4,745 research outputs found

    An Evaluation of Ultrasonic Shot Peening and Abrasive Flow Machining As Surface Finishing Processes for Selective Laser Melted 316L

    Get PDF
    Additive Manufacturing, and specifically powder bed fusion processes, have advanced rapidly in recent years. Selective Laser Melting in particular has been adopted in a variety of industries from biomedical to aerospace because of its capability to produce complex components with numerous alloys, including stainless steels, nickel superalloys, and titanium alloys. Post-processing is required to treat or solve metallurgical issues such as porosity, residual stresses, and surface roughness. Because of the geometric complexity of SLM produced parts, the reduction of surface roughness with conventional processing has proven especially challenging. In this Thesis, two processes, abrasive flow machining and ultrasonic shot peening, are evaluated as surface finishing processes for selective laser melted 316L. Results of these experiments indicate that AFM can reliably polish as-built internal passages to 1 µm Ra or better but is unsuitable for passages with rapidly expanding or contracting cross-sections. AFM can also polish relatively small passages, but lattice components may prove too complex for effective processing. USP cannot achieve such low surface roughness, but it is a versatile process with multiple advantages. Exterior surfaces were consistently processed to 1.7 to 2.5 µm Ra. Interior surfaces experienced only partial processing and demonstrated high geometric dependence. USP significantly hardened the surface, but steel media hardened the surface better than ceramic media did. Both AFM and USP are recommended processes for the surface finishing of SLM manufactured parts. Good engineering judgement is necessary to determine when to use these processes and how to design for post-processing

    Human-machine knowledge hybrid augmentation method for surface defect detection based few-data learning

    Full text link
    Visual-based defect detection is a crucial but challenging task in industrial quality control. Most mainstream methods rely on large amounts of existing or related domain data as auxiliary information. However, in actual industrial production, there are often multi-batch, low-volume manufacturing scenarios with rapidly changing task demands, making it difficult to obtain sufficient and diverse defect data. This paper proposes a parallel solution that uses a human-machine knowledge hybrid augmentation method to help the model extract unknown important features. Specifically, by incorporating experts' knowledge of abnormality to create data with rich features, positions, sizes, and backgrounds, we can quickly accumulate an amount of data from scratch and provide it to the model as prior knowledge for few-data learning. The proposed method was evaluated on the magnetic tile dataset and achieved F1-scores of 60.73%, 70.82%, 77.09%, and 82.81% when using 2, 5, 10, and 15 training images, respectively. Compared to the traditional augmentation method's F1-score of 64.59%, the proposed method achieved an 18.22% increase in the best result, demonstrating its feasibility and effectiveness in few-data industrial defect detection.Comment: 24 pages, 15 figure

    Artificial intelligence for advanced manufacturing quality

    Get PDF
    100 p.This Thesis addresses the challenge of AI-based image quality control systems applied to manufacturing industry, aiming to improve this field through the use of advanced techniques for data acquisition and processing, in order to obtain robust, reliable and optimal systems. This Thesis presents contributions onthe use of complex data acquisition techniques, the application and design of specialised neural networks for the defect detection, and the integration and validation of these systems in production processes. It has been developed in the context of several applied research projects that provided a practical feedback of the usefulness of the proposed computational advances as well as real life data for experimental validation

    Siamese Basis Function Networks for Data-Efficient Defect Classification in Technical Domains

    Get PDF
    Training deep learning models in technical domains is often accompanied by the challenge that although the task is clear, insufficient data for training is available. In this work, we propose a novel approach based on the combination of Siamese networks and radial basis function networks to perform data-efficient classification without pretraining by measuring the distance between images in semantic space in a data-efficient manner. We develop the models using three technical datasets, the NEU dataset, the BSD dataset, and the TEX dataset. In addition to the technical domain, we show the general applicability to classical datasets (cifar10 and MNIST) as well. The approach is tested against state-of-the-art models (Resnet50 and Resnet101) by stepwise reduction of the number of samples available for training. The authors show that the proposed approach outperforms the state-of-the-art models in the low data regime

    Generative Adversarial Networks to Improve the Robustness of Visual Defect Segmentation by Semantic Networks in Manufacturing Components

    Get PDF
    This paper describes the application of Semantic Networks for the detection of defects in images of metallic manufactured components in a situation where the number of available samples of defects is small, which is rather common in real practical environments. In order to overcome this shortage of data, the common approach is to use conventional data augmentation techniques. We resort to Generative Adversarial Networks (GANs) that have shown the capability to generate highly convincing samples of a specific class as a result of a game between a discriminator and a generator module. Here, we apply the GANs to generate samples of images of metallic manufactured components with specific defects, in order to improve training of Semantic Networks (specifically DeepLabV3+ and Pyramid Attention Network (PAN) networks) carrying out the defect detection and segmentation. Our process carries out the generation of defect images using the StyleGAN2 with the DiffAugment method, followed by a conventional data augmentation over the entire enriched dataset, achieving a large balanced dataset that allows robust training of the Semantic Network. We demonstrate the approach on a private dataset generated for an industrial client, where images are captured by an ad-hoc photometric-stereo image acquisition system, and a public dataset, the Northeastern University surface defect database (NEU). The proposed approach achieves an improvement of 7% and 6% in an intersection over union (IoU) measure of detection performance on each dataset over the conventional data augmentation

    Surface Defect Detection Using YOLO Network

    Get PDF
    Detecting defects on surfaces such as steel can be a challenging task because defects have complex and unique features. These defects happen in many production lines and differ between each one of these production lines. In order to detect these defects, the You Only Look Once (YOLO) detector which uses a Convolutional Neural Network (CNN), is used and received only minor modifications. YOLO is trained and tested on a dataset containing six kinds of defects to achieve accurate detection and classification. The network can also obtain the coordinates of the detected bounding boxes, giving the size and location of the detected defects. Since manual defect detection is expensive, labor-intensive and inefficient, this paper contributes to the sophistication and improvement of manufacturing processes. This system can be installed on chipsets and deployed to a factory line to greatly improve quality control and be part of smart internet of things (IoT) based factories in the future. YOLO achieves a respectable 70.66% mean average precision (mAP) despite the small dataset and minor modifications to the network
    corecore