3,631 research outputs found

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    Visualization and Correction of Automated Segmentation, Tracking and Lineaging from 5-D Stem Cell Image Sequences

    Get PDF
    Results: We present an application that enables the quantitative analysis of multichannel 5-D (x, y, z, t, channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. There is a pressing need for visualization and analysis tools for 5-D live cell image data. We combine accurate unsupervised processes with an intuitive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.Comment: BioVis 2014 conferenc

    Segmentation in large-scale cellular electron microscopy with deep learning: A literature survey

    Get PDF
    Electron microscopy (EM) enables high-resolution imaging of tissues and cells based on 2D and 3D imaging techniques. Due to the laborious and time-consuming nature of manual segmentation of large-scale EM datasets, automated segmentation approaches are crucial. This review focuses on the progress of deep learning-based segmentation techniques in large-scale cellular EM throughout the last six years, during which significant progress has been made in both semantic and instance segmentation. A detailed account is given for the key datasets that contributed to the proliferation of deep learning in 2D and 3D EM segmentation. The review covers supervised, unsupervised, and self-supervised learning methods and examines how these algorithms were adapted to the task of segmenting cellular and sub-cellular structures in EM images. The special challenges posed by such images, like heterogeneity and spatial complexity, and the network architectures that overcame some of them are described. Moreover, an overview of the evaluation measures used to benchmark EM datasets in various segmentation tasks is provided. Finally, an outlook of current trends and future prospects of EM segmentation is given, especially with large-scale models and unlabeled images to learn generic features across EM datasets

    Interactive medical image segmentation - towards integrating human guidance and deep learning

    Get PDF
    Medical image segmentation is an essential step in many clinical workflows involving diagnostics and patient treatment planning. Deep learning has advanced the field of medical image segmentation, particularly with respect to automating contouring. However, some anatomical structures, such as tumours, are challenging for fully automated methods. When automatic methods fail, manual contouring is required. In such cases, semi-automatic tools can support clinicians in contouring tasks. The objective of this thesis was to leverage clinicians’ expert knowledge when performing segmentation tasks, allowing for interactions along the segmentation workflow and improving deep learning predictions. In this thesis, a deep learning approach is proposed that produces a 3D segmentation of a structure of interest based on a user-provided input. If trained on a diverse set of structures, state-of-the-art performance was achieved for structures included in the training set. More importantly, the model was also able to generalize and make predictions for unseen structures that were not represented in the training set. Various avenues to guide user interaction and leverage multiple user inputs more effectively were also investigated. These further improved the segmentation performance and demonstrated the ability to accurately segment a broad range of anatomical structures. An evaluation by clinicians demonstrated that time spent contouring was reduced when using the contextual deep learning tool as compared to conventional contouring tools. This evaluation also revealed that the majority of contouring time is observation time, which is only indirectly affected by the segmentation approach. This suggests, that user interface design and guiding the user’s attention to critical areas can have a large impact on time taken on the contouring task. Overall, this thesis proposes an interactive deep learning segmentation method, demonstrates its clinical impact, and highlights the potential synergies between clinicians and artificial intelligence

    Two-photon imaging and analysis of neural network dynamics

    Full text link
    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behaviour. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so called 'microcircuits') remains comparably poor. In large parts, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near- millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.Comment: 36 pages, 4 figures, accepted for publication in Reports on Progress in Physic

    Striatal Volume Predicts Level of Video Game Skill Acquisition

    Get PDF
    Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks.United States. Office of Naval Research (grant number N00014-07-1-0903

    Closed-loop experiments and brain machine interfaces with multiphoton microscopy

    Full text link
    In the field of neuroscience, the importance of constructing closed-loop experimental systems has increased in conjunction with technological advances in measuring and controlling neural activity in live animals. This paper provides an overview of recent technological advances in the field, focusing on closed-loop experimental systems where multiphoton microscopy (the only method capable of recording and controlling targeted population activity of neurons at a single-cell resolution in vivo) works through real-time feedback. Specifically, we present some examples of brain machine interfaces (BMIs) using in vivo two-photon calcium imaging and discuss applications of two-photon optogenetic stimulation and adaptive optics to real-time BMIs. We also consider conditions for realizing future optical BMIs at the synaptic level, and their possible roles in understanding the computational principles of the brain

    Doctor of Philosophy

    Get PDF
    dissertationIn connectomics the goal is to generate a full 3D reconstruction of neurons within the brain. This reconstruction will help neuroscientists better understand how the brain functions and also how it fails in the case of dementia and other neurodegenerative diseases. Attempts for this reconstruction are ongoing at varying levels of resolution from the millimeter scale of magnetic resonance imaging (MRI) to the nanometer scale of electron microscopy. In this dissertation, we develop tools that improve the ability of researchers to trace neurons through a volume in vitro at a resolution sufficient for the identification of synapses. The first toolset will speed up the process for generating training datasets in newly acquired volumes to be used in supervised learning methods. Current methods of training dataset generation require dense labeling by a trained research scientist over hundreds of hours. This toolset will reduce the time required for training data generation by using sparse sampling and reduce the cost of that time by using a priori knowledge of the structure to allow for less specialized researchers to assist in the process. The second toolset is targeted at speeding up the correction of errors introduced in automatic neuron segmentation methods. Often referred to as proofreading, current methods require significant user input and fail to fully incorporate the information generated by the automatic segmentation method. I will use novel 2D and 3D visualization techniques to take advantage of the information generated during automatic segmentation into the proofreading process. This toolset will consist of two different applications, with one process targeting 2D proofreading with 3D linking and the other process targeting direct 3D proofreading

    One-shot Joint Extraction, Registration and Segmentation of Neuroimaging Data

    Full text link
    Brain extraction, registration and segmentation are indispensable preprocessing steps in neuroimaging studies. The aim is to extract the brain from raw imaging scans (i.e., extraction step), align it with a target brain image (i.e., registration step) and label the anatomical brain regions (i.e., segmentation step). Conventional studies typically focus on developing separate methods for the extraction, registration and segmentation tasks in a supervised setting. The performance of these methods is largely contingent on the quantity of training samples and the extent of visual inspections carried out by experts for error correction. Nevertheless, collecting voxel-level labels and performing manual quality control on high-dimensional neuroimages (e.g., 3D MRI) are expensive and time-consuming in many medical studies. In this paper, we study the problem of one-shot joint extraction, registration and segmentation in neuroimaging data, which exploits only one labeled template image (a.k.a. atlas) and a few unlabeled raw images for training. We propose a unified end-to-end framework, called JERS, to jointly optimize the extraction, registration and segmentation tasks, allowing feedback among them. Specifically, we use a group of extraction, registration and segmentation modules to learn the extraction mask, transformation and segmentation mask, where modules are interconnected and mutually reinforced by self-supervision. Empirical results on real-world datasets demonstrate that our proposed method performs exceptionally in the extraction, registration and segmentation tasks. Our code and data can be found at https://github.com/Anonymous4545/JERSComment: Published as a research track paper at KDD 2023. Code: https://github.com/Anonymous4545/JER

    Karakterizacija predkliničnega tumorskega ksenograftnega modela z uporabo multiparametrične MR

    Full text link
    Introduction: In small animal studies multiple imaging modalities can be combined to complement each other in providing information on anatomical structure and function. Non-invasive imaging studies on animal models are used to monitor progressive tumor development. This helps to better understand the efficacy of new medicines and prediction of the clinical outcome. The aim was to construct a framework based on longitudinal multi-modal parametric in vivo imaging approach to perform tumor tissue characterization in mice. Materials and Methods: Multi-parametric in vivo MRI dataset consisted of T1-, T2-, diffusion and perfusion weighted images. Image set of mice (n=3) imaged weekly for 6 weeks was used. Multimodal image registration was performed based on maximizing mutual information. Tumor region of interested was delineated in weeks 2 to 6. These regions were stacked together, and all modalities combined were used in unsupervised segmentation. Clustering methods, such as K-means and Fuzzy C-means together with blind source separation technique of non-negative matrix factorization were tested. Results were visually compared with histopathological findings. Results: Clusters obtained with K-means and Fuzzy C-means algorithm coincided with T2 and ADC maps per levels of intensity observed. Fuzzy C-means clusters and NMF abundance maps reported most promising results compared to histological findings and seem as a complementary way to asses tumor microenvironment. Conclusions: A workflow for multimodal MR parametric map generation, image registration and unsupervised tumor segmentation was constructed. Good segmentation results were achieved, but need further extensive histological validation.Uvod Eden izmed pomembnih stebrov znanstvenih raziskav v medicinski diagnostiki predstavljajo eksperimenti na živalih v sklopu predkliničnih študij. V teh študijah so eksperimenti izvedeni za namene odkrivanja in preskušanja novih terapevtskih metod za zdravljenje človeških bolezni. Rak jajčnikov je eden izmed glavnih vzrokov smrti kot posledica rakavih obolenj. Potreben je razvoj novih, učinkovitejših metod, da bi lahko uspešneje kljubovali tej bolezni. Časovno okno aplikacije novih terapevtikov je ključni dejavnik uspeha raziskovane terapije. Tumorska fiziologija se namreč razvija med napredovanjem bolezni. Eden izmed ciljev predkliničnih študij je spremljanje razvoja tumorskega mikro-okolja in tako določiti optimalno časovno okno za apliciranje razvitega terapevtika z namenom doseganja maksimalne učinkovitosti. Slikovne modalitete so kot raziskovalno orodje postale izjemno popularne v biomedicinskih in farmakoloških raziskavah zaradi svoje neinvazivne narave. Predklinične slikovne modalitete imajo nemalo prednosti pred tradicionalnim pristopom. Skladno z raziskovalno regulativo, tako za spremljanje razvoja tumorja skozi daljši čas ni potrebno žrtvovati živali v vmesnih časovnih točkah. Sočasno lahko namreč s svojim nedestruktivnim in neinvazivnim pristopom poleg anatomskih informacij podajo tudi molekularni in funkcionalni opis preučevanega subjekta. Za dosego slednjega so običajno uporabljene različne slikovne modalitete. Pogosto se uporablja kombinacija več slikovnih modalitet, saj so medsebojno komplementarne v podajanju željenih informacij. V sklopu te naloge je predstavljeno ogrodje za procesiranje različnih modalitet magnetno resonančnih predkliničnih modelov z namenom karakterizacije tumorskega tkiva. Metodologija V študiji Belderbos, Govaerts, Croitor Sava in sod. [1] so z uporabo magnetne resonance preučevali določitev optimalnega časovnega okna za uspešno aplikacijo novo razvitega terapevtika. Poleg konvencionalnih magnetno resonančnih slikovnih metod (T1 in T2 uteženo slikanje) sta bili uporabljeni tudi perfuzijsko in difuzijsko uteženi tehniki. Zajem slik je potekal tedensko v obdobju šest tednov. Podatkovni seti, uporabljeni v predstavljenem delu, so bili pridobljeni v sklopu omenjene raziskave. Ogrodje za procesiranje je narejeno v okolju Matlab (MathWorks, verzija R2019b) in omogoča tako samodejno kot ročno procesiranje slikovnih podatkov. V prvem koraku je pred generiranjem parametričnih map uporabljenih modalitet, potrebno izluščiti parametre uporabljenih protokolov iz priloženih tekstovnih datotek in zajete slike pravilno razvrstiti glede na podano anatomijo. Na tem mestu so slike tudi filtrirane in maskirane. Filtriranje je koristno za izboljšanje razmerja med koristnim signalom (slikanim živalskim modelom) in ozadjem, saj je skener za zajem slik navadno podvržen različnim izvorom slikovnega šuma. Uporabljen je bil filter ne-lokalnih povprečij Matlab knjižnice za procesiranje slik. Prednost maskiranja se potrdi v naslednjem koraku pri generiranju parametričnih map, saj se ob primerno maskiranem subjektu postopek bistveno pospeši z mapiranjem le na želenem področju. Za izdelavo parametričnih map je uporabljena metoda nelinearnih najmanjših kvadratov. Z modeliranjem fizikalnih pojavov uporabljenih modalitet tako predstavimo preiskovan živalski model z biološkimi parametri. Le-ti se komplementarno dopolnjujejo v opisu fizioloških lastnosti preučevanega modela na ravni posameznih slikovnih elementov. Ključen gradnik v uspešnem dopolnjevanju informacij posameznih modalitet je ustrezna poravnava parametričnih map. Posamezne modalitete so zajete zaporedno, ob različnih časih. Skeniranje vseh modalitet posamezne živali skupno traja več kot eno uro. Med zajemom slik tako navkljub uporabi anestetikov prihaja do majhnih premikov živali. V kolikor ti premiki niso pravilno upoštevani, prihaja do napačnih interpretacij skupnih informacij večih modalitet. Premiki živali znotraj modalitet so bili modelirani kot toge, med različnimi modalitetami pa kot afine preslikave. Poravnava slik je izvedena z lastnimi Matlab funkcijami ali z uporabo funkcij iz odprtokodnega ogrodja za procesiranje slik Elastix. Z namenom karakterizacije tumorskega tkiva so bile uporabljene metode nenadzorovanega razčlenjevanja. Bistvo razčlenjevanja je v združevanju posameznih slikovnih elementov v segmente. Elementi si morajo biti po izbranem kriteriju dovolj medsebojno podobni in se hkrati razlikovati od elementov drugih segmentov. Za razgradnjo so bile izbrane tri metode: metoda K-tih povprečij, kot ena izmed enostavnejšihmetoda mehkih C-tih povprečij, s prednostjo mehke razčlenitvein kot zadnja, nenegativna matrična faktorizacija. Slednja ponuja pogled na razčlenitev tkiva kot produkt tipičnih več-modalnih značilk in njihove obilice za vsak posamezni slikovni element. Za potrditev izvedenega razčlenjevanja z omenjenimi metodami je bila izvedena vizualna primerjava z rezultati histopatološke analize. Rezultati Na ustvarjene parametrične mape je imela poravnava slik znotraj posameznih modalitet velik vpliv. Zaradi dolgotrajnega zajema T1 uteženih slik nemalokrat prihaja do premikov živali, kar brez pravilne poravnave slik negativno vpliva na mapiranje modalitet in kasnejšo segmentacijo slik. Generirane mape imajo majhno odstopanje od tistih, narejenih s standardno uporabljenimi odprtokodnimi programi. Klastri pridobljeni z metodama K-tih in mehkih C-tih povprečij dobro sovpadajo z razčlenbami glede na njihovo inteziteto pri T2 in ADC mapah. Najobetavnejše rezultate po primerjavi s histološkimi izsledki podajata metoda mehkih C-povprečij in nenegativna matrična faktorizacija. Njuni segmentaciji se dopolnjujeta v razlagi tumorskega mikro-okolja. Zaključek Z izgradnjo ogrodja za procesiranje slik magnetne resonance in segmentacijo tumorskega tkiva je bil cilj magistrske naloge dosežen. Zasnova ogrodja omogoča poljubno dodajanje drugih modalitet in uporabo drugih živalskih modelov. Rezultati razčlenitve tumorskega tkiva so obetavni, vendar je potrebna nadaljna primerjava z rezultati histopatološke analize. Možna nadgradnja je izboljšanje robustnosti poravnave slik z uporabo modela netoge (elastične) preslikave. Prav tako je smiselno preizkusiti dodatne metode nenadzorovane segmentacije in dobljene rezultate primerjati s tukaj predstavljenimi
    corecore