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Abstract 

Video game skills transfer to other tasks, but individual differences in performance and 

in learning and transfer rates make it difficult to identify the source of transfer benefits. 

We asked whether variability in initial acquisition and of improvement in performance on 

a demanding video game, the Space Fortress game, could be predicted by variations in 

the pre-training volume of either of two key brain regions implicated in learning and 

memory: the striatum, implicated in procedural learning and cognitive flexibility, and the 

hippocampus, implicated in declarative memory. We found that hippocampal volumes 

did not predict learning improvement, but that striatal volumes did. Moreover, for the 

striatum, the volumes of the dorsal striatum predicted improvement in performance, but 

the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes 

predicted early acquisition rates. Further, this early-stage correlation between striatal 

volumes and learning held regardless of the cognitive flexibility demands of the game 

versions, whereas the predictive power of the dorsal striatal volumes held selectively for 

performance improvements in a game version emphasizing cognitive flexibility. These 

findings suggest a neuroanatomical basis for the superiority of training strategies that 

promote cognitive flexibility and transfer to untrained tasks. 

 

Keywords: basal ganglia, caudate nucleus, cognitive flexibility, nucleus accumbens, 

procedural learning 



 3

The pervasiveness of video game use across cultures, coupled with evidence that video 

game experts outperform novices on many basic measures of attention and perception, 

has increased interest in using these games for instructional and training purposes. 

Playing video games for as few as 10 to 20 hours has been shown to improve 

performance on a number of attentional and perceptual tasks (Green and Bavelier, 

2003, 2006, 2007) and on tasks requiring executive control (Basak et al., 2008). Such 

evidence has led to the development of video games that purportedly improve memory, 

attention, processing speed and performance in daily life. The assumption underlying 

these assertions is that skills acquired through training on one task (i.e., the video 

game) transfer to other untrained tasks, including complex real world tasks (Boot et al., 

2008).  

 The evidence that video game training improves performance on untrained tasks is 

promising. Several studies have reported transfer of training from video games to 

untrained behaviors and tasks (Basak et al., 2008; Frederickson and White, 1989; 

Green and Bavelier, 2003, 2006, 2007). For example, training on the Space Fortress 

video game, a video game specifically designed to study the cognitive effects of training 

(Donchin et al., 1989), predicted the success of Israeli Air Force flight school cadets in 

learning flight control (Gopher et al., 1994). However, others have found that 20-plus 

hours of action video game practice provided no specific benefits for novice video 

gamers across a wide battery of cognitive tasks, even though expert gamers 

outperformed the novices on many of the same tasks (Boot et al., 2008). These 

contrasting findings raised the possibility that other factors contribute to the differences 
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in performance between expert video gamers and non-gamers, including self-selection 

effects originating from pre-existing individual differences (Boot et al., 2008).  

 If pre-existing individual differences contribute to a self-selection effect, they might 

also predict variability in learning rates. In the experiments reported here, we reasoned 

that such pre-existing differences might include differences in brain structures important 

for procedural learning and cognitive flexibility, and that it might therefore be possible to 

predict learning rates on complex tasks such as video games by analyzing pre-existing 

differences in brain structures. We focused on the striatum, a key node in procedural 

learning circuits (Balleine et al., 2009; Doyon et al., 2003; Graybiel, 2005, 2008; Yin and 

Knowlton, 2006). The caudate nucleus and putamen, which together make up the 

dorsal striatum, have been convincingly implicated in procedural and habit learning and 

in the execution of learned behaviors. These regions are also activated while performing 

tasks that require cognitive flexibility such as task-switching, and transfer to untrained 

tasks (Cools et al., 2004; Dahlin et al., 2008; Kimchi and Laubach, 2009; Meiran et al., 

2004; Ragozzino et al., 2002). The nucleus accumbens, in the ventral striatum, is part of 

the limbic circuitry related to reinforcement and motivation (Belin and Everitt, 2008; De 

Martino et al., 2009; Graybiel, 2008), and evidence suggests that the nucleus 

accumbens is recruited during the early stages of learning (Atallah et al., 2007; 

Hernandez et al., 2002; O'Doherty et al., 2004). Positron emission tomography (PET) 

studies in humans have shown that dopamine release and binding are increased in both 

of these striatal regions when subjects play a video game, and that greater dopamine 

binding is associated with better performance (Koepp et al., 1998). 
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 To test directly whether the differential size of these striatal regions could be used to 

predict learning on an unfamiliar video game, we used MRI-based brain volumetry to 

measure striatal volumes of subjects with little previous video game experience before 

they received training on the classic Space Fortress video game. As a control brain 

structure, we analyzed the volume of the hippocampus, implicated in declarative 

memory formation (Squire et al., 2004). We used two different training strategies, one 

version emphasizing cognitive flexibility (variable priority training) and the other version 

not (fixed priority training). Variable priority training procedures periodically shift the 

emphasis of training from one task component to another, enhance learning rates and 

retention (Fabiani et al., 1989) and induce transfer to untrained tasks more effectively 

than procedures that employ a fixed priority training strategy (Bherer et al., 2008; 

Kramer et al, 1999). Thus, we reasoned that training emphasizing task-shifting might 

capitalize on the circuitry of the striatum more than training emphasizing overall 

performance on the entire task. We also compared the predictive value of the brain 

measures not only for the entire training periods, but also for different phases of 

learning including the initial acquisition period when performance was lowest but 

performance gains were highest. 

 We show here that striatal volumes, but not hippocampal volumes, predict learning 

improvements on a video game. Moreover, we found a dissociation between the 

predictive power of the dorsal striatal volumes and that of the ventral striatal volumes. 

The volume of the dorsal striatum positively predicted performance improvements for 

those individuals trained with strategies promoting cognitive flexibility, whereas the 

volume of the ventral striatum did not. But during early learning stages, both the volume 
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of the ventral striatum and the volume of the dorsal striatum positively predicted 

performance improvements. These findings suggest that individual structural differences 

in the striatum are effective predictors of procedural learning and cognitive flexibility and 

are sensitive indicators of ventral-to-dorsal differences in striatal recruitment during 

learning. 
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Materials and Methods  

Participants 

Forty-two participants (ages 18-28, 12 males) were recruited from the Urbana-

Champaign community either through flyers posted in campus buildings and businesses 

or through advertisements posted to online bulletin boards. Individuals responding to 

these advertisements were then asked to complete a survey of their video game habits 

and to return this survey via e-mail. All chosen participants reported normal or 

corrected-to-normal visual acuity, normal color vision, and normal hearing, were right-

handed, reported not being on any medications, and met all criteria for participating in 

an MRI study including no previous head trauma, no previous head or neck surgery, no 

diagnosis of diabetes, no neuropsychiatric or neurological condition including brain 

tumors, and no metallic implants that could interfere with or cause injury due to the 

magnetic field. All signed an informed consent approved by the University of Illinois 

Internal Review Board. Finally, subjects were chosen for the study only if they reported 

playing less than 3 hours of video games a week during the two years prior to the study. 

Of the original 42 individuals accepted, 39 completed the study. Three were excluded 

from the data analysis due to errors in processing of the MRI data. Participants were 

paid $15 an hour for testing and training. These subjects were randomly assigned to 

receive either fixed priority or variable priority training procedures (18 in each group: 6 

males in variable priority, 4 males in fixed priority).  
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Apparatus 

Ten networked computers were used to collect performance data. The Space Fortress 

game was displayed on 19-inch LCD monitors, and participants made game responses 

with the computer mouse and a Logitech Attack 3 Joystick. 

 

Stimuli and Procedures 

Participants were given instructions about the Space Fortress game and then, before 

game training, completed an MRI session. They were then given 20 hours of Space 

Fortress game training (ten 2-hour training sessions).  

 The Space Fortress game (see Fig. 2) requires players to navigate their ship with 

precise control using a joystick. The ship moves in a frictionless environment, and 

players can rotate the ship by moving the joystick left or right, or by applying a thrust by 

pushing forward on the joystick. The ship has no braking system, so that in order for 

players to slow or stop the ship, they must rotate it so that it faces the direction opposite 

to its current direction of motion and apply a thrust. This requirement makes control of 

the ship a challenging and demanding task.  

 The main goal of the Space Fortress game is for the players to destroy the fortress 

(at the center of the screen) as many times as possible while avoiding damage to their 

own ship. To destroy the fortress, players must hit the fortress with missiles by aiming 

towards it and pushing the fire button on the joystick. For the fortress to become 

vulnerable to destruction, it must first be hit with ten missiles. The intervals between 

missiles must be at least 250 ms, so timing is an important component of successful 

performance. After ten missile hits, the fortress can be destroyed by hitting it with a 
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rapid double shot (two missile hits separated by less than 250 ms). If participants hit the 

fortress with a double shot before it is vulnerable, the vulnerability of the fortress is reset 

to zero, and the player must start over again accumulating hits. To make the task even 

more challenging, the fortress rotates and shoots back at the player’s ship, so that the 

player needs to keep his own ship in constant motion to avoid damage. 

 At regular intervals, mines appear on the screen. These objects can also damage 

the player’s ship if they come in contact with it. Mines actively pursue the ship. 

Importantly, the fortress cannot be damaged or destroyed as long as a mine is on the 

screen, so mines must be dealt with as soon as possible. Each mine has a letter 

associated with it, and the letters are shown on an instrument panel displayed at the 

bottom of the screen. The letter identifies each mine as friend or foe, and at the 

beginning of each game participants are asked to remember three letters that represent 

foe mines, with all other letters identifying friendly mines. If the mine that appears is a 

friendly mine, the player can shoot it, and the friendly mine will transfer this damage to 

the fortress. However, if it is a foe mine, it must be flagged as such using the mouse 

and then destroyed with a missile. Responding to mines incorrectly (identifying a friend 

as a foe, or vice versa) has negative consequences in terms of the total score, and thus 

participants must be careful to remember which letters represent foe mines. 

 Finally, there is a constant monitoring task embedded in the Space Fortress game. A 

stream of symbols appears below the fortress. Whenever a dollar sign symbol appears 

twice in a row, players can use the mouse to select either bonus points or bonus 

missiles (which are a limited resource). However, if players incorrectly identify the first 

dollar symbol as the second, they miss their opportunity to obtain a bonus when the 
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second symbol appears. Thus, participants are always encouraged to monitor this 

information. 

 Points are awarded to players based on their performance of the Space Fortress 

game. They are given a Total score and also sub-scores that reflect different aspects of 

their performance. Different actions add to, or subtract from, different sub-scores, and 

these are displayed in the instrument panel located at the base of the screen during the 

game. For example, participants are asked to keep their ship in the space between the 

two hexagons on the screen (see Fig. 2). Doing so increases the Control sub-score. 

Flying the ship outside of the large hexagon or leaving the screen entirely (going into 

hyperspace) subtracts from the Control sub-score. The Velocity sub-score increases 

when the players move the ship at slow speeds and decreases when they move it at 

high speeds. The Speed sub-score rewards/punishes participants for how quickly they 

deal with mines, and the Points sub-score increases when players shoot and destroy 

the fortress, but points are subtracted for damage and destruction of the player’s ship. 

 

Training Procedure 

Before the MR session, each subject was first familiarized with the Space Fortress 

game by completing the Aiming Task. In this task, subjects used the joystick to rotate 

their ship (which was in a fixed location at the center of the screen) and the fire button to 

destroy mines that appeared randomly on the screen. The objective was to destroy as 

many mines as possible. Participants completed three trials of the Aiming Task, with 

each trial lasting about one minute. Next, participants watched a movie that 

demonstrated all the rules of the Space Fortress game and were given printed 
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instructions to refer to. Then participants were given 1.5 hours of Space Fortress 

experience in which they completed twenty-four 3-minute games of Space Fortress and 

were instructed to try to obtain the highest Total score. 

 After this initial familiarization session, the training of the variable priority group and 

the fixed priority group diverged. All participants completed ten 2-hour sessions 

consisting of thirty-six 3-minute games. The block and trial structure was identical for 

the two groups. Within each session, performance was assessed twice (once at the 

beginning of the session and once at the end). Each session started and ended with 3 

test game trials (baseline trials) in which participants were asked to maximize 

performance and focus on obtaining the highest Total score. This resulted in 20 actual 

assessments of performance with each one averaging performance over 6 games (3 

before practice and 3 after practice). In between these baseline games, the subjects 

completed 30 practice games per session. For the fixed priority group, subjects were 

always asked to maximize the Total score during training, and were reminded that Total 

score was the sum of the Control, Velocity, Speed, and Points sub-scores. This resulted 

in 20 assessments of performance over the training period. Participants in the fixed 

priority group were told to emphasize each of these sub-components of the game 

equally. They completed five blocks of six trials each. For the variable priority group, 

participants were asked to focus their resources on improving and monitoring different 

sub-scores of the game during the 30 practice games. They were given five blocks of 

six trials each in which they were asked to emphasize a particular aspect of the Space 

Fortress game, and this emphasis changed every six trials. Importantly, the subjects 

were instructed not to ignore other aspects of the game, but just to put particular 
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emphasis on one of them at any given time. On even-numbered sessions, participants 

completed emphasis blocks in the following order: Control, Velocity, Speed, Points, and 

Total. On odd-numbered sessions, they completed the same emphasis blocks in the 

reverse order. For both groups, the total training consisted of 360 games of Space 

Fortress. Participants completed 3-5 two-hour sessions per week. 

 

MR Imaging Protocol and Image Processing 

High resolution (1.3 mm x 1.3 mm x 1.3 mm) T1-weighted brain images were acquired 

using a 3D MPRAGE (Magnetization Prepared Rapid Gradient Echo Imaging) protocol 

with 144 contiguous slices collected in an ascending fashion. All images were collected 

on a 3T Siemens Allegra scanner with an echo time (TE) = 3.87 ms, repetition time (TR) 

= 1800 ms, field of view (FOV) = 256 mm, an acquisition matrix of 192 mm x 192 mm, 

and a flip angle of 8 degrees. 

 For segmentation and volumetric analysis of the left and right striatum and 

hippocampus we employed FMRIB’s Integrated Registration and Segmentation Tool 

(FIRST) in FMRIB’s Software Library (FSL) version 4.0. FIRST is a semi-automated 

model-based segmentation tool utilizing a Bayesian framework based on shape and 

appearance models obtained from manually segmented images by the Center for 

Morphometric Analysis, Massachusetts General Hospital, Boston. Structural and 

landmark information were obtained from 317 manually segmented and labeled T1-

weighted images of the brain from normal children, adults and clinical populations and 

were modeled as a point distribution model in which the geometry and variation of the 

shape of the structure are submitted as priors. Volumetric labels are parameterized by a 
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3D deformation of a surface model based on multivariate Gaussian assumptions. FIRST 

then searches through linear combinations of shape modes of variation for the most 

probable shape given the intensity distribution in the T1-weighted image (Patenaude et 

al., 2007a, 2007b). 

 This method first runs a two-stage affine registration to a standard space template 

(Montreal Neurological Institute space) with 1 mm resolution using 12 degrees of 

freedom and a subcortical mask to exclude voxels outside the subcortical regions. 

Second, the caudate nucleus, putamen, nucleus accumbens, and hippocampus are 

segmented with 30, 40, 50, and 30 modes of variation, respectively, for each structure. 

Finally, boundary correction takes place for each structure so that the boundary voxels 

are classified as belonging to the structure or not based on a statistical probability (z-

score > 3.00; P < 0.001). In the current study, the volume of each structure was 

measured in cm3. The segmentation results for each participant were visually inspected 

for any significant error that could have occurred during the segmentation process. No 

errors were noted. 

 Intracranial volume (ICV) is frequently used to adjust the regional volumes for 

gender and for height (Raz et al., 2005). Here, we calculated ICV as the sum of gray, 

white, and cerebrospinal fluid and adjusted the volume of each region by this measure 

using FMRIB’s automated segmentation tool in FSL version 4.0 (Smith et al., 2004; 

Zhang et al., 2001). In accordance with other volumetric analyses, adjustment was 

performed for each region by an analysis of covariance approach: adjusted volume = 

raw volume – b x (ICV – mean ICV), where b is the slope of a regression of an ROI 



 14

volume on ICV (Erickson et al., 2009; Kennedy et al., 2009; Raz et al., 2005). Adjusted 

volume was used for all analyses described in this manuscript. 

 To assure reliability of the segmentation algorithm for these structures, we ran an 

additional MRI scan on all subjects two weeks after the completion of the training 

program. We employed the same segmentation algorithm described above to these 

images and assessed the test-retest reliability of the segmentation algorithm. We found 

high reliability for all regions using Cronbach’s alpha. The hippocampus, caudate 

nucleus, and putamen had Cronbach α values greater than 0.94, and the values for the 

nucleus accumbens were at α= 0.90. Thus the segmentation algorithm was able to 

identify the locations of the structures of interest across scans with high consistency. 

 

Analyses 

Behavioral performance on the Space Fortress game was analyzed by a repeated 

measures ANOVA with 2 factors: practice level (within-subjects) and training group 

(between-subjects). Total scores and sub-scores were analyzed individually. 

 We examined whether improvement on any measure of the Space Fortress game 

was associated with volumes of either the dorsal or ventral striatum or the 

hippocampus. We calculated the difference in performance between the first and last 

sessions to obtain a measure of improvement for the Total score and each of the sub-

scores. These difference values were then entered into a series of multiple regression 

analyses with initial performance entered as a covariate and the difference in 

performance (performance improvement) entered as the dependent variable. Volume 

was used as the independent variable to predict performance. We calculated 
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standardized beta values (β) and significance values. These multiple regression 

analyses were conducted in one omnibus analysis collapsing across training groups. 

Interaction terms were also included to determine whether one training group profited 

more from variation in volume of one or more of the sites examined (Group x Regional 

volume interaction).  

 To examine whether any brain region would be related more to learning rates in the 

early training sessions than later sessions, we divided the 20 two-hour training sessions 

into four and calculated improvements in performance by taking the difference between 

the first and last sessions in each phase. We then used these values in a multiple 

regression analysis to determine whether regional brain volume was related to 

performance improvements early in task acquisition. Initial performance for each phase 

was entered as a covariate in the model. Standardized beta values (β) and significance 

values are reported. 
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Results 

Imaging of the Striatum and Hippocampus 

We imaged the striatum and hippocampus with high-resolution MRI before the video 

game training but after familiarization with the video game (see Materials and Methods). 

To determine the location, size, shape, and boundaries of striatal and hippocampal 

regions, we used an automated segmentation algorithm that employs a point distribution 

model from manual tracing of defined regions (Fig. 1). We also normalized the 

measurements. After segmentation, the volume of each region was calculated based on 

voxel dimensions and adjusted for total intracranial volume (ICV). Total ICV was used to 

adjust for variation in total brain and head size, accounting for sex differences, by 

multiple regression. The normalized volumes of the left and right caudate nucleus 

ranged from 3.80 cm3 to 7.43 cm3 (Mean = 5.33; SD = 0.85) those of the left and right 

putamen ranged from 3.61 cm3 to 6.81 cm3 (Mean = 5.22; SD = 0.68), and those of the 

left and right nucleus accumbens ranged from 0.425 cm3 to 1.45 cm3 (Mean = 0.77; SD 

= 0.22). The hippocampal volumes for the left and right sides ranged from 3.46 cm3 to 

6.55 cm3 (Mean = 5.10; SD = 0.63).  

 

Behavioral Learning during Training on the Space Fortress Video Game 

Training reliably improved performance on the Space Fortress game (Fig. 2). The 

combined Total scores for subjects trained with the fixed priority and variable priority 

strategies improved significantly with training across the four phases (F3, 102 = 153.45, P 

< 0.001), as did each of the sub-scores (Velocity, Points, Control, Speed; all P < 0.001). 
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The degree of improvement on the Total scores ranged from 1100 to 7300 points (42% 

and 5500% improvement).  

 During the first 4 sessions (in phase 1), the slopes of the learning curves were 

similar for the fixed priority and variable priority groups, but the scores for the groups 

trained on these two versions diverged thereafter. As predicted from previous work, the 

variable priority training led to faster learning than did fixed priority training (Bherer et 

al., 2008; Fabiani et al., 1989). The group by training level interaction for the Total score 

was significant when examining all 20 sessions (F19, 646 = 2.37, P < 0.001, Fig. 2B) and 

was marginally significant when splitting the data into four phases (F3, 102 = 2.16, P < 

0.09). By the end of training, the Total scores of participants trained in the variable 

priority protocol were 29% higher than those of the subjects trained with the fixed 

priority strategy. This difference in the Total scores for the two groups was mainly due to 

differential improvement by the variable training group on the Points and Velocity sub-

scores. Improvements in performance were not correlated with initial performance for 

the Total score (r = 0.02), Points subscore (r = 0.05), or the Velocity subscore (r = 

-0.19), but they were correlated with initial performance for the Speed (r = -0.25) and the 

Control (r = -0.68) subscores. Variability in performance improvements for all sub-

scores were statistically equivalent between the fixed priority and variable priority 

training groups as measured by Levene’s test for homogeneity of variance with the one 

exception that the improvement in the Total score was more variable for variable priority 

training than for fixed priority training (P < 0.05). This result confirms that our data were 

appropriate for interrogation within the General Linear Model. 
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Predicting Initial Behavioral Performance Based on Brain Volume Measurements 

The relationship between striatal volumes and improvements in game performance was 

not accounted for by individual differences in initial game performance. Out of 30 

correlations between the five performance measures and the right and left hemisphere 

volumes of each brain region, including the caudate nucleus, nucleus accumbens, 

putamen, and hippocampus, only two were marginally significant: the points sub-score 

was correlated with the left caudate nucleus volume (r = 0.33, P < 0.04) and marginally 

with the left nucleus accumbens volume (r = 0.30, P < 0.06). All other correlations 

between initial performance and volume were not significant (all P > 0.05). These 

correlations can be considered a liberal estimate of the relationship between initial 

performance and brain volume, as all were conducted without correction for multiple 

comparisons.  

 

Hippocampal Volume Does Not Predict Performance Improvement across 

Training 

Our main predictions were specific to the volume of the dorsal and ventral regions of the 

striatum. As a test of whether the correlations that we found were generalized or not, we 

examined whether the hippocampal volumes were also predictors of learning on the 

Space Fortress task. We found that hippocampal volumes were not predictive of 

performance, or improvements in performance (Left: F2, 33 = 1.40; n.s.; Right: F2, 33 = 

1.41; n.s.), for either the fixed priority or the variable priority versions (Fig. 3D). Left and 

right hippocampal volumes accounted for less than 2% of the variance in performance 

improvements for both training groups (all effects P > 0.05). By contrast, striatal 
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volumes predicted changes in performance with training, and did so in patterns specific 

both for the different striatal regions analyzed and for the type of training protocol 

experienced by the subjects. 

 

Dorsal Striatal Volumes Predict Performance Improvements across Training 

We first analyzed performance across the entire 20-hour training period, collapsed 

across both training groups, to determine whether striatal volumes were predictive of 

performance improvements on the Space Fortress game. We used multiple regression 

analyses between change in performance (Session 20 – Session 1) and the volume of 

each region of the striatum (Table 1 and Fig. 3), while including initial performance as 

covariates in the model. Table 1 summarizes the effect sizes (beta values) and their 

significance levels for the four sub-scores.  

 To begin, the overall ANOVAs were significant for the left (F2, 33 = 4.00; P < 0.03) 

and right (F2, 33 = 3.94; P < 0.03) caudate nucleus and marginally significant for the left 

(F2, 33 = 3.00; P < 0.06) and right (F2, 33 = 2.88; P < 0.07) putamen, but failed to reach 

significance for the left (F2, 33 = 1.23; P = 0.30) and right (F2, 33 = 1.46; P = 0.24) nucleus 

accumbens. Given our predictions for the role of the dorsal striatum in learning, we 

determined the direction of these effects by exploring the beta values resulting from the 

multiple regression models (described below and in Table 1). 

 The volumes of the dorsal striatal regions were positively correlated with training-

induced performance improvements for the Total scores (accounting for 9% of variance 

in learning), the Points scores (accounting for 10% of variance in learning), and the 

Velocity scores (accounting for 11% of variance in learning). By contrast, the volumes 
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for the nucleus accumbens were not correlated with the task acquisition for either the 

Total score or any of the sub-scores (all accounting for less than 1% of the variance in 

learning rates). Furthermore, when all dorsal striatal regions were included in the 

multiple regression model, 23% of the variance in learning amounts across training was 

accounted for. It should be noted that these values represent statistical values 

uncorrected for multiple comparisons and therefore may be a liberal estimate of these 

associations.  

 To test whether these effects were influenced by gender-related differences in brain 

volume and learning, we re-ran the regression analyses while including gender as an 

additional covariate. All results described above remained unchanged after gender was 

included in the model. These results suggest that larger pre-existing volumes of the 

caudate nucleus and putamen predicted faster overall rates of video game skill 

acquisition.  

 

Dorsal Striatal Volumes Predict Learning Performance with Variable Priority 

Training but Not Fixed Priority Training Protocols 

The dorsal striatal volumes were predictive of performance only for subjects trained on 

the variable priority version of the Space Fortress game, despite the fact that large 

performance gains were achieved by both groups of subjects (Figs. 3 and 4). There 

were significant positive training group x volume interactions for the Points, Velocity, 

and Speed sub-scores. For the Points sub-score, the training group x volume 

interactions were significant for the left caudate nucleus (β = 0.39, P < 0.02), the right 

caudate nucleus (β = 0.40, P < 0.02), and the left putamen (β = 0.41, P < 0.01). For the 
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Velocity sub-score, there also were significant training group x volume interactions for 

both sides of the caudate nucleus (left: β = 0.29, P < 0.05; right: β = 0.30, P < 0.04) and 

for the left putamen (β = 0.32, P < 0.03). As for the Points sub-scores, there was only a 

trend for a relation between performance and right putamenal volumes. For the Speed 

sub-score there was a significant training group x volume interaction for the right 

caudate nucleus (β = 0.32, P < 0.04). There was a trend toward significance for the left 

caudate nucleus (β = 0.31, P < 0.06), but interactions for the putamen were not 

significant (left: β = 0.13, P > 0.05; right: β = 0.06, P > 0.05).  

 All of these interactions resulted from positive associations between pre-existing 

striatal volumes and performance improvements for those subjects trained with variable 

priority methods. We found no consistent associations between striatal volume and 

performance improvements for the fixed priority training group (Fig. 3), and no 

significant interactions with gender (all P > 0.10). None of the regressions (main effects 

and interactions) between performance improvements and ventral striatal volumes were 

significant. Thus the predictive value of the striatal volumes on learning was selective 

both for striatal region and for training strategy. 

 

Volumes of the Nucleus Accumbens Predict Performance Improvement during 

Early Phases of Learning 

Despite the lack of significant correlations between the volumes of the nucleus 

accumbens region and overall performance on the video game, the ventral striatal 

volumes were positively correlated with improvements in performance early during task 

acquisition. When the training periods were broken up into four separate phases, 
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consisting of five sessions in each phase, we found that improvements in performance 

within the first five sessions (phase 1) for the Total score was related to both left (β = 

0.37, P < 0.03) and right (β = 0.33, P < 0.05) nucleus accumbens volume (Fig. 5). This 

relationship with Total score appeared to be driven by a relationship with the Velocity 

sub-score. Improvements in Velocity scores for the first phase of learning were related 

to the volumes of the left (β = 0.41, P < 0.01) and the right (β = 0.46, P < 0.004) nucleus 

accumbens. There was no relationship between nucleus accumbens volumes and 

performance improvements in the later training sessions (phases 2-4) or for other 

measures of Space Fortress performance (all P > 0.10). Furthermore, all interactions 

between training group and volume also failed to reach significance levels of P < 0.05, 

suggesting that this correlation between the ventral striatal volumes and the initial 

learning phase held for both the fixed priority and variable priority training methods. 

Similarly, when gender was added to the model, the results remained unchanged. The 

volumes of the ventral striatum thus were selectively predictive of early acquisition, 

independent of gender and independent of the training method experienced by the 

subjects. 

 We performed a similar analysis for the dorsal striatal structures to determine 

whether volumes were more related to the learning slopes of the early or later phases of 

task acquisition. In a multiple regression analysis, we found that dorsal striatal volume 

was predictive of performance improvements during both early and later learning 

phases for subjects trained with the variable priority strategy (Fig. 5). For example, the 

volumes of the left and right caudate nucleus were predictive of learning rates in phase 

1 (left: β = 0.42, P < 0.01; right: β = 0.31, P < 0.05) as well as in phase 4 (left: β = 0.46, 
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P < 0.01; right: β = 0.36, P < 0.03). The volumes for the putamen showed a similar trend 

as those of the caudate nuclei for phases 1-4 for the left and right hemispheres (all P < 

0.05).  
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Discussion  

Our findings demonstrate that the pre-existing volumes of the striatum, but not the pre-

existing hippocampal volumes, predicted the improvement in performance of healthy 

young subjects learning a complex video game. The predictive power of the striatal 

measurements was dependent both on the striatal region and on the training strategy. 

The correlations between learning and dorsal striatal volume were specific to variable 

priority training methods; they were not significant for fixed priority training methods. For 

the variable priority game version, larger dorsal striatal volumes were associated with 

higher overall performance scores and some performance sub-scores following training.  

There were no significant correlations between these performance scores and ventral 

striatal volumes. The ventral striatal volumes, however, were predictive of learning 

during the initial stages. When we analyzed performance improvement for the first and 

later phases of training, ventral striatal volumes were predictive of learning during initial 

phases of learning, but not during later phases, whereas dorsal striatal volumes were 

predictive of both early and late learning. These findings point to the striatum as a key 

element of neural circuits underpinning video game learning, and suggest that both the 

nature of the demands of the procedural learning and the dynamics of the learning 

trajectories are reflected in the dominant striatal circuits involved.  

 The selectivity of the ventral striatum for predicting performance during the early 

stages of learning highlights the importance of limbic circuits related to this striatal 

region to initial learning and the reinforcement-related processes involved in early task 

acquisition and suggests that these do not have as dominant an effect later in the 

learning process. This result is consistent with studies in rodents and humans 
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demonstrating a critical role of the nucleus accumbens in early stages of learning and 

the dorsal striatum in both earlier and later stages of learning (Atallah et al., 2007; 

Balleine et al., 2009; Barnes et al 2005; Belin et al., 2009; Doyon et al., 2003; Graybiel, 

2008; Hernandez et al., 2002). The striatum is interconnected with the neocortex by 

trans-thalamic circuits that can be broadly divided into sensorimotor, associative, and 

limbic zones, with the dorsal striatum contributing to motor and associative processing 

including cognitive flexibility, and the ventral striatum contributing especially to 

motivational and affective processing (Belin and Everitt, 2008; Di Martino et al., 2008; 

Draganski et al., 2008; Graybiel, 2008; Packard and Knowlton, 2002; Postuma and 

Dagher, 2006; Takahashi et al., 2008). The early periods of acquisition of the Space 

Fortress game may have invoked heightened activity of limbic inputs related to reward 

and motivation, processes regulated by the ventral striatum. By contrast, during later 

learning phases, the limbic inputs may have been diminished while cognitive switching 

and procedural processes, regulated by the dorsal striatum, were heightened. The fact 

that we could detect correlations between dorsal striatal volumes and performance for 

all phases of learning suggests that the dorsal striatum operates with the continued 

input throughout acquisition from circuits associated with cognitive flexibility and 

procedural learning.  

 The Space Fortress task has substantial motor-learning demands related to 

controlling the ship’s position and direction in a frictionless environment. In addition, 

variable priority training promotes cognitive flexibility by shifting the emphasis of training 

from one task component to another during the training sessions (Gopher et al., 1994, 

Kramer et al., 1995, 1999). Our results argue that, in the human, pre-existing variations 
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in striatal volume can affect the rate of learning in a complex task that involves the 

coordination and integration of many cognitive, motor, and perceptual parameters and 

rules, at least when conditions of learning capitalize on flexible learning strategies. The 

fact that the striatal volumes were predictive of learning in the variable priority version of 

the task but not in the fixed priority version is consistent with this interpretation: in 

contrast to the variable priority training group, the fixed priority training group, due to the 

generalized nature of their training approach, was not encouraged to prioritize different 

aspects of the task flexibly, but rather, were trained to use a “flat” priority approach. This 

strategy reduced need for flexible task prioritization, and may have led to basal ganglia-

based circuitry being less relevant for this group during learning. The basal ganglia may 

have a central function in flexible priority allocation of task goals. 

 The Space Fortress task requires a number of cognitive and motor processes for 

successful performance. It is, therefore, likely that a network of brain regions comprising 

visual, parietal, and frontal areas contribute to successful task performance and 

learning. This makes our results all the more compelling – that is, the measurement of 

the basal ganglia accounted for 23% of the variance in learning, a value that is quite 

high given that many other brain regions are probably contributing to performance and 

learning. However, the relationship between basal ganglia volume and learning was 

only significant for those trained with a variable priority strategy. Given that the fixed 

priority group also learned the task, brain regions other than the basal ganglia must be 

involved in the acquisition of the task for this group. This result complements the 

argument that the association between regional brain volume and learning is dependent 
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on the degree to which the brain region supports the learning strategies employed in the 

task.  

 Our results argue that the volume of basal ganglia is predictive of learning on the 

Space Fortress Task when subjects are exposed to a variable priority learning strategy. 

Unfortunately, the cellular and molecular factors that contribute to such volumetric 

assessments are unknown, but could include trophic factor influences, greater dendritic 

or axonal arborizations, more synaptic connections, greater synaptic plasticity, more 

neurons or more active neurons, or greater vascularization (Schubert et al., 2009). 

 Nearly three-quarters (72%) of the participants in our sample were females with 

relatively little experience with video game playing. In our regression analyses we 

included gender as a covariate to remove variance in learning or brain volume 

associated with gender, and gender did not moderate any of the effects reported in this 

study. Prior studies have found that women experience faster learning rates in action 

video games compared to those of men, resulting in a reduction of gender differences in 

spatial attention (Feng et al., 2007). Given that we failed to find any moderating effects 

of gender in this study, we can be reasonably certain that our results do not reflect 

differential learning rates and brain volume between the genders. Nonetheless, the 

skewed gender distribution with only thirty-six participants may limit the generalization of 

our findings and may have also affected the power to detect gender differences if they 

exist. Such questions would be better addressed with larger sample sizes and an equal 

proportion of males and females. 

 Our finding that the association between striatal volume and learning occurred only 

for participants receiving variable priority training is also important practically, given that 
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this training method emphasizes cognitive flexibility and leads to superior learning more 

generally (Bherer et al., 2008; Bherer et al., 2005, 2006; Kramer et al., 1995, 1999). If 

variable priority training is more effective than fixed training for learning and capitalizes 

more on basal ganglia-based circuits as a consequence, then this type of training could 

prove more useful for enhancing cognitive function in a number of applied settings. This 

interpretation of our findings requires further testing to determine whether the 

association between learning and basal ganglia volumes holds for other complex tasks 

and whether such training will generalize to the performance of other experimental and 

real-world cognitive tasks. 
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Table 1 

Beta values and the significance levels from the multiple regression analyses between 

each region and the improvement in performance for each sub-score and the Total 

scores of the Space Fortress game players 

 

 Total Points Velocity Control Speed 

L. Caudate 0.37; P < 0.03 0.39; P <0.02 0.32; P < 0.03 0.07; n.s. 0.30; P < 0.07 

R. Caudate 0.36; P < 0.03 0.36; P < 0.04 0.27; P < 0.06 0.06; n.s. 0.27; P < 0.10 

L. Putamen 0.29; P < 0.07 0.33; P < 0.05 0.29; P < 0.05 0.03; n.s. 0.07; n.s. 

R. Putamen 0.29; P < 0.08 0.23; n.s. 0.25; P < 0.10 0.08; n.s. 0.05; n.s. 

L. nucleus accumbens 0.04; n.s. -0.02; n.s. 0.14; n.s. -0.01; n.s. -0.16; n.s. 

R. nucleus accumbens 0.12; n.s. 0.09; n.s. 0.21; n.s -0.15; n.s. -0.02; n.s. 

 

Note: All significance levels of P < 0.10 are given, and the significant relationships (P < 

0.05) are in italics. These results suggest a dominant effect of the caudate nucleus 

volumes in relation to performance skill acquisition for the Total, Points, and Velocity 

scores. The putamen was at least marginally related to the Total, Points, and Velocity 

scores. However, the nucleus accumbens volumes were unrelated to improvement for 

the entire training period.  
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Figure Captions 

Figure 1. Regions studied. Display in 3-dimensional and 2-dimensional images for the 

segmentations used to identify the nucleus accumbens (orange), putamen (red), 

caudate nucleus (blue), and hippocampus (green). 

 

Figure 2. (A) Schematic diagram of the Space Fortress display seen by the participants. 

(B) Change in Total score for the fixed priority (FP) training group (open circles and 

dashed line) and for the variable priority (VP) training group (solid black circles and solid 

line). Both groups showed significant improvements in performance on the Space 

Fortress game. 

 

Figure 3. Scatterplots comparing the improvement in Total score in relation to the mean 

volume of the four different regions in each subject. Values for individuals trained in the 

variable priority (VP) version of the Space Fortress game are shown by black circles, 

and the solid line represents the linear fit of these data for the VP group. Values for the 

fixed priority (FP) group subjects are shown by open circles, and the dashed line 

represents the linear fit of these FP data. Correlations are shown separately for the 

volumes of the putamen (A), caudate nucleus (B), nucleus accumbens (C) and 

hippocampus (D). The only significant correlations between volumes and Total scores 

were for the VP group for the caudate nucleus. Data for the putamen reached P < 0.10. 

 

Figure 4. Relationship between each measure of performance on the Space Fortress 

game and dorsal striatum volumes, grouped by training method (VP = variable priority 

training; FP = fixed priority training). This data analysis demonstrates that the 
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relationship between volume and performance improvement was driven by the variable 

priority training method and was non-existent for the individuals trained by the fixed 

priority method. (^ = P < 0.10; * = P < 0.05; ** = P < 0.001). 

 

Figure 5. Changes in correlation coefficients as a function of training phase for the Total 

performance scores on the variable priority version of the Space Fortress game in 

relation to the volumes of the three striatal regions analyzed. Volumes are represented 

as the mean of values for each region. The pre-training volumes of the caudate nucleus 

and putamen were significantly correlated with performance improvement across all 

phases of training for the variable priority group, whereas the nucleus accumbens 

volumes were significantly correlated with performance only during the early part of task 

training (phase 1). 
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