38,473 research outputs found

    Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology

    Get PDF
    We introduce some algebraic geometric models in cosmology related to the "boundaries" of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point xx. This creates a boundary which consists of the projective space of tangent directions to xx and possibly of the light cone of xx. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from "the end of previous aeon" of the expanding and cooling Universe to the "beginning of the next aeon" is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Big Bang boundary

    Spin crossover: the quantum phase transition induced by high pressure

    Full text link
    The relationship is established between the Berry phase and spin crossover in condensed matter physics induced by high pressure. It is shown that the geometric phase has topological origin and can be considered as the order parameter for such transition.Comment: 4 pages, 3 figure

    The Effect of Distinct Geometric Semantic Crossover Operators in Regression Problems

    Get PDF
    This paper investigates the impact of geometric semantic crossover operators in a wide range of symbolic regression problems. First, it analyses the impact of using Manhattan and Euclidean distance geometric semantic crossovers in the learning process. Then, it proposes two strategies to numerically optimize the crossover mask based on mathematical properties of these operators, instead of simply generating them randomly. An experimental analysis comparing geometric semantic crossovers using Euclidean and Manhattan distances and the proposed strategies is performed in a test bed of twenty datasets. The results show that the use of different distance functions in the semantic geometric crossover has little impact on the test error, and that our optimized crossover masks yield slightly better results. For SGP practitioners, we suggest the use of the semantic crossover based on the Euclidean distance, as it achieved similar results to those obtained by more complex operators

    Searching the solution space in constructive geometric constraint solving with genetic algorithms

    Get PDF
    Geometric problems defined by constraints have an exponential number of solution instances in the number of geometric elements involved. Generally, the user is only interested in one instance such that besides fulfilling the geometric constraints, exhibits some additional properties. Selecting a solution instance amounts to selecting a given root every time the geometric constraint solver needs to compute the zeros of a multi valuated function. The problem of selecting a given root is known as the Root Identification Problem. In this paper we present a new technique to solve the root identification problem. The technique is based on an automatic search in the space of solutions performed by a genetic algorithm. The user specifies the solution of interest by defining a set of additional constraints on the geometric elements which drive the search of the genetic algorithm. The method is extended with a sequential niche technique to compute multiple solutions. A number of case studies illustrate the performance of the method.Postprint (published version
    corecore