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ABSTRACT

In connectomics the goal is to generate a full 3D reconstruction of neurons within

the brain. This reconstruction will help neuroscientists better understand how the brain

functions and also how it fails in the case of dementia and other neurodegenerative dis-

eases. Attempts for this reconstruction are ongoing at varying levels of resolution from the

millimeter scale of magnetic resonance imaging (MRI) to the nanometer scale of electron

microscopy.

In this dissertation, we develop tools that improve the ability of researchers to trace

neurons through a volume in vitro at a resolution su�cient for the identification of synapses.

The first toolset will speed up the process for generating training datasets in newly acquired

volumes to be used in supervised learning methods. Current methods of training dataset

generation require dense labeling by a trained research scientist over hundreds of hours. This

toolset will reduce the time required for training data generation by using sparse sampling

and reduce the cost of that time by using a priori knowledge of the structure to allow for

less specialized researchers to assist in the process.

The second toolset is targeted at speeding up the correction of errors introduced in au-

tomatic neuron segmentation methods. Often referred to as proofreading, current methods

require significant user input and fail to fully incorporate the information generated by

the automatic segmentation method. I will use novel 2D and 3D visualization techniques

to take advantage of the information generated during automatic segmentation into the

proofreading process. This toolset will consist of two di↵erent applications, with one

process targeting 2D proofreading with 3D linking and the other process targeting direct

3D proofreading.
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CHAPTER 1

INTRODUCTION

The human brain is made up of billions of neurons [1] that work together to make up

who we each are as individuals. If every neuron is functioning correctly, the human brain

is capable of creating magnificent works of art for others to enjoy or developing new and

exciting technologies to simplify and enhance our quality of life, to mention just two of its

many capabilities. When neuron functionality begins to fail, however, debilitating diseases

such as Alzheimer’s [2] may result. Being able to understand the physical changes that take

place within the brain between when it works correctly and when it fails is a key component

to being able to identify how to prevent and treat this and other brain diseases. This process

of identifying physical changes between a healthy brain and a malfunctioning one involves

the identification of the human connectome [3] or a mapping of the individual structures

that combine together to make up the brain.

Identification of the human connectome can be focused on di↵erent levels. Sectioning the

brain into functional regions and the connections between those regions is something that

has seen significant research over the past 20 years. With advances in magnetic resonance

imaging, researchers have been able to identify some of the global links within the brain [4].

Other methods, such as di↵usion tensor imaging, have been able to trace groups of neurons

connecting di↵erent regions of the brain for a more structural mapping [5]. These levels

of detail have shown to be useful in gaining a big picture of the brain, but have thus far

proven insu�cient to identify what physical changes the brain undergoes during the early

stages of neurodegenerative disease. To identify these changes requires a mapping at the

level of individual neurons.

One of the more prominent examples of studying a complete neural network at this

level of detail is the reconstruction of the C. elegans nematode [6] [7]. With advances

in technology, research has begun trying to extend this type of work to portions of more

complex organisms such as the Drosophila [8] and the mouse neuropil [9]. In addition, a

multiinstitutional collaborative website funded by the National Institute of Health (NIH)
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has recently been set up to facilitate mapping the human connectome [10].

Early work on neuronal network mapping [6] used electron micrographs as the imag-

ing modality, while current work [8] [9] [10] generally uses some form of digital electron

microscopy (EM) [11]. These datasets typically have in-plane resolutions of 3 � 6 nm and

section thicknesses of 30 � 50 nm. Figure 1.1 shows an example image of a representation

of a 3D stack of EM images acquired at this resolution.

Electron microsccopy imaging as used in connectomics includes serial section transmis-

sion electron microscopy (SS-TEM) [12], serial block-face scanning electron microscopy

(SBF-SEM) [13], and focused ion-beam scanning electron microscopy (FIB-SEM) [14].

SS-TEM generates the image by slicing a thin slice of tissue from the sample (30-50 nm thick)

and then generating an image of this slice by sending electrons through the sample into a

detector. This method was used as the imaging modality for mapping the full connectome

of the C. elegans nematode [6] [7]. SBF-SEM generates the image by measuring the electron

reflection o↵ of the surface before slicing a thin layer of tissue from the sample (30-50 nm

thick). FIB-SEM also generates the image by measuring the electron reflection o↵ of the

surface like SBF-SEM, however, its preparation process allows it to slice o↵ layers only

5-10nm in thickness. This allows for isotropic imaging and easier segmentation, but it does

not allow for imaging any internal structure that may help in understanding the interaction

of the neurons. In this work, the datasets we will use are imaged using the SS-TEM method.

In each of these cases, the preparation process for the sample results in the space between

each cell being mostly removed so that it appears as if the membrane of neighboring cells

is shared.

One consideration with these types of datasets is the large amount of data space required

for it to be evaluated and stored. Fo example, an 8-bit grayscale image stack of just 1 mm

⇥1 mm ⇥1 mm with a resolution of 6 nm ⇥ 6 nm ⇥ 50 nm requires over 500 TB of space to

store. Complete manual labeling as was done for the original C. elegans [6] is impractical

for a dataset this large. The anisotropy of the data, however, creates di�culty in developing

fully automatic 3D approaches with su�cient accuracy. This di�culty can be seen in the

results from the 2013 3D segmentation of Neurites in EM Images Challenge [15] where the

automatic error is currently significantly higher than the human error.

In this dissertation, we propose three separate user feedback methods for supporting

automatic segmentation methods. These methods improve the accuracy of the automatic

methods to acceptable levels while limiting the amount of time required from a user. When

combined with an automatic method, these new methods will provide a full pipeline for
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Figure 1.1. An example of a 3D stack of images from a mouse cortex [15] acquired at a
resolution of 6 nm ⇥6 nm ⇥30 nm.

generating 3D reconstruction of neurons from a given imaged sample.

1.1 Automatic Segmentation Methods
The automatic methods that we use in this dissertation take two di↵erent approaches.

The first approach is that of segmenting the membrane of each neurite to identify a boundary

between segments. This approach is used in [16] [17]. Methods such as these are supervised

learning methods that require a ground truth to be used for training. Our method described

in Chapter 3 addresses the generation of these ground truths.

The second automatic segmentation approach that we will utilize in our pipeline takes

an initial segmentation that is highly oversegmented and uses learning to merge these

oversegmented regions into the best possible segmentation. This approach, as used in [18],

requires a ground truth region segmentation for generating the final result. As with the

membrane ground truth, these region ground truths can also be generated using the method

described in Chapter 5.

In addition to requiring a ground truth, both of these methods will generate a result

that includes a certain amount of error. The amount of the error will depend on the size and

quality of the dataset being segmented. In a large 3D anisotropic dataset acquired using

serial section transmission electron microscopy, these errors require su�cient correction for

the resulting 3D reconstruction to be usable. Chapter 2 will address the correction of 2D

errors and the generation of 3D links in the event that a 2D segmentation method is used,

and Chapter 4 will address the correction of errors when a 3D segmentation method is used.

1.2 Accuracy Metric
For both the purposes of learning in the automatic region segmentation and evaluating

the resulting segmentation, a metric that is sensitive to correct region separation but less
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sensitive to minor shifts in the boundaries is desired. Traditional pixel classification error

metrics are not e↵ective in this regard. Instead, we chose to use the modified Rand error

metric from the ISBI EM Challenges [19] [15] [20].

The adapted Rand error is based on the pairwise pixel metric introduced by W.M.

Rand [21]. For both the original Rand index and the adapted Rand error, the true positives

(TP ), true negatives (TN), false positives (FP ) and false negatives (FN) are computed as:

TP =
X

i

X

j>i

� (si = sj ^ gi = gj), (1.1)

TN =
X

i

X

j>i

� (si 6= sj ^ gi 6= gj), (1.2)

FP =
X

i

X

j>i

� (si = sj ^ gi 6= gj), (1.3)

FN =
X

i

X

j>i

� (si 6= sj ^ gi = gj), (1.4)

where �(·) is a function that returns 1 if the argument is true and 0 if the argument is false.

Each of these calculations compares the labels of a given pixel pair in the predicted image

S, (si, sj), with the corresponding pixel pair in the ground truth image G, (gi, gj), for all

possible pixel pairs in the image. TP , which counts the number of pixels for which si = sj

and gi = gj , and TN , which counts the number of pixels for which si 6= sj and gi 6= gj ,

correspond to accurately segmented pixel pairs. FP , which counts the number of pixels

which si = sj but gi 6= gj , corresponds to undersegmented pixel pairs, and FN , which

counts the number of pixels for which si 6= sj but gi = gj , corresponds to oversegmented

pixel pairs. These pairs are considered across a single image for 2D evaluation and across a

full image stack for 3D evaluation.

Figure 1.2 shows an example of point pairs that represent TP , TN , FP , and FN .

Figure 1.2(a) shows the pixel pairs in the ground truth image and Figure 1.2(b) shows the

corresponding pixel pairs in the predicted image. For these pairs, the pixel pairs labeled

”A” are an example of TP , the pixel pairs labeled ”B” are an example of TN , the pixel

pairs labeled ”C” are an example of FP , and the pixel pairs labeled ”D” are an example of

FN .

In the original Rand index [21], the metric is computed by dividing the number of true

pairs both positive and negative by the total number of possible pairs in the image. This

results in values between 0 and 1, with 1 being an indication of a perfect segmentation.

The adapted Rand error, however, is 1 minus the F-score computed from these results

using precision and recall where
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(a) (b)

Figure 1.2. In this figure, (a) shows a ground truth image with pixel pairs A, B, C, and
D and (b) shows a predicted image with the same corresponding pixel pairs. Based on
this ground truth and prediction, pixels A would represent a true positive, pixels B would
represent a true negative, pixels C would represent a false positive, and pixels D would
represent a false negative as described in the text.

Precision =
TP

TP + FP

, (1.5)

Recall =
TP

TP + FN

, (1.6)

Fscore =
2⇥ Precision⇥Recall

Precision+Recall

, (1.7)

AdaptedRandError = 1� Fscore. (1.8)

Once again the values of the adapted Rand error are between 0 and 1, but with 0 now

representing a perfect segmentation.

One advantage of using this metric is that when the error is high, the precision and recall

provide additional information regarding the type of error that is present. When precision

is high and recall is low, this is an indication that the image has been more oversegmented.

This type of error is represented in Figure 1.3(b) by segment 4 being split into two segments

erroneously. Conversely if recall is high and precision is low, the indication is that the image

is undersegmented, resulting from regions being merged that should have been separate.

This type of error is represented in Figure 1.3(c) by segments 1 and 2 being merged into a

single segment. Errors such as boundaries between regions being in shifted locations or a

mix of undersegmentations and oversegmentations will result in a more balanced value for

precision and recall.

This metric is particularly useful in segmentation of EM images because it can be
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(a) (b) (c)

Figure 1.3. In this figure, (a) shows a toy example of a ground truth segmentation. Based
on this truth, segments 4a and 4b in (b) represent an oversegmentation and segment 2 in
(c) represents an undersegmentation.

computed accurately independent of the number of regions segmented. One implementation

consideration for our application is that all pixels where gi corresponds to boundary pixels

are ignored. The reason for excluding these pixels is that if the proposed region entirely

encompasses the ground truth region and the boundary between regions falls within the

true boundary, then the segmentation is accurate for the purposes of this application.

1.3 Design Considerations
In this dissertation, we introduce several methods that utilize user input to complete

the labeling of the EM segmentation. Some of this input is designed to generate training

data and some of the input is designed to correct the results of an automatic method. Our

goal in designing the interaction was to use simple interactions that are quick for a user to

complete and use methods that limit how much interaction is necessary. This resulted in

our using sparse sampling where possible, using straight lines for labeling to simplify the

user experience, utilizing automatic results more e�ciently, and keeping user input to single

keystrokes whenever possible. The specific implementation details of these methods will be

described in the chapters to follow.

1.4 Contributions
The following is a description of the contributions made by this dissertation:

1. Introduced a new method for utilizing the automatic segmentation result to more

e�ciently correct errors in an automatic segmentation of neurites in EM images.

This method takes advantage of information contained in the automatic 2D region
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segmentation to allow the user to visualize the most correct segmentations first. The

method also proposes a 3D link and allows the user to verify its accuracy. The end

result is able to achieve errors matching the di↵erence between two human experts

performing manual labeling. This work was published in [22] and is described here in

Chapter 2.

2. Introduced a new e�cient method for ground truth generation. This method uses

sparse sampling to fully trace the entire membrane structure. Utilizing the interface

from Chapter 2, the user is able to extend this to a full 3D ground truth. The

method was published in [23] and is described here with the membrane labeling being

introduced in Chapter 3 and the extention to a full 3D ground truth being introduced

in Chapter 5. An additional work is being prepared for publication utilizing this

method.

3. Introduced a method for representing the membrane ground truth via a confidence

image. In the generation of the membrane ground truth a few false positives are

introduced into the image. Our method uses the original intensities of the data to

form a confidence map that enables the automatic method to modify how much impact

each positive sample has on the learning update. This is described in Chapter 5 and

is part of a paper being prepared for publication.

4. Introduced a method for 3D visualization and correction of a fully automatic 3D

segmentation of the image. By dealing directly in 3D the user is able to more

quickly ascertain the accuracy of the 3D segmentation. Accompanying this method is

a technique that allows the user to visualize the structure identified by the automatic

result for a better understanding of how the error may be corrected. This is described

in Chapter 4 and is part of a paper being prepared for publication.

1.5 Implementation Details
The methods in this dissertation were primarily implemented using C++. The visualiza-

tions utilized the Visualization Toolkit library from Kitware [24]. Image manipulation and

integration with the region-based automatic segmentation method also used the Insight

Toolkit from Kitware [25]. In addition, MATLAB was used extensively for the image

processing techniques described.
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1.6 Overview
Chapter 2 describes the 2D proofreading and 3D linking method. It provides an overview

of related work, followed by a description of the method. We then present the results of

several experiments including accuracy and timing considerations where we are able to show

that this method corrects most of the segmentation errors in a time frame that improves

upon current times in publication.

Chapter 3 describes the method of ground truth generation. This section provides an

overview of other manual labeling methods and distinguishes how this method is unique.

We then describe the details of this method for sparse labeling. In the results section we

measure the performance of this method against the performance of an automatic method

for several di↵erent levels of sparsity. We show that even without additional proofreading

this method is able to produce results that greatly exceed the automatic segmentation

method.

Chapter 4 describes the method for direct 3D proofreading. We provide an overview

of similar work followed by a description of the method used. The method includes both

a description of the interface and an explanation of how the visualization allows for more

e�cient evaluation and correction. We then present the results for using this method to

correct an automatic segmentation that used a fully manual ground truth for training.

Chapter 5 provides a description of how each of these di↵erent methods are put together

to generate a full pipeline. It includes a description of how the membrane ground truth is

generated from the sparse sampling method and the modifications made to the automatic

method to utilize this ground truth. We provide results for using this full pipeline that

includes ground truth generation using sparse sampling, automatic segmentation using the

methods introduced in this introductory chapter, and 3D proofreading.



CHAPTER 2

EFFICIENT SEMIAUTOMATIC 3D

SEGMENTATION FOR NEURON

TRACING IN ELECTRON

MICROSCOPY IMAGES

2.1 Introduction
In this chapter, we introduce a method that utilizes the information contained in the

automatic segmentation results to allow the user to quickly label a dataset of interest. For

our method, we require the user to verify both the 2D segmentation and 3D linking that are

suggested by automated processing. In [12], several semiautomatic methods for both 2D

segmentation and 3D linking are reviewed. Semiautomatic methods can be separated into

two distinct classes: 1) preautomatic user input methods (preauto) and 2) postautomatic

user input methods (postauto). The preauto methods require the user to give input prior to

an automatic method taking over the segmentation. Some examples of these include [26],

which uses manual input with a level-set method, and [8], which uses skeleton tracing.

These methods do not use the automatic method to assist the user and are very di↵erent

from the method we present here.

Postauto methods are sometimes called proofreading methods, as in [27] and [28]. In [27],

the authors use proofreading to complete the labeling of their dataset, but the specific

method used is not described. In [28], the authors present a method that requires the

user to manually search for errors without specific guidance and then provides tools for

correcting those errors; this di↵ers from our method, which specifically guides the user to

review each segmentation. Another postauto method is Eyewire [29]. The method requires

users to navigate through the volume and add regions to a selected cell until it is completely

labeled within the provided volume. Users self-navigate and are required to move forward

and backward regularly through the volume to ensure correctness and completeness. Our

method, on the other hand, allows the user to navigate if needed, but provides a controlled
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navigation between cells automatically. In addition, whereas Eyewire focuses on labeling

only one cell at a time, we proceed one 2D section at a time, i.e., we have the user completely

label one section before moving onto the next sections.

Another method that also uses a tree hierearchy to perform image segmentation in a

general sense is described in [30]. In this paper, the authors introduce a tree generation

method using watershed followed by manually segmenting out the regions of interest. In

this application, there is no use of an underlying automatic segmentation method to propose

a possible segmentation to the user. This requires the user to manually traverse more of

the tree than is necessary with the method we will introduce in this research.

In the following sections, we will describe the specific semiautomatic method that we use

to completely label a dataset volume along with results. More specifically, in Section 2.2,

we describe both the 2D semiautomatic and 3D linking methods along with a description

of timing considerations for those methods. In Section 2.3, we present our segmentation

results for several datasets and users.

2.2 Method
Consider an image volume V consisting of m image slices, Ii, that is to be segmented

into a set of n true regions, tl, such that the true segmentation is T = {t1, t2, . . . , tn}.

Each tl in T has a unique integer label and consists of a set of pixels vi,j,k ⇢ V that are

26-connected. We will produce a set of q predicted regions, pFk , such that the final predicted

segmentation is PF = {pF1 , pF2 , . . . , pFq }. Throughout the remainder of this chapter, primary

subscripts are used to indicate indices and superscripts and secondary subscripts are used

to distinguish a label. Superscript T indicates a true version of the corresponding label,

superscript F indicates a final prediction of the corresponding label, and superscript I

indicates an intermediate prediction of the corresponding label.

2.2.1 Automatic Segmentation

The semiautomatic segmentation method described in Section 2.2.2 depends on an

automatic method that segments the image into r highly oversegmented superpixels, oj .

In an ideal segmentation, each region tl is comprised of a set of these superpixels such that

tl =
[

j2�T
l

oj (2.1)

for each tl in T where �

T
l is the set of superpixel indices included in region l. Each oj will

be used exactly once in T . Moving from the ideal to the predictive scenario
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p

I
m =

[

j2�PI
m

oj (2.2)

for each intermediate region, p

I
m, in the intermediate segmentation PI and each oj are

used exactly once. In addition, the automatic segmentation must also build a hierarchy of

merged oj for the semiautomatic segmentation to work e�ciently. Figure 2.1 shows each

piece of the hierarchy where Figure 2.1(a) represents Ii with superpixels, oj , labeled with

numbers; Figure 2.1(b) shows a segmentation with each tl highlighted; and Figure 2.1(c)

shows an example tree structure for building T . For our semiautomatic method to work as

described here, we will use the modular hierarchical approach introduced in [31] with some

2D refinements described in [18].

The modular hierarchical approach uses a 2D classification to generate its initial over-

segmented superpixels oj by applying 2D watershed [32] from the ITK library [25] to the

results of a 2D cell membrane detection method such as the cascaded hierarchical model [16]

or deep neural networks [17]. From this initial segmentation, the water level is gradually

raised to merge neighboring superpixels together. Each merge represents a new node in

an unbalanced binary tree consisting of the two merged nodes as children. This merging

continues until all nodes have been merged into one large tree with the node from the final

merge as the root and each oj as the leaf nodes. Figure 2.1 shows a toy example of this

merging process as described in [31].

Using this tree, a set of features to be used for classification purposes is generated for

every merge. These features include both geometry-based features such as region area and

(a) (b) (c)

Figure 2.1. The above figure is a toy example of an image segmentation and the
corresponding tree. (a) gives an example of an image Ii segemented into superpixels
oj represented by the numbered regions, (b) shows each oj merged into the predicted
segmentation regions pIk represented by the colored regions, and (c) shows the corresponding
tree structure with labeled nodes. The colored nodes in (c) correspond to the colored regions
in (b).



12

boundary curvatures and intensity-based features such as intensity histograms and texton

histograms. The merges are then classified using a random forest classifier to assign the

probability that a given merge is a true merge in the truth. For example, in Figure 2.1(c),

the merge of superpixels o5 and o6 to form node 8 should have a high probability and the

merge of node 9 and node 10 to form node 11 should have a low probability.

Based on the results of this classification, a potential is generated for each node. This

potential is computed by multiplying the probability that the current merge should happen

with the probability that the merge forming the parent node should not happen. Referring

again to Figure 2.1(c), the potential for node 8 is computed by multiplying the probability

that superpixels o5 and o6 merge with the probability that node 8 and superpixel o2 do

not merge. The result is that the nodes with the highest potential are those with the

highest likelihood of being a true segmentation. This potential is what will determine the

examination order for the semiautomatic segmentation process.

2.2.2 Semiautomatic Segmentation

For the semiautomatic segmentation, we assume that each Ii is su�ciently overseg-

mented into r superpixels, oj , such that each true region, tl, can be generated from oj as in

Equation 2.1. Using this assumption, we seek to implement a method that reorganizes the

initial segmentation, PI , predicted by the automatic method by utilizing the hierarchical

structure, each superpixel oj , and user input to generate the final predicted segmentation,

PF . If the results are ideal then PF = T . Due to the 2D nature of the automatic

segmentation method used, both proofreading the 2D segmentation and linking the resulting

2D segments using automated suggestions will be necessary. By completing both of these

steps simultaneously we seek to reduce the amount of time required from the user.

2.2.2.1 Implementation

The following method was implemented in C++ using the Visualization Toolkit [24]

for both interaction and visualization. This library was chosen for easy integration with

the automatic method, which utilizes the Insight Toolkit [25] extensively. It is currently

implemented as a stand-alone command line program with a windowed interface as described

below. The program is compiled using CMake [33] to allow for easier cross-platform

compilation. It has been successfully compiled on both Mac OS X (10.6.8 and later) and

Linux operating systems.
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2.2.2.2 Interface

The interface presents the user with four images to assist in completing the semiauto-

matic segmentation. The first image, appearing in the top right of the interface as shown

in Figure 2.2, is a portion of the raw EM image for the image slice Ii being processed and

is zoomed in and centered on the current proposed segmentation region, pIm. We highlight

the border of pIm in one color and the interior of pIm in a di↵erent color, which makes it easy

for the user to quickly identify which region is being considered. Additionally, each of the

superpixels, oj , in Ii are outlined in a third color to show the user all possible segmentations.

The second image displayed on the interface in Figure 2.2 appears in the top left corner

and is a portion of the raw EM image for the previous image slice, Ii�1, with the same

zoom and position as Ii. On this image we highlight the border of the proposed link region,

p

F
k , in one color and its interior in another color, as was done for Ii. As will be described

in Section 2.2.2.3, each region, pFk , for the previous slice, Ii�1, is completed prior to the

final segmentation regions, pFk , for the current slice, Ii, making it unnecessary to highlight

each superpixel, oj , on Ii�1. Instead we highlight the border of each p

F
k from Ii�1. This

allows the user to select a di↵erent link region if the predicted region is incorrect, or to

select multiple regions if it is a branch merge point.

The third image displayed appears in the bottom right corner of Figure 2.2 and is

initially a portion of the raw EM image for the current image slice, Ii, with the zoom

and position matching the top left and top right images. This image does not have the

proposed segmentation region, pIm, highlighted in any way. As the user generates new final

segmentations, pFk , these segmentations will appear highlighted in a new color to show the

user what he or she has already completed. As will be described in Section 2.2.2.3, the

user has the ability to sequence this image forward or backward to see additional slices.

When the user looks ahead to slices not yet processed, this image will be only the raw EM

image for that slice with no highlighting. When the user looks backward to slices already

completed, this image will be the raw EM image for that slice with the segmented region

borders highlighted.

Finally, the last image appears in the bottom left corner of Figure 2.2 and is initially a

portion of the raw EM image for the previous image slice, Ii�1, again with the zoom and

position matching the other images in the interface. No highlighting of any kind appears

on this image. As the user scrolls through the slices forward or backward, this image will

display the raw EM image for the slice exactly one previous to the one on display in the

third image on the bottom right. An example of this can be seen in the bottom left of
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Figure 2.2. Screen shot of the interface. The top left shows the image that highlights
the proposed link in yellow with all other regions outlined in red. The image on the top
right highlights the proposed segmentation in yellow, the oj in light blue, and the resolved
segmentations in dark blue. The image on the bottom left is the raw image of Ii�1. The
image on the bottom right is the raw image of Ii with the resolved segmentations highlighted
in dark blue.

Figure 2.2. The overall resulting interface display has the images on the left being exactly

one slice previous to the images on the right.

2.2.2.3 Process

The purpose of the semiautomatic method is to take advantage of as much information

contained in the automatic segmentation as possible to limit the amount of input required

from the user. We also reduce the user input to be single clicks or single keystrokes to

further minimize the amount of time required for a single response. The specific keystrokes

used in our implementation can be found in Appendix A. This reduction of user input

results in the user being unable to split the individual superpixels, oj , and thus a su�cient

oversegmentation is necessary initially.

The process begins with the user being presented with a proposed 2D segmentation and

recommended link. For the recommended 2D segmentation, the automatic segmentation

node with the highest potential of being a true segmentation as described in Section 2.2.1

is presented to the user. This recommendation will result in the user first visiting the
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regions with the highest likelihood of being in the true segmentation, and will make it

easier for the user to resolve the more di�cult regions later on. The suggested 3D link that

is simultaneously presented to the user is given as the region, pFk , in the previous image

slice, Ii�1, that shares the most overlap with the current proposed region, pIm.

The user will first consider the accuracy of the 2D segmentation. The four possible

scenarios for the accuracy of the segmentation as seen in Figure 2.3 are correct segmentation,

oversegmentation, undersegmentation, and bad segmentation. To assist the user in di�cult

segmentations, we have included the ability to look to previously segmented images as well

as the raw images of the next slices. By looking at previously segmented images, the user

can see the general shift of the cell from slice to slice and also see the shape of a previous

segmentation that may have provided better contrast, both of which can make the current

decision easier. Looking to the unprocessed raw images can provide similar assistance but

without a resolved segmentation to use as a baseline. We have also included the ability to

zoom out and navigate to other areas of the image for correcting segmentations that may

exceed the zoom window. The accuracy of the current proposed segmentation will a↵ect

how the user responds to the 3D linking. Those scenarios are described below.

In the case of an accurate 2D segmentation where p

I
m ⇡ tl, the user will ensure the

correct 3D link and select the proper keystroke for a good segmentation. If the suggested

(a) (b) (c)

(d) (e) (f)

Figure 2.3. The above figure gives an example of the di↵erent segmentation possibilities.
(a) is an example of a correct segmentation, (b) is an example of an oversegmentation with
a portion of just one region suggested, (c) is the true segmentation for (b), (d) is an example
of an undersegmentation with all of one region and a portion of another region suggested,
(e) is an example of a bad segmentation with portions of multiple regions but no entire
region suggested, and (f) is the true segmentation for both (d) and (e).
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3D link is not correct, the user is able to add and remove individual regions, p

F
k , from

the previous slice until the correct regions are linked. The proposed region p

I
m and all the

linked regions are assigned the same label. If there are no linked regions for the proposed

region, pIm, it is assigned a new label. In the tree structure, the node for pIm, and all of its

descendants and direct ancestors are removed from the tree, and the region corresponding

to the node with the next highest potential is presented to the user.

Oversegmentation refers to a scenario where the proposed segmentation, p

I
m, is such

that

p

I
m =

[

j2�PI
m

oj ⇢ tl (2.3)

where tl is the corresponding true segmentation region and �

PI
m is the set of indices for the

superpixels to be included in the region. This scenario is handled with the user clicking

additional superpixels, oj , until pIm ⇡ tl. The corresponding 3D link, as in the case of a good

segmentation, is verified by the user and then the user indicates a good segmentation. In the

tree, clicking regions will result in leaf nodes being removed and the tree being restructured.

The restructuring happens with the parent node of each removed leaf node being replaced

with the sibling node of that corresponding leaf node. The potentials and all other node

information remain the same. In addition, the original recommended node, pIm and all of its

descendants and direct ancestors are removed from the tree and the region corresponding to

the node with the next highest potential is once again presented to the user. Figure 2.4(b)

shows a toy example of this oversegmentation process. In the first column is a segmentation

where regions o4 and o3 make up the oversegmentation proposed by the automatic method

and o2 is clicked by the user, in the second column is the labeled result, in the third column

is the tree structure for the first column, and in the fourth column is the tree structure

remaining after the result.

Undersegmentation results when the proposed segmentation, pIm, is such that

p

I
m =

[

j2�PI
m

oj � tl (2.4)

where once again tl is the corresponding true segmentation region and �

PI
m is the set of

indices for the superpixels to be included in the region. In this scenario, the user will

indicate an undersegmentation and the current node and all its ancestors are removed from

the tree and the next region is presented. To simplify the visual processing for the user,

we present the child node of the removed node that has the higher potential as the next

proposed region. Because the user is already focused on resolving this region, the user is
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(a)

(b
)

(c
)

(d
)

Figure 2.4. The above figure shows the di↵erent types of image segmentations and their
corresponding trees. (a) is the truth image label where each color represents a true region
for (b)-(d). In (b)-(d) the first column shows the initial proposed segmentation in yellow the
second column shows the result of resolving the section as described in the method section,
the third column is the tree associated with the first column, and the fourth column is the
tree associated with the second column. (b) is an oversegmentation example where yellow
is the suggested and final segmentation and red is the manually clicked region, (c) is an
undersegmentation example where yellow is the suggested and final segmentation, and (d)
is a bad segmentation example where yellow is the suggested segmentation and red is the
manually clicked region.
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able to more quickly process what the correct response should be. This process continues

until a correct segmentation or an oversegmentation is found, in which case the procedure

follows as described previously. 3D linking can be ignored for undersegmentation until

a correct segmentation or oversegmentation results because no region labels are assigned.

Figure 2.4(c) shows a toy example of this undersegmentation process. In the first column

is a proposed segmentation where regions o4, o3 and o1 make up the undersegmentation

proposed by the automatic method, in the second column is the new proposed segmentation

after undersegmentation is indicated by the user, in the third column is the tree structure

for the first column, and in the fourth column is the tree structure after the result.

Bad segmentation is when the segmentation is not correct and both equations 2.3

and 2.4 fail to be satisfied. As seen in Figure 2.3(e), it is a segmentation where portions of

multiple regions are included, but no complete region is included. Although di↵erent from

undersegmentation in that a correct segmentation cannot be obtained, we proceed in the

same fashion as the undersegmentation, with the current node and all its ancestors being

removed from the tree and the child node with the higher potential being presented as the

next proposed region. This process continues until an oversegmentation is found and the

user is able to resolve as described above. Figure 2.4(d) shows a toy example of this bad

segmentation process. In the first column is a proposed segmentation where regions o3, o6,

and o2 make up the bad segmentation proposed by the automatic method, in the second

column is the new proposed segmentation after bad segmentation is indicated by the user

and o5 is manually clicked, in the third column is the tree structure for the first column,

and in the fourth column is the tree structure after bad segmentation is indicated by the

user and o5 is manually clicked.

The goal with each of these steps is to be as e�cient as possible. When both the

segmentation and 3D linking are clearly correct, a user typically requires approximately

one second to assess the accuracy and respond. When the segmentation is correct but the

3D linking is inaccurate, the time to complete is limited by how quickly the user is able to

click the correct link regions. Because fixing the segmentation is often done in just one or two

clicks, the time required is also minimal. Correcting the 2D segmentation, on the other hand,

may require more time to complete, depending on how close to accurate the segmentation

was. For oversegmentation, the number of oj that need to be added may be significant if

the associated true region, tl, is large, and the time required to complete this correction

may be tens of seconds. In the case of undersegmentation and bad segmentation, typically

the number of responses to get to either a correct segmentation or an oversegmentation is
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small, and so the time required for these results is nearly the same as the time required for

oversegmentation. Finally the last real limitation in time is related to the quality of the

image set and the ease of determining an accurate segmentation.

2.3 Results
To test the e↵ectiveness of our method, we applied it to three datasets with fully labeled

3D ground truths. For each dataset used, we split the data into training and testing for the

automatic method and then applied the semiautomatic method to only the testing set. The

justification for this is that in a live application the training set needed for the automatic

method will be assumed to have full labels and not require any manual labeling. The

accuracy of each test is measured using the adapted Rand error, which is an F -score error

computed from the pairwise precision and pairwise recall scores as described in Section 1.2

and also used in the International Symposium on Biomedical Imaging as the grading metric

for the 2012 Segmentation of Neuronal Structures in EM Stacks Challenge [19] and the

2013 3D segmentation of Neurites in EM Images Challenge [15]. This F -score error metric

provides a robust 3D segmentation metric that emphasizes both topological accuracy of

regions and geometric accuracy of membrane locations, but with minimal dependence on

accurate membrane thicknesses.

The tests were carried out on two di↵erent machines. For the Mouse Neuropil dataset,

the tests were performed on a machine with 32 Intel Xeon CPU E5-2670 processors at

2.60GHz with 126 GB of RAM running CentOS 6.4. The other datasets were completed on

a machine with 32 Intel Xeon x7350 processors at 2.93GHz with 196GB of RAM running

SUSE Linux Enterprise Server 11 (x86 64). Additionally, all of the datasets have been used

on a machine with 2 6-Core Intel Xeon Processors at 2.66GHZ with 32 GB of RAM running

OS X 10.6.8, although this machine was not used for any of the complete testing results

reported here. On each machine, there was no noticeable delay when moving from slice to

slice as long as there was su�cient available RAM for the loaded dataset. For the largest of

these datasets, the amount of free RAM required by the interface when the entire dataset

was loaded was a little over 20GB.

2.3.1 Drosophila Ventral Nerve Cord

As used in the International Symposium on Biomedical Imaging (ISBI) 2012 segmen-

tation challenge [19], this dataset is described as consisting of two stacks of 30 sections

from a SS-TEM dataset of the Drosophila first instar larva ventral nerve cord (VNC). The

microcube measures approximately 2⇥2⇥1.5 µm with a resolution of 4⇥4⇥50 nm/voxel,
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resulting in an image stack of size 512⇥512⇥30 for both the training and testing stacks. The

training set with corresponding 2D membrane labels and the testing set were downloaded

from the challenge site [19].

For this dataset we were able to obtain the 3D labels necessary to compute the accuracy

of the tests for only the 30 training images. As a result our tests were carried out using

a split of the stack such that the last 20 images in the stack were used as training images

and the first 10 images in the stack were used as testing images. The automatic method

was trained on the 20 training images and then applied to the 10 testing images. We then

used both the semiautomatic method and automatic 3D linking as described in [18] for

comparison. In addition, the semiautomatic method was completed twice by a user who

was familiar with EM images and segmentations, but was not an expert in neuroanatomy.

In the first semiautomatic test, the user completed the 3D segmentation without any extra

assistance, but for the second semiautomatic test the user completed the 3D segmentation

using the 3D ground truth as a guide. The purpose of the first test is to show the results

that are achieved by a novice user, and the second test is to show the best results that could

be achieved by an expert neuroanatomist using our method. Figure 2.5 gives a 3D view

of a few neurites from the novice segmentation of this dataset, and Table 2.1 shows the

segmentation results. Note that in Table 2.1 the automatic results di↵er from the challenge

results [19] because here we report the 3D results, whereas the results for the challenge were

only 2D results.

In Table 2.1 the semiautomatic method with a novice user shows a small decrease in

the pair precision but a significant improvement in the pair recall, resulting in a 2.3%

improvement in the error value. The slight decrease in the pair precision indicates more

assignments of pixels within the same region that should belong in di↵erent regions, whereas

the improvement in pair recall indicates fewer assignments of pixels to di↵erent regions

that should belong to the same region. Therefore, we conclude that the e↵ect of the user

interaction in this case is to largely correct oversegmentation errors. The expert user is

largely able to correct the remaining errors, as the results shown in Table 2.1 indicate a

1.4% total error.

2.3.2 Mouse Cortex

The second dataset comes from the ISBI 2013 3D segmentation challenge [15]. It consists

of two stacks of 100 images to be used as training and testing sets. Both stacks come from

a mouse cortex and are acquired using serial section scanning electron microscopy (ssSEM),

respectively. The microcube is approximately 6 ⇥ 6 ⇥ 3 µm at a resolution of 6 ⇥ 6 ⇥ 30
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Figure 2.5. The above figure is a 3D view of a few neurites selected from the novice
segmentation of the Drosophila VNC dataset.
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nm/voxel, resulting in an image stack of size 1024 ⇥ 1024 ⇥ 100 for both the training and

testing stacks. These stacks were downloaded from the challenge site [15].

For this dataset we once again applied the semiautomatic method to a portion of the

training stack not used in training the automatic method and completed it with both a

novice user and a simulated expert user as described for the Drosophila VNC dataset. We

split the training set so that the first 50 images of the stack were used for training and

the last 50 images of the stack were used for testing. Table 2.2 shows the results of the

novice and expert users compared to the automatic method for this test. These results are

consistent with the Drosophila experiment where the novice user showed a slight drop in the

precision and a modest improvement in the recall and the expert user showed a significant

improvement in both precision and recall. In addition, we applied the semiautomatic

method to the testing stack with a novice user for submission to the challenge to compare

against the state-of-the-art methods. A domain expert was not available for this dataset.

Table 2.3 shows the results for this semiautomatic method along with other top results

listed on the challenge site. For the challenge results, the pair precision and pair recall are

not available. Figure 2.6 shows a 3D view of a few neurites obtained from segmenting the

testing stack of this dataset.

In Table 2.2 our approach with a novice user on the split training set was able to do

considerably better than the automatic method, with an even more significant improvement

Table 2.1. The 3D accuracy results on the Drosophila VNC dataset for the automatic
method without user input, the semiautomatic method with a novice user, and the
semiautomatic with a simulated expert user.

No. Approach Testing Pair Pair
Error Precision Recall

1 Automatic [18] 0.131 0.908 0.834
2 Semiautomatic (Novice) 0.108 0.896 0.887
3 Semiautomatic (Expert) 0.014 0.990 0.982

Table 2.2. The 3D accuracy results on the mouse cortex dataset for the automatic method
without user input, the semiautomatic method with a novice user, and the semiautomatic
with a simulated expert user.

No. Approach Testing Pair Pair
Error Precision Recall

1 Automatic [18] 0.239 0.922 0.647
2 Semiautomatic (Novice) 0.131 0.913 0.897
3 Semiautomatic (Expert) 0.051 0.980 0.920
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Table 2.3. The 3D accuracy results as reported on the challenge site [15] with the
semiautomatic results inserted into the rankings.

No. Group Testing
Error

1 Human 0.060
2 Our Approach (Novice) 0.081
3 Team Gala 0.100
4 Our Automatic approach [18] 0.124
5 FlyEM [34] 0.125
6 rll 0.131
7 Rhoana [35] 0.148
8 shahab 0.167

Figure 2.6. A 3D view of a few neurites selected from the segmentation of the mouse
cortex testing stack.

in accuracy achieved by an expert user. For the challenge submission results shown in

Table 2.3 our approach with a novice user is able to achieve accuracy exceeding the current

state of the art automatic method by nearly 2%. We anticipate that having an expert user

complete the full challenge testing set would result in an improvement such that our error

would rival the error in two human experts manually labeling the same dataset, but with

our method requiring significantly less e↵ort.
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2.3.3 Mouse Neuropil

This dataset was acquired at the National Center for Microscopy and Imaging Research

at the University of California, San Diego using serial block-face scanning electron mi-

croscopy. The complete dataset consists of a stack of 400 images each of size 4096 ⇥ 4096

at a resolution of 10 ⇥ 10 ⇥ 50 nm/voxel [9]. For evaluation purposes, we use a subset of

this dataset that has been manually labeled in 2D by expert neuroanatomists. This subset

is 7⇥ 7⇥ 3.5 µm, resulting in 70 images with 700⇥ 700 voxels/image.

In the following results, the automatic method was trained for 2D using the method

described in [31], with a representative sample of 14 slices from throughout the dataset.

Seven of the slices used in training do come from among the 35 slices used in the final

3D testing set because the automatic 2D segmentation performed poorly when trained on

consecutive slices. The poor performance in 2D segmentation was due to the dataset having

an uneven distribution of large structures. The 3D automatic linking used the last 30 slices

in the dataset as training and used the method described in [18]. Finally the testing for both

the automatic method and the semiautomatic method used the first 35 slices of the dataset.

There were five slices in the middle that were discarded due to errors in the 2D ground

truth labeling. Table 2.4 shows the final segmentation results. In spite of the significant

error found in the automatic results, an expert 1 using this proofreading method was able

to largely correct these errors and achieve a more acceptable result. Figure 2.7 provides a

3D view of a few select neurites from the expert labeling of this dataset.

2.3.4 Timing Analysis

For the mouse cortex dataset in Section 2.3.2, the novice user was able to complete each

slice of the image stack in just under 30 min on average. Extending this time per slice out

over the entire dataset, the total time required to fully label 100 slices of this data would

be approximately 50 h, or, equivalently, 8 min 15 s to do 3D labeling of 10 slices of a 1

1
The expert for this dataset is a researcher at the University of California, San Diego.

Table 2.4. The 3D accuracy results on the mouse neuropil dataset for the automatic
method without user input and the semiautomatic method with an expert from the National
Center for Microscopy and Imaging Research.

No. Approach Testing Pair Pair
Error Precision Recall

1 Automatic [18] 0.366 0.867 0.499
2 Semiautomatic (Expert) 0.106 0.892 0.896
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Figure 2.7. A 3D view of a few neurites selected from the segmentation by an expert of
the mouse neuropil dataset.

µm2 section. Using a similar analysis for the Drosophila VNC dataset in Section 2.3.1, the

novice user required just over 12 min for each slice of the image stack, or, equivalently, 30

min 16 s to do 3D labeling of 10 slices of a 1 µm2 section. Finally, for the mouse neuropil

dataset in Section 2.3.3, the expert user required just over 11 min for each slice of the image

stack, or, equivalently, 2 min 15 s to do 3D labeling of 10 slices of a 1 µm2 section. By

comparison, the proofreading done in [27] reports a time of 160 h, including training, for a

nonexpert user to complete the proofreading of a 167 µm3 volume, or, equivalently, 25 min

48 s to complete 10 slices of a 1 µm2 section. In [27], the authors also cite significant time

improvements for completion by an expert to 8 min 2 s for 10 slices of a 1 µm2 section.

These indicate that proofreading by a novice user using this method compares favorably

with [27], and the time required by an expert user improves upon the time required by the

expert in [27] by over 70%.

2.4 Conclusion
In this chapter, we presented a semiautomatic method that can be used to perform

3D segmentation of neurites in EM image stacks. First, an automatic method creates a

hierarchical structure for recommended merges of superpixels. The user then visits each

node in this structure from highest accuracy potential to lowest potential until all nodes

have been visited or removed. At each node the user interacts with the semiautomatic

method via mouse clicks or single keystrokes to indicate the quality or to correct the 2D

segmentation and the 3D linking simultaneously.
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When completed by a novice user, we were able to demonstrate significant improvement

over using automatic methods. We were also able to demonstrate accuracy that is approx-

imately the same as manual labeling for three di↵erent datasets when our method is used

by an expert in neuroanatomy. We have also been able to demonstrate that our timing is

better than currently published timing for other proofreading methods with a novice user

and comparable to other methods with an expert user. This timing improvement is achieved

by utilizing the information contained in the automatic method.

The test datasets presented here are relatively small portions of much larger datasets.

The entire Mouse Neuropil dataset, for example, is 4096x4096x400. The limiting factor

in applying this method to the full dataset directly is memory usage. Completing the

entire dataset could be done by breaking it into smaller memory-manageable blocks and

then stitching them together. Additionally, as with any method relying on user input, user

fatigue may contribute to judgement errors as these blocks get larger. Limiting the length

of time a user spends completing the proofreading in a single sitting can help to eliminate

these errors.



CHAPTER 3

GROUND TRUTH GENERATION IN

ELECTRON MICROSCOPY IMAGES

VIA SPARSE SAMPLING

3.1 Introduction
Machine-assisted biological image segmentation methods range from manually labelled

computer-assisted methods [8] [36] to manually refined more automatic methods [37] [17] [38].

Manual methods require a significant time commitment to accurately label images, such as

is done for membrane detection in electron microscopy (EM) images of the brain in [8].

Active learning methods such as Ilastik [39] attempt to decrease the user input required for

generation of training data used in supervised methods. In addition, automatic methods

typically require a large dataset of manually labeled images to be used for learning.

Here we introduce a new method that seeks to utilize user input in an e�cient way to

produce highly accurate results with minimal user input. Di↵erent than [39], which uses

learning on user input to segment the image, we utilize the user input as a starting point for

best path finding to segment EM images. We sparsely label the dataset by using gridlines

to guide the user in identifying membrane locations and then use a best path algorithm to

identify the complete membrane structure. In EM images, cell membranes generally have

complete connectivity due to the sample preparation process with only a few exceptions per

image, so that finding the best path between all labeled membranes in an image results in

the correct structure. This di↵ers from manual methods that require membrane tracing [8].

In addition, we introduce a method of membrane labeling that replaces the binary label

with an intensity label that allows further improvement through thresholding.

3.2 Method

3.2.1 Sparse Sampling

The sparse sampling method seeks to minimize the user input required to generate an

accurate separation of unique neurites in the EM images (Figure 3.1). This sparse sampling
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Figure 3.1. An example EM image from the Drosophila VNC dataset [8].

method was published in [23]. A grid is overlayed on the image to be segmented as shown

in Figure 3.2(a). The user will then click where each of the gridlines intersect with the

membranes as shown in Figure 3.2(b). The grid lines provide a simple guide for the user

to complete the sparse sampling. For ease of user labeling, we have selected equally spaced

straight lines in each direction. Due to the nonuniform distribution of neurites in these

types of images, this also provides a random sampling of true membrane pixels across the

image.

Once the user has completed labeling all of the membrane intersections, we complete the

membrane labeling by generating a path between all pairs of pixels in each grid square. A

grid square consists of all pixels contained between two parallel lines in each direction, with

no grid lines falling within the grid square. Additionally, we include a small bu↵er region

to account for imprecise clicks and to allow the path to follow a membrane that may be

just outside of the current area. These paths are computed using Dijkstra’s algorithm [40].

Our implementation of Dijkstra’s algorithm [40] begins by selecting any labeled mem-

brane pixel within the current grid square. From this pixel we compute the membrane cost

of visiting each of its 8-connected neighbor pixels as Cn,j where

Cn,j = Dn,je
�| In�mean(M)

mean(M) |
. (3.1)
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(a)

(b)

Figure 3.2. (a) shows the grid lines overlayed on the original EM image and (b) shows the
same grid overlay with the membrane grossing pixels selected.

In equation 3.1, Dn,j is the geometric distance between the pixels n (one of the neighboring

pixels) and j (the current pixel), In is the intensity value of pixel n, mean(M) is the mean

intensity value of all user labeled membrane pixels in the image, and � is a weighting

factor that controls the penalty. The absolute value is used to penalize pixels darker than

mean(M) because nonmembrane interior structures will sometimes be darker than the

membrane. Additionally, the di↵erence is normalized by mean(M) so that cost values

for di↵erent images will be on the same scale regardless of the image scale, which can

simplify the selection of �. In the selection of �, large values ensure stricter adherence to

membrane pixels while missing some membrane, and small values of lambda will include

more membrane pixels while also including more nonmembrane pixels.

To complete the path finding, the current pixel is labeled as visited and each neighboring

pixel is assigned the computed path cost, Pn. For the first pixel, this Pn will be Cn,j . In

each iteration following the first, the path cost of each neighboring pixel will be assigned as
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Pn = Pj + Cn,j (3.2)

if a path cost has not already been assigned and

Pn = min

(
Pj + Cn,j

Pn
(3.3)

if it has previously been assigned. The current pixel will then be labeled as visited and the

unvisited pixel with the lowest value of Pn will be selected for the next visit. This process

continues iteratively until all pixels within the current grid square have been visited.

Once every pixel in the current grid square has been visited, the minimum path cost from

each of the user-labeled membrane pixels in the grid square back to the starting membrane

pixel is traced and assigned a membrane value in the segmented image. We repeat the

pathfinding using each of the other membrane pixels in the grid square as starting pixels

until a shortest path is found between all pairs of these membrane pixels. This is then

done for each grid square in the image. The resulting segmented image will be binary, with

values of 1 assigned to membrane paths and values of 0 everywhere else. Figure 3.3 shows

the labeled paths in white overlayed on the original image with the grid lines in red.

Limiting the path to the grid square plus a bu↵er will sometimes result in a path that

necessarily crosses nonmembrane pixels. Additionally, internal structures can sometimes

cause a path to cross through a neurite instead of along the membrane. These errors we

refer to as oversegmentations, and they are corrected in the full pipeline as described in

Section 5.2.1. An example of each of these errors can be seen in Figure 3.4(a) in the two

larger blue circled regions.

Another error that can occur is a membrane not being along the shortest path between

the sparsely labeled membrane pixels. We refer to this as undersegmentation. These errors

Figure 3.3. This figure shows the results of path finding between all possible pairs of
membrane within each grid square.
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(a)

(b)

Figure 3.4. Figure 3.4(a) highlights the possible errors that can occur in the pathfinding.
The two larger circles (in blue) indicate areas where oversegmentations are present and the
smallest circle (in yellow) indicates an example of undersegmentation. Figure 3.4(b) shows
the undersegmented area being corrected using an additional point added by the user as
shown.

are not corrected in the additional processing we do. To correct these errors, the user can

make an additional pass over the image after the paths are computed and add an additional

membrane pixel along the missed membrane. Recomputing the paths with these extra

membrane labels added in will result in a corrected image. Figure 3.4(b) shows an example

of this in the smaller yellow circled region. This error has been corrected in Figure 3.4(b).

We implemented this method using C++ code to compute the paths and VTK [24] as

the rendering library. Using single keystrokes, the user can toggle grid lines on/o↵, compute

membrane paths, toggle path visibility on/o↵, zoom in, zoom out, reset zoom, undo the last

click, or save the current result. Mouse clicks are used for navigation, by centering the image

on the clicked pixel, and membrane pixel selection, by holding the shift key while clicking

on a pixel. Membrane clicks within two pixels on either side of a grid line are considered
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to be clicks on that grid line and are reassigned to the nearest grid line accordingly. The

specific keystrokes used in our implementation can be found in Appendix B.

3.3 Results
Here we present the results of this algorithm for region segmentation with respect to

changing grid sizes. The accuracy of this method is considered independently without the

user correcting any errors and without it being used as training. Additionally, it only

considers the results of labeling along the grid lines directly without the user correcting

undersegmentation. Additional tests using this method and incorporating user corrections

of any undersegmentation will be described in Chapter 5.

The clicks for these tests are generated as a simulation using ground truth data. The

final segmentation used is computed by replacing the binary membrane paths with the

negative version of the original intensity. This allows for thresholding to overcome some

of the oversegmentation errors as was done for all methods in the 2012 ISBI segmentation

challenge [19]. Only 2D error is considered for this experiment.

We used a stack of 60 images from a serial section Transmission Electron Microscopy

(ssTEM) data set of the Drosophila first instar larva ventral nerve cord (VNC) [8]. It has a

resolution of 4⇥4⇥50 nm/pixel and each 2D section is 512⇥512 pixels. The corresponding

binary labels were annotated by an expert neuroanatomist, who marked membrane pixels

with zero and the rest of the pixels with one. During the 2012 ISBI Electron Microscopy

Image Segmentation Challenge [19] [20], 30 images were used for training and the remaining

images were used for testing. We used the 30 images designated as training from this dataset

for this experiment since there is no learning involved and the testing labels were not made

available.

To generate the simulated data we used the ground truth provided with the datasets

and labeled as membrane everywhere that the gridlines crossed the correct membrane label

in the ground truth. The paramaters were grid-spacings of 25, 50, 75, and 100 pixels

with � = 3 and a square shaping element with diameter of 5 pixels. The images were

denoised using a nonlocal means denoising algorithm [41], as this has shown to be e↵ective

at denoising textured images. The denoised image was used both as the input to the cost

function and as the intensity values for replacement once the path finding was complete.

To measure accuracy we use the 1 minus pair f-score (1 � F ) metric as used in the ISBI

2012 segmentation challenge [19, 20] and described in Section 1.2. The 1 � F results are

presented in Table 3.1, and Figure 3.5 shows the image results for 25 and 100 pixel grid
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Table 3.1. 1 � F performance of the algorithm with di↵erent grid spacing using the
Drosophila dataset.

Method

MSANN 25 50 75 100

Error 0.208 0.049 0.088 0.120 0.169

a) b)

c) d)
Figure 3.5. This figure shows the results of using this method where (a) is the original
image, (b) is the ground truth, (c) is the result of using a 25 pixel grid spacing, and (d) is
the reult of using a 100 pixel grid spacing on the Drosophila data set.
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spacing. For comparison the results on the same dataset from a supervised learning method

using a multi scale artificial neural network (MSANN) [37] are also presented.

3.4 Conclusion
In this chapter, we presented a sparse sampling method that can be used for ground truth

generation of membrane. We have shown in our simulated results that with a proper grid

size, this method can generate a su�ciently accurate ground truth. As shown in Chapter 5,

these results, when used as training data, can produce an automatic result comparable to

that of using a manually labeled ground truth.



CHAPTER 4

3D VISUALIZATION AND PROOF-

READING FOR SEGMENTATION

OF NEURONS IN ELECTRON

MICROSCOPY IMAGES

4.1 Introduction
Recent advances in electron microscopy (EM) imaging techniques have resulted in im-

proved resolution and reduced acquisition times for nanometer-scale imaging [11]. Of

particular interest in this space is the 3D reconstruction of the neural structure within

a mammalian brain, or its connectome [3]. Being able to generate a connectome for large

portions of the brain would aid neuroscientists in attempting to understand how the brain

functions under normal conditions and how that function changes with some disorders [42].

The most e�cient way to generate a full 3D reconstruction may be to use a fully auto-

mated segmentation technique. Examples of 3D segmentation methods that are currently

being developed include [34] [43], and [18]. Each of these methods introduce some errors

that need to be corrected for su�cient accuracy to be achieved. In this chapter, we introduce

an e�cient 3D proofreading method for correcting these errors.

Following the automated method used to generate a full 3D segmentation of the dataset

of interest, the resulting segmentation will then need to be proofread to ensure su�cient

accuracy. The proofreading method described in [28] requires the user to manual search

to find errors and then provides methods for correcting these errors. Another proofreading

method known as Eyewire [29] provides a 3D and 2D visualization and asks the user to

manually click supervoxels together to generate the segmentation. Our method uses 3D

and 2D visualization methods in having the user correct the errors, as does Eyewire [29],

however, unlike Eyewire, our proposed segmentation already includes a significant number of

supervoxels, and the visualizations include additional information provided by the automatic

methods.
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4.2 Method

4.2.1 3D Proofreading

Our previous work introduced a 2D method in Chapter 3 that corrected errors utilizing

information in the segmentation. Here we extend that method to 3D and introduce a new

method for visualization to assist in the process.

Consider an image volume V consisting of m image slices Ii that has been segmented

using a hierarchical segmentation structure as described in Section 2.2.1, but such that each

node in the tree represents a 3D segmentation instead of a 2D segmentation. Associated

with each node is a potential corresponding to the likelihood of that node being selected

as the true segmentation as before. For the automatic method, the node with the highest

potential would be selected first and all ancestors and descendants of this node would be

removed from further consideration, then the node with the next highest potential would

be selected. This process would continue until no additional nodes remained in the tree.

To fully take advantage of both the 3D nature and hierarchical approach of the automatic

segmentation we introduce a visualization that presents two di↵erent 3D views to the user.

The first view shows the user the volume of the node with the highest potential in one color

and the corresponding sibling node in another color. An example of this can be seen in

Figure 4.1(c), where blue represents the proposed node and orange represents its sibling

node. This allows the user to see if the selected node is an oversegmentation that can be

corrected by simply selecting the parent node. If a correction can be completed in this

way, it can save a costly number of clicks that may be necessary to correct the error by

simply selecting leaf nodes. As a second view, we present the user with the selected node

split into its two children nodes with each child being represented by a di↵erent color. An

example of this can be seen in Figure 4.1(b), where red represents one of the children and

blue represents the other child. This view will help the user see if the current node was

possibly undersegmented. Having this view allows the user to quickly assess if it is in need

of further investigation.

Finally, in addition to the two volume renderings, we also present a corresponding 2D

view of each volume. The user can manually scroll through the 2D view to see the underlying

raw image data and resolve more di�cult areas. Additionally, when the volume needs to be

resolved by adding volume leaf nodes, this 2D view can be used to click on each of those leaf

nodes. Figure 4.1(a) shows what this 2D view looks like, with the left side corresponding

to the children node view and the right side corresponding to the sibling node view. These

2D views correspond to the gray slices shown in Figures 4.1(b) and 4.1(c) and the number
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(a)

(b) (c)

Figure 4.1. An example of the interface. (a) shows the 2D views with the proposed
segmentation view on the left and the view for the parent node on the right, with the
magenta showing the outline of all 3D leaf nodes on both and the slider indicating which
slice is currently being viewd. (b) shows the proposed segmentation split into the two
possible child nodes and (c) shows the proposed segmentation in blue and its sibling node
in orange.

indicated on the slider bar in 4.1(a).

The proofreading process begins with the user being presented with a proposed segmen-

tation for a single region. This proposed segmentation will be the region associated with

the node in the tree having the highest potential of being correct. The user then examines

the presented visualization and determines if the segmentation is accurate. Using either the

slider or keystrokes, the user can toggle through the 2D slice views in the volume to clarify

areas that may be di�cult to resolve from the 3D view. The user may also rotate the 3D
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views to see them from a di↵erent angle. After examining the region, the user will then

specify the accuracy of the region and the next proposed segmentation will be presented.

Each of the possible segmentation scenarios will be described below.

First, if the proposed segmentation is a correct segmentation, the user specifies a good

segmentation and all of the supervoxels included in the proposed segmentation are assigned

the same label. These supervoxels are then removed from the tree along with each of the

ancestor nodes that include the proposed segmentation. Doing this prevents these labeled

regions from being visited again while the remainder of the tree is processed. The node

with the highest potential remaining in the tree is then selected and presented for the user

to again determine its accuracy.

The next possibility is for the the proposed segmentation to be undersegmented. This

occurs when all of the correct supervoxels from the true segmentation are included in

the proposed segmentation and additional incorrect supervoxels are also included in the

proposed segmentation. In this case, the user selects the option for undersegmentation

and the node corresponding to this proposed segmentation is removed from the tree along

with any ancestor nodes that include this node. The user will then be presented the child

node with the highest potential as the next proposed segmentation region. The 3D view in

Figure 4.1(b) and the left side of the 2D view show the two possible regions corresponding

to these nodes.

The next possibility is for the proposed segmentation to be oversegmented. In this case,

the number of supervoxels included in the region is insu�cient to encompass the entire

true segmentation for that region. There are then two possible responses by the user. If

the 3D visualization corresponding to the parent node as shown in Figure 4.1(c) does not

include any incorrect supervoxels, the user may specify oversegmented and this region will

be presented to the user. Additionally, all of the supervoxels making up the current region

will be removed from the tree. If the 3D visualization corresponding to the parent node

includes more supervoxels than it should, then the user will use the 2D views to add the

correct supervoxels into the current region. These nodes will appear in a new color on

both the 2D and 3D visualizations to aid the user in the correct selection. Once the user

is satisfied with the added supervoxels, the user specifies this region as good and all of the

supervoxels added along with the all of the supervoxels in the proposed segmentation will be

removed from the tree. The user will then be presented with the region corresponding to the

node with the highest potential remaining in the tree as the next proposed segmentation.

Finally, it is possible that the proposed segmentation contains some supervoxels from
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more than one true region without containing an entire true region. This is considered a

bad segmentation. To correct this error, the user will specify it as an undersegmentation

until the proposed region only includes supervoxels corresponding to a single true region.

The user will then complete the correction by selecting the needed supervoxels as described

in the oversegmentation example. Once this is resolved, the user can specify the region

as good. The tree will then be resolved according to the situations described in both the

undersegmentation and oversegmentation cases as they apply. Finally, the user will again

be presented with the region corresponding to the node with the highest potential.

The process of specifying the accuracy of each proposed segmentation continues until all

possible nodes have been removed from the tree. Assuming the supervoxels are su�ciently

oversegmented and the user is knowledgeable and accurate with the selections made, the

resulting segmentation will be the complete 3D segmentation of the volume. By performing

the proofreading directly in 3D while also incorporating information from the automatic

results, we seek to speed up the time required for verifying the accuracy of a large 3D

volume. The specific keystrokes used in our implementation can be found in Appendix C.

4.3 Results
In this experiment we test the new 3D proofreading method introduced here. For

this test we again use the mouse cortex dataset from the ISBI 2013 3D segmentation

challenge [15] and split the 100 training images into two sets of 50 images. This allowed

us to use the first 50 images as training and the second 50 images as testing. We trained

using the automatic methods with the original ground truth on the first set of 50 images.

Following training, we applied this to the 50 images we designated for testing. Finally, we

had an expert neuroanatomist at the National Center for Microscopy and Imaging research

use the proofreading method described here to correct these results. The results are shown

in Table 4.1. Once again, this metric uses the modified rand error as described in Chapter 1

From these results we show that, using proofreading, we were able to improve the result

by almost 2%. In this case, the recall improved significantly at the cost of some in precision.

Table 4.1. The 3D accuracy results on the mouse cortex dataset for the automatic method
prior to proofreading and following proofreading. We trained on the first 50 images of the
training dataset and tested on the other 50 images of the training dataset.

No. Approach Testing Pair Pair
Error Precision Recall

1 Automatic without Proofreading 0.093 0.930 0.884
2 Automatic with Proofreading 0.076 0.911 0.937
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It is important to note here that the di↵erence in two human experts doing complete

manual labeling is approximately 6% according to the challenge website [15]. Using this

as the benchmark for accuracy, we are able to get much closer to that error using the

proofreading method than was achievable using only the automatic method. We anticipate

an ability to get similar improvement if applied directly to the 100 images in the testing

dataset. Additional testing applying this method with the full pipeline will be presented in

Chapter 5.

4.3.1 Timing Analysis

In the completion of this dataset, the user required approximately 1 min per full 3D

region. This resulted in a total time requirement of 8 h and 10 min to complete the 50 slices

of this dataset. Using the 2D proofreading and linking method described in Chapter 2, the

user required approximately 30 min per slice for this same dataset which corresponds to

approximately 25 h for proofreading the same size dataset. This shows an approximately

3⇥ improvement over the method of Chapter 2, when a direct 3D hierarchical segmentation

is available.

4.4 Conclusion
In this chapter we presented a method that allows for direct 3D proofreading of an auto-

matic segmentation method that uses a hierarchical segmentation to generate a potential for

the merging of 3D voxels. Using this method, we were able to show improvement approach-

ing the level of accuracy achieved between two di↵erent human experts. Additionally, the

time required for the proofreading of a data set using this method is significantly reduced

when compared with other proofreading methods.



CHAPTER 5

A COMPLETE PIPELINE FOR 3D

SEGMENTAITON OF NEURITES

IN ELECTRON MICROSCOPY

IMAGES

5.1 Introduction
In this chapter, we present the full pipeline for 3D segmentation of neurites in electron

microscopy images. This pipeline incorporates the methods described in the previous

chapters. The purpose of this pipeline is to generate a full 3D segmentation of a dataset from

ground truth generation, through automatic segmentation, and concluding with proofread-

ing. In combining these methods together we introduce some additional image processing

techniques in this chapter that are used to complete the pipeline. In addition, we propose a

modification to the method for automatic segmentation of membranes that uses a confidence

map as training data instead of a binary map.

The use of a confidence map as training data instead of a binary map results in a

segmentation method similar to the weakly supervised learning method described in [44]. In

their application they were using a support vector machine-supervised learning segmentation

method on natural images. Here we are using the method described in [16] on electron

microscopy images.

For the complete pipeline, several methods exist for incorporating ground truth genera-

tion and automatic segmentation. Methods such as Ilastik [39] allow for feedback between

ground truth generation and the resulting automatic segmentation. The user can add

additional training points to improve the automatic segmentation, but there is no method

incorporated for final proofreading. Other computer-assisted ground truth generation meth-

ods include those described in [8] and [36]. Following automatic segmentation, methods such

as those in [27] and [28] perform proofreading on the result. Our methods of performing

these tasks in a full pipeline di↵er from these other methods in that the ground truth
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generation, image preparation techniques, and proofreading method incorporated into this

pipeline were designed with the full pipeline in mind, allowing us to produce a final accurate

result more e�ciently.

In the following sections, we will begin by describing the methods used in the pipeline

in Section 5.2. This will include an explanation of how each of the previous methods fit

into the pipeline and also what additional preparations were included to complete the full

pipeline. Following the methods section, we present the results we were able to achieve

using this pipeline in Section 5.3. Finally, we provide an overview of the conclusions we

were able to draw from these results in Section 5.4.

5.2 Method

5.2.1 Manual Labeling

The first step in the pipeline is to generate the membrane paths using the method

described in Chapter 3. This will produce an image with all of the membrane paths traced,

but with some oversegmentation contained in this image. To be able to use this membrane

image as a ground truth, we must remove any false membranes and generate the correct

3D links. We begin by applying image processing techniques to clean up the segmentation

before utilizing user input to merge any oversegmentations and establish the correct 3D

links. For this user input, we use the interface introduced in [22] and described in Chapter 2

to correct the oversegmentation and generate the 3D links, but with modification to remove

the dependence on the automatic segmentation used in the original interface.

The image processing begins by applying a morphological closing to the membrane

image. This step is designed to merge parallel membrane paths created when two di↵erent

sides of a membrane are followed in the pathfinding between two di↵erent pairs of labeled

membrane pixels. The shaping element for the morphological processing was selected to be

a disc with a diameter approximately one half the width of the membrane. This allows for

paths on either side of the membrane to be merged without allowing paths on either side

of a small region to be merged. The resulting image is used to identify all of the connected

components between the membrane pixels. Because the membrane paths were computed

using 8-connected neighbors, the connected components are considered for 4-connectivity

separation between all nonmembrane regions. Once this is done we apply a region dilation

that expands each of the regions until just a 1-pixel-wide 4-connected border exists between

regions. Figure 5.1(b) shows the prepared segmentation overlaid on the original image.

These preparation steps are completed using a combination of C++ and MATLAB code.
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(a) (b)

(c)

Figure 5.1. (a) shows the individually segmented regions following the processing tech-
niques as described overlayed on the original raw data with each di↵erent color representing
a di↵erent region, (b) shows the final true segmentation resulting from the proofreading and
linking process once again overlaid on the raw data, and (c) shows the original raw data as
a reference.
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The oversegmentation correction and linking process proceeds with the user being pre-

sented a segmented region and a proposed link to the previous slice. The proposed link

is computed as the region from the previous slice which has the most overlap with the

current region. If it is the first slice, no links will be suggested. The user will then add

any additional regions from the current slice necessary to correct any oversegmentation of

this region. Next, the user will verify that the correct link has been established. If the link

is incorrect, the user will add or remove the segmented regions in the previous slice until

the correct links have been established. Once the oversegmentation has been corrected and

the correct links have been established, this segment will be labeled and the user will be

presented with the next unlabeled region. This process will continue until all regions have

been labeled and linked in the full volume.

5.2.2 Automatic Training and Segmentation

Following the process of manual labeling described in Section 5.2.1, we seek to use the

resulting 3D segmentation as a training set for use in fully automatic segmentation. The

first step in the segmentation process uses a membrane labeling technique described in [16].

The second step is a region segmentation that uses the membrane probabilities of the first

automatic step to generate a 3D segmentation.

We generate a final ground truth to be used in [16] by expanding the region borders

to encompass the entire thickness of the membrane. This is done by using morphological

dilation of the membrane with a disk structuring element having a diameter roughly one

half the thickness of the membrane. The resulting image has membrane thicknesses similar

to the thickness of the true membrane. These membrane pixels, however, may not be

accurately centered on the actual membrane pixels. This is because the best path found in

Section 3.2.1 may not have been centered on the membrane.

To compensate for the possible errors in membrane location, we normalize the raw image

to be between zero and one and replace the binary membrane pixels with one minus their

corresponding raw image value. We then adjust the dynamic range of the new membrane

values by subtracting from each membrane pixel the minimum membrane value and then

dividing by the new membrane maximum value. Finally we set the pixels corresponding

to the original 1-pixel-wide border to be one. The resulting image is a confidence map

of how likely the labeled pixels are to be membrane. Locations with values near one are

almost certainly membrane, and locations with values near zero are almost certainly not

membrane. This confidence map is used as the ground truth for training with the method

of [16] modified as described below. Figure 5.2(a) shows an example of the prepared image.
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(a)

(b) (c)

Figure 5.2. This figure shows the use of sparse sampling for membrane tracing. (a) shows
the ground truth membrane labels generated using the methods described, (b) shows the
result of using this as training for the automatic segmentation method, and (c) shows the
corresponding raw image data.

We begin using [16] by treating every pixel in the confidence map with a nonzero value

as being a true training example and every pixel in the confidence map with a zero value

as being a false training example. A subset of the pixels is chosen for training as described

in [16]. When the updates are computed, however, the confidence map value is used to

weight the update. The new update value, then, is a product of the computed update

based on a given true training example and the confidence map value of that example.
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This helps to overcome any false membranes that may have been added in the membrane

thickening process while also providing a su�cient number of training examples for the

automatic supervised learning method. The resulting imager is shown in Figure 5.2(b).

Following the membrane segmentation, we use the hierarchical segmentation method

of [31] extended to 3D to generate a full 3D segmentation. This method uses the membrane

probability map from the membrane segmentation for generating super voxels, and the

ground truth generated from the manual labeling in Section 5.2.1 as the training examples.

Once training of these two automatic methods is complete, the remainder of the data set

not labeled with the sparse manual labeling described in Section 5.2.1 can be automatically

labeled in 3D.

5.2.3 3D Proofreading

Once the automatic segmentation methods have been run on the unlabeled portions

of the dataset as described in Section 5.2.2, there will still be some errors that need to be

corrected as described in Chapter 2 and Chapter 4. Because we use the direct 3D automatic

region segmentation method, we use the method described in Chapter 4. This method may

be applied directly as described in that chapter without any further modification.

5.3 Results

5.3.1 User Generated Results

In the sparse labeling and linking experiments that follow, the new ground truth was gen-

erated by a user not experienced in manual neurite segmentation using the proposed method

while looking at the original ground truth as a reference to approximate an expert user.

The first experiment using sparse labeling and linking was again done on the Drosophila

VNC dataset from the ISBI 2012 segmentation challenge [19] using grid line separations of

100 pixels with a � parameter of 10 for computing the cost function. Prior to performing

the linking we used a morphological shaping element of radius 3 pixels to correspond to

an approximately 7-pixel-wide membrane in the images and used a morphological closing

operation as described in Section 5.2.1 to reduce the parallel paths. A user labeled the first

10 images of the 30 images in the dataset to use as training for the automatic methods. We

used the method described in [16] for membrane detection and the method described in [31]

for region segmentation as explained in Section 5.2.2. The results comparing this method

of ground truth generation to the results from using the original ground truth are shown in

Table 5.1.



47

Table 5.1. The average 2D accuracy results on the Drosophila VNC dataset for the
automatic method with the sparse sampling and linking method used as the training data
and with the original ground truth used as the training data. In both cases, we trained on
the first 10 images of the dataset and tested on the remaining 20 images.

No. Approach Testing Pair Pair
Error Precision Recall

1 Sparse Sampling Training Data 0.096 0.856 0.958
2 Original Ground Truth Training Data 0.113 0.837 0.945

This test shows that using the method described here for ground truth generation was

able to produce a result actually exceeding the result achieved by using the original ground

truth. Additionally, the pair precision and pair recall results for both methods indicate

a significantly better recall score than precision score. This type of error is indicative of

undersegmentation. This error for using the original ground truth is lower than the error

achieved on the challenge site [19]. This is due to the limited training set used. Here we only

used 10 training images instead of the 30 training images used for the challenge, combined

with the fact that it is tested on a di↵erent set of images.

The second experiment we performed using the sparse sampling, and linking ground

truth was done on a second dataset consisting of two stacks of 100 - 1024 ⇥ 1024 images

from the mouse cortex, as used in the 2013 ISBI 3D Segmentation of Neurites in EM Images

Challenge [15]. This dataset was also acquired using ssTEM with an in-plane resolution

of 6nm ⇥ 6nm and a slice thickness of 30nm. The full 3D labels for the first stack of 100

images was obtained from the challenge website [15]. The second set of 100 images does

not have publicly available 3D labels and was not used for this experiment.

For this set of images, we again use 100-pixel grid spacing and a � parameter of 10. A user

manually labeled and linked all regions using the described method for all 100 of the training

images. The automatic methods used this result as training data. As a comparison, we also

trained the automatic methods on the original ground truth. Both of these trained methods

were then applied to the 100 testing images and submitted to the challenge site for scoring.

Note that this automatic method with the original ground truth is di↵erent than the results

shown previously on the challenge site due to a di↵erent automatic membrane detection

method being used here. Previous results used the membrane probabilities generated using

the method of [17] which was not available for use with our new ground truth. The results

appear in Table 5.2.

Once again, the results from training with our new ground truth outperform the results

from training with the original ground truth. We expect this is because there is more
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Table 5.2. The 3D accuracy results on the mouse cortex dataset for the automatic method
with the sparse sampling and linking method used as the training data and with the original
ground truth used as the training data. In both cases, we trained on the 100 images of the
training dataset and tested on the 100 images of the testing dataset.

No. Approach Testing Pair Pair
Error Precision Recall

1 Sparse Sampling Truth as Training Data 0.132 0.946 0.802
2 Original Ground Truth as Training Data 0.192 0.797 0.820

oversegmentation in the membrane detection using the new training data than using the

original ground truth. This allows the region segmentation method to properly generate

a su�cient oversegmentation for use in its hierarchical structure. This can be seen in the

precision scores using the new method being higher than the precision scores from using

the original ground truth.

The final experiment uses some of the data from second experiment to perform 3D

proofreading. For proofreading, a domain expert was unavailable for completing the full

proofreading of the 100 testing images. As a result, we split the training set into two sets

of 50 images and used the first 50 images as training and the second set of 50 images

as testing. For the 50 training images, we again used the sparse sampling and linking

method for training data as in the previous experiment. This final result incorporates the

entire pipeline, including the sparse sampling, region correction and linking, confidence

map generation, automatic segmentations, and 3D proofreading. The 3D proofreading was

performed by a user using the original ground truth as a guide. This allowed us to simulate

an expert user completing the proofreading with a domain expert unavailable to complete

this test. Table 5.3 shows the results of using the full pipeline compared with that of the

fully automatic method using the original ground truth and the fully automatic method

using the ground truth generated by this pipeline.

These results show that when using the full pipeline, we are able to produce a result

Table 5.3. The 3D accuracy results on the mouse cortex dataset for the full pipeline
compared to the results without proofreading and the results with using the fully automatic
method and the original ground truth.

No. Approach Testing Pair Pair
Error Precision Recall

1 Full Pipeline 0.050 0.943 0.958
2 Full Pipeline without Proofreading 0.130 0.936 0.812
3 Original Automatic Method 0.101 0.960 0.846
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significantly better than using just the automatic method. The final result also compares

favorably with the error between two experts, which was shown to be approximately 0.060

on the challenge site [15].

5.4 Conclusion
In this chapter we presented a full pipeline for generating 3D reconstruction of neurites

in electron microscopy images. Using this method we generate a ground truth that can be

used for supervised learning methods. Following the use of the automatic methods, we use

a full 3D proofreading method. The final results are similar to the results achieved by the

error between two human experts while also minimizing the amount of user input required.



CHAPTER 6

CONCLUSION

In this dissertation we introduced a new method for doing dense labeling of neurons

in electron microscopy images of brain tissue. With improvements in imaging technology,

there has been a growing need for high-throughput neuron labeling methods. We addressed

this need by developing a full segmentation pipeline that minimizes the user input while

maintaining high accuracy.

In Chapter 2, we introduced a method for proofreading and linking. We designed

our method to utilize the information provided by the automatic segmentation method

to perform proofreading on the result more e�ciently. We also introduced a method for

linking that allowed for the generation of fully labeled 3D datasets. Using this method we

were able to generate results comparable to those of a human expert doing fully manual

labeling.

In Chapter 3, we introduced a method for ground truth generation. Using this method,

a user sparsely labels the membrane by indicating where the membrane intersects with an

evenly spaced grid overlay. This provided a random sampling of the membrane and allowed

us to use a pathfinding method with some additional image processing for labeling the

remainder of the membranes.

In Chapter 4, we introduced a method for performing direct 3D proofreading. This

method used novel visualization methods to display the information from the automatic

results to allow the user to more quickly determine the accuracy of the result. The final

result was much quicker than previously published results and generated a segmentation

accuracy on par with that of a human expert.

The final chapter, Chapter 5, presented our method for combing all of the previous

methods into a full pipeline. This pipeline could be used for generating a dense segmentation

of neurites in electron microscopy images at a rate and accuracy that significantly improves

on what is currently available. We anticipate that neuroscientists using this method can

generate high-quality datasets more quickly, allowing them to focus more of their attention
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on how these neurons interact. This in turn can lead to a greater understanding of how the

brain operates.



APPENDIX A

SUMMARY OF USER INPUT FOR

METHOD OF CHAPTER 2

This appendix includes Table A.1, which shows the specific key strokes used for the

method described in Chapter 2.

Table A.1. Summary of the possible input to the program for the method of Chapter 2
and the reason for using each input.

Input: Usage
p: View previous slice
n: View next slice
g: Indicate suggested region is acceptable
u: Indicate suggested region is an undersegmentation

or bad segmentation
Left Click: Recenter view on clicked point

Shift + Left Click: Add or removed user selected superpixel to region
+/=: Increase zoom

/-: Decrease zoom
0: Recenter current region in view areas
1: Reset to original view for the current region
s: Save volume and exit
d: Indicate the user has completed the current slice

and is ready to move to the next slice
q Quit without saving



APPENDIX B

SUMMARY OF USER INPUT FOR

METHOD OF CHAPTER 3

This appendix includes Table B.1, which shows the specific key strokes used for the

method described in Chapter 3.

Table B.1. Summary of the possible input to the sparse sampling program in Chapter 3
and the reason for using each input.

Input: Usage
t: Toggle the visibility of the grid lines
c: Compute the paths between all currently labeled membrane points
z: Remove the last membrane point clicked

Left Click: Recenter view on clicked point
Shift + Left Click: Label user selected pixel as a membrane point

+/=: Increase zoom
/-: Decrease zoom
1: Reset to the original view
s: Save the membrane paths and exit
q Quit without saving



APPENDIX C

SUMMARY OF USER INPUT FOR

METHOD OF CHAPTER 4

This appendix includes Table C.1, which shows the specific key strokes used for the

method described in Chapter 4.

Table C.1. Summary of the possible input to the program for the method of Chapter 4
and the reason for using each input.

Input: Usage
p: View previous slice
n: View next slice
g: Indicate suggested region is acceptable
u: Indicate suggested region is an undersegmentation

or bad segmentation
t: Toggle the visibility of the overlays on the 2D views
z: Undo the last selection

Left Click: Recenter 2D view on clicked point
Shift + Left Click: Add or removed user selected

supervoxel to region on 2D view
Scroll Wheel: Zoom in or out on 3D view +/=: Increase zoom

/-: Decrease zoom
0: Recenter current region in view areas
1: Reset to original view for the current region
s: Save volume and exit
d: Indicate the user has completed the current slice

and is ready to move to the next slice
q Quit without saving
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