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Abstract — Training deep learning models in technical 
domains is often accompanied by the challenge that 
although the task is clear, insufficient data for training is 
available. In this work, we propose a novel approach based 
on the combination of Siamese networks and radial basis 
function networks to perform data-efficient classification 
without pretraining by measuring the distance between 
images in semantic space in a data- efficient manner. We 
develop the models using three technical datasets, the NEU 
dataset, the BSD dataset, and the TEX dataset. In addition 
to the technical domain, we show the general applicability 
to classical datasets (cifar10 and MNIST) as well. The 
approach is tested against state-of-the-art models 
(Resnet50 and Resnet101) by stepwise reduction of the 
number of samples available for training. The authors show 
that the proposed approach outperforms the state-of- the-
art models in the low data regime.  
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I. INTRODUCTION 

The classification of objects in various domains has been 

gaining attention since the development of modern and 

powerful deep learning techniques. [1] Until recently, the 

human visual system had been unreached by computer 

algorithms. This has changed with the development of deep 

learning architectures.[5] Substantial successes could, for 

example, be achieved in the ILSVRC-ImageNet contest [2] 

using deep learning architectures. But deep learning 

architectures have also been gaining considerable success in the 

technical domain [3]. To make progress on the way toward 

autonomous systems, tools, and machines in the industrial 

context – but also in all other domains –, it is important to have 

accurate models for the classification of objects and the quality 

assessment of products. Additionally, to realize autonomous 

systems, it is important to enable them to self-describe their 

condition to prevent breakdowns. This is called predictive 

maintenance [48]. Especially in the technical domain, one is 

confronted with the fact that data is often rare in a sense that it 

is either not available in large quantities or must be generated, 

which in turn is very costly [52]. An example is the automatic 

vision-based quality inspection of products, which is often 

difficult since examples of rejects are rare. The same holds for 

the detection of failures in the context of condition monitoring. 

Another challenge in the technical domain is the long tail of 

possible classes. Firstly, the objects which are of interest in the 

technical domains are numerous, like for instance failures on 

rails [7], failures in concrete [6], failures in wood [8], failures 

on metallic surfaces [4], and failures on machine tools [9], to 

name only a few examples. Secondly, each possible and 

produced product could, in principle, be a possible class. The 

numerous possible cases make it difficult to generate large 

datasets by combining datasets of the same objects as can be 

done in “pie, house, cat, mouse, car” cases. In addition to that, 

the classes rarely have counterparts in the real world, which 

amplifies the latter argument.  

The presented approach is based on the idea of comparing 

images in the feature domain and assigning the class of the 

image most similar to the questioned image. This is depicted in 

Fehler! Verweisquelle konnte nicht gefunden werden.. The 

main idea of this paper is based on the concept of a nearest-

neighbor classifier used in a radial basis function network (RBF 

network) calculating a similarity measure between an input 

image and a query image. A drawback of the classical RBF 

network is its limited size [10] together with the limitation of 

the L2 norm in terms of describing a semantically useful 

similarity measure on raw image pixel data [43]. The authors 

implemented the basis function kernels as so-called Siamese-

Kernels where a Siamese network was implemented for each 

kernel in the (R)BF network. By using these kernels as feature 

extractors, this allows for more meaningful comparisons to be 

made in the feature space. 

The here presented approach is different from a classical CNN-

based instance classification in that the authors perform an 

instance filtering using a Siamese network architecture by 

comparing the extracted feature vector of the query image to the 

extracted feature vectors of eligible images. The resulting 

distance is then processed in a RBF nearest-neighbor approach.  

The main achievements of the paper are: 1. We provide a novel 

deep learning architecture (SBF-Net) which classifies images 
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based on the comparison of their semantic representations. 2. 

We show a novel approach to train a Siamese network with one 

single center to generate an ensemble of experts. 3. We show 

the superior data efficiency defined as validation accuracy 

given a specific number of training points of the SBF-Net in 

comparison with state-of-the-art models.  

The remainder of the paper is structured as follows. Section 2 

reviews the related work in the field of RBF networks and 

Siamese networks for failure classification together with the 

general approach to failure classification on metallic surfaces. 

Section 3 presents our own approach and discusses the 

approach of using Siamese networks as kernels in an RBF 

network. Section 4 briefly describes the representatives of the 

technical datasets: The Northeastern University (NEU) surface 

defect database [11] showing six different kinds of defects on 

metallic surfaces, the ball screw drive (BSD) dataset [50] of 

defective machine tool elements, and the fabric (TEX) dataset 

[51] of failures on woven textiles. The well-known MNIST and 

cifar10 datasets are not described further. Section 5 presents the 

results of the SBF-Net by first investigating the basic effect of 

the number of Siamese-Kernels per class as well as the effect of 

data on the performance of the SBF-Net using the NEU dataset. 

Based on these findings, the data efficiency on the NEU, KGT, 

TEX, MNIST, and cifar10 datasets in comparison to the 

classical ResNet50 and ResNet101 models is investigated by 

using 3,5,10,20,50, and 100 data points per class. The results 

are followed by a discussion. Section 6 concludes the work and 

states open research questions. 

II. RELATED WORK  

According to [10][20], RBF networks nowadays are kind of 

forgotten neural network structures. Indeed, in comparison to 

classical CNN-based approaches, there is only a limited number 

of RBF-based image classification approaches such as those 

described, for instance, by [12] and [13]. This is likely due to 

the fact that the classical L2 norm is not a proper distance 

function to be used when dealing with raw image values in 

high-dimensional pixel space. Further, the classical RBF 

approach can be described as a version of a k-nearest-neighbor 

classification algorithm [10] which, for instance, [14] has 

proven to be underperforming in comparison to other classical 

machine learning algorithms like support vector machines. 

Nevertheless, one outstanding architecture implementing RBF 

elements is the well-known LeNet5 [15] architecture which 

uses Gaussian kernels in one of its last layers. Besides that, 

another recent approach described in [16] presents a deep RBF 

learning algorithm based on the well-known LeNet5 

architecture for classification of the MNIST dataset. In [17], for 

instance, one finds a somewhat earlier application of RBF 

networks which use an RBF network for the classification of 

texture images. There, the authors emphasize the relevance of 

correctly choosing the prototype centers. Another 

contemporary application of RBF networks presented in [18] is 

the use of an RBF module as part of a pipeline for breast cancer 

detection in medical images. The images, though, are not 

processed in their raw formats. Yet another application of RBF 

networks in the medical image classification sector can be 

found in [19], where the authors used an RBF network for the 

classification of brain diseases by extracting classification 

features in advance. An interesting application is the use of RBF 

networks in the work by [20]. Here, the ReLu activation 

function in classical convolutional neural networks is replaced 

by RBF kernels to classify the MNIST, cifar10, and cifar100 

datasets. It was found that using RBF activation functions is 

difficult since the network easily gets stuck in local minima 

during training. 

Siamese networks have recently experienced significant 

attention due to their successful application in numerous 

domains. Substantial progress, enabled by their use, was made 

in the field of computer vision, especially in face recognition 

applications [21]. Nevertheless, their potential extends to other 

fields of research as well, e.g. to natural language processing 

[22] and object tracking [23]. 

The use of Siamese architectures for the purpose of defect 

detection, as showcased in this work, is an area of research that 

has been studied only insufficiently. Few works explore the 

potential of these approaches, but the results obtained are 

generally promising. [24] demonstrates that once trained on a 

specific task, such network may easily be reused for different 

purposes. Particular cases of application are presented in [25], 

where defective buttons are identified using Siamese networks, 

and [26], where the quality of a steel is assessed based on the 

appearance of its surface. 

On the contrary, defect classification approaches leveraging 

different architectures are considered more frequently. They are 

mostly used to detect faults appearing on the surface of steel, 

and there is a broad variety of models for this purpose. [27] 

presents a detector using shearlet encoding and linear 

regression, while [28] models defect classes using hyperspheres 

in order to recognize potential surface anomalies. Further 

approaches include [29], employing kernel classifiers for 

detection, and [30], where a CNN network is used. Use of 

convolutional networks for this application is quite common. 

Another example may be found in [31] for more general 

applications beyond steel inspection. Lastly, [32] describes a 

system that learns through inputs provided by an expert. 

Various works demonstrate that these techniques can be used 

for other materials, too. Cracks in electrical components are 

detected in [33] through image segmentation performed by 

CNNs. A problem that appears more difficult to the human eye 

is the treatment of fabric due to its irregular surface. However, 

even such difficult problems may be solved as is demonstrated 

in [34] using autoencoders. 

One will easily notice that most of the aforementioned 

approaches employ deep learning techniques in order to 

outperform earlier models. This is part of a greater trend that 

may be observed in various fields of research [35]. Besides the 

works addressing the topic of defect classification in general, 

many research projects have specifically investigated the NEU 

dataset which we use as one technical dataset to demonstrate 

the advantage of our approach. [36] generates features using a 

CNN variant and then classifies the NEU images using a 

heuristic. Convolutional networks are equally employed in [37], 

the features generated are then fed into a fusion and a region 

proposal network before classification takes place. A major 
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drawback of CNN approaches is the fact that training the 

network is usually expensive in terms of time and resources. To 

tackle this issue, [38] implements a transfer learning approach 

using pretrained networks and obtains promising results. [39] 

proposes a classifier which, once trained, may easily be adapted 

to changing conditions, such as an alteration of the production 

process supervised by the model. An approach particularly 

robust to noisy inputs, which are likely to occur in a real-world 

setting, is presented in [40].  

Summa summarum, the literature shows that Siamese networks 

can serve as powerful feature extractors. Further RBF nets 

perform a distance-based classification but lack the fact that the 

pixel space is too high dimensional to achieve good results.  

The here presented approach picks up the fact that the need for 

large datasets in the technical domain is often described in the 

literature but to the best of our knowledge, no investigations in 

terms of data efficiency in comparison to state-of-the-art 

models in the technical domain have been undertaken. 

Especially the distance-based classification using semantic 

feature vectors implementing the here presented architecture is 

new. The findings provide a novel method for both researchers 

and practitioners to further develop data-efficient classification 

algorithms in the technical domain.  

III. OWN APPROACH 

The proposed architecture is based on three main components 

which are depicted, combined as a Siamese basis function 

network (SBF-Net), in Fig. 2. The first component is the 

architecture of a radial basis function network as a method of 

performing a classification based on the comparison of samples 

through a similarity measure like in nearest-neighbor 

classification. In these networks, the distance metrics to 

calculate the similarity score are classical distance metrics like 

the Euclidean distance or the cosine similarity which are, as 

described by e.g. [43], an insufficient way to compute a 

similarity measure in high-dimensional data like image data. 

During classification, normally statements such as: “Are the 

objects shown in the image the same as those in an image of a 

certain class, respectively is the underlying semantics in the 

images the same?” are derived. Our approach is less interested 

in the rare differences of pixel values but in encoding the 

semantics in images and in obtaining similarity scores between 

the encoded semantics. To achieve this behavior, the authors 

build upon Siamese networks and use them as effective 

semantic-feature extractors for classification. The authors name 

these feature extraction units Siamese-Kernels and implement 

them instead of the classical radial basis function kernels in the 

RBF network as the first part of the SBF-Net. To reinforce the 

classification ability, the authors additionally equip the network 

with a multilayer perceptron (MLP) instead of the single-layer 

neural network used in classical RBF networks. In the 

following paragraphs, the authors will explain in detail the 

single components together with the training setup. 

 Basis Function Network 

The idea of a radial basis function network as proposed by [41] 

is to use prototype vectors to realize a weighted comparison to 

an input vector. In contrast to a classical neural network in 

which the output per node is calculated as 𝑜𝑝 = 𝜎(∑ 𝒙𝑘𝒘𝑝
𝑘)𝑘 , a 

radial basis function network implements so-called RBF 

kernels, where the input 𝒙 is compared to a prototype vector 𝝁 

which can be viewed as a class center in a nearest-neighbor 

approach. A distance score like the Euclidean distance is 

calculated on 𝒙 and 𝝁 followed by a Gaussian mapping. The 

output may be calculated as  

𝑜𝑝 = 𝑒𝑥𝑝(−
√∑ (𝒙𝑘−𝝁𝑘

𝑝
)2𝑘

2𝜎𝑝
2 ) with 𝝁𝑘

𝑝
 the 𝑘𝑡ℎ prototype vector of 

the 𝑝𝑡ℎclass. The output of the whole classical RBF network is 

then calculated as follows: 𝑦 =

∑ (𝑒𝑥𝑝(−
√∑ (𝒙𝑘−𝝁𝑘

𝑝
)2𝑘

2𝜎𝑝
2 )𝒘𝑜𝑢𝑡

𝑝
𝑝 ) = 𝒐𝒘𝑜𝑢𝑡

𝑇 . Classification is then 

performed using a classical sigmoid function. The classical 

RBF network setup is depicted in Fig. 3. Both 𝝁 and 𝒙 are later 

presented as preprocessed 

feature vectors. 

Due to the idea of 

calculating a weighted 

sum of multiple similarity 

scores to classify an input 

image, the RBF network is 

designated by e.g. [12] as 

an expansion of a k-

nearest- neighbor 

classifier. The presented 

approach emphasizes the 

elimination of the well-

known disadvantages of 

using classical distance 

metrics to calculate 

distances directly in high-

dimensional space, such as 

pixel space in image data. 

To further increase the 

classification ability of a 

classical RBF network, the 

authors reinforced the 

structure by an MLP 

instead of a classical one-layer neural net as depicted in Fig. 3. 

The setup is explained later on. Unlike in the case of the 

classical setup, the authors use the cosine distance instead of the 

Euclidean distance in their calculations. The nodes in the radial 

basis function network are replaced by so-called Siamese-

Kernels to build the architecture of the SBF-Net. These kernels 

are explained in the next section.  

 
Fig. 2 Qualitative architecture of the SBF-Net 
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Fig. 3 Classical RBF network 

setup where an image x is 

compared to multiple 

prototype vectors 𝝁 using 
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 Siamese Kernels 

The basis for the Siamese-Kernels is the architecture of a 

Siamese network. A Siamese network, as proposed by [42], is 

a convolutional neural network (CNN) architecture consisting 

of two identical convolutional neural networks sharing weights. 

Using the triplet loss function, which we will explain later on, 

the Siamese network is trained in such a way that the distances 

between generated vectors are small for instances with the same 

class and large for instances with different classes. Cum grano 

salis, the triplet loss function is the main difference in 

comparison to a classical CNN architecture and led the Siamese 

network to produce semantically useful feature embeddings of 

the input instances. Since the network computes feature vectors 

to classify instances, these feature vectors must encode the 

useful semantic information needed for classification. Finally, 

after training, a Siamese network has learned to distinguish 

images based on a distance metric computed on the semantic 

encodings. The architecture of a Siamese neural network 

implementing the VGG16 CNN [44] is depicted in Fig. 5. A 

version of this architecture is used as basis for the Siamese-

Kernels in the SBF-Net to map 𝒙 and 𝝁 from pixel space to 

semantic space. The single components of the Siamese-Kernels 

are explained together with the training setup in the following. 

Convolutional Neural Network: The authors implemented a 

CNN based on the VGG16 architecture with the difference that 

the authors use 100 instead of 4096 neurons in the fully 

connected layers to make the feature representation more dense. 

The network starts in the first layer with a feature map of size 

200×200×64 and ends with size 6×6×512 in the last 

convolutional layer. The feature matrix is flattened and fed into 

two fully connected layers with 100 neurons each. ReLu is used 

as activation function in all models in all layers.  

The output of the second fully connected layer is used as a 

feature vector for the following distance computations. A single 

Siamese network is trained with the Adam optimizer and triplet 

loss as loss function [45]. The triplet loss forms a core element 

of the Siamese network architecture and can be formalized as: 

𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝐿𝑜𝑠𝑠= max(0, 𝑔(𝜑(𝑎), 𝜑(𝑝)) + 𝛼 − 𝑔(𝜑(𝑎), 𝜑(𝑛))) 

Here, 𝑎 is called an anchor, which in this case is an image of a 

specific class. 𝑝 is called positive, which is an image of the 

same class as the anchor, and 𝑛 is called negative, which is an 

image of a different class. 𝜑(. ) represents the feature extractor 

in the form of the Siamese-Kernel. As distance function g, the 

authors implemented the cosine distance. The distance is 

calculated with: 𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 −
𝑥𝑇𝑦

‖𝑥‖×‖𝑦‖
 , where the latter 

part of the equation is the classical cosine similarity. Since the 

model only forwards positive values, the cosine similarity takes 

values between 0 and 1, where 1 means that the vectors 

coincide. Therefore, the cosine distances take only positive 

numbers between 0 and 1, where values closer to 0 indicate 

larger similarity (or lower distance) and values closer to 1 

indicate smaller similarity (or larger distance). 𝛼 is a so-called 

margin parameter to ensure encodings where the distance 

between the anchor and the negative is larger than the distance 

between the anchor and the positive but smaller than the 

distance between the anchor and the positive plus some margin. 

The vectors for the triplet loss are 100 dimensional vectors. The 

idea of the triplet loss together with the cosine distance is 

presented in Fig. 4. 

Using this setup, the Siamese-Kernels learn to distinguish 

between images of the same class and images of different 

classes by pushing away images from different classes and 

pulling images which share classes. After training, the Siamese-

Kernels return small values for images which belong to the 

same class and large values for images which belong to 

different classes. In the presented approach, the kernels are 

trained with a learning rate of 0.00001, for 5000 iterations using 

semi-hard triplet loss with margin 𝛼 of 0.3.  

Siamese Network Implementation:  

A key aspect of the approach is the specific implementation of 

the Siamese-Kernels and their subsequent combination. The 

kernel networks are trained with one constant anchor per 

network. In this setup, the authors pick one image to be used as 

anchor of the Siamese network in advance and train the network 

randomly drawing positives and negatives from the training set 

using the triplet loss function. The anchor remains constant 

during training. Therewith, the center image is compared to 

different setups of positive and negative images and learns to 

accurately classify the center image as belonging to one specific 

class. If an image of the same class is presented after training, 

the network ideally returns a feature vector which results in a 

 
Fig. 4 Triplet loss implementing and visualizing the cosine 

distance in 2D where 𝝋(. ) stands for the encoding Siamese 

network. 

 
 

Fig. 5 Implemented Siamese network architecture based on 

the VGG16 backbone which shares weights (identical 

VGG16 models) between the branches of the Siamese 

network [49] 
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small distance value, whilst it returns a large distance value for 

images of other classes. Prior to the training, k center images 

are selected randomly for each class c in the dataset D which 

leads to a total number of |C|*k kernel networks, each one 

specialized on distinguishing the class of its anchor. This aspect 

is important because it prevents the model from overfitting to 

the specific center images but creating a kind of class awareness 

over the ensemble of kernels. This approach could be 

considered as an association of individual experts who make a 

joint decision 

Using a fixed center per kernel, the classical classification task 

is kind of reversed since it is not the image which is assigned a 

class label, but it is rather the network that tells if the center 

(prototype) belongs to the same class as the input image. Since 

each Siamese-Kernel distinguishes all classes from the 

respective prototype class by comparing input encodings to 

prototype encodings, the prototypes are by design the ideal 

centers for the radial basis function computation. To yield a 

Siamese-Kernel, a Siamese net is implemented together with a 

Gaussian mapping in feature space. 

 Siamese Basis Function Network (SBF-Net) 

Using the described approach, the Siamese networks allow 

effective encoding of the image information for classification. 

The architecture of the SBF-Net is now built by combining the 

single Siamese networks with the RBF structure by replacing 

Fig. 3. with Siamese-Kernels which then preprocess the x from 

pixel to feature space. The 𝝁 are chosen as center images from 

specific classes. The whole structure is depicted in Fig. 6. 

Each of the Siamese kernels returns a similarity value 

measuring the semantic distance between the center image and 

the image presented as the input. Note that each input image is 

compared to each Siamese node, hence the respective Siamese 

network in the kernels returns feature vectors which encode the 

affiliation between the input image and the images used as 

centers. Since different images are used as centers, it is more 

likely that similarities between images are discovered. For each 

image at the input, a |C|*k -dimensional feature similarity vector 

is output. This vector encodes the similarity information 

between the input image and the centers, which is then passed 

into an MLP for classification. To increase the classification 

ability, the authors implemented a four-layer neural network 

with 50 neurons per layer implementing ReLU activations. The 

authors implemented dropouts with a value of 0.1 after each 

layer. We appended an output layer with softmax activations 

for multiclass classification and trained the network with 

categorical cross entropy loss for 1000 iterations with a learning 

rate of 10−6.  

IV. DATASETS 

As datasets of interest, the authors chose three technical and two 

non-technical datasets. As representatives of the non-technical 

datasets, the authors chose the well-known MNIST and cifar10 

datasets which will not be further described here. As first 

representative of the technical datasets, the authors used the 

Northeastern University (NEU) surface defect database [11]. 

The NEU dataset is a state-of-the-art dataset for defect 

classification and detection on metallic surfaces. It depicts six 

kinds of common defects on metallic surfaces of hot-rolled steel 

strips: rolled-in scale, patches, crazing, pitted surface, 

inclusion, and scratches. The dataset consists of 1800 grayscale 

images, where each image is 200x200 pixels. The images are 

equally split by categories (300 each). The classes have a low 

inter-class variance while the intra-class variance is high. 

Additionally, there are different lighting conditions, which 

altogether leads to situations of similar-looking images between 

classes, which complicates the classification. Examples of the 

technical datasets are shown in Fig. 8. For training, we split the 

images randomly in 80% for training and 20% for testing.  

 
Fig. 8 NEU surface defect, TEX and BSD datasets 

 
Fig. 6 SBF-Net architecture which extracts features from 

multiple centers per class and a query image and compares 

them using a RBF function before MLP classification 
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Fig. 7 MLP classifier for the Siamese-Kernel features 

processed by a RBF function 
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The second representative of the technical datasets is the TEX 

dataset [51] (originally called fabric dataset) which shows five 

different types of failures in textiles together with one “good” 

class. The failures are color, cut, hole, thread, and metallic 

contamination. The dataset contains of 108.000 64x64 pixel 

grayscale images where the classes are equally represented. As 

can be seen in the example images in Fig. 8, the defects are 

neither easy to distinguish nor is it trivial to specify a failure at 

all – at least for the human inspector. It will be interesting to see 

how the model can generalize using only a limited number of 

samples to learn from. The third technical dataset (BSD [50]) is 

a dataset showing failures on ball screw drives (BSD). Ball 

screw drives are important machine tool elements installed in 

most industrial machines, and an unforeseen defect can lead to 

unwanted idle times with severe influences on the overall 

equipment effectiveness (OEE). Hence, it is important to find 

defects on the BSD as early as possible. The dataset is made up 

of two classes represented by images showing a defect and 

images not showing a defect. The dataset contains of 21.835 

150x150 pixel RGB images scaled to 100x100 pixels by the 

authors. The dataset contains of 11.075 without defect and 

10.760 with defect and hence is nearly equally split. The dataset 

contains edge images where the defect is covered by soil or 

other pollutions and it is even difficult for the human domain 

expert to label the images correctly. Since the defects occur in 

different sizes, the transition from images with no defect to 

images showing a defect is continuous especially when 

pollution comes into play.  

Each image in the training datasets is used in its original form 

together with a four times random augmentation with the 

following imgaug classes: All channels contrast limited 

histogram equalization (CLAHE) with clip limit of (1, 10), 

random rotation between +-5°, 30% chance of horizontal and 

vertical flipping, Laplace noise with a per-channel scale of 

0.03*255, Random multiplication of the channel values with a 

value between 0.7 and 1.3 as well as a perspective 

transformation within a scale of (0, 0.15). All images are 

normalized to values between 0 and 1. The validation images 

are not augmented. 

V. EXPERIMENTS & RESULTS  

In the section below, the experiments are described followed by 

the associated results as well as the discussion of the results. 

The focus of the experiments lies on the classification of 

technical datasets (NEU, KGT, TEX). The experiments on the 

cifar10 and MNIST datasets can be viewed as an ablation study 

which should show the performance and transferability of the 

approach to non-technical domains. 

The results are structured in three main research blocks. 1. The 

development of the SBF-Net architecture which has been 

shown above. 2. The effect of the number of kernels per class 

as well as the amount of data available for model training, and 

3. The performance and data efficiency of the SBF-Net in 

comparison with state-of-the-art models.  

A critical aspect of the SBF-Net is the number of kernels used 

per class. The hypothesis is that the performance of the model 

increases with an increasing number of kernels per class. Fig. 9 

depicts the validation accuracy on the KGT dataset when 

training the SBF-Net with altering training data sizes of 0.1%, 

1%, 10%, 30%, and 75% and an altering number of kernels per 

class (1,3,5,7). In the experiments, always 25% of the KGT 

dataset was set aside as test set. 

It can be seen that the performance of the model increases with 

increasing size of the dataset. However, the increasing rate 

flattens out towards larger datasets which is a well-known effect 

in training deep learning models. Considering the accuracy with 

altering numbers of centers, the hypothesis was that the 

 
Fig. 9 Model performance as the number of training data points and centers per class increases. Structure of x-axis labeling is 
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performance of the model increases with an increasing number 

of centers per class. Overall, this effect can be confirmed but 

there is a large variation over the number of centers. The 

interpretation of this effect is that the images for the centers of 

the single kernels are chosen randomly from the dataset. This 

results in selections which are more representative of the given 

task and selections which are less appropriate. Hence, the 

choice of the centers seems to have a significant effect on the 

performance of the model which can lead to situations in which 

3 centers perform better than 5 or 7 centers per class. Given a 

large enough dataset, an open research question which could be 

possibly addressed by active learning strategies like [53] is how 

to choose centers which are optimal. However, this is only 

applicable given a large enough dataset. With small datasets, 

 
Fig. 10 Data efficiency of the SBF-Net against ReNet50 and ResNet101 for the NEU and KGT datasets 
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this effect can probably be neglected since there are no options 

to choose the data. Given the fact that, given enough data, this 

choice can be done for any possible number of centers, the 

authors choose 5 centers per class for the further experiments. 

We will see that this suffices for showing the validity of the 

approach.  

Using 5 centers per class, the authors trained the SBF-Net on 

the KGT, NEU, TEX, cifar10, and MNIST datasets with an 

increasing number of data points (3,5,10,20,50,100) using 25% 

of the data as hold out test set. The results for the NEU and KGT 

datasets are shown in Fig. 10 while the results for the TEX, 

MNIST, and cifar10 datasets are shown in Table 1. Considering 

the results for the classification of the NEU and KGT data, the 

SBF-Net performs about 10% better than the ResNet50 and 

ResNet101 for 3,5, and 10 images per class. Using 20 data 

points per class, the advance of the SBF-Net decreases for the 

KGT data and stays constant for the NEU data. For 50 and 100 

data points per class, the SBF-Net is on a par or slightly better 

than the state-of-the-art models. This picture is also reflected in 

Table 1. For 3,5, and 10 data points, the SBF-Net is leading. 

Whereas for 20 TEX images the performance drops, the 

difference in the accuracy is in principle neglectable. In the 

MNIST case, the model is leading for all data set sizes. The 

picture is a little bit more diverse in the CIFAR10 case. Here, 

the model is still the best for 3 and 5 data points but then gets 

passed by the other models. This could be explained by the fact 

that the CIFAR10 dataset is structurally different from the TEX, 

MNIST, KGT, and NEU datasets. These datasets could be 

described as sharing some prominent features like lines, edges, 

and other regular basic structures whereas the cifar10 dataset is 

very diverse. Since the ResNet50 and ResNet101 models have 

more learning capacity because of their size, they may be better 

suited to fit the diverse data. The single kernels in the SBF-Net 

may not have the performance to encode the differences or 

similarities between the images given as centers and all other 

images in the dataset. To get a better picture of the overall 

performance, Fig. 11 shows the average validation accuracy 

over all datasets. The large advantage of the SBF-Net especially 

in the low data regime is obvious. But also for the larger data 

setups, the model performs on par with the state-of- the-art 

models. Summa summarum, it could be concluded that the SBF-

Net architecture has an advantage when it comes to low data 

sizes and can even be as accurate as the state-of-the-art models 

for larger datasets. A remarkable result is achieved when 

training the model on 75% of the NEU data as shown in Fig. 

11. The achieved 99.69 percent are above the current state of 

the art. As supporting argument, the benchmark in [4] contains 

several versions of the ResNet architecture. The performance of 

the classic ResNet-50 architecture used by the authors is 

highlighted as well.  

VI. CONCLUSION 

The motivation of the work was to provide a novel data-

efficient method which can classify images from the technical 

domain (KGT, NEU, TEX) using small amounts of training 

data. The goal was to show this without pretraining and transfer 

learning. In addition, the generality of the approach should be 

Table 1 Data efficiency of the SBF-Net against ReNet50 and ResNet101 for the TEX, MNIST, and CIFAR10 Datasets 

 

3 5 10 20 50 100 3 5 10 20 50 100 3 5 10 20 50 100

0.209 0.269 0.334 0.294 0.466 0.491 0.249 0.210 0.259 0.321 0.357 0.490 0.177 0.198 0.276 0.305 0.346 0.487

0.191 0.247 0.231 0.275 0.387 0.512 0.233 0.234 0.257 0.293 0.368 0.451 0.235 0.176 0.263 0.320 0.378 0.470

0.275 0.269 0.319 0.316 0.416 0.469 0.177 0.236 0.276 0.318 0.361 0.464 0.234 0.233 0.291 0.311 0.361 0.443

0.262 0.237 0.278 0.303 0.369 0.484 0.247 0.216 0.270 0.303 0.368 0.440 0.178 0.203 0.279 0.295 0.371 0.417

0.247 0.284 0.319 0.303 0.434 0.509 0.191 0.252 0.251 0.281 0.400 0.477 0.180 0.207 0.310 0.287 0.368 0.447

0.237 0.261 0.296 0.298 0.414 0.493 0.219 0.230 0.263 0.303 0.371 0.464 0.201 0.204 0.284 0.304 0.365 0.453

0.691 0.775 0.881 0.950 0.959 0.981 0.172 0.486 0.766 0.872 0.926 0.954 0.112 0.272 0.507 0.782 0.876 0.936

0.753 0.791 0.903 0.913 0.959 0.972 0.252 0.307 0.832 0.880 0.916 0.954 0.198 0.499 0.675 0.824 0.879 0.900

0.806 0.719 0.875 0.934 0.956 0.981 0.176 0.466 0.744 0.859 0.933 0.952 0.160 0.382 0.642 0.850 0.916 0.943

0.688 0.806 0.894 0.928 0.966 0.969 0.190 0.475 0.735 0.898 0.930 0.958 0.190 0.276 0.690 0.853 0.885 0.916

0.625 0.747 0.875 0.922 0.950 0.972 0.175 0.448 0.718 0.887 0.929 0.959 0.121 0.286 0.673 0.831 0.893 0.908

0.713 0.767 0.886 0.929 0.958 0.975 0.193 0.436 0.759 0.879 0.927 0.955 0.156 0.343 0.637 0.828 0.890 0.921

0.206 0.219 0.206 0.213 0.356 0.259 0.146 0.188 0.263 0.269 0.328 0.398 0.134 0.197 0.235 0.253 0.281 0.275

0.169 0.200 0.259 0.259 0.297 0.131 0.138 0.170 0.254 0.270 0.329 0.360 0.114 0.150 0.215 0.221 0.313 0.318

0.216 0.203 0.262 0.269 0.281 0.259 0.132 0.173 0.238 0.277 0.355 0.385 0.118 0.152 0.233 0.262 0.331 0.243

0.188 0.206 0.253 0.228 0.275 0.309 0.162 0.180 0.274 0.269 0.339 0.394 0.132 0.162 0.222 0.271 0.316 0.262

0.178 0.172 0.219 0.247 0.188 0.228 0.121 0.189 0.243 0.281 0.315 0.335 0.122 0.170 0.220 0.267 0.287 0.297

0.191 0.200 0.240 0.243 0.279 0.238 0.140 0.180 0.254 0.273 0.333 0.375 0.124 0.166 0.225 0.255 0.306 0.279
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shown on non-technical datasets (MNIST, cifar10) as well. To 

achieve this goal, the authors proposed a new so-called SBF-

Net model which is based on a combination of multiple Siamese 

networks and a radial basis function network in which the 

Siamese nets are used as so-called Siamese-Kernels. The model 

then computes semantically relevant feature vectors and 

performs a distance-based classification. An important aspect 

was the training of the Siemese-Kernels with one specific center 

image per kernel. The single kernels learned the semantic 

representation of the center images in comparison to all other 

images. This approach led the whole SBF-Net to some kind of 

class awareness. The authors showed that the proposed 

architecture works well in low data regimes and outperforms 

classical state-of-the-art models with respect to data efficiency 

measured by the validation accuracy for a given number of 

training images. The authors also showed that the SBF-Net 

achieves comparable results even in larger data domains and is 

able to outperform state-of-the-art models there. The presented 

approach should open a new chapter in the field of data-efficient 

similarity-based deep learning research. 

A limitation which has to be further investigated is the drop in 

performance for the cifar10 dataset for larger data set sizes. A 

hypothesis which must be further investigated is that the 

variation in the vectors describing the different objects in the 

cifar10 dataset is too large to be mapped by the model structure. 

A reinforcing argument could be found in the way the SBF-Net 

is trained using one center image per kernel. In this setup, the 

model must learn to find the differences and similarities 

between the single center image and all other positive and 

negative images. If now a center image is randomly chosen 

which is not a distinctive representative of its class, then the 

kernel may be kind of confused. This effect could increase with 

larger dataset size. A practical way to check this in further 

experiments is the use of much larger models.  

In addition to that, comparing the performance of all three 

models on the cifar10 dataset in comparison to e.g. [54] who 

also checked the performance of a ResNet20 on 10 data points 

per class, it is notable that the performance is lower even though 

the architectures are quite similar. This could most likely be 

reduced to the fact that the authors of [54] designed their data 

augmentation strategy for the cifar10 dataset while here, the 

data augmentations are designed to aid a model trained on 

 
Fig. 12 Comparison of classification results based on [4] 

 
Fig. 11 Average performance of the models over all datasets given 3,5, 10, 20, 50, and 100 data points per class 
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technical dataset. This could lead to insufficient augmentations 

in the cifar10 case which do not help but even harm the model 

performance. This should be checked in further experiments. 

Another interesting aspect already mentioned above is the 

choice of the center images for the Siamese-Kernels. This effect 

may be diminishing with smaller data sets. However, it has been 

shown that the proposed architecture can serve as a very strong 

classifier even in larger data domains and here, it is interesting 

what performance the model can achieve if perfect center 

images are chosen and the number of kernels is increased at the 

same time. The latter thought comes with a practical limitation 

which should also be investigated in further experiments. Since 

for each kernel, a Siamese network is trained, the needed 

computation increases linearly with the number of kernels. 

Hence, there should be developed ways to increase the number 

of kernels and at the same time reduce the model complexity of 

the single kernels such that the overall needed computation 

stays the same. A promising direction could be the use of 

knowledge distillation as described by e.g. [55]. Another 

question that directly emerges from the research results and 

needs to be further investigated is how to further increase the 

performance of the model even with small data sets and close 

the gap to the performance achieved with large data sets. 

Thinkable approaches are general transfer-learning approaches 

which does not only work for one limited domain but for a large 

number of domains by extracting generally applicable features 

which are not only located in the lower layers but are also 

located in deeper layers. Some kind of learnable drop-out or 

selection mechanism/strategy could be implemented to only use 

specific features when needed for a specific tasks.  
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