4,408 research outputs found

    Formal Derivation of Concurrent Garbage Collectors

    Get PDF
    Concurrent garbage collectors are notoriously difficult to implement correctly. Previous approaches to the issue of producing correct collectors have mainly been based on posit-and-prove verification or on the application of domain-specific templates and transformations. We show how to derive the upper reaches of a family of concurrent garbage collectors by refinement from a formal specification, emphasizing the application of domain-independent design theories and transformations. A key contribution is an extension to the classical lattice-theoretic fixpoint theorems to account for the dynamics of concurrent mutation and collection.Comment: 38 pages, 21 figures. The short version of this paper appeared in the Proceedings of MPC 201

    The Peano software---parallel, automaton-based, dynamically adaptive grid traversals

    Get PDF
    We discuss the design decisions, design alternatives, and rationale behind the third generation of Peano, a framework for dynamically adaptive Cartesian meshes derived from spacetrees. Peano ties the mesh traversal to the mesh storage and supports only one element-wise traversal order resulting from space-filling curves. The user is not free to choose a traversal order herself. The traversal can exploit regular grid subregions and shared memory as well as distributed memory systems with almost no modifications to a serial application code. We formalize the software design by means of two interacting automataā€”one automaton for the multiscale grid traversal and one for the application-specific algorithmic steps. This yields a callback-based programming paradigm. We further sketch the supported application types and the two data storage schemes realized before we detail high-performance computing aspects and lessons learned. Special emphasis is put on observations regarding the used programming idioms and algorithmic concepts. This transforms our report from a ā€œone way to implement thingsā€ code description into a generic discussion and summary of some alternatives, rationale, and design decisions to be made for any tree-based adaptive mesh refinement software

    Integrating OLAP and Ranking: The Ranking-Cube Methodology

    Get PDF
    Recent years have witnessed an enormous growth of data in business, industry, and Web applications. Database search often returns a large collection of results, which poses challenges to both efficient query processing and effective digest of the query results. To address this problem, ranked search has been introduced to database systems. We study the problem of On-Line Analytical Processing (OLAP) of ranked queries, where ranked queries are conducted in the arbitrary subset of data defined by multi-dimensional selections. While pre-computation and multi-dimensional aggregation is the standard solution for OLAP, materializing dynamic ranking results is unrealistic because the ranking criteria are not known until the query time. To overcome such difficulty, we develop a new ranking cube method that performs semi on-line materialization and semi online computation in this thesis. Its complete life cycle, including cube construction, incremental maintenance, and query processing, is also discussed. We further extend the ranking cube in three dimensions. First, how to answer queries in high-dimensional data. Second, how to answer queries which involves joins over multiple relations. Third, how to answer general preference queries (besides ranked queries, such as skyline queries). Our performance studies show that ranking-cube is orders of magnitude faster than previous approaches
    • ā€¦
    corecore