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Abstract

Geometric problems defined by constraints have an exponential number of
solution instances in the number of geometric elements involved. Generally,
the user is only interested in one instance such that besides fulfilling the ge-
ometric constraints, exhibits some additional properties. Selecting a solution
instance amounts to selecting a given root every time the geometric constraint
solver needs to compute the zeros of a multi valuated function. The problem
of selecting a given root is known as the Root Identification Problem.

In this paper we present a new technique to solve the root identification
problem. The technique is based on an automatic search in the space of
solutions performed by a genetic algorithm. The user specifies the solution of
interest by defining a set of additional constraints on the geometric elements
which drive the search of the genetic algorithm. The method is extended
with a sequential niche technique to compute multiple solutions. A number
of case studies illustrate the performance of the method.

Keywords Genetic algorithms, Constructive geometric constraint solving,
Root identification problem, Solution selection.
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1 Introduction

Geometric problems defined by constraints have an exponential number of solution
instances in the number of geometric elements involved. Generally, the user is only
interested in one instance such that besides fulfilling the geometric constraints,
exhibits some additional properties.

Selecting a solution instance amounts to selecting one among a number of dif-
ferent roots of a nonlinear equation or system of equations. The problem of select-
ing a given root was named in [7] the Root Identification Problem.

Several approaches to solve the root identification problem have been reported
in the literature. Examples are: Selectively moving the geometric elements, con-
ducting a dialogue with the constraint solver that identifies interactively the in-
tended solution, and preserving the topology of the sketch input by the user. For
a discussion of these approaches see, for example, references [7, 9, 15, 30] and
references therein.

Adding extra constraints to narrow down the number of possible solutions to
constraint geometric problems seems to be a simple approach. However, this ap-
proach has been carefully avoided by the field because the resulting over-constrained
problem is NP hard. Moreover, the set of constraints may be contradictory, [7].

In this paper we present a new technique to solve the root identification prob-
lem by over-constraining the geometric constraint problem. The technique is based
on an automatic search in the space of solutions performed by a genetic algorithm.
The user specifies the intended solution instance by defining a set of additional
constraints or predicates on the geometric elements which drive the search of the
genetic algorithm. The approach has been implemented and the results are satis-
factory, [30]. The basic technique is then extended with a niching method to locate
and maintain multiple solutions.

The outline of the paper is as follows. In Sections 2 and 3 we briefly review the
basic concepts of constructive geometric constraint solving and genetic algorithms,
respectively. Section 4 is devoted to the solution instance selector based on the
genetic algorithm. The niche extension is presented in Section 5. As a proof of
concept, we present in Section 6 some experimental results. Finally, Section 7
offers a summary and open questions for future work.

2 Constructive Geometric Constraint Solving

In two-dimensional constraint-based geometric design, the designer creates a rough
sketch of an object made out of simple geometric elements like points, lines, circles
and arcs of circle. Then the intended exact shape is specified by annotating the
sketch with constraints like distance between two points, distance from a point
to a line, angle between two lines, line-circle tangency and so on. A geometric
constraint solver then checks whether the set of geometric constraints coherently
defines the object and, if so, determines the position of the geometric elements.
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Figure 1: Geometric problem defined by constraints.

If geometric elements and constraints are like those above, a constraint-based
design can be represented by a set of points along with a set of constraints drawn
from distance between two points, distance from a point to a line, and angle be-
tween two lines, [33]. Figure 1 shows an example sketch of a constraint-based
design.

2.1 A Formalization of the Geometric Constraint Problem

It is well known that the relative position of n given points {p1, p2, . . . , pn} in the
bidimensional Euclidian space, are determined by 2n−3 independent relationships
defined between the points, [28, 29]. Based on this fact, the geometric constraint
problem in the Euclidean space can be formalized as follows.

First we assume that a given set of n points, on which a set of 2n − 3 inde-
pendent constraints has been defined, is split into two nonempty disjoint subsets.
One subset, �p′ = {p′1, p′2, . . . , p′k}, contains all those given points with fixed po-
sition. The other subset, �p = {p1, p2, . . . , pl}, contains all those points with un-
known position. Notice that this decomposition is always possible because 2n − 3
independent relationships between n given points define a rigid body with three
remaining degrees of freedom, two of them corresponding to a translation and the
third one corresponding to a rotation. Hence, the absolute position for at least one
given point should be specified.

Following Brüderlin [10], the set of constraints along with logical conjunction,
disjunction and negation allow us to express the geometric constraint problem by a
first order logic formula ϕ(�p′, p1, . . . , pl) such that if the set of constraints is well
constrained, [16, 25], the formula

∃p1 . . . ∃pl ϕ(�p′, p1, . . . , pl)

holds. By the axiom of choice, [10, 27], we can say that whenever the above
formula holds, the formula

∃f1 . . . ∃fl ϕ(�p′, f1(�p′), . . . , fl(�p′))

also holds. Hence, the goal in solving a geometric constraint problem is to prove
the truth of the above formula, and to evaluate the functions f1, . . . , fl.
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As we show in the next Section, the constructive geometric constraint solving
approach is such that given the geometric constraint problem ϕ(�p′, p1, . . . , pl) de-
fined on the set points {p1, p2, . . . , pn}, searches a constructive first order logic
formula, Ψ(�p′, p1, . . . , pl), such that, if the constraint problem is well constrained,
will figure out the relative position of each point. If the predicate pos(pi, (xi, yi))
assigns the position (xi, yi) to point pi, an example of the constructive formula
would be, [10],

Ψ(�p′, p1, . . . , pl) = pos(p′1, (x1, y1)) ∧ . . . ∧ pos(p′k, (xk, yk))
∧pos(p1, (fx1(�p′), fy1(�p′))

l∧
i=2

pos(pi, (fxi(�p′, p1, . . . , pi−1), fyi(�p′, p1, . . . , pi−1)))

2.2 Solving the Geometric Constraint Problem

Many techniques have been reported in the literature that provide powerful and ef-
ficient methods for solving systems of geometric constraints. For example, see [11]
and references therein for an extensive analysis of work on constraint solving.
Among all the geometric constraint solving techniques, our interest focuses on
the one known as constructive.

Constructive solvers have two major components: the analyzer and the con-
structor. The analyzer symbolically determines whether a geometric problem de-
fined by constraints is solvable. If the problem is solvable, the output of the an-
alyzer is a sequence of construction steps each of them corresponding to a pair
of functions (fxi, fyi) in the above first order logic formula which places each
geometric element in such a way that all constraints are satisfied. This sequence
is known as the construction plan. After assigning specific values to the parame-
ters, the constructor interprets the construction plan and builds an object instance,
provided that no numerical incompatibilities arise. Figure 2 illustrates the main
components in a constructive geometric constraint solver.

The specific construction plan generated by an analyzer depends on the un-
derlying constructive technique and on how it is implemented. For example, the
ruler-and-compass constructive approach is a well-known technique where each
constructive step in the plan corresponds to a basic operation solvable with a ruler,
a compass and a protractor. In practice, this simple approach solves most useful
geometric problems. Figure 3 shows a construction plan for the object of Figure 1,
generated by the ruler-and-compass geometric constraint solver reported in [26].

Function names in the plan are self explanatory. For example function adif
denotes subtracting the second angle from the first one and asum denotes the ad-
dition of two angles while rc and cc stand for the intersection of a straight line and
a circle, and the intersection of two circles, respectively.

In general, a well constrained geometric constraint problem, [17, 25, 28], has
an exponential number of solutions. For example, consider a geometric constraint
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Figure 2: Basic architecture of constructive geometric constraint solvers.

P1 = point(0, 0)
P2 = point(d1, 0)
α1 = direction(P1, P2)
α2 = adif(α1, a1)
P3 = rc(line(P2, α2), circle(P2, d2), i1)
α3 = direction(P2, P3)
α4 = asum(α3, π/2)
Q1 = rc(line(P2, α4), circle(P2, r), i2)
P4 = rc(line(Q1, α3), circle(P3, r), i3)
Q2 = midpoint(P1, P4)
r1 = distance(P1, Q2)
P5 = cc(circle(P4, r), circle(Q2, r1), i4)

Figure 3: Construction plan for the object in Figure 1.
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problem that properly places n points with respect to each other. Assume that
the points can be placed serially, each time determining the next point by two
distances from two already placed points. In general, each point can be placed in
two different locations corresponding to the intersection points of two circles. See
Figure 4. For n points, therefore, we could have up to 2n−2 solutions.

Possible different locations of geometric elements corresponding to different
roots of systems of nonlinear algebraic equations can be distinguished by enumer-
ating the roots with an integer index. For a more formal definition see [15, 30].

In what follows, we assume that the set of geometric constraints coherently de-
fines the object under design, that is, the object is generically well constrained and
that a ruler-and-compass constructive geometric constraint solver like that reported
in [26] is available.

In this solver, intersection operations where circles are involved, rc and cc, may
lead to up to two different intersection points, depending on whether the second
degree equation to be solved has no solution, one or two different solutions in the
real domain. With each rc and cc operation, the constructor in the solver associates
an integer parameter, ik ∈ {−1, 0, 1}, which identifies whether there is no solution,
one or two different solutions. For details on how to compute ik, the reader is
referred to [24] and [34].

3 Basic Background on Genetic Algorithms

Evolutionary algorithms which model natural evolution processes were already
proposed for optimization in the 1960s. The goal was to design powerful opti-
mization methods, both in discrete and continuous domains, based on searching
methods on a population of coded problem solutions, [8].

3.1 Generalities

Depending on the constructive search operations on which the algorithm is built,
two families of evolutionary algorithms can be distinguished: evolution strategies
and genetic algorithms. [8, 36]. An evolution strategy is a random search which
uses selection and variation, [3, 37]. The selection operator determines those in-
dividuals in the population that survive to participate in the production of the next
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population. Selection is based on the value of the fitness function, or the fitness of
individual members of the population, such that members with greater fitness lev-
els tend to survive. The variation operator, called mutation, introduces some sort of
modification in the population members and prevents the search of the space from
becoming too narrow. Evolution strategies model natural evolution by asexual re-
production with mutation and selection.

Genetic algorithms, invented by Holland, [23], are search algorithms that model
sexual reproduction which is characterized by recombining two parent strings into
an offspring. This recombination is called crossover. Crossover recombines traits
of the selected individuals in the hope of producing a child with better fitness levels
than its parents. Crossover is accomplished by swapping parts of strings represent-
ing two individuals in the population.

The use of genetic algorithms has been instrumental in achieving good so-
lutions to discrete problems that have not been satisfactorily addressed by other
methods, [18]. Recent surveys can be found in [1] and [18].

3.2 The Root Identification as a Constraint Optimization Problem

In the technique presented in this work, the Root Identification Problem is solved
by over constraining the geometric constraint problem: The intended solution in-
stance to a well constrained problem is specified by defining a set of additional
constraints or predicates on the geometric elements. An example of extra con-
straint currently available to the user is defined as

PointOnSide(P, line(Pi, Pj), side)

which means that point P must be placed on one of the two open half spaces
defined by the straight line through points Pi, Pj , oriented from Pi to Pj . Parameter
side takes values in {right, left}.

The resulting over-constrained problem is NP hard and one cannot expect that
an effective classical deterministic search algorithm can be devised to solve it, [31].
Moreover, the set of constraints may be contradictory, [7].

Genetic algorithms have proven to be an effective technology for solving gen-
eral constraint-satisfaction problems, when they are expressed as constraint opti-
mization problems, [2, 14]. In this Section we transform the Root Identification
Problem by over-constraining the geometric constraint problem into a constraint
optimization problem suitable to be solved by a genetic algorithm.

Recall that we consider ruler-and-compass constructive geometric constraint
solving. In this context, geometric operations correspond to quadratic equations,
thus each constructive step has at most two different roots.

Let ij denote the integer parameter associated by the solver with the j-th in-
tersection operation, either rc or cc, occurring in the construction plan. Since we
are interested only in solution instances that actually are feasible, that is, solution
instances where no numerical incompatibilities arise in the constructor, we only
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need to consider integer parameter ij taking value in Dj = {0, 1}, where 0 stands
for the first solution and 1 stands for the second different solution.

Assume that n is the total number of rc plus cc intersection operations in the
construction. We define the index associated with the construction plan as the
ordered set I = {i1, . . . , ij , . . . , in} with ij ∈ Dj , 1 ≤ j ≤ n. Therefore the
cartesian product of sets I = D1×. . .×Dn defines the space the solution instances
to the geometric constraint problem belong to.

A construction plan which is solution to a geometric constraint problem can be
seen as a function of the index I . Let Ψ(I) denote the construction plan expressed
as the corresponding constructive first order logic formula defined in Section 2.1.
Clearly, the set of indexes {I ∈ I | Ψ(I) = true} is the space of feasible in-
dexes, that is the set of indexes each defining an instance which actually is solution
to the geometric constraint problem. This set of indexes is the allowable search
space, [14].

Let Φ denote first order lolgic formula defined by conjunction of the extra con-
straints given to specify the intended solution instance. Let f be a (possibly real-
valued) function defined on Ψ(I) ∧Φ which has to be optimized. Then, according
to Eiben and Ruttkay, [14], the triple < I, f,Ψ(I) > defines a constraint optimiza-
tion problem where finding a solution means finding an index I in the allowable
search space with an optimal f value.

4 The Genetic Algorithm for the Root Identification

Once the Root Identification Problem by over-constraining the constraint problem
has been transformed into a constraint optimization problem, the usual machinery
in genetic algorithms can be applied to find a solution.

In what follows we will use the terms solution instance and intended solution
instance. A solution instance to the geometric constraint problem is an index I in
the allowable search space where the Boolean formula Ψ(I) holds, that is, an index
which actually is solution to the geometric constraint problem.

An intended solution instance to the geometric constraint problem is a solution
instance for which all the extra constraints hold, that is, the Boolean formula Φ
holds.

4.1 The Genetic Algorithm

The genetic algorithm we have implemented is given in Figure 5. P is the popu-
lation of indexes at the current generation. It consists on a fixed, given number of
indexes in I . The main components of the genetic learning process are described
as follows.
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Procedure GeneticAlgorithm
INPUT

F : Functions in the construction plan.
C : Values actually assigned to the constraints.
R : Set of extra constraints.
ng : Maximum number of generations allowed.

OUTPUT
I : Index selected.

InitializeAtRandom (P)
Evaluate(P, F, C, R)
I = SelectCurrentBestFitting (P)
while not TerminationCondition (ng, I, R) do

Selection (P)
Crossover (P)
Mutation (P)
ApplyElitism (P, I)
Evaluate(P, F, C, R)
I = SelectCurrentBestFitting (P)
ng = ng − 1

endwhile
return I

EndProcedure

Figure 5: Genetic algorithm.
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4.1.1 Initial Index Population

As stated in Section 2, the analyzer generates a construction plan that symbolically
determines whether a geometric problem defined by constraints is solvable. But
the construction plan does not provide any specific information about any index
of any solution instance. Therefore, the initial population of indexes is randomly
generated.

4.1.2 Index Evaluation

As stated in Section 3, in a given constraint optimization problem, < I, f,Ψ(I) >,
the function f , defined over Ψ(I) ∧ Φ, is the goal to be optimized by the genetic
algorithm. It is called the fitness function.

In general, constraints are handled by constructing f as a summation of penalty
terms which penalize the fitness of individuals in the population, according to the
degree of violation of each constraint in Ψ(I) ∧ Φ.

Designing an appropiate penalty function that enables the genetic algorithm
to converge to a feasible suboptimal or even optimal solution is crucial, [41], and
addressing two issues. One is to define the relative penalty with which each con-
straint contributes to the overall fitness function. The other is decoupling the fitness
function from the specific genetic technique applied. In general, addressing these
issues in an effective way requires substancial knowledge on the problem at hand,
[13].

To alleviate this drawback, genetic algorithms with varying fitness functions
have been developed. See, for example, [13] and [39] and the references therein.
Varying fitness functions make use of the natural adaptive behaviour of evolution-
ary algorithms based on the fact that they dynamically adjuste certain parameters
according to the evolution of past experiences. As a result, locating the region
where the global optimum is in the search space is favoured, [39].

We carried out our experiments using a very simple non varying fitness func-
tion. The fitness of each index I in the population was measured just counting the
number of additional geometric constraints fulfilled by the individual:

f(I) =

⎧⎨
⎩

∑|R|
i=1 δ(Ri(I)) if I is a solution instace

MIN otherwise

where δ(Ri(I)) = 1 if the solution instance associated with index I fulfills the
extra constraint Ri ∈ Φ, and δ(Ri(I)) = 0 otherwise. That is, to evaluate an in-
dex fitness amounts to counting how many extra constraints its associated solution
instance fulfills. MIN is the minimum fitness value in the previous generation.

As we will illustrate in Section 6, the search space is sparse because the ratio
between the allowable search space and the total number of potential solutions is
small. However, contrarily to what is reported in [35] and [41], the non varying
fitness function did not make the genetic algorithm to fail.
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Procedure RouletteWheel
INPUT

ps : Probability distribution.
OUTPUT

c : Selected parent.

c := 1
sum := ps(c)
InitializeAtRandom u in [0, 1]
while sum < m do

c := c + 1
sum := sum + ps(c)

endwhile
return c

EndProcedure

Figure 6: Roulette Wheel.

4.1.3 Genetic Search Operators

Search strategies in genetic algorithms are built using a set of constructive genetic
search operators. Each operator provides a different scope to the search process,
[37]. The set of genetic operators we have considered includes: Selection with
elitism, crossover (recombination) and mutation.

Selection
Selection is the process of choosing individuals for reproduction. The selec-

tion technique chosen has an effect on the genetic algorithm convergence. If too
many individuals with vastly superior fitness are selected, the algorithm can con-
verge prematurely. If too few individuals with vastly superior fitness are selected,
algorithm convergence toward optimal solution would be too slow. Two different
selection strategies were applied: Proportional selection and linear ranking selec-
tion.

Proportional selection, [19], assigns to each individual a reproductive proba-
bility that is proportional to the individual’s relative fitness. If f(Ii) is the fitness
of index Ii, and N is the number of individuals in the current population, the prob-
ability of selecting Ii is given by

ps(Ii) =
f(Ii)∑j=N

j=1 f(Ij)

Then individuals are selected by the procedure commonly called the roulette wheel
sampling algorithm, [19]. See Figure 6. To preserve the best solution instance in
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Procedure StochasticUniversalSampling
INPUT

ps : Probability distribution.
L : Total number of children to be assigned.

OUTPUT
C : (c1, . . . , cN ) where ci is the number of

children assigned to the index Ii and
∑

ci = L.

InitializeAtRandom u in [0, 1/L]
sum := 0
for i = 1 to N do

ci := 0
sum := sum + ps(Ii)
while u < sum do

ci := ci + 1
u := u + 1/L

endwhile
endfor
return C

EndProcedure

Figure 7: Stochastic universal sampling.

each generation we applied the simplest elitism technique consisting on keeping
just the best individual in every generation, [18, 35].

Linear ranking selection, [20], assigns a survival probability to each individual
that depends only on the rank ordering of the individuals in the current population.
A linear ranking of indexes I in the current population including N individuals
was defined by sorting the indexes according to increasing fitness values, f(I).
The rank, rank(I), of the most fit was defined to be 1 and the least fit was defined
to be N . Then to each individual a selection probability was assigned which was
proportional to the individual’s rank. The selection probability for index I was
computed by

ps(I) =
1
N

(
μmax − (μmax − μmin)(rank(I) − 1)

N − 1

)

where μmin ∈ [0, 1] is the expected number of offspring to be allocated to the worst
index and μmax = 2− μmin is the expected number of offspring to be allocated to
the best index in the current generation.

Indexes in the new population were selected with the stochastic universal sam-
pling algorithm developed by Baker, [4]. See Figure 7. To minimize the variance in
the number of offspring assigned to each individual, the universal stochastic sam-
pling algorithm makes a single draw from the selection probability distribution,
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Figure 8: Crossover mechanism.

and uses this to determine how many offspring to assign to all parents. This proce-
dure guarantees that the number of copies of any index is bounded by the floor and
by the ceiling of its expected number of copies.

As in the case of proportional selection, elitism has also been used to preserve
indexes corresponding to good solution instances.

Crossover
A simple one-point crossover operation for binary coded populations have been

used, [6]. Let I = {i1, . . . , ij , . . . , in} and I′ = {i′1, . . . , i′j , . . . , i′n} be two
different indexes in the current population P . The crossover point was defined by
randomly generating an integer j in the range [1, n]. Then the resulting crossed
indexes are I = {i1, . . . , ij−1, i

′
j , . . . , i′n} and I′ = {i′1, . . . , i′j−1, ij , . . . , in}.

See Figure 8.

Mutation
Mutation was computed following a simple uniform mutation scheme for bi-

nary code populations, [2]. The integer parameter to undergo a mutation, let us say
ij , is selected randomly. Then it mutates into i′j = 0 if ij = 1 and into i′j = 1
otherwise. Mutation process is illustrated in Figure 9.

4.1.4 The Termination Condition

The algorithm stops when either the current best fitting index corresponds to a
solution instance that fulfills all the extra constraints defined or the number of gen-
erations reaches a given maximum number.

4.2 The Genetic Selector

The genetic algorithm is integrated into the constructive solver showed in Figure 2
through a genetic selector as illustrated in Figure 10. As required by the genetic
algorithm, the input to the genetic selector includes the construction plan, the set
of parameters’ values and the set of extra constraints.

Figure 9: Mutation mechanism.
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Figure 10: Integration of the genetic algorithm into the solver.

The genetic algorithm always returns an index corresponding to the individual
in the population showing the best fitness. Three different outputs from the genetic
selector need to be distinguished. A possible output is an index for which the con-
struction plan is feasible and all the extra constraints hold. In this case an intended
solution instance has been found. Notice however that this intended solution is not
necessarily unique.

Another possible output is an index for which the construction plan is feasible
but only a subset of the extra constraints hold. In this case, a message along with
the actual solution instance is passed to the user interface.

Finally when the index does not correspond to a feasible solution, we allow the
selector to fail. This information is passed to the user interface.

5 Root Multi-selection

The set of extra constraints can characterize more than one solution instance. There-
fore, the solution actually returned by the genetic algorithm and the intended solu-
tion could be different.

To overcome this problem we have developed the root multi-selection tech-
nique that allows the user to request the selector to return a set of different solution
instances for which the extra constraints hold.
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5.1 The Sequential Niche Method

The root multi-selection technique is based on the sequential niche method, devel-
oped by Beasley et al. [5] and by Mahfoud, [32], to locate and maintain a set of
multiple solutions. A niche can be viewed as a subspace of the solution space that
contains one optimal solution instance and is represented by its optimal solution.

The sequential niche method computes a set of solution instances by perform-
ing independent runs while trying to avoid the search in niches that have already
been explored. In each run, the genetic algorithm obtains a solution to the problem.
If the fitness of the current solution is higher than the fitness of all the solutions pre-
viously evaluated, a new niche is stored.

To avoid searching in niches already explored, the genetic algorithm applies a
penalty to the fitness of each new individual generated by the genetic operators.
The penalty increases as the distance between the individual and the optima found
in previous runs decreases.

The distance djk between two individuals j and k is characterized by a simi-
larity metric. For populations like the one we have at hand where individuals are
represented by bit strings, the distance generally used, which is the one we have
used in our experiments, is the well known Hamming distance, [22].

Various forms for the penalty function are possible. We have used the power
law, [5], given by

G(j, k) =

{
(djk/r)α if djk < r

1 otherwise

Where djk is the distance between indexes Ij and Ik, as determined by the distance
metric. r denotes the threshold of similarity between two instance solutions, also
known as the niche radius. We will define it as a percentage of the maximum
distance in the search domain, [40]. α is the power factor which determines the
shape of the penalty function. Notice that if α = 1 it is a linear function.

5.2 The Root Multi-selection Algorithm

The multi-selection algorithm we have implemented is given in Figure 11. The
algorithm MultiGenetic in Figure 12 is the basic genetic algorithm shown in
Figure 5 extended with the function EvaluateP() to handle the niches. The
input to the function EvaluateP() is the input to the basic genetic algorithm
plus the niche radius and the power factor used to evaluate the penalty function.

6 Experimental Results

To assess the performance of the technique introduced, it has been implemented
and tested. See [30]. To illustrate this performance, we present a case study and
briefly discuss the experimental results.
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Procedure MultiSeleccion
INPUT

F : Functions in the contruction plan.
R : Set of extra constraint.
C : Values actually asigned to the constraints.
ng : Maximum number of generations allowed.
ns : Number of solutions requested.
α : Power factor.
r : Niche radius.

OUTPUT
L : List of indexes of the solutions instances.

L = ∅
do

L = L + MultiGenetic(F, C, R, ng, r, α, L)
ns = ns - 1

while (ns �= 0)
return L

EndProcedure

Figure 11: Multi-selection algorithm.

We consider the geometric constraint problem shown in Figure 13 consisting
of 18 points, 18 straight segments, 18 point-point distance constraints and 15 angle
constraints. The potential number of solution instances is bounded by 216 = 65,536.
The construction plan has 16 operations where a root has to be chosen. Therefore
each index included 16 binary units. The intended solution instance was defined
by a set including 27 extra constraints like

PointOnSide(P1, line(P2, P3), right)
PointOnSide(P2, line(P3, P4), left)
. . .
PointOnSide(P18, line(P1, P2), right)

To check the algorithm behaviour we have carried out an exhaustive evalua-
tion of the number of extra constraints fulfilled by a number of different solution
instances selected by the basic genetic algorithm. The interest was on solution in-
stances with fitness values close to the optimal. The results are shown in Table 1.
The first raw shows the number of extra constraints defined to select the intended
solution instance and the second raw shows howmany different solution instances
fulfill them. Notice that the problem is really sparse.

We discuss first the results yielded by the basic genetic algorithm, then those
corresponding to the multiselection genetic algorithm.
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Procedure MultiGenetic
INPUT

F : Functions in the contruction plan.
C : Values actually asigned to the constraints.
R : Set of extra constraints.
ng : Maximum number of generations allowed.
r : Niche radius.
α : Power factor.
L : List of indexes of the solutions instances.

OUTPUT
I : Selected index.

VARIABLES
P : Population.

InitializeAtRandon(P)
EvaluateP(P, F, C, R, r, α, L)
do

I = SelectCurrentBestFitting(P)
Selection(P)
Crossover(P)
Mutation(P)
ApplyElitism(P,I)
EvaluateP(P, F, C, R, r, α, L)
ng = ng - 1

while (not TerminationCondition(ng, I, R))
return SelectCurrentBestFitting(P)

EndProcedure

Figure 12: Modified genetic algorithm.

# Extra constraints 27 26 25 24 23
# Solutions 2 0 14 24 102

Table 1: Number of extra constraints and number of different solution instances
that fulfill them.
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Figure 13: Geometric problem defined by constraints. Case study A.

6.1 Basic Genetic Algorithm

According to Mühlenbein, [37], five parameters are, at least, required to describe
the initial state and the evolution of an artificial population of a genetic algorithm:
Population size, length of the string representing individuals, initial configuration
of values in the strings, mutation rate and selection law.

Investigating the behaviour of the genetic algorithm with all five parameters
variable would be hard to accomplish, therefore we have investigated a simpler
model. The expected number of offspring to be allocated to the worst index was
μmin = 0.75. The crossover and mutation probabilities were always 0.6 and 0.2,
respectively, [21]. We considered populations with 25, 30, 35 and 40 individuals.

To assess the effect of the population size and selection method on the algo-
rithm convergence, for different population sizes, we recorded the number of extra
constraints fulfilled by the individual in the population with the best fitness ver-
sus the number of generations. The experiment was conducted first applying lin-
ear ranking selection and then proportional selection. Figure 14 shows the results
yielded by the algorithm for the linear ranking selection.

The algorithm convergence shows an exponential answer pattern, as expected
for a natural system fed with an step input, defined by the initial population, [38].
After 30 generations, an steady state has been always reached and when the popu-
lation has 30 individuals or more the individual selected as solution fulfills all the
extra constraints.

Figure 15 shows the results yielded by the algorithm using proportional selec-
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Figure 14: Linear Ranking Selection.

tion. Two effects can be noticed. One is that now larger populations, 35 or more in-
dividuals, are needed to select an individual which verifies all the extra constraints.
The other is that, for the population with 40 individuals, premature convergence
due to super individuals selected by the proportional mechanism occurred at early
stages, [20, 19]. In this example, the super individual selected fulfills the set of
extra constraints. However, premature convergence narrows down the search range
and very often makes the algorithm to fail in finding an individual with global op-
timal fitness. This effect is further illustrated in Figure 16. It shows the results
yielded by the algorithm fed with an initial population including 40 individuals
different from those used to generate the results in Figure 15. Notice that the linear
ranking selection still finds an individual with global optimal fitness.

To study the performance of our basic genetic algorithm, we applied it to a
number of different geometric constraint problems. Table 2 summarizes the results
from six different experiments selected among those reported by Luzón in [30].
The first column in Table 2 shows the number of multi valuated functions in the

n # # Extra # Solution # Indexes %
Indexes constraints instances Evaluated

7 12 6 27 61 50
10 20 12 210 110 10.7
11 30 13 211 157 7.6
16 40 27 216 561 2
18 40 39 218 534 0.3
20 50 39 220 1663 0.1

Table 2: Performance of the genetic algorithm.
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Figure 15: Proportional Selection.
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Figure 17: Geometric problem defined by constraints. Case study B.

construction plan. The second column is the number of indexes included in the
population. The third column gives the number of extra constraints defined to
select the intended solution. The fourth column is the number of indexes in the
search space. The fifth column shows the number of indexes actually evaluated
by the algorithm. The last column is the ratio between the figures in the fifth and
fourth columns. Data in the raw with n = 16 corresponds to the case study already
considered and illustrated in Figure 13.

Data in the first raw corresponds to the problem shown in Figure 17 consisting
of 6 points, 5 straight segments, and a fixed radius arc of circle. The constraints
were 5 point-point distances, 2 angles and 2 tangencies. The construction plan has
7 operations where a root has to be chosen. Thus each index included 7 binary
units. The potential number of solution instances is bounded by 27 = 128.

Data in the raw with n = 20 corresponds to the problem shown in Figure 18.
The problem has 22 points and 22 straight segments. The set of constraints in-
cludes 22 point-point distances and 19 angles. The construction plan includes 20
operations where a root has to be chosen. Therefore each index included 20 bi-
nary units. The potential number of solution instances is bounded by 220 and an
exhaustive computation shows that only 3 of them verify the 39 extra constraints
defined.

As illustrated in Table 2, the results yielded by our benchmark, [30], show that
in all cases the number of indexes actually evaluated by the basic genetic algo-
rithm is a small fraction of the whole search space. Moreover, the ratio between
search space size and the number of individuals actually evaluated decreased for
increasing search space size.

The number of extra constraints fulfilled after six generations was always higher
than 66%. As expected in a behaviour that models a natural process, in all cases the
number of extra constraints fulfilled by indexes in the current population increased
exponentially until reaching an steady state. In general, about 30 generations were
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# Extra Constraints # Solution instances requested
fulfilled

1 2 3 4 5 6 7 8
27 1 2 2 2 2 2 2 2
25 – – 1 1 2 3 4 5
24 – – – – – – – –
23 – – – 1 1 1 1 1

Table 3: Performance of the multi-selection genetic algorithm.

needed to find a solution. Therefore, the algorithm showed a great efficiency, [12].
Whenever the number of individuals in the population was equal or greater than

the number of multi valuated functions in the construction plan and the selection
mechanism was linear ranking, the individual selected at the stationary state was
a global optimal, fulfilling all the required extra constraints. This means that the
algorithm effectivity is optimal, [12].

6.2 Multi-selection Genetic Algorithm

To illustrate how the multi-selection algorithm works, we consider again the ex-
ample in Figure 13. According to Table 1, there are only two indexes which fulfill
the set of extra constraints. Therefore, one can expect that when the number of
solution instances required is greater than two, some of the extra constraints will
not hold for some solution instances selected by the multi-selection algorithm.

Recall that, in the example at hand, the number of operations where a root
should be chosen is 16. The maximum distance between two solution instances
occurs when all the corresponding pairs of indexes are different. Thus the maxi-
mum distance in the search space is dmax = 16. The ratio used to compute the
niche radius was rs = 0.1, that is, two indexes are considered to belong to the
same niche if they differ at most in a 10% of their components. Therefore the
niche radius was r = rsdmax = 1.6.

The power factor used was α = 1, that is the linear function. The multi-
selection genetic algorithm was applied with a requested number of solutions rang-
ing from 1 to 8. Table 3 summarizes the results.

When the number of different instance solutions requested was one or two, all
the solution instances selected by the algorithm show an optimal fitness and fulfill
the 27 extra constraints. As expected, when the number of requested solutions was
three or more, some of the selected solutions do not fulfill all the extra constraints.
For example, when requesting 4 different solution instances, two of them verify
27 extra constraints, one verifies 25 extra constraints and only 23 extra constraints
hold for the last solution instance selected.

Notice that the two existing optimal solution instances are always selected.
Also notice that instance solutions fulfilling only 23 extra constraints are selected
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whereas no solution fulfilling 24 is returned by the algorithm. A rational for this
behaviour is that no specific search technique to try to escape from local optimal
fitness is currently included in our implementation.

7 Summary and Future Work

In this paper, we have presented a new technique to efficiently search the solution
space in two-dimensional constructive geometric constraint solving problems. The
technique is based on a genetic algorithm which searches a solution in a potentially
exponential large space of solution instances. The user defines the properties of the
intended solution by adding a set of extra constraints which are used to drive the ge-
netic algorithm in the search through the space of solution instances. The approach
has been implemented on top of an already developed rule-based constructive ge-
ometric constraint solver and has been applied to a number of case studies. The
results show that the technique performance is efficient and effective.

Extending the basic genetic algorithm with the sequential niche method has
proved to be a convenient way to select multiple solutions requested by the user.

We have built our prototype on top of an already existing ruler-and-compass
geometric constraint solver where multivaluated functions have at most two dif-
ferent values. However, the method applies to any constructive solving technique
where the construction plan is explicitly generated, all what is needed is to extend
the domain where indexes take values and to properly adapt the genetic operators.

Applying genetic algorithms to search the space of solution instances in con-
structive geometric constraint solving has shown a promising potential. To explore
this potential, we plan to further study genetic algorithms following two direc-
tions. One is to consider new types of extra constraints and the other one includes
to conduct experiments to identify optimum values for number of individuals in
the population, and crossover and mutation probabilities in geometric constraint
solving.
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