
 

 

 University of Groningen

Segmentation in large-scale cellular electron microscopy with deep learning
Aswath, Anusha; Alsahaf, Ahmad; Giepmans, Ben; Azzopardi, George

Published in:
Medical image analysis

DOI:
10.1016/j.media.2023.102920

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Aswath, A., Alsahaf, A., Giepmans, B., & Azzopardi, G. (2023). Segmentation in large-scale cellular
electron microscopy with deep learning: A literature survey. Medical image analysis, 89, Article 102920.
Advance online publication. https://doi.org/10.1016/j.media.2023.102920

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 31-10-2023

https://doi.org/10.1016/j.media.2023.102920
https://research.rug.nl/en/publications/013f4659-c33d-464e-bd55-8deaad462611
https://doi.org/10.1016/j.media.2023.102920


Medical Image Analysis 89 (2023) 102920

A
1
n

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Survey paper

Segmentation in large-scale cellular electron microscopy with deep learning:
A literature survey
Anusha Aswath a,b,∗, Ahmad Alsahaf b, Ben N.G. Giepmans b, George Azzopardi a

a Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University Groningen, Groningen, The Netherlands
b Department of Biomedical Sciences of Cells and Systems, University Groningen, University Medical Center Groningen, Groningen, The Netherlands

A R T I C L E I N F O

Keywords:
Electron microscopy
Segmentation
Supervised
Self-supervised
Deep learning
Semantic
Instance

A B S T R A C T

Electron microscopy (EM) enables high-resolution imaging of tissues and cells based on 2D and 3D imaging
techniques. Due to the laborious and time-consuming nature of manual segmentation of large-scale EM datasets,
automated segmentation approaches are crucial. This review focuses on the progress of deep learning-based
segmentation techniques in large-scale cellular EM throughout the last six years, during which significant
progress has been made in both semantic and instance segmentation. A detailed account is given for the key
datasets that contributed to the proliferation of deep learning in 2D and 3D EM segmentation. The review
covers supervised, unsupervised, and self-supervised learning methods and examines how these algorithms
were adapted to the task of segmenting cellular and sub-cellular structures in EM images. The special challenges
posed by such images, like heterogeneity and spatial complexity, and the network architectures that overcame
some of them are described. Moreover, an overview of the evaluation measures used to benchmark EM datasets
in various segmentation tasks is provided. Finally, an outlook of current trends and future prospects of EM
segmentation is given, especially with large-scale models and unlabeled images to learn generic features across
EM datasets.
1. Introduction

Electron microscopy (EM) is a widely used technique in life sci-
ences for studying tissues, cells, subcellular components, and molecular
complexes at the nanometer scale. EM captures snapshots of biological
samples as either two-dimensional (2D) images or three-dimensional
(3D) volumes to analyze the ultrastructure of various organelles and
understand their complex spatial relationships. With advancements in
EM technologies, various imaging methods in both 2D and 3D EM have
emerged, Table 1. While 2D EM relies on biased regions of interest,
automated pipelines for collecting, stitching, and publishing 2D EM im-
ages have been pioneered for both transmission EM (TEM) (Faas et al.,
2012) and scanning TEM (STEM) (Sokol et al., 2015) for acquisition
of areas up to 1 mm2 at nanometer-range resolution. The large-scale
images allow for open access worldwide data sharing, as evidenced
by the nanotomy.org platform1 hosting over 50 published studies and
accessible EM data (Ravelli et al., 2013; de Boer et al., 2020; Dittmayer
et al., 2021). This allows scientists to pan and zoom through different
tissues or cellular structures in an unbiased manner, Fig. 1.

Advances in volume EM (vEM) or 3D EM have now enabled 3D anal-
ysis of ultra-structures in unprecedented detail (Peddie and Collinson,

∗ Corresponding author at: Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University Groningen, Groningen, The Netherlands.
E-mail address: a.aswath@rug.nl (A. Aswath).

1 www.nanotomy.org.

2014; Titze and Genoud, 2016; Peddie et al., 2022). 2D EM can be
utilized to produce a sequence of slices, which can be stacked together
to create a vEM dataset. Stable and automated imaging using 3D EM
technologies has enabled the acquisition of massive volumes, leading
to acquiring petabytes of data. For instance, the study by Zheng et al.
(2018) imaged the complete brain volume of an adult fruit fly using
serial section TEM (ssTEM), covering a volume of 1 mm3 or 10,000
voxels, requiring 100 TB of storage. Large-scale 3D EM can also be
imaged through cryo-electron tomography (cryo-ET), enabling the in-
vestigation of cellular architecture and macromolecular assemblies in
their native environment.

With state-of-the-art EM technology, such as multibeam scanning
EM (Eberle et al., 2015; Ren and Kruit, 2016; de Boer and Giepmans,
2021), up to hundred times faster acquisition and higher throughput
allows for imaging of tissue-wide sections in the range of hours instead
of days. Given the automated and faster image acquisition in EM a
data avalanche (petabyte range per microscope/month) is becoming a
reality. The manual segmentation and annotation of such large-scale
EM datasets are prohibitively laborious. For instance, the manual anno-
tation of a fraction (1 μm3) of whole-cell volume annotation containing
vailable online 6 August 2023
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Fig. 1. Large-scale 2D EM of a section of human pancreas. Overview of a single dataset (top-left)2 and snapshots from this total map at higher zoom showing several cellular,
subcellular and macromolecular structures as indicated and annotated. Note the information density of these maps: millions of subcellular structures of a kind can be present per
dataset (de Boer et al., 2020).
numerous instances of various organelles took two weeks, as demon-
strated by Heinrich et al. (2021), and the whole-cell was estimated to
take 60 person-years. This increase in the scale and acquisition speeds
of data highlights the need for automated EM segmentation, for which
both semantic and instance segmentation techniques are crucial, Fig. 2.

Semantic segmentation is a pixel-level image analysis task that in-
volves partitioning an image into distinct and coherent regions, where
each pixel is assigned a class label representing the semantic class it
belongs to (e.g. nucleus, and mitochondrion). Instance segmentation
assigns to each pixel of the semantic class label a unique instance
identity for each structure. This is especially important for adjacent
structures that need to be separated to analyze individual interactions.

Historically, conventional image analysis methods and shallow learn-
ing algorithms3 were employed for segmenting EM images. These
include statistical analysis of pixel neighborhoods (Kylberg et al.,
2012), eigenvector analysis (Frangakis and Hegerl, 2002), watershed
and hierarchical region merging (Liu et al., 2012, 2014), superpixel
analysis and shape modeling (Karabağ et al., 2019), and random
forest (Cao et al., 2019). However, in recent years, deep learning (DL)
has emerged as the dominant approach in this field, mirroring the
trends observed in segmentation techniques for light microscopy and
other medical imaging modalities (Liu et al., 2021; Litjens et al., 2017).

Compared to traditional image analysis and machine learning meth-
ods that rely on handcrafted features, DL-based segmentation elimi-
nates or significantly reduces the need for domain-specific knowledge
to extract relevant features from the imaged sample (Liu et al., 2021).
In particular, DL methods can capture complex and nonlinear re-
lationships from raw data without significant preprocessing, handle
diverse and large datasets, and provide robustness and scalability.

2 Full access to digital zoomable data at full resolution is via http://www.
nanotomy.org/OA/nPOD/6153-2016-209/.

3 Shallow learning in this context refers to machine learning with
hand-crafted features as input.
2

DL-based segmentation has gained popularity, leading to the develop-
ment of plug-ins for commonly used biomedical image analysis tools
like CellProfiler (Carpenter et al., 2006), ImageJ (Schindelin et al.,
2012), Weka (Arganda-Carreras et al., 2017), and Ilastik (Berg et al.,
2019), which were previously limited to traditional image processing
or shallow learning.

We review the recent progress of automatic image segmentation in
EM, with a focus on the last six years that marked significant progress
in both DL-based semantic and instance segmentation, while also giving
an overview of the main DL architectures that enabled this progress.

The manuscript is organized as follows: Section 2 describes the
literature search strategy used for this review. Section 3 presents the
key benchmark datasets, which have played a vital role in advanc-
ing segmentation methods. Section 4 lays the background about the
main neural network architectures for 2D and 3D segmentation of
EM datasets. Sections 5 and 6 review the papers that propose new
methodologies for semantic and instance segmentation with different
DL approaches. These are followed by Section 7, which describes the
evaluation metrics used in the reviewed papers. Section 8 discusses the
overall progress made so far along with presenting major limitations
and an outlook for future research. Finally, we outline the conclusions
in Section 9.

2. Strategy of literature search

Our survey strategy is motivated by the following questions:

• Which datasets are accessible for EM analysis, what are their
challenges and what role do they play in DL research?

• How is EM image (semantic and instance) segmentation being
addressed by fully/semi/un/self-supervised DL pipelines?

To answer these questions, the following search query was used
in Pubmed, Web of Science, and Google Scholar on words in titles
(TI) only, restricted to 2017–2022: TI = ((electron microscopy OR
EM) AND (segmentation OR semantic OR instance OR supervised OR

http://www.nanotomy.org/OA/nPOD/6153-2016-209/
http://www.nanotomy.org/OA/nPOD/6153-2016-209/
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Table 1
Main large-scale EM techniques. More information is given in the MyScope websitea and the reviews by Peddie and Collinson (2014), Titze and Genoud (2016) and Kievits et al.
(2022). The last row shows example 2D images and 3D stacks of such technologies except STEM, which is shown in Fig. 1.

2D EM Data acquisition technique

Transmission Electron Microscopy (TEM) A widefield electron beam illuminates an ultra-thin specimen and transmitted electrons are detected on the other side
of the sample. The structure that is electron dense appears dark and others appear lighter depending on their (lack of)
scattering.

Scanning Electron Microscopy (SEM) The raster scanning beam interacts with the material and can result in backscattering or the formation of secondary
electrons. Their intensity reveals sample information.

Scanning Transmission Electron Microscopy (STEM) SEM on ultrathin sections and using a detector for the transmitted electrons.

3D EM

Serial section TEM (ssTEM) or SEM (ssSEM) A volume EM technique for examining 3D ultrastructure by scanning adjacent ultrathin (typical 60–80 nm) sections
using TEM or SEM, respectively. Adjacent sections are obtained through serial sectioning. The sample is cut into
ultrathin sections using an ultramicrotome and collected on grids (ssTEM) or tape (ssSEM) for imaging.

Serial Block-Face scanning EM (SBF-SEM) The block face is scanned followed by removal of the top layer by a diamond knife (typically 20–60 nm) and the
newly exposed block face is scanned. This can be repeated thousands of times.

Focused Ion Beam SEM (FIB-SEM) Block face imaging as above, but sections are repeatedly removed by a focused ion beam that has higher precision
than a knife (typically down to 4 nm), making it suitable for smaller samples.

Cryo-electron tomography (Cryo-ET) It captures a series of 2D projection images of a flash-frozen specimen from different angles, and then uses
computational reconstruction methods to generate a 3D model or tomogram.

TEM 2D section Cryo-ET 2D section SEM 2D section ssSEM volume - 2D sections SBF-SEM volume FIB-SEM volume

Ciresan et al. (2012) Chen et al. (2017d) Kasthuri et al. (2015) Abdollahzadeh et al. (2021) Lucchi et al. (2011)

ahttps://myscope.training/.
Fig. 2. Example of semantic and instance segmentation. (a) Original gray-scale image, and the corresponding (b) semantic and (c) instance segmentation maps of many apposed
mitochondria. While semantic segmentation identifies all mitochondria as a single entity, instance segmentation accurately delineates and differentiates each instance even within
the mitochondrion class.
unsupervised OR self-supervised OR semi-supervised)), and title or ab-
stracts containing (deep learning, segmentation, electron microscopy)
on Google Scholar. Results from the query that were outside the scope
of this study, such as deep learning in material sciences and methods
based on traditional image processing (pre-DL era), were excluded. The
forward and backward snowballing technique was then used to compile
the final list of 38 papers.

Fig. 3 summarizes this collection of 38 papers in terms of learning
technique (fully supervised or not), segmentation type (semantic or
instance), application (2D or 3D) and the underlying modeling back-
bone. Before reviewing these papers, we discuss the key EM datasets
and describe the evolution of DL architectures, which are two crucial
components that have been permitting the progress of EM segmentation
analysis.

3. Collections of key EM datasets

Collections of labeled and unlabeled EM images have played a
significant role in advancing DL research for EM segmentation, and
some were associated with notable segmentation competitions and
challenges. This section provides the details of all collections used by
3

the 38 papers in this survey. Table 2 reports the main properties of
these datasets and below is an in-depth discussion of their character-
istics and the challenges they address. The discussion is categorized
according to the EM modality used to acquire the datasets.

3.1. Serial section TEM and SEM datasets

Serial-section transmission or scanning EM (ssTEM or ssSEM) is
used for studying synaptic junctions and highly-resolved membranes
in neural tissues. Advances in microscopy techniques in serial section
EM have enabled the study of neurons with increased connectivity
in complex mammalian tissues (such as mice and humans) and even
whole brain tissues of smaller animal models, like the fruit fly and
zebrafish. This imaging approach visualizes the generated volumes in
a highly anisotropic manner, i.e. the 𝑥- and 𝑦-directions have a high
resolution, however, the 𝑧-direction has a lower resolution, as it is
reliant on serial cutting precision.

The Drosophila larvae dataset (#1)4 of the ISBI 2012 challenge
was the first notable EM dataset for automatic neuronal segmentation,

4 #𝑛 refers to the entry 𝑛 in Table 2.

https://myscope.training/


Medical Image Analysis 89 (2023) 102920A. Aswath et al.

c
s
a
t
s
a

f
t
n
n
2
t
h
r

s
t
t
b
t
(
t
F
v
c
a

i
l
a
d
s
o
t
3
t
d

i
r
a

3

p

Fig. 3. Categorization of the 38 papers reviewed in this survey. The papers are first
ategorized on the learning paradigm (fully vs. semi/un/self-supervised) and on the
egmentation type (semantic vs. instance). Each quadrant shows the distributions of
pplications (2D vs. 3D) and DL backbones (U-Net vs. FCN vs. Other) of the papers
hat use the corresponding learning and segmentation approaches. Note, U-Net is a
pecific type of fully convolutional network (FCN). The papers flagged as FCN use FCN
rchitectures other than U-Net.

eaturing two volumes with 30 sections each. The main challenge of
hat dataset is to develop algorithms that can accurately segment the
eural structures present in the EM images. The success of deep neural
etworks as pixel classifiers in the ISBI 2012 challenge (Ciresan et al.,
012) paved the way for deep learning in serial section EM segmenta-
ion. Recently, a connectome of an entire brain of a Drosophila fruit fly
as been published by Winding et al. (2023), and will serve as a new
esource for various follow-up works.

The CREMI3D dataset (#2) consists of three large and diverse
ub-volumes of neural tissue along with ground truth annotations for
raining and evaluation purposes, and was part of a competition at
he MICCAI 2016 conference. The dataset comes from a full adult fly
rain (FAFB) volume and contains 213 teravoxels. It was imaged at
he synaptic resolution to understand the functioning of brain circuits
connectomics) and its goal was to segment neurons, synapses, and
heir pre-post synaptic partners. The CREMI3D dataset is part of the
lyEM project and since its inception, it has been used to evaluate
arious image analysis methods for neural circuit reconstruction, in-
luding DL approaches such as convolutional neural networks (CNNs)
nd recurrent neural networks (RNNs).

The SNEMI3D dataset (#3) consists of a volume of 100 ssSEM
mages of the neural tissue from a mouse cortex. It is a subset of the
argest mouse neocortex dataset imaged by Kasthuri et al. (2015) using
n automated ssSEM technique and hence is also known as the Kasthuri
ataset. The dataset was created as part of the ISBI 2013 challenge on
egmentation of neural structures in EM images. The main challenge
f this dataset is to develop algorithms that can accurately segment
he neuronal membranes present in the EM images and reconstruct a
D model of the tissue. This is a difficult task due to the large size of
he dataset and the complexity of the neural structures, namely axons,
endrites, synapses, and glial cells.

The Kasthuri++ (#4) dataset, introduced by Casser et al. (2018),
s an improved version of the original Kasthuri dataset for dense
econstructions of neuronal cells. It addresses the issue of inaccurate
4

nnotations related to the jaggedness between inter-slice components.
The Xiao (#5) dataset for mitochondria segmentation was collected
from a rat brain by Xiao et al. (2018a) using advanced ssSEM tech-
nology. Automated cutting was used to produce 31 sections, each with
an approximate thickness of 50 nm for segmenting mitochondria. The
ground truth dataset was prepared through 2D manual annotation and
image registration of serial-section images, which was made publicly
available for accelerating neuroscience analysis.

Mito-EM (#6) (Wei et al., 2020) introduced the largest mam-
malian mitochondria dataset from humans (MitoEM-H) and adult rats
(MitoEM-R). It is about 3600 times larger than the Lucchi dataset de-
scribed below, which has become a standard dataset for mitochondria
segmentation and contains mitochondria instances of at least 2000
voxels in size. Complex morphology such as mitochondria on a string
(MOAS) connected by thin microtubules or instances entangled in
3D were captured using ssSEM. The MitoEM dataset was created to
provide a comprehensive view of the ultrastructure of mitochondria
and to facilitate a comparative study of mitochondrial morphology and
function in rats and humans.

The NucMM dataset (#7) (Lin et al., 2021) contains two fully
annotated volumes; one that contains almost a whole zebrafish brain
with around 170,000 nuclei imaged using ssTEM, and another that
contains part of a mouse visual cortex with about 7000 nuclei imaged
using micro-CT. Micro-CT or micro-computed tomography uses X-rays
to produce 3D images of objects at low resolution and hence is not a
part of this review. The large-scale nuclei instance segmentation dataset
from ssTEM covers 0.14 mm3 of the entire volume of the zebrafish brain
at 4× 4× 30 nm/voxel. As most of the nuclei segmentation datasets are
from light microscopy at the μm scale, the dataset was downsampled
to 512 × 512 × 480 nm/voxel.

.2. FIB-SEM datasets

FIB-SEM offers high-resolution datasets with isotropic voxel size,
roviding equal resolution along the 𝑥, 𝑦, and 𝑧 axes. This makes it

an excellent tool for automated segmentation of neuronal cells and
various sub-cellular structures, including mitochondria, vesicles, and
Golgi apparatus, among others. FIB-SEM is used for examining tissues
at resolutions lower than 10 × 10 × 10 nm. The method can produce
sections with a thickness of 4 nm, but the volumes are typically smaller
in comparison to other techniques, due to their high 𝑧-resolutions.

The Lucchi dataset (#8) is an isotropic FIB-SEM volume imaged
from the hippocampus of a mouse brain, and it has the same spatial
resolution along all three axes. This dataset has now become the
de facto standard for evaluating mitochondria segmentation perfor-
mance. An enhanced version of this benchmark dataset, the Lucchi++
dataset (#9), was presented by Casser et al. (2018) with re-annotations
that ensured consistent mitochondria boundaries and corrections of
misclassifications.

Efforts to expand FIB-SEM to larger volumes were made by Take-
mura et al. (2015) who compiled the FIB-25 (#10) dataset by recon-
structing the synaptic circuits of seven columns in the eye region of
a Drosophila’s brain. FIB-25 contains over 10,000 annotated neurons,
including their synaptic connections, and is one of the most compre-
hensive EM datasets of the Drosophila brain to date. It was created to
provide a detailed map of the neural circuits in the Drosophila brain
and to facilitate the study of neural connectivity and information pro-
cessing. The dataset is publicly available and can be accessed through
the FlyEM project website. Enhanced FIB-SEM techniques have also
enabled high-throughput and reliable long-term imaging for large-scale
EM (103 to 3 × 107 μm3), such as the OpenOrganelle atlas (#11) of 3D
whole cells and tissues of Xu et al. (2021). The datasets for the 3D re-
construction of cells were made open-source under the OpenOrganelle
repository for exploring local cellular interactions and their intricate
arrangements.

FIB-SEM datasets include the high-resolution analysis of organelles
in critical tissues such as the heart muscle and urinary bladder. Car-

diac mitochondria (#12) is a FIB-SEM dataset introduced to segment
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Table 2
Key datasets from studies that perform high-resolution automated (volume) EM segmentation using deep learning. The abbreviations of the (sub) cellular structures are defined in
the legend. Sub-cellular structures with instance labels are rendered in italics while the rest have semantic labels only.

# Dataset Acquisition Model/Region Voxel size (nm) Volume size
(voxels)

Labeled (sub)
cellular structures

Public repository

1 ISBI 2012/
Drosophila VNC

ssTEM Drosophila/Nervous
cord

4 × 4 × 50 512 × 512 × 30 NM https://imagej.net/events/
isbi-2012-segmentation-
challenge

2 MICCAI 2016/
CREMI3D

ssTEM Drosophila/Adult fly
brain

4 × 4 × 40 1250 × 1250 × 125 NM, S, SP https://cremi.org

3 ISBI 2013/
SNEMI3D/Kasthuri

ssSEM Mouse/Neocortex 3 × 3 × 30 1024 × 1024 × 100 NM https://snemi3d.grand-
challenge.org/

4 Kasthuri++ ssSEM Mouse/Neocortex 3 × 3 × 30 1643 × 1613 × 85 M, NM https:
//casser.io/connectomics

5 Xiao ssSEM Rat/Cortex 2 × 2 × 50 8624 × 8416 × 20 M http://95.163.198.142/
MiRA/mitochondria31/

6 MitoEM ssSEM Rat, Human/Cortex 8 × 8 × 30 4096×4096×1000 M https://mitoem.grand-
challenge.org/

7 NucMM ssSEM Zebrafish/Whole
brain

4 × 4 × 30 1450 × 2000 × 397 N https://nucmm.grand-
challenge.org/

8 Lucchi/EPFL
Hippocampus

FIB-SEM Mouse/Hippocampus 5 × 5 × 5 1024 × 768 × 165 M https://www.epfl.ch/labs/
cvlab/data/data-em/

9 Lucchi++ FIB-SEM Mouse/Hippocampus 5 × 5 × 5 1024 × 768 × 165 M https:
//casser.io/connectomics

10 FIB-25 FIB-SEM Drosophila/Optic
lobe

8 × 8 × 8 520 × 520 × 520 N, S http://research.janelia.org/
FIB-25/FIB-25.tar.bz2

11 OpenOrganelle FIB-SEM Interphase HeLa,
Macrophage, T-cells

8 × 8 × 8 Varying sizes CN, CH, EN, ER,
ERN, ERES, G, LP,
L, MT, NE, NP, Nu,
N, PM, R, V

https:
//openorganelle.janelia.org

12 Cardiac
mitochondria

FIB-SEM Mouse/Heart muscle 15 × 15 × 15 1728 × 2022 × 100 M http://labalaban.nhlbi.nih.
gov/files/SuppDataset.tif

13 UroCell FIB-SEM Mouse/Urothelial
cells

16 × 16 × 15 5 subvolumes of
256 × 256 × 256

G, L, M, V https://github.com/
MancaZerovnikMekuc/
UroCell

14 Perez SBF-SEM Mouse/Brain 7.8 × 7.8 × 30 16 000 × 12 000 ×
1283

L, M, Nu, N https://www.sci.utah.edu/
releases/chm_v2.1.367/

15 SegEM SBF-SEM Mouse/Cortex 11 × 11 × 26 279 volumes of
100 × 100 × 100

NM https://segem.rzg.mpg.de/
webdav/SegEM_challenge/

16 CDeep3M-S SBF-SEM Mouse/Brain 2.4 × 2.4 × 24 16 000 × 10 000 ×
400

M, NM, Nu, V https://github.com/CRBS/
cdeep3m

17 EMPIAR-10094 SBF-SEM HeLa cells 10 × 10 × 50 8192 × 8192 × 517 Unlabeled http://dx.doi.org/10.6019/
EMPIAR-10094

18 Guay SBF-SEM Human/Platelets 10 × 10 × 50 800 × 800 × 50 Cell, CC, CP, GN, M https://leapmanlab.github.
io/dense-cell/

19 Axon SBF-SEM Mouse/White matter 50 × 50 × 50 1000×1000×3250 A, M, My, N http://segem.brain.mpg.de/
challenge/

20 CEM500K All of the above 20 regions (10
organisms)

2 × 2 × 2 to
20 × 20 × 20

224×224×496 544 Unlabeled https://www.ebi.ac.uk/
empiar/EMPIAR-10592/

21 Cellular Cryo-ET Cryo-ET PC12 cells 2.8 × 2.8 × 2.8 938 × 938 × 938 M, MT, PM, R, V https://www.ebi.ac.uk/
emdb/EMD-8594

22 CDeep3M-C Cryo-ET Mouse/Brain 1.6 × 1.6 × 1.6 938 × 938 × 938 NM, V https://github.com/CRBS/
cdeep3m

A — Axons, CC — Canalicular channel, CH — Chromatin, CN — Centrosome, CP — Cytoplasm, D — Dendrites, EN — Endoplasmic Reticulum, ERES — Endoplasmic Reticulum
Exit Site, G — Golgi, GC — Glial cells, GN — Granules, L — Lysosome, LP — Lipid Droplet, M — Mitochondria, MT — Microtubule, My — Myelin. N — Nucleus, NE — Nuclear
Envelope, NM — Neuronal membrane, NP — Nuclear Pore, Nu — Nucleolus, PM — Plasma Membrane, R — Ribosome, S — Synapse, SP — Synaptic partners, V — Vesicle.
mitochondria in cardiomyocytes (Khadangi et al., 2021b). The FIB-
SEM technique was needed to better characterize diffusion channels in
mitochondria-rich muscle fibers. Isotropic voxels at 15 nm resolution
were imaged according to the set of experiments performed by Glancy
et al. (2015). The UroCell (#13) from FIB-SEM was imaged by Mekuč
et al. (2022) to focus on mitochondria and endolysosomes and was
further extended to Golgi apparatus and fusiform vesicles. The dataset
is unique as it is publicly available for further analysis of the epithelium
cells of the urinary bladder, where the organelles form an important
5

component in maintaining the barrier between the membrane of the
bladder and the surrounding blood tissues.

3.3. SBF-SEM datasets

Connectomics research was also based on popular datasets imaged
using SBF-SEM (Helmstaedter et al., 2013; Briggman et al., 2011).
Imaging using SBF-SEM produces anisotropic sections but does not need

https://imagej.net/events/isbi-2012-segmentation-challenge
https://imagej.net/events/isbi-2012-segmentation-challenge
https://imagej.net/events/isbi-2012-segmentation-challenge
https://cremi.org
https://snemi3d.grand-challenge.org/
https://snemi3d.grand-challenge.org/
https://casser.io/connectomics
https://casser.io/connectomics
http://95.163.198.142/MiRA/mitochondria31/
http://95.163.198.142/MiRA/mitochondria31/
https://mitoem.grand-challenge.org/
https://mitoem.grand-challenge.org/
https://nucmm.grand-challenge.org/
https://nucmm.grand-challenge.org/
https://www.epfl.ch/labs/cvlab/data/data-em/
https://www.epfl.ch/labs/cvlab/data/data-em/
https://casser.io/connectomics
https://casser.io/connectomics
http://research.janelia.org/FIB-25/FIB-25.tar.bz2
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image registration and avoids missing sections in comparison to serial-
sectioning TEM/SEM, as the technique images the sample intact on a
block surface. Such a technique also enabled imaging large volumes for
studying the organization of neural circuits and cells across hundreds
of microns through millimeters of neurons in a 𝑧-stack.

The Perez dataset (#14) (Perez et al., 2014) involved the acquisition
of 1283 serial images from the hypothalamus’s suprachiasmatic nucleus
(SCN), a small part of the mouse brain, to produce an image stack with
tissue dimensions approximately measuring 450,000 μm3. The large
cquired volume was downsampled from 3.8 to 7.8 nm/pixel in the
− 𝑦 resolution to scale up the processing of these tetra-voxel-sized

BF-SEM images. It was introduced for the automatic segmentation of
itochondria, lysosomes, nuclei, and nucleoli in brain tissues.

SegEM (#15) introduced an EM dataset acquired using SBF-SEM
rom the mouse somatosensory cortex (Berning et al., 2015). The
mages in the SegEM dataset are provided with corresponding seg-
entation labels for dendrites, axons, and synapses. The labels were

enerated using a semi-automated approach which involved a com-
ination of skeleton annotations and machine learning algorithms to
race long neurites accurately. Since then, SegEM has been used for
enchmarking popular models like flood-filling networks that test the
fficiency of algorithms on volume-spanning neurites.

CDeep3M proposed two new datasets from SBF-SEM and cryo-
lectron tomography (cryo-ET) for automatic segmentation. The first
ne, CDeep3M-S (#16), is a large SBF-SEM dataset for membrane, mi-
ochondria, and synapse identification from the cerebellum and lateral
abenula of mice. Imaged at 2.4 nm pixel size, a cloud implementation

of the latest architecture for anisotropic datasets was used to segment
structures such as the neuronal membrane, synaptic vesicles mitochon-
dria, and nucleus in brain tissues. The second dataset, CDeep3M-C
(#22), was from cryo-ET and is explained further in Section 3.4.

The EMPIAR-10094 dataset (#17) consists of EM images of cervical
cancer ‘‘HeLa" cells imaged using SBF-SEM. The dataset is imaged at
8192 × 8192 pixels over a total of 518 slices, and consists of different
HeLa cells distributed in the background of the embedding resin. The
dataset has been made publicly available with no labels and has mostly
been used for delineating structures such as plasma membranes and
nuclear envelopes.

The Guay dataset (#18) is a fully annotated dataset of platelet
cells from two human subjects and was designed for dense cellular
segmentation (Guay et al., 2021). It has also been used for large-volume
cell reconstruction along with mitochondria, nuclei, lysosomes, and
various granules inside the cells.

The Axon dataset (#19) is a collection of SBF-SEM images of
white matter tissue from rats, captured at a lower resolution of 50
nm/pixel (Abdollahzadeh et al., 2021). The low-resolution image stack
of 130,000 μm3 was enough to resolve structures like myelin, myeli-
nated axons, mitochondria, and cell nuclei. A wide field of view
employing low-resolution SBF-SEM stacks was considered important
for quantifying metrics such as myelinated axon tortuosity, inter-
mitochondrial distance, and cell density.

Unlabeled datasets, such as CEM500K, from various unrelated ex-
periments and EM modalities for solving the segmentation of a partic-
ular structure seem promising. The CEM500K (#20) is an EM unlabeled
dataset containing around 500,000 images from various unrelated ex-
periments and different EM modalities for cellular EM. The images from
different experiments were standardized to 2D images of size 512 × 512
pixels with pixel resolutions ranging from 2 nm in datasets from serial
section EM and ∼20 nm for SBF-SEM. The dataset was further filtered
by removing duplicates and low-quality images in order to provide
robustness to changes in image contrast and making it suitable for
6

training modeling techniques. w
3.4. Cryo-ET datasets

Electron tomography (ET) is used to obtain 3D structures of EM
sections using the tilt-series acquisition technique. Cryo-ET does so at
cryogenic temperatures to image vitrified biological samples. Attempts
for segmentation on cryo-ET can be found by Moussavi et al. (2010)
and in the review of Carvalho et al. (2018). The identification of
macromoleular structures is beyond the scope of this review.

Cryo-ET presents challenges in visualizing and interpreting tomo-
graphic datasets due to two main factors. Firstly, sample thickness
increases as the tilt angle increases, leading to an artifact known as the
‘‘missing wedge’’ and reduced resolution in the 𝑧-direction. Secondly,
vitrified biological samples are sensitive to electron dose, resulting in
a low signal-to-noise ratio and difficulties in distinguishing features
of interest from background noise. As the resolution capacity of TEM
decreases with the increase in sample thickness, focused ion beam (FIB)
milling can be used to obtain a high-resolution tomogram. Cryo-FIB
SEM is an evolving technology for cellular imaging that is rapidly being
used in recent years. This is mainly attributable to its ability to image
larger specimens that may be too thick for cryo-ET, such as whole cells
or tissues.

The cellular cryo-ET dataset (#21) was acquired at low magnifi-
cation for annotation and qualitative cellular analysis of organelles
like mitochondria, vesicles, microtubules, and plasma membrane (Chen
et al., 2017d). The PC12 cell line was reconstructed using 30 serial
sections imaged at 850 × 850 × 81 pixel size at 2.8 nm resolution.

he tomograms of platelets and cyanobacteria utilized in that work
re from previously published datasets (Wang et al., 2015; Dai et al.,
013). CDeep3M-C (#22) is a cryo-ET dataset for the segmentation of
esicles and membranes from the mouse brain Haberl et al. (2018). At
voxel size of 1.6 nm, it was used to digitally recreate a tiny section

approximately 1.5×1.5×1.5 μm3) of a high-pressure frozen tissue. The
inal volume was built from 7 sequential tomograms (serial sections),
ach created by tilting a sample every 0.5◦ in an electron beam from
60◦ to +60◦.

. Background of backbone deep learning networks for EM seman-
ic and instance segmentation

The rapid progress of DL methods, in particular CNNs, has had
great impact on advancing segmentation of EM images, as well

s other medical images of various modalities (Litjens et al., 2017;
hen et al., 2017), including light microscopy (Xing et al., 2017; Liu
t al., 2021). Deep learning in EM analysis has also been addressed
n the reviews by Treder et al. (2022) and Ede (2021). The former
ives a broad overview of different EM applications in both physical
nd life sciences and the latter provides a practitioner’s perspective
ocused on the hardware and software packages to perform DL-based
M analysis. In contrast, this review provides an in-depth view of
ully/semi/self/un-supervised deep learning methods for the semantic
nd instance segmentation in (sub)cellular EM. This section covers the
ain milestones in the progression of network architectures and their

ey attributes, which are necessary to put in context the 38 papers that
re reviewed in this work.

The rest of this section is structured as follows: Section 4.1 in-
roduces the progress made in CNN architectures that have facili-
ated end-to-end learning for semantic segmentation of 2D EM im-
ges. Section 4.2 addresses the significant challenges in 3D EM analysis
nd categorizes the DL-based techniques into three main approaches.
astly, Section 4.3 explores how advancements in segmentation net-

orks have facilitated their application in instance segmentation.
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Fig. 4. Encoder–decoder architecture of FCNs (Long et al., 2015) and its symmetric version, popularly known as U-Net (Ronneberger et al., 2015). Each of the convolutional layers
is followed by the nonlinear activation function ReLU and max pooling. The decoder upsamples features and combines them with the corresponding low-level features using skip
connections. The last layer is a softmax function that assigns a probability class score to each pixel.
4.1. Semantic segmentation in 2D

The first notable application of CNNs for the segmentation of 2D EM
was of neuronal membranes in serial sections (Ciresan et al., 2012). The
images were segmented by predicting the label of each pixel centered
on a local region or patch, covered by a convolutional filter in a sliding
window approach. As indicated by Arganda-Carreras et al. (2015),
it led to winning the ISBI 2012 neuronal segmentation challenge.5
However, such a method suffered from two major limitations — firstly,
the redundancy of processing large overlaps between adjacent patches,
and secondly, the trade-off between the size of the patches (context)
and localization accuracy. As the network’s depth was an important
factor for a larger receptive field (the size of the viewing field from
which the network receives information), larger patches require deeper
networks. However, downsampling caused by the several max-pooling
layers resulted in a drop in localization ability with deeper networks,
and the usage of smaller patches only enabled the network to observe
a limited amount of context.

Improvements in the semantic segmentation of EM images started
with the development of the Fully Convolutional Networks (FCN) (Long
et al., 2015), among which is the popular U-Net architecture (Ron-
neberger et al., 2015), Fig. 4. FCNs are a family of network archi-
tectures that use fully convolutional layers instead of fully connected
ones enabling the end-to-end training of models on a pixel-to-pixel
basis for dense predictions. They enable the utilization of several
CNN architectures, such as VGG16 or GoogLeNet, to generate coarse
maps on input images of any size. These coarse maps approximate
the locations of objects in the final convolutional layers and are sub-
sequently upsampled to the input resolution using deconvolutions (or
transposed convolutions). A skip architecture was introduced to make
use of a feature spectrum by adding deep, coarse, semantic information
with shallow, fine, appearance information before the upsampling pro-
cess. The skip connections between the encoder–decoder layers bypass
some of the neural network layers and as a result, an alternative and
shorter path is provided for backpropagating the error of the loss
function, which contributed to avoiding the vanishing gradient prob-
lem (Krizhevsky et al., 2012). Increased connectivity in the upsampling
path within FCNs and the consideration of multi-level contexts were
key to improving semantic segmentation (Badrinarayanan et al., 2017;
Drozdzal et al., 2016). The U-Net architecture by Ronneberger et al.

5 https://imagej.net/events/isbi-2012-segmentation-challenge.
7

(2015), extended an FCN network with a U-shaped topology to optimize
the trade-off between localization and context. The contracting path
(encoder) captures a larger context using the downsampled features and
the expanding path (decoder) upsamples features to their original size
with the same number of layers making it a symmetric or U-shaped
network. The decoder network includes the concatenation of higher
resolution feature maps from the encoder network followed by con-
volutions, to obtain more feature information during the upsampling
process.

DeepLab is another family of semantic segmentation networks,
which have the ability to achieve robustness for different of
classes without increasing computational complexity (Chen et al., 2014,
2017b,c, 2018). DeepLab architectures are based on FCNs but extended
with the use of dilated (or atrous) convolutions, which were origi-
nally proposed by Yu and Koltun (2016), and image-level features.
The atrous dilations are used within Atrous Spatial Pyramid Modules
(ASPP), which perform multi-scale feature extraction by using multi-
ple atrous convolutions with different dilation rates. As a backbone
network, the latest DeepLab architecture, namely DeepLab v3+, uses
the Residual Neural Network (ResNet) to produce feature maps. The
module performs parallel convolution on the feature map obtained
from the ResNet backbone and outputs multiple feature maps, which
are then concatenated and fed into the next layer. This allows the
network to capture features of multiple scales, which is crucial for
tasks like semantic segmentation. ResNet is notable for its ability to
overcome the vanishing gradient problem and the degradation issue,
simultaneously (He et al., 2016). This breakthrough was attributable to
the introduction of residual connections, which allow the network to
learn residual functions, or the difference between the desired output
and the current output, rather than the full function. This helps the
network to learn more effectively and avoid overfitting.

4.2. Semantic segmentation in 3D

Semantic segmentation in 3D involves the partitioning of a 3D
volume into segments based on their semantic meaning, with each
voxel receiving a corresponding label. Since many EM datasets consist
of stacked 2D sections along the 𝑧-axis, performing volumetric seg-
mentation becomes crucial to accurately capture the 3D structure and
connectivity. The 3D segmentation of neurites in EM images was set
as a challenge in ISBI 2013 for predicting the segmentation of voxels
using 3D segmentation methods. The major challenges in analyzing
volume EM datasets are spatial complexity, misalignments or missing

https://imagej.net/events/isbi-2012-segmentation-challenge
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sections due to serial sectioning and volume anisotropy, which means
different voxel resolutions in different directions. For serial-section EM,
the anisotropic voxel resolution is due to the slicing of thicker sections
which makes the 𝑧-axis resolution lower than the 𝑥–𝑦 plane.

The problem of 3D segmentation has been tackled through three
ypes of approaches, each offering distinct solutions to obtain the 3D
orm. The first involves 2D segmentation of each image in the stack,
ollowed by 3D reconstructions based on post-processing techniques,
hat may range from basic watershed to complex graph cuts algo-
ithms. The second approach is based on 3D CNNs, which can learn
epresentations of volumetric data that include 3D spatial context. One
xample of such 3D CNNs is the 3D U-Net by Çiçek et al. (2016),
hich was inspired by the original U-Net that uses local and larger

ontextual information. It was then extended into the V-Net model
y Milletari et al. (2016) by adding residual stages. The HighRes3DNet
s another 3D CNN based on the FCN architecture, with dilated and
esidual convolutions, and has been successful in obtaining accurate
egmentations of neuronal mitochondria (Li et al., 2017). In terms
f performance, both HighRes3DNet and V-Net have achieved state-
f-the-art results on several medical image segmentation benchmarks.
owever, HighRes3DNet has been shown to have better performance
n tasks involving high-resolution and multi-modal medical images,
hile V-Net has been shown to be more efficient in terms of compu-

ational resources and memory usage. A variant of the 3D network is
he hybrid 2D-3D methodology as proposed by Lee et al. (2015) for the
egmentation of anisotropic volumes. They utilize only 2D convolutions
n the initial layers that downsample the input feature maps with high
− 𝑦 resolution (independent of the 𝑧-axis) until they are roughly

sotropic to be efficiently processed by 3D convolutions.
Graph analysis is the third approach for 3D segmentation. Graph-

ased methods typically involve partitioning a graph into regions or
lusters based on properties such as color or intensity values, edge
trength, or other image features such as shape. These methods often
se graph theory algorithms, like graph cuts or minimum spanning
rees, to identify regions that are distinct from one another. This may
e coupled with structure-based analysis that uses certain geometri-
al properties to identify boundaries between objects. Global shape
escriptors were used to learn the connectivity of 3D super voxels
y Lucchi et al. (2013) for segmentation using graph-cuts, addressing
ssues with local statistics and distracting membranes. Turaga et al.
2010) suggested how CNNs can be used for directly predicting 3D
raph affinities based on a structured loss function for neuronal bound-
ry segmentation. The proposed loss function assigned scores to the
dges between adjacent pixels based on their likelihood of belonging
o same or different regions and also penalized their assignment for
chieving incorrect predictions that violate the underlying structure of
he image.

.3. Instance segmentation

Instance segmentation involves classifying each pixel/voxel of a
iven image/volume to a particular class along with assigning a unique
dentity to pixels/voxels of individual objects. Instance segmentation
sing deep learning can be divided into proposal-based (top-down) and
roposal-free (bottom-up) approaches. Proposal-based approaches such
s RCNN, FastRCNN, and FasterRCNN are two-stage detection networks
hat use a deep neural network for feature extraction (encoder) and
egion proposals for the segmentation of objects of interest, followed
y bounding box regression and classification to obtain instance seg-
entation (Liu et al., 2020b). Mask-RCNN (He et al., 2017) is a popular

hoice for generic object instance segmentation built upon FasterRCNN,
hich uses a branch of the network to predict a binary mask for each
bject instance. Top-down instance segmentation has also been accom-
lished using recurrent networks with attention mechanisms, either by
xtracting visual characteristics and producing instance labels one item
8

t a time or by guiding the formation of bounding boxes followed by
a segmentation network (Ren and Zemel, 2017; Ghosh et al., 2019).
The Flood Filling Network (FFN) uses this concept to obtain individual
object masks directly from raw image pixels (Januszewski et al., 2018)
and has also been used for EM segmentation as reviewed below.

The other approach is known as proposal-free, which aims to com-
bine semantic and instance segmentation in a bottom-up approach. This
was the strategy taken by Chen et al. (2017a) and Kirillov et al. (2017),
where the prediction of contours/edges of objects along with semantic
masks were incorporated into FCNs in a multi-task learning approach.
Both contour/edge maps and semantic masks were then fused to obtain
the instance segmentation maps. Other approaches use boundary-aware
instance information (e.g. the distance between object boundaries or
the amount of overlap between objects) to fuse edge features with
intermediate layers of the network (Bai and Urtasun, 2017; Oda et al.,
2018). Another bottom-up approach was proposed by De Brabandere
et al. (2017), who introduced a discriminative loss function for learning
clusters of pixel embeddings and demonstrated that it is superior to
the cross-entropy and Dice loss function for instance segmentation.
The effect of their discriminative loss function is that the feature
embeddings of the pixels that belong to the same instance are mapped
close to each other in the feature space. The discriminative loss function
consists of three terms: a segmentation term, which penalizes incorrect
class predictions; a boundary term, which penalizes incorrect boundary
predictions; and a regularization term, which encourages smoothness in
the predicted masks.

5. Fully supervised methods

Fully supervised methods use annotated images (training data) to
learn computational models that can segment structures in unseen
images from similar distributions (test data). The training set is used
by the algorithm to determine the model’s parameters in such a way
as to maximize the model’s generalization ability. Table 3 summarizes
the 33 papers (of the 38) that have used supervised learning for the
semantic and instance segmentation of (sub) cellular structures.

5.1. End-to-end learning — semantic segmentation

End-to-end learning is a machine learning approach where a single
model learns to perform a task without relying on pre-defined inter-
mediate steps or features. Instead, the model is trained to map the
input data directly to the desired output, in a single end-to-end process.
End-to-end learning has become increasingly popular in recent years
due to advances in deep learning, which allow the creation of models
with large numbers of layers that can learn complex representations of
data. These models are trained using backpropagation, a method for
updating the weights of the model based on the error generated by a
given loss function between the predicted output and the true output,
which allows the model to improve its performance during the learning
process.

The 16 papers that fall within this category are focused on the
semantic segmentation of two main cellular structures, namely NM —
neuronal membranes (8 papers) and M — mitochondria (5 papers).
Other structures include N — nuclei, NE — nuclear envelopes, and L
— lysosome.

Neuronal membrane segmentation refers to the process of iden-
tifying and separating the neuronal membrane from other structures
in an EM image. Segmenting neuronal membranes in EM volumes
helps partition an image into distinct regions that represent different
neuronal cells and processes. It is essential for studying the function
of neurons along with their synaptic connections for understanding
the different signaling pathways in the brain. Digital reconstruction or
tracing of 3D neurons depends on the accuracy of neuronal membrane
segmentation as discontinuities could lead to merge and split errors (see

Section 7), which in turn affect the reconstruction.
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Table 3
The list of 33 (out of 38) papers reviewed in this work that are based on fully supervised learning frameworks with 2D and 3D CNN architectures applied to both semantic and
instance segmentation. The abbreviation Org. stands for the studied organelle/s. The Type (2D and/or 3D) column indicates the type of methods used and problems addressed.
The studies that are marked as both 2D and 3D use a 2D backbone method coupled with some post-processing operations for 3D reconstruction. The other studies that are flagged
as 2D or 3D only, use 2D or 3D only backbones to address 2D or 3D problems, respectively. The numbers in the Datasets column serve as correspondences to the identifiers in
Table 2, and the definitions of the performance metrics are presented in Section 7.

Citation Org. Type Datasets Performance Backboneb Main methodological components

2D 3D metrics

End-to-end learning — semantic segmentation

Fakhry et al. (2017) NM ✓ ✓ 1, 3 RE, WE, PE 2D FCN Residual blocks, deconvolutions
Oztel et al. (2017) M ✓ ✓ 1 Acc, P, R, F1,

JI
2D FCN Block processing, Z-filtering

Chen et al. (2017d) MT, M,
PM, V

✓ 21 No
evaluation

2D FCN A CNN architecture with four layers

Xiao et al. (2018b) NM ✓ ✓ 1 𝑉 𝑅𝑎𝑛𝑑 , 𝑉 𝐼𝑛𝑓𝑜 2D FCN Residual blocks, multi-level features
Casser et al. (2018) M ✓ 4, 9 Acc, P, R, JI 2D U-Net Few parameters, light-weight model
Jiang et al. (2019) N ✓ Privatea JI, Acc 2D FCN Residual, atrous, multi-level fusion
Cao et al. (2020) NM ✓ 1 𝑉 𝑅𝑎𝑛𝑑 2D U-Net Dense blocks, summation-skip
Quan et al. (2021) NM ✓ 1 𝑉 𝑅𝑎𝑛𝑑 , 𝑉 𝐼𝑛𝑓𝑜 2D U-Net Residual, summation-skip, multi-stage
Spiers et al. (2021) NE ✓ ✓ 17 P, R, F1 2D U-Net Tri-axis prediction
Cheng and Varshney
(2017)

M ✓ 8 P, R, JI 3D U-Net Factorized convolutions

Lee et al. (2017) NM ✓ 3 RE 3D U-Net 3D graph affinity, hybrid 2D-3D, residual
Xiao et al. (2018a) M ✓ 5, 8 JI, DSC 3D U-Net Hybrid 2D-3D, residual, auxiliary supervision
Funke et al. (2018) NM ✓ 2, 10, 15 𝑉 𝐼𝑛𝑓𝑜, CREMI 3D U-Net 3D graph affinity prediction
Heinrich et al.
(2018)

S ✓ 2 CREMI 3D U-Net Signed distance regression map, hybrid 2D-3D

Mekuč et al. (2020) M, L ✓ 13 TNR, R, DSC 3D FCN HighRes3DZMNet, zero-mean, residual/atrous
Heinrich et al.
(2021)

Many ✓ 10 DSC 3D U-Net Multi-class segmentation

Bailoni et al. (2022) NM ✓ 2 ARAND 3D U-Net Signed 3D graph affinity prediction

End-to-end learning — instance segmentation

Liu et al. (2020a) M ✓ 8 Acc, P, R, JI,
DSC

Mask-RCNN Recursive network, multiple bounding boxes

Yuan et al. (2021) M ✓ ✓ 4, 8 JI, DSC, AJI,
PQ

2D U-Net Hierarchical view ensemble module,
multi-task

Luo et al. (2021) M ✓ 4, 8 JI, DSC, AJI,
PQ

2D U-Net Residual blocks, two-stage, shape soft-labels

Wei et al. (2020) M ✓ 6, 8 JI, AP-75 3D U-Net Mask, contour prediction, watershed
Abdollahzadeh et al.
(2021)

A, N ✓ 19 𝑉 𝐼𝑛𝑓𝑜,
ARAND

3D U-Net Shape-based postprocessing

Lin et al. (2021) N ✓ 7 AP-50,
AP-75, AP

3D U-Net Hybrid 2D-3D module, residual blocks

Li et al. (2022) M ✓ 6 JI, DSC, AP 3D FCN Hybrid 2D-3D module, multi-scale
Mekuč et al. (2022) M ✓ 13 TPR, TNR, JI,

DSC
3D FCN HighRes3DzNet, geodesic active contours

Ensemble learning — semantic segmentation

Zeng et al. (2017) NM ✓ 3 RE 3D FCN Hybrid 3D-2D, residual/inception/atrous
Haberl et al. (2018) NM, M,

N, V
✓ 16, 22 A, P, R, F1 3D FCN Hybrid 3D-2D, residual/inception/atrous

Guay et al. (2021) C, M, GN ✓ 18 Mean JI 3D U-Net Hybrid 2D-3D, spatial pyramids
Khadangi et al.
(2021b)

M ✓ 12, 16 Acc, TPR,
TNR, F1, JI,
𝑉 𝑅𝑎𝑛𝑑 , 𝑉 𝐼𝑛𝑓𝑜

2D U-Net Ensemble of different networks

Transfer learning — semantic segmentation

Dietlmeier et al.
(2019)

M ✓ 1 Acc, P, F1 VGG Few shot, hypercolumn features, boosting

Bermúdez-Chacón
et al. (2018)

M ✓ Privateb JI 2D U-Net Deep domain adaptation, two-stream U-Net

Configurable networks — semantic segmentation

Isensee et al. (2019) S ✓ ✓ 2 CREMI 2D, 3D U-Net nnU-Net, self-configuring method
Franco-Barranco
et al. (2022)

M ✓ ✓ 4, 8 JI 2D, 3D U-Net Stable networks, blended output, 𝑧-filtering

aPrivate indicates that the dataset used is not publicly available.
bThe term U-Net is used to describe extended mechanisms that utilize U-shaped architectures, whereas other mechanisms are commonly referred to as FCN.
Similarly, mitochondria segmentation is the process of identifying
and separating mitochondria, a type of organelle found in eukaryotic
cells, from other structures in an EM image. Mitochondria segmentation
is a challenging task due to the variability in their size, shape, and
distribution within cells. Accurately segmenting mitochondria in 2D
and 3D is important for studying the structure and function of these
organelles, as well as investigating their role in various diseases.
9

Below we categorize the proposed approaches based on their under-
lying 2D or 3D CNN architectures.

5.1.1. Approaches based on 2D CNNs
Successes of DL networks for segmentation in EM were achieved

using 2D architectures with deep contextual networks. These networks
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are based on the FCN architecture, with many using its symmetric U-
Net version. Their ability to capture larger receptive fields using deeper
networks and integration of sufficient low-level information for pixel
localization during the decoding process facilitates accurate prediction.
Consequently, the need for a multi-step post-processing approach to
attain precise 2D segmentation and subsequent 3D reconstruction based
on the segmented regions is significantly reduced.

Furthermore the Residual Deconvolutional Networks (RDN) by
Fakhry et al. (2017) extended the deconvolution network, by introduc-
ing residual connections between several stacks of convolutional and
deconvolutional layers in the encoder and decoder respectively. The
several unpooling and deconvolutional operations at the decoding stage
of the deconvolution network are said to capture the shape information
of multi-scale objects effectively (Noh et al., 2015). Additionally the
authors employed summation-skip connections to fuse low-resolution
feature maps with their corresponding resolution in the upsampled fea-
tures, thereby achieving high-resolution pixel accuracy. The proposed
method was evaluated on the ISBI 2012 and 2013 benchmark datasets
and compared to several state-of-the-art segmentation methods. The
results demonstrated that RDNs were superior in terms of segmentation
accuracy and required a simple post-processing step such as watershed
to segment/reconstruct neural circuits.

Oztel et al. (2017) introduced a highly effective method to re-
construct mitochondria from 2D segmentations. An FCN was used for
delineating mitochondria from the background followed by median
filtering along the 𝑧 direction in the volume of images. Also known as
-filtering, this technique facilitated the removal of erroneous strokes
nd the recovery of regions of interest in cases where neighboring slices
ontained the missed component.

The deep contextual residual network (DCR) by Xiao et al. (2018b)
s an extension of FCN with residual blocks and multi-scale feature fu-
ion. They used the summation based skip connections which fuse high-
evel details from output of deconvolutions in the decoder and low-
evel information from ResNet encoder. The proposed post-processing
ethod with a multi-cut approach and 3D contextual features proved

mportant to reduce discontinuities (boundary splits or merges), which
n turn helped to reduce false positives and false negatives in various
D sections. DCR outperformed several state-of-the-art segmentation
ethods on the ISBI 2012 dataset.

Advanced networks for different tasks may be too computationally
emanding to run on affordable hardware, leading users to modify
acro-level design aspects. Examples of such modifications include
ownsampling input images and reducing network size or depth to
nsure compatibility with computer hardware constraints. Casser et al.
2018) introduced a fast mitochondria segmentation method using

reduced number of layers and lightweight bilinear upsampling in-
tead of transposed convolutions in the decoder of U-Net. Moreover,
hey introduced a novel data augmentation method that generates
raining samples on the fly by randomly applying spatial transfor-
ations to the original images, which leads to increased training ef-

iciency and robustness to variations in image quality. Similar data
ugmentation operations also featured in some of the other reviewed
tudies, which employed cropping, flipping, rotations, scaling, resam-
ling (Quan et al., 2016) and elastic deformations (Ronneberger et al.,
015). Casser et al. (2018) also incorporate a post-processing step based
n 𝑧-filtering to reconstruct 3D mitochondria. The proposed approach
as evaluated on several EM datasets and achieved state-of-the-art
erformance in terms of segmentation accuracy and speed.

A residual encoder module with ASPP for multi-scale contextual
eature integration was investigated by Jiang et al. (2019). The de-
oder module included the fusion of previous low-level features and
igh-level features from the output of ASPP, followed by bi-linear
psampling to obtain the segmentation map. They achieved better
erformance compared to the baseline, U-Net, and Deeplabv3+ for the
10

egmentation of cell bodies and cell nuclei. a
The Dense U-Net model was proposed by Cao et al. (2020) as an
xtension of the popular U-Net architecture that incorporates densely
onnected blocks within the U-Net’s skip connections. The densely
onnected blocks help to improve gradient flow and feature reuse,
hich leads to better feature representation and higher segmentation
ccuracy. Besides its outstanding results on the ISBI 2012 challenge,
he model turned out to be highly robust to variations in noises and
rtifacts of neuronal membrane images, requiring no further post-
rocessing.

FusionNet is a fully residual U-Net architecture that combines dif-
erent levels of feature representations by fusing the output of multiple
ub-networks with different receptive fields. It includes a residual
earning framework along with deconvolutional layers to improve the
raining convergence and segmentation accuracy. The study by Quan
t al. (2021) showed that an integrated multi-stage refinement process
sing four concatenated FusionNet units can effectively eliminate the
equirement for any proofreading.6

A novel data augmentation strategy was also proposed by Spiers
t al. (2021), which simulates realistic variations in the EM images to
mprove the robustness of their 2D CNN for the semantic segmenta-
ion of nuclear envelopes. The proposed approach based on 2D U-Net
chieved high segmentation accuracy and can be used to extract mean-
ngful biological information from the segmented nuclear envelope,
uch as the distribution of nuclear pores. Their model was run on each
xis after transposing the stack, and the resulting three orthogonal
redictions were merged to produce the ultimate segmentation.

Chen et al. (2017d) used a 2D CNN with only four layers for the
egmentation of membranes, mitochondria, vesicles, and microtubules
n cryo-ET. The architecture of the CNN layers was optimized to capture

large context by utilizing 15 × 15 pixel kernels in the first two
ayers. This design allowed for the use of a single max-pooling layer
o downsample the output to half the input resolution, which aids
n distinguishing intricate details of structures such as single (vesicle,
icrotubule) or double membrane (plasma membrane, mitochondria).
CNN for each of the four structures was trained with a few sections

f the tomogram containing structures of interest. Subsequently, the
btained segmentation maps were employed for sub-tomogram classifi-
ation and averaging, facilitating the determination of in-situ structures
or the molecular components of interest.

.1.2. Approaches based on 3D CNNs
Similar to 2D deep architectures, a 3D CNN consists of multiple

ayers of filters, including convolutional, pooling, and activation layers,
o learn spatial features from the input data. The filters scan the input
olume at different locations and scales to identify features that are
elevant for segmentation. The key difference between 2D and 3D CNNs
s the inclusion of an additional depth dimension in the input data.
his allows the network to capture the spatial and depth relationships
etween adjacent slices in the volume. Due to the large amount of
ata and computational resources required for training 3D CNNs, such
ethods are typically used in high-end computing environments, such

s specialized workstations or cloud computing platforms. Hybrid 2D-
D architectures have also been investigated that try to find the right
rade-off between high computational demand and effectiveness.

In this review, there are three approaches that adopted complete
D CNN architectures in a fully supervised way. The first is the work
y Cheng and Varshney (2017) who proposed a 3D CNN for the
egmentation of mitochondria in volumetric data. The authors also pro-
ose a novel data augmentation technique that uses stochastic sampling
n the pooling layers to generate realistic variations in the feature space.
n their thorough investigation, they conclude that the 3D CNNs out-
erform their 2D counterparts with a high statistical significance. The

6 Proofreading refers to the manual validation of segmented (manual or
utomatic) image data.
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improvement was mainly attributable to the introduced augmentations
as well as to the factorized convolutions which not only permitted high
efficiency, but also proved to be useful in FIB-SEM (isotropic) volumes.

Mekuč et al. (2020) also presented a 3D CNN-based method for the
segmentation of mitochondria and endolysosomes in volumetric EM.
The proposed method is based on the HighRes3DNet architecture, but
it has the filters in the first layer constrained to having zero mean,
and called it HighRes3DZMNet. The zero mean layer made the neural
network robust to changes in the brightness of the volume inputs.
The network is trained using the UroCell dataset for jointly segment-
ing mitochondria and endolysosomes due to similar morphologies of
these biological structures. The method was also applied to segment
mitochondria in the Lucchi++ dataset and achieved state-of-the-art
segmentation results for FIB-SEM volumes.

Heinrich et al. (2021) also relied on a 3D CNN for the segmentation
of 35 organelle classes in cells from FIB-SEM volumes. The multi-
channel 3D U-Net was trained on 28 volumes from the open-source
OpenOrganelle collection covering four different cell types. They in-
vestigated how one segmentation model that is trained with samples
of all 35 organelles compares with more specific models that are
trained with subsets of semantically-related organelle classes, such as
the endoplasmic reticulum (ER) and its associated structures, namely
ER exit sites, ER membrane, and ER lumen. It turned out, that the
single model that is trained by all classes outperforms the more specific
ones. This is attributable to the richer diversity in the training set which
resulted in a model with better generalization abilities.

Hybrid 2D-3D approaches were adopted for the segmentation of
volume datasets in order to reduce the computational cost of 3D
convolutions in certain layers and achieve better convergence. Their
main application lies in the ability to segment anisotropic volumes for
efficiently processing their 3D context. For instance, both anisotropic
and isotropic EM volumes could be processed using hybrid 2D-3D
network architectures that include 3 × 3 × 1 convolutions instead of
3 × 3 × 3 to modify them to 2D ones. Xiao et al. (2018a) was the first to
introduce a fully residual hybrid 2D-3D network with deep supervision
to improve mitochondria segmentation. For reducing the number of
parameters, 3D convolutions were used only in the first and last layers
of a 3D U-Net. A deeply supervised strategy was proposed by injecting
auxiliary branches into the initial layers of the decoder for avoiding
the vanishing gradients problem. The fully residual architecture based
on hybrid modules could efficiently handle anisotropic volume data in
order to predict a correctly segmented output. As a result, a simple con-
nected component analysis method was effective for 3D reconstruction
on both isotropic and anisotropic EM datasets.

Lee et al. (2017) adapted the hybrid 2D-3D model of Turaga et al.
(2010) to predict 3D affinity maps for the segmentation of neuronal
membranes in 3D volumes. The proposed CNN model incorporated
multi-slice inputs along with long-range affinity-based auxiliary super-
vision along the 𝑥, 𝑦, and 𝑧 directions. The process of long-range affinity
monitoring involves utilizing a larger affinity neighborhood as an aux-
iliary objective to improve the accuracy of the main task, the nearest-
neighbor affinity prediction. Long-range affinities were assigned to
membrane voxels and voxels further apart by connecting them with
extended edges. They utilized a hybrid 2D-3D U-Net for segmenting
anisotropic volumes and post-processing with a simple mean-affinity
agglomeration strategy for segmenting neuronal regions. The proposed
affinity supervision simulates the use of boundary maps with different
thicknesses in the DeepEM3D (Section 5.3), outperforming it in the
SNEMI3D competition.

A structured loss that favors high affinities between 3D voxels was
used to obtain topologically correct segmentations by Funke et al.
(2018). The affinity predictions were accurate enough to be used
with a simple agglomeration to efficiently segment both isotropic and
anisotropic (CREMI, FIB, and SegEM) data, outperforming methods
with more elaborate post-processing pipelines. Bailoni et al. (2022)
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used signed graphs to anticipate both attractive and repulsive forces
among 3D voxels, enabling graph prediction through a 3D U-Net, in a
manner similar to the method proposed by Funke et al. (2018).

Building on the concept of long-range affinities for boundary detec-
tion, Heinrich et al. (2018) used neighboring context to predict a signed
distance transform of the binary synapse labels. They assigned positive
distances to the pixels in the synapse region and negative distances to
the exterior pixels, relative to the boundary of the binary mask. The
proposed approach gathered information from a broader context by
transforming the voxel-wise classification into a voxel-wise regression
problem. The distance predictions, when thresholded, generated precise
binary segmentations for synapses. Such distance prediction maps with
simple thresholding allowed scaling the prediction at high-throughput
speeds (3 megavoxels per second) for a full adult fly brain volume of
50 teravoxels in size.

5.2. End-to-end learning — instance segmentation

End-to-end learning approaches are also the most popular ones for
instance segmentation, which require the delineation of each instance
within the same class of structures. This is particularly important for
classes of structures that tend to be apposed with each other, such as
mitochondria.

CNN-based methods for instance segmentation were grouped into
two categories by Wei et al. (2020): top-down and bottom-up. Top-
down methods typically utilize region proposal networks followed by
precise delineation in each region. Conversely, bottom-up approaches
aim to predict a binary segmentation mask, an affinity map, or a bi-
nary mask with instance boundary followed by several post-processing
steps to distinguish instances. Due to the undefined scale of bounding
boxes in EM images, bottom-up approaches have been the preferred
methodology for 2D and 3D instance segmentation.

For neuronal region segmentation, instance segmentation is essen-
tially transformed into an image partitioning task where every pixel in
the image is assigned to a specific instance, thereby forming partitions.
Each partition represents an instance of a neuronal region. This par-
titioning approach enables the reconstruction of individual neuronal
structures through post-processing techniques. Fig. 5 shows examples
of semantic and instance segmentation of mitochondria along with an
illustration of neuronal 3D reconstruction after image partitioning.

5.2.1. Approaches based on 2D CNNs
The only top-down approach from the reviewed works in this pa-

per is the one proposed by Liu et al. (2020a). They introduced a
pipeline that complements Mask-RCNN. In particular, they proposed a
mechanism that refines undersegmented mitochondria in the output of
Mask-RCNN, by iteratively enhancing the field of view that preserves
the previous segmentation states. They systematically demonstrated
that their approach outperformed competing methods that rely on
U-Net, FFN, and Mask-RCNN in instance segmentation of mitochondria.

Shape prior turned out to be important for some techniques to
improve the quality of instance segmentation. Shape prior refers to
the incorporation of prior knowledge about the expected shape or
structure of an object of interest into segmentation algorithms. For
example, Yuan et al. (2021) proposed the Hive-Net CNN, which was
designed to overcome the challenges posed by the high variability
in mitochondria shapes and sizes, as well as the presence of other
cellular structures in the images. The network consists of multiple
view-specific sub-networks that process different views of the image,
and a centerline-aware hierarchical ensemble module that combines
the outputs of the sub-networks to generate the final segmentation
result. The centerline-aware module uses a new type of loss function
that encourages the network to learn the topology of mitochondria
and to segment them along their centerlines. The proposed network

was evaluated on two publicly available datasets, and an ablation
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Fig. 5. Example of (top row) semantic and instance segmentation of mitochondria and (bottom row) neuronal membrane segmentation followed by 3D reconstruction of neuronal
objects from a volumetric EM image. (a) Raw EM 2D section extracted from a FIB-SEM volume of a mouse kidney from the OpenOrganelle jrc_mus-kidney dataset.7 (b, c) Ground
truth labels for semantic and instance segmentation. The instance segmentation map identifies each individual mitochondria with a unique color. (d) Raw EM 2D section extracted
from the SNEMI3D (#3) dataset for the task of neuronal membrane segmentation and reconstruction. (e) The ground truth map of the neuronal membrane segmentation, which
is used to partition the image completely. (f) 3D reconstruction of selected neuronal structures that pass through the given 2D section from adjacent sections of the EM volume.
The information from multiple images is used to create a 3D reconstruction through various post-processing methods, such as clustering, watershed, or graph-based methods.
study concluded that the centerline-aware module and the view-specific
sub-networks were critical for achieving high segmentation accuracy.

Shape information has also been exploited by the hierarchical
encoder–decoder network (HED-Net) for the instance segmentation
of mitochondria (Luo et al., 2021). That strategy used the shape
information available in the manual labels to train the model more
effectively. Instead of relying solely on the ground truth label maps
for model training, an additional subcategory-aware supervision was
introduced. That was achieved by decomposing each manual label
map into two complementary label maps based on the ovality of the
mitochondria. The resulting three-label maps were used to supervise
the training of the HED-Net. The original label map was used to guide
the network to segment all mitochondria of varying shapes, while
the auxiliary label maps guided the network to segment subcategories
of mitochondria with circular and elliptic shapes, respectively. The
experiments conducted on two publicly available benchmarks show
that the proposed HED-Net outperforms state-of-the-art methods.

The inclusion of apriori knowledge about shape in segmentation
algorithms contributes to increased specificity as they become more
selective in delineating the structures of interest and keep false pos-
itives to a minimum. They can also improve generalization ability
especially when the training data is limited. Methods that use shape
priors, however, are more structure-specific and, therefore, different
methods may need to be designed for the segmentation of distinct
organelles.

5.2.2. Approaches based on 3D CNNs
The largest instance segmentation dataset for mitochondria (Mi-

toEM) proposed by Wei et al. (2020) benchmarks the dataset by propos-
ing a 3D U-Net. It is trained with binary masks and contours using two
separate decoders, followed by a marker-controlled watershed to obtain
instance segmentations, and is called U3D-BC +MW for short. Wei
et al. (2020) introduced two networks, MitoEM-R and MitoEM-H, citing
variations in sizes, shapes, and noise content for serial sections from
rat and human samples. The MitoEM-R network can generalize on
the human dataset as the rat samples have complex mitochondrial

7 https://open.quiltdata.com/b/janelia-cosem-datasets/tree/jrc_mus-
kidney/.
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morphologies. The simpler U3D-BC +MW method was shown to be
more effective than FFNs, as they were not able to capture the fine
geometry of mitochondria with complex shapes or in close contact to
each other.

The DeepACSON approach by Abdollahzadeh et al. (2021), which
was proposed for the instance segmentation of axons and nuclei in 3D
volumes, is supported by a postprocessing method that relies on shape
features. To correct for topological errors of axons, a cylindrical shape
decomposition (CSD) algorithm is used as a postprocessing step to iden-
tify any erroneously detected axons and to correct under-segmented
ones at their cross-overs. The CSD is a shape-analysis algorithm that
decomposes an object into its semantic components based on the ob-
ject’s skeleton curve and cross-sectional analysis. The CSD slices objects
at their cross-overs based on geometrical changes in cross-sectional
shapes and then reconstructs semantic objects from the cut sections
using generalized cylinders. A generalized cylinder is a solid object
created by sweeping a 2D contour along a curve in space, allowing
for varying cross-sections along its length. The circularity of the cell
nucleus is corrected using the level-set-based geometric deformable
model, which approximates the initial shape of the object with a curve.
This is then adjusted to minimize an energy function associated with
the curve when it fits perfectly to the object’s boundaries. Energy
functions enable the inclusion of shape information, whether it is a
vague concept like smoothness constraints or a precise idea like shape
constraints (strict adherence to a particular shape).

Nuclei instance segmentation on a large-scale EM dataset was pro-
posed by Lin et al. (2021). Their network, U3D-BCD, was inspired by
the U3D-BC above but involved the additional learning of a signed
Euclidean distance transform map along with foreground masks and
instance contours to capture the structure of the background for seg-
mentation. The Euclidean distance transform calculates the distance
of each pixel in a binary image to the nearest boundary pixel. If a
pixel is part of a foreground object then it has a positive Euclidean
distance, otherwise negative. To locate the seeds for object centers,
their method starts by thresholding the predictions to identify markers
with high foreground probability and distance value, but low contour
probability. Next, the marker-controlled watershed transform algorithm
is applied with the predicted distance map and seeds to generate masks.
This approach has two advantages over the U3D-BC model (Wei et al.,
2020), which also utilizes marker-controlled watershed transform for

https://open.quiltdata.com/b/janelia-cosem-datasets/tree/jrc_mus-kidney/
https://open.quiltdata.com/b/janelia-cosem-datasets/tree/jrc_mus-kidney/
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decoding. Firstly, the consistency among the three representations is
used to locate the seeds, which makes it more robust than the U3D-
BC method that relies only on two predictions. Secondly, it uses the
smooth signed distance map in the watershed decoding process, which
is more effective in capturing instance structure than the foreground
probability map used in U3D-BC.

Li et al. (2022) addressed 3D mitochondria instance segmentation
with two supervised deep neural networks, namely ResUNet-H and
ResU-Net-R, for the rat and human samples on the MitoEM dataset,
respectively. Both networks produce outputs in the form of a semantic
and instance boundary masks. Due to the increased difficulty of the hu-
man sample, Res-UNet-H has an additional decoder path to separately
predict the semantic mask and instance boundary, while Res-UNet-R
has only one path. Once the semantic mask and instance boundary are
obtained, a seed map is synthesized, and the mitochondria instances
are obtained using connected component labeling. To enhance the
networks’ segmentation performance, a simple but effective anisotropic
convolution block is designed, and a multi-scale training strategy is
deployed. The MitoEM dataset has sparsely distributed imaging noise,
with the human sample having a stronger subjective noise level than
the rat sample. To reduce the influence of noise on segmentation, an
interpolation network was utilized to restore the regions with noise,
which were coarsely marked by humans. Besides mitochondria instance
segmentation, the proposed method was demonstrated to have superior
performance for mitochondria semantic segmentation.

Mekuč et al. (2022) extended their previous approach based on the
HighRes3DZMNet with post-processing steps based on active contours,
to separate apposing mitochondria and thus achieve instance segmen-
tation. By means of experiments on the extended UroCell dataset, they
demonstrated that this new approach is more effective than the U3D-BC
+MW method.

5.3. Ensemble learning

Ensemble learning methods combine outputs of multiple algorithms
or models to obtain better predictive performance in terms of accuracy
and generalization. Pixel- or voxel-wise averaging and the majority or
median voting are among the main aggregation methods.

An ensemble technique was in fact investigated by Zeng et al.
(2017) for the segmentation of neuronal membranes in the brain vol-
umes. They trained several variations of their DeepEM3D network,
which could process different numbers of input slices and inputs with
varying thicknesses of object boundaries. The DeepEM3D network ex-
tended the FCN architecture by introducing a hybrid network with 3D
convolutions in the first two layers to enable integrating anisotropic
information in the early stages, and 2D layers afterwards. DeepEM3D
employed inception and residual modules, multiple dilated convolu-
tions, and combined the result of three models that integrated one,
three, and five consecutive serial sections. Employing an ensemble
strategy for enhancing boundaries (by maximum superposition) within
the probability maps generated by these models proved essential for
performing with near-human accuracy in the SNEMI3D challenge.

CDeep3M is a cloud implementation of DeepEM3D to segment
various anisotropic SBF-SEM and cryo-ET datasets (Haberl et al., 2018).
Trained by a few sub-volumes of the cryo-ET tomogram, the resulting
network was able to segment vesicles and membranes with high accu-
racy in other tomograms. The network implementation proved efficient
for segmenting large-volume EM datasets such as SBF-SEM making it
easier to analyze enormous amounts of imaging data.

The strengths of the ensemble paradigm was also confirmed by Guay
et al. (2021) for the segmentation of cytoplasm, mitochondria, and
four types of granules in platelet cells. They demonstrated that the
best segmentation performance (in terms of intersection over union)
was achieved by combining the output of the top 𝑘 performing weak
lassifiers, with each such classifier learned by a small portion of
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he training data. Similar to above, each model was a hybrid 2D-3D
network used to segment anisotropic SBF-SEM volumes. They also high-
lighted that besides its effectiveness, their ensemble paradigm ensured
better reproducibility of the results in comparison to individual models
that were sensitive to initialization.

Multiple network outputs were also combined with a workflow for
binary EM segmentation provided by the EM-stellar platform (Khadangi
et al., 2021b). Unlike the above two approaches, Khadangi et al.
(2021b) used the ensemble paradigm to aggregate the output of dif-
ferent types of networks, namely CDeep3EM (Haberl et al., 2018),
EM-Net (Khadangi et al., 2021a), PReLU-Net (He et al., 2015), ResNet,
SegNet, U-Net, and VGG-16. A cross-evaluation using a heatmap of
different evaluation metrics revealed that no single deep architecture
performs consistently well across all segmentation metrics. This is why
ensemble approaches have an edge over individual methods as they
use the strengths of each underlying model as was demonstrated in the
evaluation of two different datasets for mitochondria segmentation in
cardiac and brain tissue.

5.4. Transfer learning

Transfer learning is a framework that adapts the knowledge ac-
quired from one dataset to another, and is generally used when an
application has an insufficient amount of training samples. A pre-
trained model is fine-tuned, usually in the final layers, with the training
samples of a new dataset. This technique was used by Mekuč et al.
(2020) for the segmentation of mitochondria and endolysosomes from
the background in EM images. Since mitochondria and endolysosomes
share similar texture and mitochondria are more in abundance a binary
segmentation model was first learned to segment mitochondria from
the background. Subsequently, transfer learning was used to adapt
the learned model for the segmentation of endolysosomes too. This
was achieved by freezing all layers of the network except for the
last one, which was fine-tuned by a smaller training set that included
examples of endolysosomes. This approach is a demonstration how
transfer learning can be used when the availability of a certain structure
is limited.

Fine-tuning a pre-trained network comes with the risk of overfitting
to the few labeled training examples of the new dataset or application.
This challenge has opened up new research avenues, namely few-shot
learning and domain adaptation. The former can be a meta-learning
approach that ‘‘learns to learn’’ from a given pre-trained model when
conditioned on a few training examples (referred to as the support
set) to perform well on new queries passed through a fixed feature
extractor (Shaban et al., 2017).

Few-shot learning was the focus of the work by Dietlmeier et al.
(2019), who proposed a few-shot hypercolumn-based approach for
mitochondria segmentation in cardiac and outer hair cells. The idea
behind hypercolumn feature extraction was to extract features from
different levels of a pre-trained CNN and combine them to form a
single, high-dimensional feature representation for each pixel. The
VGG-16 model pre-trained on the ImageNet dataset was used to extract
hypercolumns, which were then passed through a linear regressor for
actively selecting features. Only 20 labeled patches (2%–98% train-test
split) were used from a FIB-SEM stack for training a gradient-based
boosting classifier (XGBoost). They showed how high segmentation
accuracy on the Drosophila VNC dataset could be achieved by actively
selecting features and learning using far less training data and even by
using a single training sample (single-shot).

Domain adaptation is another form of transfer learning, where the
source and target datasets share the same labels (classes) but have a
different data distribution. Changes in data distribution can be due to
slightly different experimental parameters during EM imaging or due
to the imaging of different tissue types or body locations. Bermúdez-
Chacón et al. (2018) proposed the two-stream U-Net architecture,
where the weights are related, yet different for each of the two do-
mains, for supervised training on a few target labels. Only 10% of
labeled target data was required for domain adaptation to achieve state-
of-the-art performance when compared to a U-Net trained on a fully

annotated dataset.
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Table 4
The list of 5 (out of 38) papers reviewed in this work and that are based on semi-, un- and self-supervised learning frameworks. The abbreviation Org. stands for the studied
organelle/s. The Type (2D and/or 3D) column indicates the type of methods used and problems addressed. The studies that are marked as both 2D and 3D use a 2D backbone
method coupled with some post-processing operations for 3D reconstruction. The other studies that are flagged as 2D or 3D only, use 2D or 3D only backbones to address 2D or
3D problems, respectively. The numbers in the Datasets column serve as correspondences to the identifiers in Table 2, and the definitions of the performance metrics are presented
in Section 7.

Citation Org. Type Datasets Performance Backbone Main methodological components

2D 3D metrics

Semi-supervised learning — The superscripts 𝑆 and 𝐼 indicate semantic and instance segmentation

Takaya et al.
(2021)𝑆

NM ✓ 1 𝑉 𝑅𝑎𝑛𝑑 , 𝑉 𝐼𝑛𝑓𝑜 2D FCN Sequential semi-supervised learning

Wolny et al.
(2022)𝐼

M ✓ 1, 6 AP-50, AP 2D U-Net Positive unlabeled, momentum encoder

Unsupervised learning — Semantic segmentation

Bermúdez-Chacón
et al. (2019)

M, S ✓ 1, 3, 8 JI 2D U-Net Two stream U-Net, domain adaptation

Peng et al. (2020) M ✓ 3, 8 JI, DSC 2D U-Net Domain discriminators for adversarial loss

Self-supervised learning — Semantic segmentation

Conrad and Narayan
(2021)

M ✓ ✓ 2, 4, 8, 10, 13, 16 JI 3D U-Net Self-supervised learning, fine-tuning
5.5. Configurability and reproducibility

A key challenge in designing CNNs is the determination of the
right architecture for the problem at hand. This has motivated re-
search effort in what are known self-configurable networks that can
automatically determine certain design choices. A self-configurable
network is thus a type of artificial neural network that is capable
of dynamically adapting its structure and parameters based on the
input data and task concerned. This concept was used by Isensee
et al. (2019), who proposed the no-new-UNet (nnU-Net) framework
that consists of a 2D U-Net, 3D U-Net and a cascade of two 3D
U-Nets. Self-configuration based on cross-validation was used to au-
tomatically determine some hyperparameters, such as the patch size,
batch size and number of pooling operations. While it was shown to be
very effective in various semantic segmentation problems in medical
image benchmark datasets, its generalization ability in EM datasets has
yet to be evaluated thoroughly.

An experimental study by Franco-Barranco et al. (2022) uncovered
substantial reproducibility issues of different networks proposed for mi-
tochondria segmentation in EM data. Additionally, it distinguished the
impact of innovative architectures from that of training choices (such
as pre-processing, data augmentation, output reconstruction, and post-
processing strategies) by conducting multiple executions of the same
configurations. Their systematic analysis enabled the identification of
stable and lightweight models that consistently deliver state-of-the-art
performance on publicly available datasets.

6. Semi-, un- and self-supervised methods

Semi-supervised and unsupervised learning are two types of ma-
chine learning methods, whose main difference is in the amount of
labeled data used to train the model.

Unsupervised learning is a type of machine learning that deals with
finding patterns and relationships in unlabeled training data. In this
case, the algorithm learns to identify patterns and relationships in
the data by clustering or grouping similar data points together. Semi-
supervised learning, on the other hand, is a combination of supervised
and unsupervised learning. It uses both labeled and unlabeled data to
train the model. The labeled data is used to train the model on specific
tasks, while the unlabeled data is used to help the algorithm learn
patterns and relationships in the data (Zhu and Goldberg, 2009). In self-
supervised learning, a model is trained on a dataset with labels that are
automatically generated from the data itself. The goal is to learn useful
representations of the data that can be used for downstream tasks, such
14

as segmentation.
A common strategy for semi-supervised learning is to use label prop-
agation through self-training. The process begins by training a classifier
on labeled samples and then classifying the unlabeled samples. A selec-
tion of these samples based on an active selection strategy or learned
classifier is then added to the training set and the process is repeated
multiple times (Cheplygina et al., 2019). This can be performed either
inductively or transductively. The former refers to training a model on
unseen targets to add new information to the previously trained model
so that it can generalize on new unseen data, and the latter to training
a model based on a selected subset of labeled and unlabeled data to
be able to predict correctly on a limited set of seen targets. Table 4
summarizes the 5 papers (of the 38) that have employed semi, un- and
self-supervised approaches for the semantic and instance segmentation
of (sub) cellular structures.

A semi-supervised approach was proposed by Takaya et al. (2021)
for the segmentation of neuronal membranes. They called their ap-
proach 4S that stands for sequential semi-supervised segmentation. It
was based on the fact that adjacent images in a volume are strongly
correlated. The goal of their method is to have a model that can only
generalize to the next few slices instead of to the whole volume. This
was achieved by starting with a few labeled slices that are used to train
the first model. Then, in an iterative approach the model was used to
infer the segmentation maps of a small set of subsequent images and
the resulting segmentation maps were used as pseudolabels to retrain
the model. Label propagation from labeled to the available unlabeled
data was performed by predicting pseudo labels on the subsequent
sections which represent the same targets and whose predictions could
be included in the next round of model training as ground truth labels.
It allowed the training to weigh the most recent inputs heavily unlike
transfer learning where the goal is to generalize well on all use cases
of the unlabeled dataset.

Another semi-supervised method was introduced by Wolny et al.
(2022) for the segmentation of mitochondria. In contrast to the above,
their goal was to train a model with a few manually annotated struc-
tures in some images, which can generalize for the whole dataset.
In particular, they employed a training dataset comprising labeled
(i.e. masks) samples of only a limited number of mitochondria. All
unlabeled mitochondria and other unlabeled structures were treated as
background. As there is no direct supervision on the unlabeled part of
the image, an embedding consistency term was introduced by training
two networks on different data-augmented versions of each pixel.
This was coupled with a push-pull loss function that they proposed
to enforce constraints between different instances. It was realized by
using anchor projections in the embedding space of a point in each
instance to derive a soft label based on the set of surrounding pixels in
the projected space. The instance segmentation was then achieved by
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Fig. 6. Common performance metrics for segmentation methods. For semantic segmentation, the overall overlap of the ground truth (𝐺𝑇 ) mask with the prediction (𝑃𝑅) is
ompared without differentiating between objects of the foreground class. As to instance segmentation, each 𝐺𝑇 component is matched with only one 𝑃𝑅 component, the one
ith which it has the largest intersection. In the above example, the 𝐺𝑇 component ‘c’ overlaps with two 𝑃𝑅 components, ‘A’ and ‘B’, but is matched only with ‘B’ due to a

arger overlap. The Aggregated Jaccard Index (AJI) is the ratio of the sum of all intersections of the matched pairs of 𝐺𝑇 and 𝑃𝑅 components to the sum of the unions of such
airs plus the sum of all pixels in the unmatched 𝑃𝑅 components. The Panoptic Quality (PQ) captures both semantic and instance segmentation performance. The former is the
um of all IoUs between the matched 𝐺𝑇 and 𝑃𝑅 components divided by the number of matched components (TPs), and the latter is the number of TPs divided by the number
f TPs plus half of the FPs and FNs together. The symbol |.| indicates the cardinality of the set concerned.
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rouping the pixel embeddings. This semi-supervised method is notable
or a good tradeoff between segmentation performance and effort in
anual annotation.

Unsupervised learning was explored by Bermúdez-Chacón et al.
2019), who investigated the unsupervised domain adaptation strategy
or mitochondria segmentation to demonstrate how a model trained
n one brain structure (source: mouse striatum) could be adapted to
nother brain structure (target: mouse hippocampus). Labeled data was
nly available to train the model on the source dataset (striatum).
isual correspondences were then used to determine pivot locations in

he target dataset to characterize regions of mitochondria or synapses.
hese locations were then aggregated through a voting scheme to
onstruct a consensus heatmap, which guided their model adaptation
n two ways: (a) optimizing model parameters to ensure agreement
etween predictions and their sets of correspondences, or (b) incor-
orating high-scoring regions of the heatmap as soft labels in other
omain adaptation pipelines. These unsupervised techniques yielded
igh-quality segmentations on unannotated volumes for mitochondria
nd synapses, consistent with results obtained under full supervision,
ithout the need for new annotation effort.

In the case of severe domain shifts such as from a FIB-SEM to an
sSEM dataset as investigated by Peng et al. (2020), adversarial learn-
ng may be used for domain adaptation in different tissues of various
pecies. Adversarial learning is a machine learning paradigm that trains
model with an adversarial loss function that encourages the model to

earn domain-invariant features. Peng et al. (2020) combined the geo-
etrical cues from annotated labels with visual cues latent in images of

oth the source and target domains using adversarial domain adaptive
ulti-task learning. Instead of manually-defined shape priors, they

earned geometrical cues from the source domain through adversarial
earning, while jointly learning domain-invariant and discriminative
eatures. By doing so, the model learned features that were useful for
oth source and target domains, and could perform well on the target
omain despite having only labeled data in the source domain. The
ethod was evaluated extensively on three benchmarks under vari-

us settings through ablations, parameter analysis, and comparisons,
emonstrating its superior performance in segmentation accuracy and
isual quality compared to state-of-the-art methods.

Contrastive learning is a self-supervised paradigm where a model
15

s trained to learn useful representations of input data by contrasting
imilar and dissimilar samples. The basic idea is to take a set of positive
airs (e.g., two different augmentations of the same image) and a set of
egative pairs (e.g., two images containing different types of objects),
nd train the model to assign higher similarity scores to positive pairs
nd lower similarity scores to negative pairs. This results in a model
hat captures the underlying structure of the data and can be used
or downstream tasks like classification, object detection, and semantic
egmentation. Conrad and Narayan (2021) used contrastive learning,
pecifically moment contrast, He et al. (2020), to learn useful feature
epresentation from the unlabeled CEM500K dataset followed by trans-
er learning on given datasets. The heterogeneity of CEM500k coupled
ith the unsupervised initialization of a segmentation model con-

ributed to achieving overall state-of-the-art results on six benchmark
atasets that concern different types of organelles.

. Segmentation evaluation metrics

Segmentation methods are evaluated by measuring the extent of
verlap between the ground truth (𝐺𝑇 ) and prediction (𝑃𝑅) segmen-
ation maps.

For semantic segmentation, all 𝐺𝑇 connected components are con-
idered as one object, and similarly all 𝑃𝑅 connected components are
reated as one object. This reduces the problem to binary classification.
ypical performance measures include Accuracy, Precision and Recall
nd their harmonic mean, also called 𝐹 -score (or 𝐹1 when Precision
nd Recall are given the same weight) or Dice similarity coefficient
DSC), the Pixel Error (PE), Jaccard Index (JI), also known as the
ntersection over Union (IoU), and the Conformity coefficient (Chang
t al., 2009), Fig. 6. They are defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) = (𝑇𝑃 + 𝑇𝑁)∕(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃 ) = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 )

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁)

𝐹1 (𝑜𝑟 𝐷𝑆𝐶) = 2𝑃𝑅∕(𝑃 + 𝑅)

𝑖𝑥𝑒𝑙 𝐸𝑟𝑟𝑜𝑟 (𝑃𝐸) = 1 − 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝐹1

𝐽𝐼 (𝑜𝑟 𝐼𝑜𝑈 ) = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑡𝑦 (𝐶𝐹 ) = 1 − (𝐹𝑁 + 𝐹𝑃 )∕𝑇𝑃

(1)

here TP, FP, FN, and TN are the number of true positives, false pos-
tives, false negatives, and true negatives at pixel level. The Accuracy
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measure is a ratio of all correctly classified pixels to all pixels. It is
a simple and a good global measure but it is only suitable when the
class distribution is balanced (TPs and TNs are balanced). Precision is
the ratio of all TPs to the number of positive predictions made by the
algorithm, and Recall (Sensitivity or True Positive Rate) is the ratio of
all TPs to the number of all positive pixels in 𝐺𝑇 . The PE measure,
which was used in the ISBI 2012 challenge, is the error version of the
maximal 𝐹1-score. The maximal 𝐹1-score is determined by iteratively
omputing the 𝑃 and 𝑅 from the binarized output of a segmentation
lgorithm with different thresholds, and finally finding the combination
hat yields the highest 𝐹1-score. The 𝐽𝐼 (or 𝐼𝑜𝑈) and 𝐷𝑆𝐶 measure the

similarity between the predicted class labels and the true class labels,
while the Conformity coefficient measures the ratio of the number of
misclassified pixels to the number of true positive pixels subtracted
from 1. A negative Conformity value indicates that the number of
misclassified pixels is higher than the true positive ones, and vice-versa.
In case there are multiple classes, as in the work by Guay et al. (2021),
the mean JI is computed by first determining the JI for each class and
subsequently combining all JIs by their mean.

Segmentation of neuronal regions through image partitioning in-
volves identifying regions following membrane delineation. In such
tasks, where the ground truth labels of the partitions are unavailable,
measures that rely on counting the number of matches between the
𝑃𝑅 and 𝐺𝑇 maps, such as accuracy, are not suitable. Instead, the
Rand Index (RI) is a more appropriate measure as it is invariant to the
permutation of regions. Originally proposed in statistics for measuring
the similarity between two data clusterings, the RI is defined as:

𝑅𝐼 =
2(𝑎 + 𝑏)
𝑛(𝑛 − 1)

(2)

here 𝑎 represents the number of pairs of pixels that are assigned
o the same 𝑃𝑅 partition and to the same 𝐺𝑇 partition, 𝑏 represents
he number of pairs of pixels that are assigned to separate partitions
n both 𝑃𝑅 and 𝐺𝑇 , and 𝑛 represents the total number of pixels in
he given image. The error version of 𝑅𝐼 referred to as the Rand
rror (RE) is computed as 1 − 𝑅𝐼 , which quantifies the degree of
isagreement between the 𝑃𝑅 and 𝐺𝑇 partitions. The 𝑅𝐼 primarily
ssesses the overall similarity between two sets of clustered data. In
mage segmentation terms it considers both foreground and background
artitions. The foreground-restricted 𝑅𝐼 , as used in the ISBI 2012, is a
onstrained version of the 𝑅𝐼 , which measures the agreements of the
oreground segments only.

Another metric that was part of the ISBI 2012 challenge is the
arping error (WE). WE is a measure of topological disagreements
etween 𝑃𝑅 and 𝐺𝑇 , which evaluates the number of topologically-
elevant boundary labeling errors, including geometric labeling errors
f a geometric mask is used. It provides an upper bound on the number
f errors that would cause topological changes if the values of pixels
n one segmentation were flipped to match the other segmentation.

hile small shifts affect the RI mildly, they have no affect at all on
he WE. On the other hand, the PE metric solely focuses on whether a
pecific pixel is correctly classified as a boundary pixel, disregarding
he overall impact of that prediction on the resulting topology. For
nstance, manipulating the boundary between two neurons through
xpansion, shrinkage, or translation would not lead to splits or mergers,
ut it would result in a significant PE. Additionally, even a minor gap
f a single pixel in the boundary between two neurons would cause a
erge error, yet it might only contribute a very small fraction of the

otal PE compared to the entire image.
While the foreground-restricted RI focuses on evaluating the agree-

ent between the foreground regions in 𝑃𝑅 and 𝐺𝑇 , it does not
xplicitly consider split and merge errors. Split errors occur when
single 𝐺𝑇 region is segmented into multiple smaller regions, and
erge errors happen when multiple 𝐺𝑇 regions are merged into a

ingle segmented region. Although the foreground-restricted 𝑅𝐼 does
ot directly address split and merge errors, it can indirectly capture
16

c

ome aspects of these errors if they affect the agreement between the
oreground segmentations. For example, if one segmentation algorithm
onsistently splits objects while another merges them, there will be a
isagreement in the foreground regions, which can be reflected in a
ower 𝑅𝐼 score. To explicitly evaluate split and merge errors, there are
lternative metrics that are more suitable, such as the 𝑉 𝑅𝑎𝑛𝑑 , 𝑉 𝐼𝑛𝑓𝑜,
nd Variation of Information (VOI) (Arganda-Carreras et al., 2015).

The 𝑉 𝑅𝑎𝑛𝑑 measure involves quantifying the split and merge scores
nd combining them by weighted harmonic mean. Before defining the
plit score let us denote by 𝑝𝑖𝑗 the probability that a randomly selected
ixel belongs simultaneously to segment 𝑖 in 𝑃𝑅 and segment 𝑗 in
𝑇 . This joint probability distribution adheres to the normalization
ondition ∑

𝑖𝑗 𝑝𝑖𝑗 = 1. Moreover, the probability that a random pixel
elongs to segment 𝑖 in 𝑃𝑅 is denoted by 𝑠𝑖 and the probability that
random pixel is assigned segment 𝑗 in 𝐺𝑇 is denoted by 𝑡𝑗 . When

wo pixels are randomly chosen, the likelihood of them belonging to
he same segments in both 𝑃𝑅 and 𝐺𝑇 is determined by ∑

𝑖𝑗 𝑝
2
𝑖𝑗 . This

alue is expected to increase with increasing similarity between 𝑃𝑅
nd 𝐺𝑇 . The Rand split and merge scores of the 𝑉 𝑅𝑎𝑛𝑑 measure are
hen defined as:

𝑅𝑎𝑛𝑑
𝑠𝑝𝑙𝑖𝑡 =

∑

𝑖𝑗 𝑝
2
𝑖𝑗

∑

𝑘 𝑡
2
𝑘

, 𝑉 𝑅𝑎𝑛𝑑
𝑚𝑒𝑟𝑔𝑒 =

∑

𝑖𝑗 𝑝
2
𝑖𝑗

∑

𝑘 𝑠
2
𝑘

(3)

where 𝑉 𝑅𝑎𝑛𝑑
𝑠𝑝𝑙𝑖𝑡 is the probability that two randomly selected pixels are

assigned to the same cluster in 𝑃𝑅, given that they belong to the same
cluster in 𝐺𝑇 , and 𝑉 𝑅𝑎𝑛𝑑

𝑚𝑒𝑟𝑔𝑒 is the inverted conditional probability; it is
the probability that two randomly selected pixels belong to the same
segment in 𝐺𝑇 , given that they are assigned the same cluster in 𝑃𝑅.

The 𝑉 𝑅𝑎𝑛𝑑
𝛼 score is then the weighted harmonic mean of the split

and merge errors:

𝑉 𝑅𝑎𝑛𝑑
𝛼 =

∑

𝑖𝑗 𝑝
2
𝑖𝑗

𝛼
∑

𝑘 𝑠
2
𝑘 + (1 − 𝛼)

∑

𝑘 𝑡
2
𝑘

(4)

The Rand 𝐹 -score is defined as 𝛼 = 0.5, yielding equal importance
to the split and merge errors. This metric was used in the SNEMI 3D
challenge to compute the adapted Rand error (ARAND), defined as
ARAND = 1 − RandF−score.

On the other hand, the 𝑉 𝐼𝑛𝑓𝑜 uses information theory to compute
the split and merge scores:

𝑉 𝐼𝑛𝑓𝑜
𝑠𝑝𝑙𝑖𝑡 =

𝐼(𝑃𝑅;𝐺𝑇 )
𝐻(𝑃𝑅)

, 𝑉 𝐼𝑛𝑓𝑜
𝑚𝑒𝑟𝑔𝑒 =

𝐼(𝑃𝑅;𝐺𝑇 )
𝐻(𝐺𝑇 )

(5)

here 𝐼(𝑃𝑅;𝐺𝑇 ) =
∑

𝑖𝑗 𝑝𝑖𝑗 log 𝑝𝑖𝑗 −
∑

𝑖 𝑠𝑖 log 𝑠𝑖 −
∑

𝑖 𝑡𝑖 log 𝑡𝑖 is the mutual
nformation between the 𝑃𝑅 and 𝐺𝑇 maps, and 𝐻(𝑃𝑅) and 𝐻(𝐺𝑇 ) are
he 𝑃𝑅 and 𝐺𝑇 entropy values, respectively. Finally, the 𝑉 𝐼𝑛𝑓𝑜 measure
s the weighted harmonic mean of the information theoretic split and
erge scores:

𝐼𝑛𝑓𝑜
𝛼 =

𝐼(𝑃𝑅;𝐺𝑇 )
(1 − 𝛼)𝐻(𝑃𝑅) + 𝛼𝐻(𝐺𝑇 )

(6)

Similar to the Rand 𝐹 -score, the information theoretic 𝐹 -score is
defined as 𝛼 = 0.5, where the split and merge scores are given the
same weighting, and it is closely related to the VOI. The VOI quantifies
the distance between 𝑃𝑅 and 𝐺𝑇 segmentation maps by measuring the
amount of information that is lost or gained when one segmentation is
transformed into the other (Arbelaez et al., 2010). The VOI between the
𝐺𝑇 and 𝑃𝑅 components is the sum of two conditional entropies: the
first one, 𝐻(𝐺𝑇 ∣ 𝑃𝑅), represents the degree of under-segmentation
y measuring the information loss, while the second one, 𝐻(𝑃𝑅 ∣
𝑇 ), measures the degree of over-segmentation by quantifying the

nformation gained when transitioning from 𝐺𝑇 to 𝑃𝑅. These measures
re referred to as the VOI split or merge error, respectively. The VOI
nd ARAND were also combined to form the CREMI score in neuron
egmentation by first taking the sum of the VOI split and VOI merge
nd then combining the result with ARAND using geometric mean.

For the evaluation of object detection, where different connected
omponents are treated as different objects, the above measures are



Medical Image Analysis 89 (2023) 102920A. Aswath et al.

g
I
u
a

t
M
Q
a
e
a
m

𝐴

w
c
r
f
r
b
m
s
c
a
𝐺
t
m
a
b
F
p
h
a
h
v

b
m

8

8

e
w
n
l
s
n
h

p
v
t
t
D
e
p
s

8

t
p
e
e
3
i
s
t
t
c
u

t
i
T
a
t
o
m
c
h
f
t
m
w
r

t
t
T
d
s
t
t
r
d
m
d
t
e

i
m
p
E
o

8

s
q

also applicable. The main difference is the way a true positive is
considered. In object detection a 𝑃𝑅 region is considered a TP if it
overlaps with more than a given threshold (e.g. 50%) a 𝐺𝑇 component
in terms of IoU, otherwise, it is an FP. The unmatched 𝐺𝑇 components
are then considered FNs. A popular metric in object detection is average
precision (AP), which is essentially the area under the precision–recall
curve that is determined by systematically changing the detection
threshold. The default AP measure uses a 50% IoU overlap threshold,
but other variations of the AP can be used depending on how strict the
evaluation must be. The term AP-𝛼 denotes the average precision at a
iven IoU threshold 𝛼. The higher the 𝛼 the stricter the evaluation is.
n problems with more than two classes, the mean AP (mAP) can be
sed to aggregate all the APs of all the classes involved by taking their
verage.

Instance segmentation requires more detailed measures to quantify
he segmentation mask accuracy along with the detection performance.
etrics such as the aggregated Jaccard index (AJI) and the Panoptic
uality (PQ), which were originally proposed by Kumar et al. (2017)
nd Kirillov et al. (2019), respectively, have also been used in EM (Luo
t al., 2021; Yuan et al., 2021) to evaluate instance segmentation
lgorithms more comprehensively. See Fig. 6 for an example. These two
etrics are defined as:

𝐽𝐼 =

∑𝑁
𝑗=1 |𝐺𝑇 𝑗 ∩ 𝑃𝑅𝑗∗

|

∑𝑁
𝑗=1 |𝐺𝑇 𝑗 ∪ 𝑃𝑅𝑗∗

| +
∑

𝑖∈𝐹𝑃 |𝑃𝑅𝑖
|

𝑃𝑄 =
∑

𝑗∈𝑇𝑃 𝐽𝐼(𝐺𝑇 𝑗 , 𝑃𝑅𝑗∗ )
|𝑇𝑃 |

×
|𝑇𝑃 |

|𝑇𝑃 | + 1
2 |𝐹𝑃 | + 1

2 |𝐹𝑁|

(7)

here 𝑁 is the number of 𝐺𝑇 regions, and 𝑗∗ is the index of the
onnected region in 𝑃𝑅 that is matched with the largest overlapping
egion (in terms of JI) with ground truth segment 𝐺𝑇 𝑗 ; FP is the set of
alse positive segments in 𝑃𝑅 without the corresponding ground truth
egions in 𝐺𝑇 , FN is the set of false negative segments in 𝐺𝑇 that have
een left unmatched with any regions in 𝑃𝑅 and TP is the set of all
atched regions in 𝐺𝑇 and 𝑃𝑅 with at least 50% overlap in JI. The

ymbol |.| indicates the cardinality of a given set. A 𝐺𝑇 component
an only be used once to match with a 𝑃𝑅 component. In case there
re multiple 𝑃𝑅 components overlapping the same 𝐺𝑇 component, the
𝑇 component will only be matched with the 𝑃𝑅 component having

he largest IoU. The AJI is an object-level performance metric which
easures the ability of a segmentation algorithm to accurately identify

nd delineate individual objects within an image. It takes into account
oth the segmentation quality and the accuracy of object identification.
or problems where many 𝐺𝑇 regions are apposing or in very close
roximity with each other (e.g. mitochondria in 2D EM), there is a
igh risk that one 𝑃𝑅 region overlaps multiple 𝐺𝑇 regions. Such cases
re overpenalised by the AJI measure. Overpenalization is prevented to
appen with PQ because the matching of 𝑃𝑅 and 𝐺𝑇 regions are only
alid when they overlap with more than 50% in JI.

Table 5 presents the achieved results from the reviewed papers
ased on the above measures, showcasing the state-of-the-art perfor-
ance.

. Discussion and open challenges

.1. Overview

CNNs have emerged as the preferred option for automated feature
xtraction and segmentation in EM data, with notable backbone net-
orks based on FCNs, including the popular U-Net architecture. These
etworks use deeper architectures along with incorporating various
evels of image context to generate effective 2D predictions, which can
ubsequently be simply integrated for 3D reconstruction without the
eed for explicit post-processing procedures. Additionally, researchers
17

ave explored the benefits of using dilated or atrous convolutions, a
articularly in the initial layers, to expand the receptive field of con-
olutions. Recent works have also employed spatial pyramid pooling
o capture multi-scale contextual information, enabling the acquisi-
ion of global information at higher levels. Notably, architectures like
eepEM3D have achieved high accuracy in anisotropic EM datasets by
mploying 3D operations exclusively in the initial layers and predicting
ixel probabilities on the central slice, while utilizing multiple input
ections for prediction.

.2. 2D and 3D segmentation

3D CNNs have become a prominent component in EM segmen-
ation workflows for volume EM datasets, offering overall improved
recision compared to 2D CNNs by using voxel representation. The
ffectiveness of 3D CNNs is particularly notable for isotropic voxels,
nabling precise segmentation of diverse organelles. The hybrid 2D-
D network is now the de facto approach for addressing anisotropy
n serial-section EM. The nnU-Net, a self-configuring method for EM
egmentation in both 2D and 3D, provides a good starting point for
he configuration of network depth or hyperparameter tuning based on
he dataset characteristics and a set of empirical experiments. However,
ertain limitations persist due to the dataset characteristics and the
nique challenges with various organelles.

The primary constraints with 3D networks are the increased compu-
ational complexity, as the number of operations grows cubically with
nput size, and the increased demand for high computational memory.
o address these concerns, smaller block sizes have been investigated
s inputs during the training phase, resulting in a diminished con-
ext that causes imprecise predictions. Moreover, the large number
f parameters in 3D networks requires larger datasets for effective
odel training. The training and inference on 2D data require fewer

omputational resources compared to 3D, which is advantageous when
igh-performance computing resources are limited. Another challenge
or 3D models is dealing with organelles that lose their shape continuity
hrough slices, as demonstrated by Franco-Barranco et al. (2022). This
otivates the investigation of shape priors in 3D models, similar to
hat has been done in 2D models, where shape priors were used for

egularization.
Both 2D and 3D approaches share a common challenge with respect

o the instance segmentation of apposing organelles, especially when
he organelles contain structures that are similar to their membranes.
he cristae within cardiac mitochondria are one such example. One
irection that may be taken in the future is the investigation of how
urround suppression filtering can be effectively embedded in CNNs
o suppress responses to cristae, thus allowing better delineation of
he membranes. The potential of this approach is showcased in the
ecent study conducted by Aswath et al. (2023), where they intro-
uce surround suppression filtering as a post-processing technique for
itochondria instance segmentation. Surround suppression has been
emonstrated to be very effective in low-level image processing for
he suppression of spurious strokes in contour detection tasks (Melotti
t al., 2020).

Overall, future research should aim to overcome the current lim-
tations of 3D CNNs, explore innovative techniques for incorporating
ore context, and advance the understanding and application of shape
riors. These advancements will contribute to more robust and accurate
M segmentation, unlocking further insights and discoveries in the field
f EM.

.3. Data annotations and learning methods

Most advances in EM segmentation have been achieved with fully
upervised approaches, which strongly rely on the availability and
uality of finely annotated data. However, fine annotations are rarely

vailable for modern large-scale EM datasets in biology. Instead, most
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Table 5
State-of-the-art results. Abbreviations: D, un, CR, Vr , and Vi represent Dataset, unspecified, CREMI, VRand, and VInfo, respectively. Underlined
results are from non-supervised methods. Structure(s) of interest are superscripted in column one, except for the Mitochondria section.

D Evaluation metric Citation

Neuronal membrane (NM), Synaptic clefts (SC)

RE CRa VR VI Others

1𝑁𝑀 .030 .002𝜗, .094𝜄 Fakhry et al. (2017)
1𝑁𝑀 .983 .990 Xiao et al. (2018b)
1𝑁𝑀 .983 Cao et al. (2019)
1𝑁𝑀 .978 .990 Quan et al. (2021)
2𝑁𝑀 .025 Lee et al. (2017)
2𝑁𝑀 .060 Zeng et al. (2017)
3𝑁𝑀 .091 Fakhry et al. (2017)
3𝑁𝑀 .221 .030𝜅 , .454𝜆 Bailoni et al. (2022)
3𝑆𝐶 50 Heinrich et al. (2018)
3𝑆𝐶 74.9 Isensee et al. (2019)

Mitochondria

JI DSC P R Others

3 .628 .770 Peng et al. (2020)
4 .846 .932 .902 .995𝛼 Casser et al. (2018)
4 .928 .962 .915𝛽 , .866𝛾 Yuan et al. (2021)
4 .926 .961 .916𝛽 , .866𝛾 Luo et al. (2021)
4 .915 Conrad and Narayan (2021)
4 .937 Franco-Barranco et al. (2022)
5 .918 .957 .911 .934 .910𝛿 Xiao et al. (2018a)
6 .605𝜀

𝑟𝑎𝑡, .521𝜀
ℎ𝑢𝑚𝑎𝑛 Wei et al. (2020)

6 .917𝜖
𝑟𝑎𝑡, .828𝜖

ℎ𝑢𝑚𝑎𝑛 Li et al. (2021)
6 .560𝜖 , .429𝜁 Wolny et al. (2022)
8 .906 .956 .946 .996𝛼 Oztel et al. (2017)
8 .900 .947 .882 .938 .887𝛿 Xiao et al. (2018a)
8 .994 .950 .933 Cheng and Varshney (2017)
8 .890 .946 .937 .994𝛼 Casser et al. (2018)
8 .600 .747 Peng et al. (2020)
8 .887 .812𝜀 Wei et al. (2020)
8 .864 Liu et al. (2020a)
8 .901 .948 .890𝛽 , .839𝛾 Yuan et al. (2021)
8 .899 .947 .897𝛽 , .850𝛾 Luo et al. (2021)
8 .895 .945 Li et al. (2021)
8 .893 Franco-Barranco et al. (2022)
9 .900 .974 .922 0.993𝛼 Casser et al. (2018)
9 .895 Conrad and Narayan (2021)
9 .926 Franco-Barranco et al. (2022)
12 .816 un .967𝛼 Dietlmeier et al. (2019)
12 .982 .985 .984𝛼 Khadangi et al. (2021b)
13 .942 .921 .999𝜂 Mekuč et al. (2020)
13 .877 .887 .820𝛾 Mekuč et al. (2022)
14 .884 Conrad and Narayan (2021)
16 .892 .992 .984𝛼 Khadangi et al. (2021b)
20 .770 Conrad and Narayan (2021)

Nucleus (N), Nuclear envelope (NE), Lysosomes (L), Axons (A), Vesicles (V), Mitochondria and Lysosomes as one class (ML), Five
structures (C)b

7𝑁 .978𝜖 , .809𝜀, .894𝜁 Lin et al. (2021)
13𝐿 .822 .852 .999𝜂 Mekuč et al. (2020)
13𝑀𝐿 .882 Mekuč et al. (2020)
13𝑀𝐿 .729 Conrad and Narayan (2021)
14𝑁 .988 Conrad and Narayan (2021)
16𝑉 .979 .977 Haberl et al. (2018)
17𝑁𝐸 .792 .628 Spiers et al. (2021)
18𝐶 .935 .446𝜃 Guay et al. (2021)
18𝐶 .429𝜃 Conrad and Narayan (2021)
19𝐴 .965 .877 Abdollahzadeh et al. (2021)

Symbols: 𝛼 = Acc, 𝛽 = AJI, 𝛾 = PQ, 𝛿 = CF, 𝜖 = AP50, 𝜀 = AP75, 𝜁 = mAP, 𝜂 = TNR, 𝜃 = mean JI, 𝜗 = WE, 𝜄 = PE, 𝜅 = ARAND, 𝜆 = VOI
aThe CREMI scores for synaptic cleft and neuronal membranes are as per https://cremi.org/leaderboard/.

bThe five organelle classes are mitochondrion, canalicular channel, alpha granule, dense granule, and dense granule core.
datasets are released with rough masks that are semi-automatically gen-
erated by pre-trained networks and proofreading. Such large-scale EM
datasets need to be explored using weakly-, semi-, and self-supervised
techniques in an end-to-end manner for improving EM segmenta-
tion (Papandreou et al., 2015; Kirillov et al., 2023).

In addition to manual annotation, EM images can be labeled using
specialized imaging modalities that target specific structures in the
sample. For instance, CLEM (Correlative light electron microscopy) is
18
used to label structures targeted with fluorescent probes at (sub)cellular
scales (de Boer et al., 2015; Heinrich et al., 2021). Other EM modalities
include analytical imaging at the nanoscale-range to provide element-
guided identification of various organelles (Pirozzi et al., 2018). These
methods can reduce the bias in human annotation but may require
longer sample preparation and acquisition times, specialized equip-
ment, and additional post-processing to produce segmentations.

Due to the lack of labels, developing new training procedures for
each imaging experiment is impractical. When confronted with unseen

https://cremi.org/leaderboard/
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samples, the performance of supervised methods is often negatively im-
pacted and requires expensive redesign and retraining efforts. Various
approaches have been taken to adapt models with few labeled samples
and improve the generalization capabilities of CNNs. Both transfer
learning and self-supervised techniques have been used for segmenting
unseen EM datasets. These approaches enable the segmentation of EM
images with minimal or no annotations. While overall fully super-
vised methods are the most effective approaches, preliminary results
with few-shot and domain adaptation strategies look promising and
have shown comparable performance in the segmentation of certain
organelles.

The rise of self-supervised learning, which is attributable to its
ability to learn generic representations from unlabeled data, also holds
great promise in the field of EM segmentation. In fact, the availability
of CEM500K, a comprehensive repository of unlabeled data encom-
passing organelles from diverse cell types, tissues, and preparation
methods, played a significant role in achieving generic representations
through self-supervised learning. By fine-tuning networks pre-trained
on CEM500K, the resulting models demonstrated an ability to han-
dle a broad spectrum of organelles, with comparable performance to
specialized supervised networks.

An example of the potential of self-supervised learning is the recent
breakthrough of the Segment Anything Model (SAM) (Kirillov et al.,
2023), which has good performance in various segmentation applica-
tions across different imaging domains. The model has a transformer-
based architecture and zero-shot transfer across new image distri-
butions and tasks. This method has the potential to allow for the
investigation of many more diverse datasets and for the incorporation
of supplementary inputs which can be used as a prompt to highlight
regions of interest. Looking ahead, the potential of using transformers
in self-segmentation is particularly noteworthy, especially for managing
large-scale EM data.

8.4. Experimental designs and performance evaluation

Multi-class segmentation has been investigated by only one of the
reviewed papers (Heinrich et al., 2018), while the remaining methods
focus on binary segmentation of a specific organelle. With this limi-
tation, the potential of CNNs is not fully exploited. The utilization of
multi-class segmentation leverages global and local features to improve
the overall accuracy. The global features help in learning contextual
information by capturing inter-class differences and the spatial context
in which these structures occur. The training of models in a diverse
range of classes leads to improved generalization ability, making them
more adaptable and transferable to new datasets.

As to performance measures, there is a lack of standardized evalu-
ation protocols in quantifying the effectiveness of segmentation in EM.
While various performance measures have been proposed, the methods’
performance is not consistently compared with the same measures. This
is especially the case in mitochondria (Table 5). This makes it difficult
to draw strong conclusions about existing investigations. A standard
evaluation protocol is thus crucial for enabling fair and meaningful
comparisons between different algorithms.

Furthermore, it is important to consider the specific needs and re-
quirements of biologists when evaluating segmentation methods. While
computer scientists may prioritize precise contour delineation, biolo-
gists may place greater emphasis on measuring morphological proper-
ties such as diameter, area, or minor–major axis ratio. Consequently,
future datasets could potentially include not only segmentation masks
but also ground truth for the morphological analysis performed by
biologists after segmentation. In addition, biologists are interested in
both common and rare ultra-structural alterations in tissues. The goal
of segmentation from a biological perspective is to identify not only
all organelles but also certain outliers or unmodeled phenomena such
as fission events, cell destruction, or disease progression. The current
19

metrics for segmentation are inadequate in capturing specific types of
errors within segmentation results or the spatial distribution of these
errors. The spatial distribution of errors provides insights into the lo-
calization and extent of inaccuracies or discrepancies in the segmented
regions which can help characterize tissues. The involvement of biol-
ogists in the evaluation process to report specific errors or anomalies
that deviate from the normal appearance of structures is required for
assessing and quantifying such events.

9. Conclusion

In this survey, we describe the role of CNNs in large-scale cel-
lular EM segmentation. End-to-end learning based on advanced CNN
architectures using labeled data has achieved human-level accuracy in
semantic segmentation tasks whereas the problem of instance segmen-
tation still requires efforts, especially in the case of highly crowded
structures. Despite this notable progress, certain challenges in 3D seg-
mentation still remain, mainly due to the increased computational
complexity and misclassification of voxels that hinder reconstruction.

As we move towards larger EM datasets, the process of obtain-
ing consistent annotations becomes more challenging. Given that the
lack of fully annotated data in EM will persist, the use of semi- and
self-supervised learning will become more common. Previously, the
emphasis was primarily on designing network architectures that ad-
dress specific tasks related to individual structures, like synapses in
neuronal regions or the instance segmentation of mitochondria. How-
ever, in the coming years, we expect a shift towards more general-
purpose segmentation models, using the large-scale networks and learn-
ing methods discussed in our review for extracting generic features in a
task-independent manner. These features could allow the unsupervised
discovery of new structures and regions of interest or could be adapted
to specific supervised segmentation tasks.
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