13,369 research outputs found

    Refraction of dispersive shock waves

    Get PDF
    We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of defocusing nonlinear Schr\"odinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.Comment: 45 pages, 23 figures, minor revisio

    Conservation Laws, Hodograph Transformation and Boundary Value Problems of Plane Plasticity

    Full text link
    For the hyperbolic system of quasilinear first-order partial differential equations, linearizable by hodograph transformation, the conservation laws are used to solve the Cauchy problem. The equivalence of the initial problem for quasilinear system and the problem for conservation laws system permits to construct the characteristic lines in domains, where Jacobian of hodograph transformations is equal to zero. Moreover, the conservation laws give all solutions of the linearized system. Some examples from the gas dynamics and theory of plasticity are considered

    Hydrodynamic reductions of multi-dimensional dispersionless PDEs: the test for integrability

    Get PDF
    A (d+1)-dimensional dispersionless PDE is said to be integrable if its n-component hydrodynamic reductions are locally parametrized by (d-1)n arbitrary functions of one variable. Given a PDE which does not pass the integrability test, the method of hydrodynamic reductions allows one to effectively reconstruct additional differential constraints which, when added to the equation, make it an integrable system in fewer dimensions (if consistent).Comment: 16 page

    Unsteady undular bores in fully nonlinear shallow-water theory

    Get PDF
    We consider unsteady undular bores for a pair of coupled equations of Boussinesq-type which contain the familiar fully nonlinear dissipationless shallow-water dynamics and the leading-order fully nonlinear dispersive terms. This system contains one horizontal space dimension and time and can be systematically derived from the full Euler equations for irrotational flows with a free surface using a standard long-wave asymptotic expansion. In this context the system was first derived by Su and Gardner. It coincides with the one-dimensional flat-bottom reduction of the Green-Naghdi system and, additionally, has recently found a number of fluid dynamics applications other than the present context of shallow-water gravity waves. We then use the Whitham modulation theory for a one-phase periodic travelling wave to obtain an asymptotic analytical description of an undular bore in the Su-Gardner system for a full range of "depth" ratios across the bore. The positions of the leading and trailing edges of the undular bore and the amplitude of the leading solitary wave of the bore are found as functions of this "depth ratio". The formation of a partial undular bore with a rapidly-varying finite-amplitude trailing wave front is predicted for ``depth ratios'' across the bore exceeding 1.43. The analytical results from the modulation theory are shown to be in excellent agreement with full numerical solutions for the development of an undular bore in the Su-Gardner system.Comment: Revised version accepted for publication in Phys. Fluids, 51 pages, 9 figure

    Bogoliubov Renormalization Group and Symmetry of Solution in Mathematical Physics

    Get PDF
    Evolution of the concept known in the theoretical physics as the Renormalization Group (RG) is presented. The corresponding symmetry, that has been first introduced in QFT in mid-fifties, is a continuous symmetry of a solution with respect to transformation involving parameters (e.g., of boundary condition) specifying some particular solution. After short detour into Wilson's discrete semi-group, we follow the expansion of QFT RG and argue that the underlying transformation, being considered as a reparameterisation one, is closely related to the self-similarity property. It can be treated as its generalization, the Functional Self-similarity (FS). Then, we review the essential progress during the last decade of the FS concept in application to boundary value problem formulated in terms of differential equations. A summary of a regular approach recently devised for discovering the RG = FS symmetries with the help of the modern Lie group analysis and some of its applications are given. As a main physical illustration, we give application of new approach to solution for a problem of self-focusing laser beam in a non-linear medium.Comment: Contribution to the proceedings of conference "RG 2000" (Taxco, Mexico, Jan. 1999). To be published in Physics Report

    Solution of the Riemann problem for polarization waves in a two-component Bose-Einstein condensate

    Full text link
    We provide a classification of the possible flow of two-component Bose-Einstein condensates evolving from initially discontinuous profiles. We consider the situation where the dynamics can be reduced to the consideration of a single polarization mode (also denoted as "magnetic excitation") obeying a system of equations equivalent to the Landau-Lifshitz equation for an easy-plane ferro-magnet. We present the full set of one-phase periodic solutions. The corresponding Whitham modulation equations are obtained together with formulas connecting their solutions with the Riemann invariants of the modulation equations. The problem is not genuinely nonlinear, and this results in a non-single-valued mapping of the solutions of the Whitham equations with physical wave patterns as well as to the appearance of new elements --- contact dispersive shock waves --- that are absent in more standard, genuinely nonlinear situations. Our analytic results are confirmed by numerical simulations
    corecore