates all tasks are
passed. RobustAnalog hits the reward of 0.2 significantly faster than the
baseline methods on all benchmarks.

several findings from the experiment results. First, all methods spend more

simulations on optimizing the Two-Stage OTA which has larger variations with

the 45nm technology. Second, compared to the ES and BO, single-task DDPG

performs better in strongARM Latch while worse in the Two-Stage and Folded-

Cascode OTAs. This is possibly because strongARM Latch is a dynamic circuit

that is different from the static OTAs. To conclude, RobustAnalog shows

a significant efficiency improvement in the different levels of variations and

circuit benchmarks with distinct natures. The learning curves are shown in

Figure 4.6. Moreover, RobustAnalog achieves comparable performances with

a state-of-the-art human design Tang et al. [2020].

4.4.4 Analysis

Multi-Task and Task Space Pruning. We conduct an ablation

study on multi-task training and task space pruning. In Figure 4.7, We com-
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Figure 4.7: Ablation of applying multi-task and task space pruning. Using
two together brings the least simulation cost.

pared simulation costs of DDPG baseline, multi-task DDPG with full task set,

and RobustAnalog (multi-task DDPG with pruned task set). DDPG took over

300,000 simulations to pass all corner tests. With the multi-task training, the

number of simulations was reduced to 35,000. With the pruned task space,

the number of simulations was further cut down to 7,000. We also visualize

the corner performances and the optimization trace in the performance plane

of three circuit benchmarks in Figure 4.8.

Noise (n) - Delay (sd) plane is chosen for strongARM Latch and Band-

width (ugb) - Phase Margin (phm) for OTAs. Selected training tasks are

denoted by black circles. We can clearly see that selections are located at the

performance boundary. Two snapshots of the performance distribution dur-

ing the optimization are also showed. They clearly indicate that distributions

moved towards the feasible set area from t0 to t1 with such pruned task space.

RobustAnalog vs. Human Expert. To examine the quality of the

solutions from RobustAnalog, we compared them with a state-of-the-art hu-
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feasible set

Figure 4.8: Performance distributions of two intermediate sizings during the
RobustAnalog optimization. Red and blue markers are performances on dif-
ferent corners at time t0 and t1. Selected training corners are indicated by
black circles.

Table 4.1: Comparison between RobustAnalog’s solution and expert’s solution

Power
(uV)

Set Delay
(ns)

Reset Delay
(ns)

Noise
(uV)

DSV
(V)

Reset Voltage
(nV)

Human Expert [Tang et al., 2020] (3.78, 4.69) (6.42, 19.7) (5.02, 9.40) (41.9, 57.3) (0, 0) (8.71, 1.99k)
RobustAnalog (2.22, 2.88) (4.46, 13.9) (1.30, 2.3) (45.3, 61.9) (0, 0) (20.4, 2.21k)

man design. The performance metrics are listed in Table 4.1. Each metric

is shown in the format of (min, max) across corners. For all metrics, Robus-

tAnalog performed better excepts for the slightly inferior noise performance.

This benchmark, strongARM Latch, has non-linear behaviors and variation-

sensitive performances. A large amount of tuning efforts is required. It can

take days for the expert to achieve the design target. Now RobustAnalog can

achieve the same task and produce high-quality solutions within an hour.

Scale to Large Corner Sets.

Here we empirically study how the simulation cost scales as we take

on more and more corner tasks. In the previous sections, we discussed the

fully factorial corner test for each benchmark. In industry-level circuits, ran-
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Figure 4.9: Required simulation steps with more corners

domly sampled corners, Monte Carlo corners, are also used. There can be

hundreds, even thousands of Monte Carlo corners needed to perform a thor-

ough verification. Therefore, the scalability to a large corner set is important.

To demonstrate the scalability of RobustAnalog, we conduct Monte Carlo

sampling on process variation modelsets {TT, FF, SS, FS, SF}, continuous

voltage range [1.0, 1.2] and continuous temperature range [0°C, 100°C] and

form 5 Monte Carlo corner test sets of different sizes. These Monte Carlo cor-

ner sets have 20, 40, 80, 100, 150 corners, respectively. Experiments are done

on Two-Stage OTA benchmark and results are shown in Figure 4.9. Robus-

tAnalog only needs 69% more simulations when the corner task set becomes

7.5× larger. The simulation cost difference between RobustAnalog and the

baseline methods will become 4.4× larger at the scale of 150 corners.

4.5 Conclusion

We present RobustAnalog, a variation-aware optimization framework

based on multi-task RL. The key property of RobustAnalog is the ability to
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conduct efficient multi-task learning with pruned training task space. There-

fore, it can effectively design circuits for variations. We show that Robus-

tAnalog can reduce simulation cost by an order of magnitude compared with

baselines. It can also scale to a large number of variation cases. As today’s

chip design becomes extremely challenging with the presence of variations, Ro-

bustAnalog shows the potential to drastically shorten the circuit design cycle

and reduce the cost.
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Chapter 5

Conclusion

This dissertation has presented a set of design and automation tech-

niques to reduce the physical and design cost of analog/mixed-signal designs.

We mainly focused on the area and power reduction in the high-resolution

and high-speed regimes of ADC design. Then, the design cost of those high-

performance ADCs is largely reduced by the proposed variation-aware analog

automation. The major contributions are concluded in this session.

The high-speed CTDSM design trade-offs are discussed in Chapter 2.

An energy-efficient 4th-order CTDSM with single OTA and passive NS-SAR.

Hybridizing the CTDSM with the emerging passive NS-SAR significantly re-

duces the power by minimizing the number of OTAs and enhances the stability.

In the meanwhile, an efficient ELD compensation is conducted in the charge

domain. The hybrid CT-DT DSM turns out to be a cost-effective design pat-

tern of high-order DSMs.

The high-resolution CTDSM design is researched in Chapter 3. A

compact-area high-resolution CTDSM is presented with 2nd-order DEM and

feedforward-assisted loop filter. The high hardware complexity of high-order

DEM is tackled by a partial-sorter algorithm. Thus, the feedback multi-bit
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DAC area is significantly reduced. The feedforward path makes the loop filter

highly linear in the low power supply. Therefore, this design shows a viable

way to achieve high resolution in the advanced technology node despite the

low power supply and expensive area consumption.

Variation-aware analog automation is studied in Chapter 4. The multi-

task RL framework with task space pruning address the issue of expensive

simulation cost in automations. The correlations in different conditions are

modeled and their conflicts are mitigated. On top of this multi-task formu-

lation, the full training task set is pruned in each iteration of the framework

adaptively. In conclusion, the proposed framework, RobustAnalog, bridges the

gap between real-world analog design and existing automation techniques.

All chip designs were validated through measurements on silicon proto-

types and demonstrated solid evidence on advancing cutting-edge performance.

Automation algorithms were tested on real-world circuits and compared with

mainstream black-box optimization algorithms. In summary, we push the

boundary of analog/mixed-signal performances and make high-performance

analog/mixed-signal circuits easy to be accessed with the help of machine in-

telligence. All these efforts will enable the landing of the ubiquitous sensing

era.
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