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Abstract

Recent years have witnessed an enormous growth of data in business, industry, and Web

applications. Database search often returns a large collection of results, which poses chal-

lenges to both efficient query processing and effective digest of the query results. To address

this problem, ranked search has been introduced to database systems. We study the prob-

lem of On-Line Analytical Processing (OLAP) of ranked queries, where ranked queries are

conducted in the arbitrary subset of data defined by multi-dimensional selections. While

pre-computation and multi-dimensional aggregation is the standard solution for OLAP, ma-

terializing dynamic ranking results is unrealistic because the ranking criteria are not known

until the query time. To overcome such difficulty, we develop a new ranking cube method

that performs semi off-line materialization and semi online computation in this thesis. Its

complete life cycle, including cube construction, incremental maintenance, and query pro-

cessing, is also discussed. We further extend the ranking cube in three dimensions. First,

how to answer queries in high-dimensional data. Second, how to answer queries which in-

volves joins over multiple relations. Third, how to answer general preference queries (besides

ranked queries, such as skyline queries). Our performance studies show that ranking-cube

is orders of magnitude faster than previous approaches.
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Chapter 1

Introduction

1.1 Motivation of this research

Recent years have witnessed an enormous growth of data in business, industry, society, Web,

and scientific applications. There is an imminent need for effective and scalable methods

for analyzing and exploring this overwhelming large and complex data. The goal of this

research is to develop query processing methods to facilitate effective and efficient informa-

tion exploration. More specifically, for a given query, instead of deriving the complete set

of answers, it is often desirable to derive only a subset but high-quality data records based

on user’s preference. A commonly used strategy is to rank the data records and only return

top-k answers. A typical application is database-centric web search, such as product search

on bizrate.com, apartment search on apartments.com, and used car search on kbb.com.

A top-k query only returns the best k results according to a user-specified preference,

which generally consists of two components: a multi-dimensional selection condition and a

dynamic ranking function. With the mounting of an enormous amount of data in business,

ranking with respect to multi-dimensional group-bys becomes prominent for effective data

analysis and exploration. Example application scenarios are illustrated as follows.

Example 1. (Multi-dimensional data exploration) Consider an online used car database R

that maintains the following information for each car: type (e.g., sedan, convertible), maker

(e.g., Ford, Hyundai), color (e.g., red, silver), transmission (e.g., auto, manual), price, milage,
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etc.. Two typical top-k queries over this database are:

Q1 : select top 10 ∗ from R

where type = “sedan” and color = “red”

order by price + milage asc

Q2 : select top 5 ∗ from R

where maker = “ford” and type = “convertible”

order by (price− 20k)2 + (milage− 10k)2 asc

Q1 queries top-10 red sedans whose combined score over price and milage is minimized. Q2

searches top-5 convertibles made by Ford, and the user expected price is $20k and expected

milage is 10k miles.

The used car database may have other selection criteria for a car such as whether it

has power window, air conditioner, sunroof, power steering, etc.. The number of attributes

available for selection could be extremely large. A user may pick any subset of them and issue

a top-k query using his/her preferred ranking function on the measure attributes (e.g., price

and milage). There are many other similar application scenarios, e.g., the hotel search where

the ranking functions are often constructed on the price and the distance to the interested

area, and selection conditions can be imposed on the district of the hotel location, the star

level, whether the hotel offers complimentary treats, internet access, etc.. Furthermore, in

many cases, the user has his/her own criterion to rank the results and the ranking functions

could be linear, quadratic or any other forms.

As shown in the above examples, different users may not only propose ad hoc ranking

functions but also use different interesting subset of data. In fact, in many cases, users may

want to have a thorough study of the data by taking a multi-dimensional analysis of the
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top-k query results.

Example 2. (Multi-dimensional data analysis) Consider a notebook comparison database

(e.g., bizrate.com) with schema (brand, price, CPU, memory, disk). Suppose a function f

is formulated on CPU, memory and disk to evaluate the market potential of each notebook.

An analyst who is interested in dell low-end notebooks may first issue a top-k query with

brand = “dell” and price ≤ 1000, and then rolls up on the brand dimension and checks the

top-k low-end notebooks by all makers. By comparing two sets of answers, the analyst will

find out the position of dell notebooks in the low-end market.

The above application scenarios propose a new challenging task for database system:

How to efficiently process top-k queries with multi-dimensional selection conditions and ad

hoc ranking functions. Given the sample queries in the above examples, current database

systems will have to evaluate all the data records and output those top-k results which satisfy

the selection conditions. Even if indices are built on each selection dimension, the database

executer still needs to issue multiple random accesses on the data. This is quite expensive,

especially when the database is large.

Efficient processing such queries requires the database system to simultaneously push

both boolean predicates and preference analysis deep into search. There has been fruitful

research work on efficiently processing top-k queries [7, 20, 17, 28, 30, 16, 41, 45] in database

systems. However, all these studies are performed under the context that the query consists

of ranking functions only. By introducing boolean predicates in the query, many algorithms

need to be carefully re-examined.

On the other hand, current database management systems execute ranked queries with

boolean predicates by first retrieve data objects according to boolean selection conditions,

and then conduct the ranking analysis. This approach is not efficient, especially when the

database is large and the number of output is small. In conclusion, existing solutions conduct

either boolean-only or ranking-only search, and thus are not satisfactory.

For multi-dimensional analysis, data cube [27] has been extensively studied. Material-
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ization of a data cube is a way to pre-compute and store multi-dimensional aggregates so

that online analytical processing can be performed efficiently. Traditional data cubes store

the basic measures such as SUM, COUNT, AVERAGE, etc., which are not able to answer

complicated top-k queries.

To meet the requirement of online analytical processing, the database system has to

return the user-preferred answers from any data groups, in a very efficient way. The dynamic

nature of the problem imposes a great challenge for the database research community. To

the best of our knowledge, the problem of efficient processing top-k queries with multi-

dimensional selection conditions is not well addressed yet. In this thesis, we address this

problem from an integrated viewpoint. On the one hand, online analytical query processing

requires off-line pre-computation so that multi-dimensional analysis can be performed on the

fly; on the other hand, the ad-hoc ranking functions prohibit full materialization. A natural

proposal is to adopt a semi off-line materialization and semi online computation model.

This thesis discusses the design principles, implementation issues and various extensions.

1.2 Problems addressed

We start from the basic problem on searching ranked results in a single relation with limited

number of dimensions. We then extend the problem in three dimensions: query on high-

dimensional data; query over multiple relations; and query with other types of preference

criteria.

1.2.1 Ranked Query with Selections

Consider a relation R with categorical attributes A1, A2, . . . , AS and real valued attributes

N1, N2, . . . , NR. A top-k query specifies the selection conditions on a subset of categorical

attributes and formulates a ranking function on a subset of real valued attributes. The result

of a top-k query is an ordered set of k tuples that is ordered according to the given ranking
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function. A possible SQL-like notation for expressing top-k queries is as follows:

select top k ∗ from R

where A′
1 = a1 and . . . A′

i = ai

order by f(N ′
1, . . . , N

′
j)

Where {A′
1, A

′
2, . . . , A

′
i} ⊆ {A1, A2, . . . , AS} and {N ′

1, N ′
2 ,. . . , N ′

j} ⊆ {N1, N2, . . . , NR}. The

results can be ordered by score ascending or descending order. Without losing generality,

we assume the score ascending order is adopted in this thesis

We further notate Ai (i = 1, . . . , S) as selection dimension (or boolean dimension) and Ni

(1, . . . , R) as ranking dimension. In general, a real valued attribute can also be a selection

dimension if it is discretized. A categorical attribute can also be a ranking dimension if

the distance is defined on the values in the domain. In this thesis, we first assume the

number of ranking dimensions is relatively small (e.g., 2-4), while the number of selection

dimensions could be rather large (e.g., more than 10). This is a typical setting for many real

applications. For example, both the used car database and the hotel database only have a

limited number of ranking dimensions (e.g., price, milage, distance). While the number of

selection dimensions is much larger. We extend our solution to cases where the number of

ranking dimensions is also large in Chapter 5.

For simplicity, we first demonstrate our method using the convex ranking functions. The

formal definition of the convex function is presented in Definition 1.

Definition 1 (Convex Function [55]) A continuous function f is convex if for any two

points x1 and x2 in its domain [a, b], and any λ where 0 < λ < 1:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

The convex functions already cover a broad class of commonly used functions. For exam-

5



ple, all linear functions are convex. Note we made no assumption on the linear weights and

they can be chosen either positive or negative. Hence the convex functions are more general

to the commonly discussed linear monotone functions where the weights are restricted to

be non-negative. Many distance measures are also convex functions. Suppose a top-k query

looks for k tuples t = (t1, . . . , tr) which are the closest to the target value v = (v1, . . . , vr),

both the ranking functions f(t) =
∑r

i=1(ti − vi)
2 and f(t) =

∑r
i=1 |ti − vi| are convex.

We will relax the constraint to a more general type of functions: Lower-bound Func-

tion. Without losing generality, we assume that users prefer minimal values. The query

results are a set of objects that belong to the data set satisfying the boolean predicates, and

are also ranked high (for top-k) in the same set. We assume that the ranking function f has

the following property: Given a function f(N ′
1, N

′
2, . . ., N ′

j) and the domain region Ω on its

variables, the lower bound of f over Ω can be derived. For many continuous functions, this

can be achieved by computing the derivatives of f .

1.2.2 Extensions

High-dimensional Data

In some applications (such as apartment search), the number of dimensions is large. We will

address two scenarios:

• The number of selection dimensions is large. For instance, in the apartment search ap-

plication, the search criteria could be whether the apartment has In-Unit Washer/Dryer,

or Washer/Dryer Hookups, or Laundry Room; whether the apartment has air-condition,

walk-in closets, hardwood Floors; whether the community has parking available, fitness

center, pool...

• The number of ranking dimensions is large. Use the apartment search as example,

the ranking criteria includes the rent rate, the square footage, the distance to some

interesting place (such as shopping mall, park, beach, etc.), the number of bedrooms,
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the number of bathrooms, the difference between the available date and move in date,

the application fee, the deposit fee...

High boolean dimension suffers the curse of dimensionality in cube materialization, and

high ranking dimension leads to the difficulty to effectively partition and search data. To

overcome this difficulty, advanced solutions are needed.

Ranked Query over Multiple Relations

When multiple relations exist in the database, ranked queries can be issued crossing relations.

A multi-relational ranked query consists of a join condition, a set of boolean dimensions and

ranking dimensions from each participating relation. The result of a top-k query is an

ordered set of k tuples that is filtered by the boolean constraints and ordered according to

the given ranking function.

General Preference Queries

Top-k queries are related to several other preference queries, such as skyline query [12] and

convex hulls [11]. Skyline query asks for the objects that are not dominated by any other

object in all dimensions. A convex hull query searches a set of points that form a convex

hull of all the other data objects. We will also discuss how to apply our proposed methods

to efficiently answer general preference queries with multi-dimensional selections.

1.3 Proposed approaches

1.3.1 Integrating Ranking and Selection

We propose to simultaneously push boolean and ranking pruning in query processing. More

specifically, to address multi-dimensional boolean selections, we adopt the data cube model

[27], which has been popularly used for fast and efficient on-line analytical processing (OLAP)
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in multi-dimensional space. To support ad hoc ranking analysis, we partition the data

according to measure attributes. To seamlessly integrate multi-dimensional selection and

ranking analysis into a single framework, we develop a new materialization model, called

ranking-cube, which summarizes data partition for each multi-dimensional selection condition

(e.g., a cell in the data cube). Ranking-cube does not provide query answers directly. Instead,

it is used to aid efficient query processing. Our experimental results show that the new

method is at least one order of magnitude faster than the previous approaches.

According to different approaches in searching for top ranked results, we demonstrate

this ranking-cube framework by two possible implementations: the grid partition with neigh-

borhood search, and the hierarchical partition with top-down search.

It is also desirable to have an incremental methodology to efficiently maintain the ranking

cube with the data insertion or deletion. We develop slightly different incremental update

methods based on above two implementations. For grid partition, one can temporally allo-

cate new data according to pre-computed blocks, and re-partition the data periodically. For

hierarchical partition, incremental data update on data partition can be first applied, and

the structure changes can be propagated to ranking cube. In this thesis, we mainly elaborate

our incremental solution with hierarchical solution.

1.3.2 Towards High-dimensional Data

In some applications, the number of dimensions is large. We discuss the possible solutions for

the high boolean dimensions and high ranking dimensions. With high boolean dimensions, a

full materialization of the ranking cube is too space expensive. Observing that many real life

ranked queries are likely to involve only a small subset of attributes, we can carefully select

the cuboids which needs to be materialized, where the space requirement for materialization

grows linearly with the number dimensions.

With high ranking dimensions, any single partition is not effective. A possible solution is

to create multiple data partitions, each of which consists a subset of ranking dimensions. The
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query processing thus conducts search over a joint space involving multiple data partitions.

Our solution further addresses two challenges: (1) the search space for f grows exponentially

with the number of partitions, and (2) the satisfactory of boolean predicates for a joint block

is difficult to determine.

1.3.3 Extending to Multi-Relations

When multiple relations exist in the database, a slight variation of ranking cube can be built

for each relation. A multi-relational ranked query that consists of a join condition and a set

of boolean dimensions and ranking dimensions from each participating relation. We extend

the original ranking cube framework to multiple relations (i.e., multiple ranking cubes). The

partition is performed on each relation, and the ranking cube is built with respect to the

boolean dimensions in each relation. Furthermore, we propose a complete system to support

ranked queries over multiple relations.

1.3.4 Adapting to other Preference Queries

Top-k queries are related to several other preference queries, such as skyline query [12] and

convex hulls [11]. Skyline query asks for the objects that are not dominated by any other

object in all dimensions. A convex hull query searches a set of points that form a convex hull

of all the other data objects. The ranking cube framework is also applicable to these queries.

For instance, the convex hull query algorithm developed by [11] progressively retrieves R-tree

blocks until the final answers are found. Ranking cube can be integrated into this search

procedure by pruning some blocks that do not contain tuples satisfying boolean predicates.

1.4 Organization of the Thesis

The remainder of this thesis are organized as follows.
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• Chapter 2 discusses the related work. Our work is mainly related to (1) ranked query

processing; and (2) OLAP and data cube.

• Chapter 3 presents the main idea of ranking-cube. The framework is demonstrated

by a simple grid partition (in materialization) and neighborhood search (in query

processing).

• Chapter 4 advances the ranking-cube model by an alternative hierarchical partition

method (in materialization) and top-down search (in query processing). We further

demonstrate the off-line cube computation and incremental update methods in this

framework.

• Chapter 5 addresses the difficulty with high ranking dimensions (The problem with

high boolean dimensions is discussed in Chapter 3). Our solution uses an index (par-

tition) merge framework.

• Chapter 6 further extends our solutions in Chapter 3 and Chapter 5 to ranked query

processing over multiple relations. Specially, we present a solution for SPJR (i.e.,

selection, projection, join and ranked) queries.

• Chapter 7 applies the ranking cube with general preference queries. Typically, we

demonstrate the solution on skyline and dynamic skyline queries.

• Chapter 8 concludes our study.
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Chapter 2

Related Work

Our work is tightly related to OLAP (On-Line Analytical Processing) and ranked query

processing. OLAP and ranking are currently separate technologies in the database systems.

OLAP refers to a set of data analysis tools developed for analyzing data in data warehouses

since 1990s [27]. A data warehouse stores a multi-dimensional, logical view of the data, and

supports management’s decision-making process. A point in a data cube stores a consoli-

dated measure of the corresponding dimension values in a multi-dimensional space. OLAP

operations, such as drill-down, roll-up, pivot, slice, and dice, are the ways to interact with the

data cube for multi-dimensional data analysis. Ranking is a way to filter the query results

and retain partial but high-quality answers. With the increasing integration of the database

systems with Web search, information retrieval, multimedia, and data mining applications,

database query processing has been evolving from finding the complete set of answers to

finding top-k answers. This leads to the popularity in research into ranked query processing

[7, 22, 21, 20, 17, 28, 30, 40, 45, 41, 64]. In the rest of this chapter, we discuss the previous

work on ranked query processing and data cube.

2.1 Ranked Query Processing

Our framework emphasizes on how to design off-line materialization to speed up the online

query processing. Previous work on rank-aware materialization mainly focuses on linear

ranking functions; and previous work on rank-aware query processing are mainly derived

from the threshold algorithm [30].
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2.1.1 Rank-aware Materialization

Recent successful work on rank-aware materialization includes layered and non-layered in-

dices (views) for linear ranking functions.

The non-layered approaches includes the PREFER system [40], where tuples are sorted

by a pre-computed linear weighting configuration. Queries with different weights will be

first mapped to the pre-computed order and then answered by determining the lower bound

value on that order. When the query weights are close to the pre-computed weights, the

query can be answered efficiently. Otherwise, this method may retrieve more data tuples.

An example is shown below.

y=x

y=3x

y

x

t7

t1

t6

t5
t4

t2

t3 t8

Figure 2.1: Rank mapping in PREFER

Example 1 Fig. 2.1 shows 8 tuples: t1, t2, . . . , t8 in a tiny database. Each tuple has two

attribute x and y. Suppose the pre-computed ranking order is built by the ranking function

x + y. The order of each tuple in the index is determined by its projection onto the line

y = x, which is orthogonal to x + y = 0. Similarly, a query with ranking function 3x + y

corresponds to the line y = 3x. Suppose the query asks for top-1, and the results are t2. The

system will retrieve all tuples in the database ranked before t2 with respect to x + y.

The layered indexing methods includes the Onion technique [21] and the Robust Indexing

[68] Generally, they organize data tuples into consecutive layers according to the geometry
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layout, such that any top-k queries can be answered by up to k layers of tuples. Thus the

worst case performance of any top-k query can be bounded by the number of tuples in the

top k layers. The Onion technique [21] greedily computes convex hulls on the data points,

from outside to inside. Each tuple belongs to one layer. The query processing algorithm

is able to leverage the domination relationships between consecutive layers and may stop

earlier than the kth layer is touched. For example, if the best rank of tuples in the cth layer

is no less than k among all tuples in the top-c layers (c ≤ k), then all the tuples behind the

cth layer need not to be touched because they cannot rank before k. However, in order to

leverage this domination relation between the consecutive layers, each layer is constructed

conservatively and some tuples are unnecessarily to be put in top layers (as demonstrated

in example 2).

The Robust Indexing exploits the fact that it may be beneficial to study more tuple-wise

domination relations. A set of tuples S dominates a tuple t if for any query, there is at

least one tuple in S ranks higher than t. A tuple t can be at least put in (n + 1)th layer

if there are n exclusive sets which dominate t. A good indexing strategy should push a

tuple as deeply as possible so that it has less chance to be touched in query execution. The

Robust Indexing uses an alternative criterion for sequentially layered indexing: for any k,

the number of tuples in top k layers is minimal in comparison with all the other layered

alternatives. Since any top-k query can be answered by at most k layers, this proposal aims

at minimizing the worst case performance on any top-k queries. Hence the proposed index

is robust.

Example 2 Suppose all query weights are non-negative. We can improve the onion tech-

nique by constructing convex shells, instead of convex hulls for each layer. Using the same

sample database in Example 1, the constructed convex shells are shown in Fig. 2.2 (a).

There are two layers constructed on the 8 tuples and for any top-2 query, all 8 tuples will

be retrieved. Robust index exploits more layer opportunities in this example. Fig. 2.2 (b)

shows the robust index construction which has four layers: {t1, t2, t3, t4, t5}, {t7},{t8} and
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t5 (layer 1)

t8 (layer 2)

t1

t6

t4

t2
t7

t3 t8 (layer 3)

t1

t6 (layer 4)

t4

t2
t7 (layer 2)

t3

t5 (layer 1)

Figure 2.2: Multi-Layered Index

{t6} (solid lines). Tuple t6 can be put in the 4th layer because for any linear query with

non-negative weights, t3 must rank before t6, one of the tuples in {t2, t4} must rank before

t6 and one of the tuples in {t1, t7} must rank before t6 (dashed lines). These claims can be

verified by linear algebra. For the same reason, t8 can be put in 3rd layer. Any top-2 query

on this layered index will only retrieve 6 tuples.

2.1.2 Rank-aware Query Processing

Most rank-aware query processing follows the family of threshold algorithms (i.e., TA) [28,

30, 29]. TA uses a sort-merge framework that sequentially scans a set of pre-computed lists,

each of which is sorted according to individual scores, and merges data objects from different

lists to compute the aggregated scores. Usually, it stops scanning long before reaching the

end of the lists. TA has been extensively studied in the context of middle-ware, information

retrieval, and multimedia similarity search, where the aggregation functions are usually

monotone. We say that a function f is monotone if f(x1, x2, . . . , xm) ≤ f(x′1, x
′
2, . . . , x

′
m)

whenever xi ≤ x′i, for every i.

The original scheduling strategy for TA-style algorithms is round-robin over all lists

(mostly to ensure certain theoretical properties). Early variants also made intensive use of
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random access (RA) to index entries to resolve missing score values of result candidates, but

for very large index lists with millions of entries that span multiple disk tracks, the resulting

random access cost is much higher than the cost of a sorted access (SA). To remedy this,

[29] introduced a combined algorithm (CA) framework

In the TA framework, there are several other variations. Chang et al. [20] developed

the MPro method. This method relies on some standard Threshold algorithm to compute

a list of candidates and their scores for the indexed attributes of a query. Based on that

list, the top-k answer to the query is then computed by scheduling additional RAs on the

non-indexed attributes, prioritizing top-k candidates based on their best scores (i.e., upper

bounds of their true total scores). An extended method estimates, based on single-attribute

selectivities, the probability that a single predicate achieves a score that would qualify the

data item for the top-k result.

Bruno et al. [15] developed the Upper method that conceptually alternates between RA

and SA steps. For RA scheduling, Upper selects the data item with the highest best score

and performs a single RA on the attribute (source) with the highest expected score. This

is repeated until no data item remains that has a higher best score than any yet unseen

document could have; then SAs are scheduled in a round-robin way until such a data item

appears again.

Bruno et al. [15] also developed the Pick method that runs in two phases: in the first

phase, it makes only SAs until all potential result documents have been read (i.e., as soon

as the best score that a yet unseen document could have is not larger as the current kth

largest partial score of an already seen document). In the second phase, it makes RAs for

the missing dimensions of candidates that are chosen similarly to Upper, taking the (source

specific) costs of RAs and the expected score gain into account.

The rank-aware materialization focuses on linear ranking functions, and the rank-aware

query processing is confined to monotone functions. Hence, they have limitations to answer

other common ranking functions. Moreover, those approaches are not aware of the multi-
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dimensional selection conditions.

2.2 OLAP and Data Cube

On Line Analytical Processing, or OLAP, is an approach to quickly providing answers to

analytical queries that are multidimensional in nature. Databases configured for OLAP

employ a multidimensional data model, allowing for complex analytical and ad-hoc queries

with a rapid execution time.

2.2.1 Concept and Definitions

In the core of any OLAP system is a concept of an data cube. It consists of numeric

facts called measures which are categorized by dimensions. The cube meta data is typically

created from a star schema or snowflake schema of tables in a relational database. Measures

are derived from the records in the fact table and dimensions are derived from the dimension

tables.

Since the introduction of data warehousing, data cube, and OLAP [33], efficient compu-

tation of data cubes has been one of the focusing points in research with numerous studies

reported. The research work can be classified into the following categories: (1) efficient

computation of full or iceberg cubes with simple or complex measures [1, 76, 54, 9, 37], (2)

selective materialization of views [38, 4, 34, 35, 59], (3) computation of compressed data

cubes by approximation, such as quasi-cubes, wavelet cubes, etc. [5, 66, 57, 6], (4) computa-

tion of condensed, dwarf, or quotient cubes [43, 67, 61, 44], and (5) computation of stream

“cubes” for multi-dimensional regression analysis [24].

Among these categories, the first one, efficient computation of full or iceberg cubes, plays

a key role because it is a fundamental problem. The problem of cube computation can be

defined as follows.

Definition 2 (Group-By Cell) In an n-dimension data cube, a cell c = (a1, a2, . . . , an : m)
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(where m is a measure) is called a k-dimensional group-by cell (i.e., a cell in a k-dimensional

cuboid), if and only if there are exactly k (k ≤ n) values among {a1, a2, . . . , an} which are

not ∗. We further denote M(c) = m and V (c) = (a1, a2, . . . , an).

Definition 3 (Iceberg Cell) Given a threshold constraint on the measure, a cell is called

iceberg cell if it satisfies the constraint. A popular iceberg constraint on measure count is

M(c) ≥ min sup, where min sup is a user-given threshold.

Definition 4 (Closed Cell) Given two cells c = (a1, a2, . . . , an,m) and c′ = (a′1, a
′
2, . . . , a

′
n,m′),

we denote V (c) ≤ V (c′) if for each ai (i = 1, . . . , n) which is not ∗, a′i = ai (the equality

holds iff V (c) = V (c′)). A cell c is said to be covered by another cell c′ if ∀c′′ such that

V (c) ≤ V (c′′) < V (c′), M(c′′) = M(c′) . A cell is called a closed cell if it is not covered by

any other cells.

2.2.2 Data Cube Computation

Here we review some representative algorithms for iceberg cube and closed cube computa-

tion. Previous studies for iceberg cube computation have developed three major approaches,

top-down, bottom-up, and integrated. The top-down approach is represented by the Multi-

Way Array Cube (called MultiWay) algorithm [76], aggregates simultaneously on multiple

dimensions; however, it cannot take advantage of Apriori pruning when computing iceberg

cubes. The bottom-up approach is represented by BUC [9], that computes the iceberg cube

bottom-up and facilitates Apriori pruning. The integrated approach is represented by Star-

Cubing that combines both top-down and bottom-up computational order, and leverages

both computational benefits. For closed cube computation, we review the C-Cubing algo-

rithm, which is built based on Star-Cubing.
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MultiWay

MultiWay [76] is an array-based top-down cubing algorithm. It uses a compressed sparse

array structure to load the base cuboid and compute the cube. In order to save memory

usage, the array structure is partitioned into chunks. It is unnecessary to keep all the chunks

in memory since only parts of the group-by arrays are needed at any time. By carefully

arranging the chunk computation order, multiple cuboids can be computed simultaneously

in one pass.

The MultiWay algorithm is effective when the product of the cardinalities of the dimen-

sions are moderate. If the dimensionality is high and the data is too sparse, the method

becomes infeasible because the arrays and intermediate results become too large to fit in

memory. Moreover, the top-down algorithm cannot take advantage of Apriori pruning dur-

ing iceberg cubing, i.e., the iceberg condition can only be used after the whole cube is

computed. This is because the high-dimension to low-dimension computation order does

not have the anti-monotonic property [2, 50].

BUC

BUC [9] employs a bottom-up computation by expanding dimensions. Cuboids with fewer

dimensions are parents of those with more dimensions. BUC starts by reading the first

dimension and partitioning it based on its distinct values. For each partition, it recur-

sively computes the remaining dimensions. The bottom-up computation order facilitates

the Apriori-based pruning: The computation along a partition terminates if its count is less

than min sup.

Apriori pruning reduces lots of unnecessary computation and is effective when the dataset

is sparse. However, BUC does not share the computations, but sharing is very useful in

computing dense datasets. We will review a closed cube method [43, 44] based on BUC

later in this section.

18



StarCubing

Star-Cubing [72] uses a hyper-tree structure, called star-tree, to facilitate cube computation.

Each level in the tree represents a dimension in the base cuboid. The algorithm takes

advantages of shared computation and Apriori pruning. In the global computation order, it

uses simultaneous aggregation. However, it has a sub-layer underneath based on the bottom-

up model by exploring the notion of shared dimension, which enables it to partition parent

group-by’s and use the Apriori-based pruning on child group-by’s.

Star-Cubing performs well on dense, skewed and not-so-sparse data. However, in very

sparse data sets, e.g., the cardinalities of dimensions are large, the star tree gets wider. It

requires more time in construction and traversal. In this thesis, we first extend the original

algorithm for the efficient computation in sparse data, then discuss the closed Star-Cubing

method.

C-Cubing

It is well recognized that data cubing often produces huge outputs. Besides the iceberg cube,

where only significant cells are kept, the closed cube is another popular solution. In closed

cube, a group of cells which preserve roll-up/drill-down semantics are losslessly compressed

to one cell. Due to its usability and importance, efficient computation of closed cubes still

warrants a thorough study.

To efficiently compute closed cube, previous work has developed two approaches on

closedness checking and pruning of non-closed cells. [73] proposed a new measure, called

closedness, for efficient closed data cubing. It is shown that closedness is an algebraic mea-

sure and can be computed efficiently and incrementally. Based on closedness measure, an

aggregation-based approach, called C-Cubing (i.e., Closed-Cubing), is developed and inte-

grated to Star-Cubing. The C-Cubing runs fairly efficiently.
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2.2.3 High-dimensional OLAP

OLAP over high-dimensional data has been shown difficult due the curse of dimensionality.

[45] proposed a new method called shell-fragment. It vertically partitions a high dimensional

dataset into a set of disjoint low dimensional datasets called fragments. For each fragment,

a local data cube is computed. Furthermore, the set of tuple-ids that contribute to the

non-empty cells is registered in the fragment data cube. These tuple-ids are used to bridge

the gap between various fragments and re-construct the corresponding cuboids upon request.

These shell fragments are pre-computed off-line and are used to compute queries in an online

fashion. In other words, data cubes in the original high dimensional space are dynamically

assembled together via the fragments.

Data Cube has been playing an essential role in implementing fast OLAP operations [27].

The measures in the cube are generally simple statistics (e.g., sum). Some recent proposals

introduce more complex measures, such as linear regression model [25] and classification

model [23]. This thesis discusses how to use data cube for multi-dimensional ranking analysis.

2.3 Other Related Work

A closely related study is the top-k selection queries proposed in [14], where the authors

proposed to map a top-k selection query to a range query. The soft selection conditions in

their queries are essentially the ranking functions for the k nearest neighbor search and our

problem of answering top-k queries with hard selection conditions is not considered. We will

compare ranking-cube with this method in Chapter 3.

Supporting top-k queries inside the relational query engine, in terms of a basic database

functionality, has been studied by [16, 41, 45]. These approaches augment ranking into the

query optimizer and therefore rank-aware query plans are considered during plan enumera-

tion. Our work is orthogonal to them in that we focus on efficient top-k query execution in

the OLAP framework.
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Top-k queries are related to several other preference queries, including skyline query [12]

and convex hull query [11]. Skyline query asks for the objects that are not dominated by

any other object in all dimensions. A nearest-neighbor query specifies a query point p and

searches for objects close to it. A convex hull is a set of points that minimizes any linear

functions. The methodology developed in this thesis is also applicable to these queries, and

we will discuss the extensions in this thesis.
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Chapter 3

Ranking Cube

3.1 Overview

In this chapter, we propose a new computational model, called ranking cube, for efficient

answering multi-dimensional top-k queries. We define a rank-aware measure for the cube,

capturing our goal of responding to multi-dimensional ranking analysis. Using the ranking

cube, we develop an efficient query algorithm. The curse of dimensionality is a well-known

challenge for data cube. We cope with this difficulty (on high boolean dimensions) by

introducing a new technique of ranking fragments. The solution for high ranking dimensions

are more complicated, and will be discussed in Chapter 5. This chapter are organized as

follows.

Rank-aware data cubing: We propose a new data cube structure which takes ranking

measures into consideration and supports efficient evaluation of multi-dimensional selections

and ad hoc ranking functions simultaneously. The “measure” in each cell is a list of tuple-IDs

and its geometry-based partition facilitates efficient data accessing.

Query execution model: Based on the ranking cube, we develop an efficient query

algorithm. The computational model recognizes both the progressive data accesses and the

block-level data accesses.

Ranking fragments: To handle high-dimensional (selection dimension) rank queries

and overcome the curse-of-dimensionality challenge, we introduce a semi-materialization

and semi-online computation model, where the space requirement for materialization grows

linearly with the number of selection dimensions.
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3.2 Cube Structure

In this section, we show the structure of the ranking cube and the construction method. We

first consider the case where the number of boolean dimensions is small so that computing

a full ranking cube over all boolean dimensions is possible. The extension to larger number

of selection dimensions can be handled by ranking fragments, which will be presented later

in this chapter.

3.2.1 General Principles

Suppose a relation R has selection dimensions (A1, A2, A3, . . . , AS) and ranking dimensions

(N1, N2, . . . , NR). We build the ranking cube on the selection dimensions, and thus the

multi-dimensional selection conditions can be naturally handled by the cube structure. To

efficiently answer top-k queries with ad hoc ranking functions, the measure in each cell

should have rank-aware properties.

A näıve solution is to put all the related tuples with their values on the ranking dimensions

in each cell. This approach has two limitations: First, it is not space efficient because

generally real values consume large spaces; and second, it is not rank-aware because the

system does not know which tuple should be retrieved first w.r.t. an ad hoc ranking function.

To reduce the space requirement, we can only store the tuple IDs (i.e., tid) in the cell.

We propose two criteria to cope with the second limitation: the geometry-based partition and

the block-level data access. The first one determines which tuples to be retrieved, and the

second one defines how the tuples are retrieved. To respond to ranked query efficiently, we

put the tuples that are geometrically close into the same block. During the query processing,

the block which is the most promising to contain top answers will be retrieved first, and the

remaining blocks will be retrieved progressively until the top-k answers are found.
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3.2.2 Geometry Partition

Based on the above motivation, we create a new dimension B (i.e., block dimension) on

the base table. The new block dimension organizes all tuples in R into different rank-aware

blocks, according to their values on ranking dimensions. To illustrate the concept, a small

database, Table 3.1, is used as a running example. Let A1 and A2 be categorical attributes,

and N1 and N2 be numerical attributes.

tid A1 A2 N1 N2

1 1 1 0.05 0.05
2 1 2 0.65 0.70
3 1 1 0.05 0.25
4 1 1 0.35 0.15
... ... ... ... ...

Table 3.1: An Example Database

Suppose the block size is P . There are many ways to partition the data into multiple

blocks such that (1) the expected number of tuples in each block is P , and (2) the tuples

in the same block are geometrically close to each other. One possible way is the equi-depth

partition [53] of each ranking dimension. The number of bins b for each dimension can be

calculated by b = (T
P
)

1
R , where R is the number of ranking dimensions and T is the number

of tuples in the database.

There are other partition strategies, e.g., equi-width partition, multi-dimensional parti-

tion [49], etc.. For simplicity, we demonstrate our method using equi-depth partitioning.

Our framework accepts other partitioning strategies and we will discuss this in section 3.6.

Without loss of generality, we assume that the range of each ranking dimension is [0, 1].

We refer the partitioned blocks as base blocks, and the new block dimension B contains the

base block IDs (simplified as bid) for each tuple. The original database can be decomposed

into two sub-databases: the selection database which consists of the selection dimensions

and the new dimension B, and the base block table which contains the ranking dimensions

and the dimension B. The equi-depth partitioning also returns the meta information of the
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bin boundaries on each dimension. Such meta information will be used in query processing.

Example 3 shows an equi-depth partitioning of the sample database.

Example 3 Suppose the data is partitioned into 16 blocks (Fig. 3.1). The original database

is decomposed into two sub-databases as shown in Table 3.2. The bid is computed according

to sequential orders (e.g., the four blocks on the first row are b1, b2, b3, b4; the four blocks on

the second row are b5, b6, b7, b8; etc.). The selection dimension coupled with the dimension

B will be used to compute ranking cube, and the ranking dimension table keeps the original

real values. The meta information returned by the partitioning step is the bin boundaries:

BinN1 = [0, 0.4, 0.45, 0.8, 1] and BinN2 = [0, 0.2, 0.45, 0.9].

t4

t2

1 3 4

1

2

3

4

t1
2

t3

Figure 3.1: Equi-Depth Partitioning

tid A1 A2 B
1 1 1 1
2 1 2 11
3 1 1 5
4 1 1 1
... ... ... ...

tid B N1 N2

1 1 0.05 0.05
2 11 0.65 0.70
3 5 0.05 0.25
4 1 0.35 0.15
... ... ... ...

Table 3.2: Table Decomposition

3.2.3 Rank-Aware Data Cubing

The ranking cube is built on the selection table. The measure in each cell is a list of tid

(i.e., tuple ID). A cuboid in the ranking cube is named by the involved selection dimensions
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and ranking dimensions. For example, the cuboid A1A2 N1N2 corresponds to selection

dimensions A1, A2 and ranking dimensions N1, N2.

Using our example database, a fragment of cuboid A1A2 N1N2 is shown in Table 3.3.

A1 A2 bid tid List
1 1 1 1,4
1 1 5 3
1 2 11 2
... ... ... ...

Table 3.3: A1A2 N1N2 Cuboid

Our first proposal is to organize the tid list with respect to the different combinations

of selection dimension and the dimension B (e.g., a1
1a

1
2b1, where a1

1, a1
2 and b1 are values on

dimension A1, A2 and B). Since each bid represents a geometry region, the materialized

ranking cube is able to quickly locate the cell which is the most promising for a given top-k

query. Let us call the base blocks given by the equi-depth partitioning logical blocks and

the disk blocks used to store the tid list physical blocks. Before the multi-dimensional data

cubing, each logical block corresponds to one physical block. However, with the multi-

dimensional data cubing, the tuples in each logical base block (e.g., b1) are distributed into

different cells (e.g., a1
1a

1
2b1, a2

1a
2
2b1, etc.), and thus the number of tuples in each cell is much

smaller than the physical block size. In order to leverage the advantage provided by block-

level data access on disk, we introduce the pseudo block as follows. The base block size is

scaled in each cuboid such that the expected number of tuples in each cell occupies a physical

block. Let the cardinality of the selection dimensions of a cuboid A1A2 . . . AS N1N2 . . . NR

be c1, c2, . . . , cs, the expected number of tuples in each cell is n = P
(
∏s

j=1 cj)
, where P is the

block size. The scale factor can be computed by sf = b(T
n
)

1
s c = b(∏s

j=1 cj)
1
s c. The pseudo

block is created by merging every other sf bins on each dimension. We assign the pseudo

block ID (or, pid) to the dimension B for each tuple, and the bid value is stored together

with tid in the cell. A pseudo block partitioning is demonstrated in Example 4.
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Example 4 In Table 3.2, let the cardinalities of A1 and A2 be 2, and there will be 4 pseudo

blocks (Fig. 3.2). The solid lines are the partitions for pseudo blocks and the dashed lines

are the original partitions for base blocks. The new cuboid is shown in Table 3.4.

1

t2

t1

t3

t4
21

2

Figure 3.2: Pseudo Block Partitioning

A1 A2 pid tid (bid) List
1 1 1 1(1), 3(5),4(1)
1 2 4 3(11)
... ... ... ...

Table 3.4: A1A2 N1N2 Cuboid After Pseudo Blocking

Given a database with S selection dimensions and R ranking dimensions, a ranking cube

consists of a triple 〈T, C, M〉, where T is the base block table on R ranking dimensions;

C is the set 2S − 1 different ranking cuboids according to the combination of S selection

dimension; and M is the set of meta information which includes the bin boundaries for each

ranking dimension and the scale factors for each cuboid.

3.3 Online Query Computation

Here we discuss how to answer top-k queries using ranking cube. We first define the data

access methods, then present the query processing algorithm. Finally, we demonstrate the

algorithm by a running example.
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3.3.1 Data Access Methods

We assume the ranking cube is stored on disk, and we only access data at the block-level. The

two data access methods are: get pseudo block and get base block. The first one accesses the

ranking cube. It accepts a cell identifier in a ranking cube, (e.g., A1 = a1, A2 = a2, pid = p1),

and returns a list of bid and tid in the cell; and the second one accesses the base block table.

It accepts a bid and returns a list of tid and their real values of the ranking dimensions.

Here we briefly explain why the combination of both data access methods may benefit

the query processing. First, if the get pseudo block were the only available method, the

query processing algorithm would be able to locate some promising tids. However, it might

need to issue multiple random accesses to retrieve the values of those tids. The get base

block method can reduce the number of random access, especially when the cardinalities are

low. Second, if the get base block were the only available method, the algorithm might have

wasted some I/O since some base blocks may not appear with the corresponding selection

dimensions. The get pseudo block method can guide the system to access the right base

blocks, especially when the cardinalities are high. Hence, the combination of these two data

access methods provides a fairly robust mechanism.

3.3.2 Query Algorithm

Our query processing strategy consists of the following four steps: pre-process, search, re-

trieve and evaluate.

Pre-process: The query algorithm first determines the cuboid C and base block table

T by the selection conditions and ranking functions.

Search: This step finds the next candidate base block for data retrieving. A tid may

be retrieved twice, first from C and second from T . We say a tuple is seen if its real values

are retrieved from T and the score w.r.t. the ranking function is evaluated. Otherwise, it is

unseen. The algorithm maintains a list of scores S for the seen tuples and let the kth best
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score in the list be Sk.

For each base block bid, we define f(bid) as the best score over the whole region covered

by the block. Given a ranking function, the algorithm computes the bid whose f(bid) is

minimum among all the remaining base blocks (A base block is not included for further

computation after it is retrieved and evaluated). Let this score be Sunseen and the corre-

sponding block be the candidate block. If Sk ≤ Sunseen, the top-k results are found and the

algorithm halts.

The key problem in this step is to find the candidate block. At the very beginning, the

algorithm calculates the minimal value of the ranking function f . Since we assume f is

convex, the minimal value can be found efficiently. For example, if f is linear, the minimum

value is among the extreme points of whole region; if f is quadratic, the minimum value can

be found by taking the derivative of f . The first candidate block corresponds to the block

which contains the minimal value point. To search for the following candidate blocks, the

result of Lemma 1 can be used.

Lemma 1 Assume the set of examined blocks is E. Let H = {b|neighbor(b, c) = true, ∃c ∈
E}, where neighbor(b, c) returns true if blocks b and c are neighboring blocks. If the ranking

function is convex, then the next best base block is bid∗ = arg minbid∈H f(bid), where f(bid) =

minp∈bidf(p).

Based on Lemma 1, we maintain a list H, which contains the neighboring blocks of the

previous candidate blocks. Initially, it only contains the first candidate block found by the

minimum value of f . At each round, the algorithm picks the first block in H as the next

candidate block and removes it from H. At the same time, the algorithm retrieves all the

neighboring blocks of this candidate block and inserts them into H. Since each block can be

neighboring with multiple blocks, we maintain a hash-table of inserted blocks so that each

block will only be inserted once. The blocks in H are resorted by f(bid) and the first one

has the best score.
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Retrieve: Given the bid of the candidate block computed in the search step, the algo-

rithm retrieves a list of tid’s from the cuboid C. It first maps the bid to a pid and then uses

get pseudo block method to get the whole pseudo block identified by pid. Since the mapping

between bid and pid is many-to-one, it is possible that a pid block has already been retrieved

in answering another bid request. To avoid multiple retrieving on the same pseudo block, we

buffered the bid and tid lists retrieved so far. If a bid request maps to a previously retrieved

pid, we directly return the results without accessing the cuboid C.

Evaluate: Given the bid computed in the search step, if the set of tid’s returned by

the retrieve step is not empty, the algorithm uses the get base block method to retrieve the

real values of those tuples. The real values are used to compute the exact score w.r.t. the

ranking function f . The scores are further merged into the score list S maintained by the

search step.

If the original query consists of other projection dimensions which are not in either the

selection nor the ranking dimensions, we can further retrieve the data tuples from the original

relation using the top-k tids.

3.3.3 A Demonstrative Example

Using the database in Table 3.1, we demonstrate each step by a running example:

select top 2 ∗ from R

where A1 = 1 and A2 = 1

sort by N1 + N2

The algorithm first determines that cuboid C = A1A2 N1N2 can be used to answer the

query. The related meta information is shown in Table 3.5.

Suppose the range of each ranking dimension is [0, 1]. The minimal value of the function

f = N1 + N2 is 0 (by N1 = 0 and N2 = 0). The algorithm locates the first base block as b1
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Meta Info. Value
Bin Boundaries of N1 [0,0.4,0.45,0.8,1]
Bin Boundaries of N2 [0,0.2,0.45,0.9,1]

scale factor of C 2

Table 3.5: Meta Information for answering query

1 3 4

3

4

t1
2

t3

t41

third candidate block (b2)

second candidate
block (b5)

first candidate block (b1)

2

Figure 3.3: Processing top-2 on example query

(as shown in Fig. 3.3), and asks cuboid C to return the tid list of this block. The cuboid C

maps b1 to p1 by the scale factor 2 (as shown in Fig. 3.2). Then C issues the get pseudo block

method and retrieves the following contents: {t1(b1), t4(b1), t3(b5)}. t1 and t4 are returned as

the results of the b1 query and t3(b5) is buffered for future queries. The algorithm then issues

the get base block method to get the real values of tuples in b1 and verifies that the exact

score of t1 is 0.1 and that of t4 is 0.5. To test the stop condition, the algorithm computes

the neighboring blocks of b1. In this example, the neighboring blocks are b2 and b5, and

thus H = {b2, b5}. Using the meta information on bin boundaries, we can compute the best

scores of the neighboring blocks w.r.t. to the ranking function f = N1 +N2. The base block

b2 has the best score 0.4 and the base block b5 has the best score 0.2. Both correspond to

the left upper points (as shown in Fig. 3.3). Hence, Sunseen = f(b5) = 0.2. At this stage,

the list of S and the list of H are shown in Table 3.6.

List Scores
S list f(t1) = 0.1, f(t4) = 0.5, S2 = 0.5
H list f(b2) = 0.4, f(b5) = 0.2, Sunseen = 0.2

Table 3.6: List Values at Stage 1
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Since the current kth score is S2 = 0.5 > 0.2 = Sunseen, the stop condition is not met.

The algorithm continues to pick b5 as the next candidate block, and inserts its neighboring

blocks b6 and b9 into H. Again, the cuboid C is asked to return the tid list with b5, which

is mapped to p1. This time, the results are buffered and {t3(b5)} is directly returned. The

algorithm further retrieves real values for b5 and verifies that the exact score of t3 is 0.3.

After updating the score list S, we have S2 = 0.3. The list H contains blocks b2, b6 and

b9, and the scores associated with them are f(b2) = 0.4, f(b6) = 0.6, and f(b9) = 0.45,

respectively. Thus, Sunseen = 0.4. At this stage, the list of S and the list of H are shown in

Table 3.7. Since S2 = 0.3 <= Sunseen, the stop condition is satisfied. The algorithm returns

t1 and t3 as top-2 results.

List Scores
S list f(t1) = 0.1, f(t3) = 0.3,

f(t5) = 0.5, S2 = 0.3
H list f(b2) = 0.4, f(b9) = 0.45,

f(b6) = 0.6, Sunseen = 0.4

Table 3.7: List Values at Stage 2

3.4 Ranking Fragments

When the number of selection dimensions is large, a full materialization of the ranking

cube is too space expensive. Instead, we adopt a semi-online computation model with semi-

materialization.

Before delving deeper into the semi-online computation, we claim the following observa-

tion about ranked query in high-dimensional space. Although a database may contain many

selection dimensions, most queries are performed only on a small number of dimensions at a

time. In other words, a real life ranked query is likely to ignore many selection dimensions.

Stemming from the above observation, we partition the dimensions into different groups

called fragments. The database is projected onto each fragment, and ranking cubes are fully
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materialized for each fragment. With the semi-materialized fragments, one can dynamically

assemble and compute any ranking cuboid cells of the original database online. In the rest of

this section, we discuss the two components of our computation model: semi-materialization

and semi-online computation.

3.4.1 Materializing Fragments

Here we show a general grouping framework and its storage size analysis. There are other cri-

teria which can be exploited to group selection dimensions for efficient query processing, and

we will address these issues in Section 3.6. Suppose the database has S selection dimensions

and the size of the fragment is F (i.e., the number of selection dimensions in the fragment),

we evenly partition the selection dimensions into S
F

disjoint sets. Each fragment will combine

with the ranking dimensions to construct a ranking cube. An example of fragment grouping

is shown in Example 5.

Example 5 Suppose a relation has 4 selection dimensions A1, . . . , A4 and two ranking di-

mensions N1, N2. We evenly group the selection dimensions into two fragments (A1, A2) and

(A3, A4) and the ranking fragments are: (A1, A2, N1, N2) and (A3, A4, N1, N2).

We estimate the space consumption for the ranking fragments. Given a relation with S

selection dimensions, R ranking dimensions, and T tuples, let the fragment size be F . There

will be total S
F

fragments, while each fragment has O(2F − 1) cuboids. Each cell in a cuboid

stores the bid and tid lists. Since tid’s are exclusively stored in different cells, the size of

each cuboid is 2T . The base block table has R + 2 dimensions (i.e., including the bid and

tid). The overall size of base block tables is O((R + 2)T ). The meta information for each

fragment can be neglected, comparing with the size of the cuboids and the base block tables.

The above estimation is summarized as the following lemma.

Lemma 2 Given a database with S selection dimensions, R ranking dimensions and T tu-

ples, the amount of disk space needed to store the ranking fragments with size F is O(2 S
F
T (2F−
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1) + (R + 2)T ).

Based on Lemma 2, for a database with 12 selection dimensions and 2 ranking dimen-

sions, using fragment size F = 2, the total amount of space requirement is on the order

of 2T (12
2
)(22 − 1) + (2 + 2)T = 40T . Suppose tid, bid and each dimension in the database

take same unit storage space, this is around 3 times the size of the original database. One

can verify that given a fixed fragment size, the space consumption by the ranking fragments

grows linearly with the number of selection dimensions.

3.4.2 Answering Query by Fragments

Given the semi-materialized ranking fragments, one can answer a ranked query on the orig-

inal data space. We say a cuboid covers a query if all the dimensions involved in the query

appear on the materialized cuboid. In this case, the query can be directly answered using

the query algorithm described in Section 3.3. Otherwise, the query is answered by a set of

cuboids which, as a whole, cover the query.

Determining Covering Cuboids

The covering cuboids set can be determined by a minmax criterion. More specifically, let

the set of selection dimensions contained in a cuboid C be Dim(C). Suppose the set of

selection dimensions in the query is Q. To determine which cuboid to be used to answer the

query, we first find all cuboids C such that there is no other cuboid C ′ satisfying Dim(C) ⊆
Dim(C ′) ⊆ Q (maximum step). Let the set of cuboids returned by the above step is MD,

the second step searches for a minimum subset MS ⊆ MD such that Q = ∪C∈MSDim(C).

An example of determining cuboids is shown as below.

Example 6 Suppose the materialized fragments are (A1, A2, N1, N2) and (A3, A4, N1, N2).

The query consists of the selection dimensions (A1, A4) and ranking dimensions (N1, N2).
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We first locate the set of candidate cuboids MD = {A1 N1N2, A4 N1N2}, and this is also

the minimum covering subset MS.

Computing Cuboid Cells Online

We discuss how to answer queries by a set of ranking fragments. The general idea is to

online compute the cuboid covers the query. Instead of computing the whole cuboid, we

only compute the cells which is required to answer the query. The online computation is

made efficient by set intersection operation on the tid lists.

Suppose the query has the selection dimensions (A1, A4). The fragments demonstrated

in Example 5 are used and a covering set of two cuboids A1 N1N2 and A4 N1N2 is selected.

Our goal is to online compute the required cells of cuboid A1A4 N1N2. Based on the query

algorithm presented in Section 3.3, we only need to make a small change at retrieve step.

Instead of issuing the get pseudo block method to cuboid A1A4 N1N2, which was not mate-

rialized, we issue the get pseudo block method to cuboid A1 N1N2 and A4 N1N2. The tid

lists returned by both cuboids will be intersected as the answer. All the other steps in the

query algorithm (Section 3.3) remain the same. The merge and intersect operation on the

tif lists can be generalized to more than two ranking fragments.

3.5 Performance Study

This section reports the experimental results. We compare the query performance of ranking

cube and ranking fragments with two other alternatives: the baseline solution by Microsoft

SQL-Server and the rank mapping approach proposed by [14]. We first discuss the experi-

mental settings, and then show the results on low dimensional data (with ranking cube) and

high dimensional data (with ranking fragments).
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3.5.1 Experimental Setting

We defines the data sets, the experimental configurations for all three methods and the

evaluation metric.

Data Sets

We use both synthetic and real data sets for the experiments. The real data set we consider

is the Forest CoverType data set obtained from the UCI machine learning repository web-site

(www.ics.uci.edu/∼mlearn). This data set contains 581, 012 data points with 54 attributes,

including 10 quantitative variables, 4 binary wilderness areas and 40 binary soil type vari-

ables. We select 3 quantitative attributes (with cardinalities 1, 989, 5, 787 and 5, 827) as

ranking dimensions, and other 12 attributes (with cardinalities 255, 207, 185, 67, 7, 2, 2, 2,

2, 2, 2, 2) as selection dimensions. To achieve a reasonable size of the data, we further du-

plicate the original data set 5 times and the data set has 3, 486, 072 tuples. We also generate

a number of synthetic data sets for our experiments. The parameters and default values are

summarized in Table 3.8.

Parameter Default Value
S: Number of selection dimensions 3 (Cube)

12 (Fragments)
R: Number of ranking dimensions 2
T: Number of Tuples 3M
C: Cardinality 20

Table 3.8: Parameters for Synthetic Data Sets

Experimental Configurations

In the experiments, we compare our proposed approach against the baseline solution pro-

vided by commercial database and the rank mapping technique discussed in [14]. All the

experiments are conducted over Microsoft SQL Server 2005 on a 3GHz Pentium IV PC with

1.5GBytes of RAM. Specifically, we use the following techniques for answering top-k queries.
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Baseline Approach: We load all experimental data sets into SQL Server 2005. A non-

clustered index is built on each selection dimension. The baseline performance is measured

by simply issuing the following SQL statement to the SQL Server:

select top k ∗ from D

where A1 = a1 and . . . Ai = ai

order by f(N1, . . . , Nj)

where Ai belong to selection dimensions and Ni belong to ranking dimension.

Rank Mapping Approach: In [14], the authors proposed to map a top-k selection

query to a range query. Their problem definition is slightly different from ours since the

top-k queries in [14] do not have hard selection condition. However, the idea of mapping a

ranking function to a range query can also be applied in our problem. We refer their method

as rank mapping. An example of applying rank mapping in our problem is as follows:

Top-k Query : select top k ∗ from D

where A1 = a1 and . . . Ai = ai

order by N1 + 2N2

Range Query : select top k ∗ from D

where A1 = a1 and . . . Ai = ai and

N1 ≤ n1 and N2 ≤ n2

order by N1 + 2N2

The performance of this approach relies on two aspects: (1) how the bound values n1 and

n2 are determined; and (2) how the index in the database is configured to efficiently answer
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the multi-dimensional range query.

The original proposal for the first issue is to use a workload adaptive mapping strategy

to provide the selectivity estimation. Since the workload information is not available to

us in our experiment, we make an extremely conservative comparison by feeding the rank

mapping approach the optimal bound values. For the sample query given above, if the final

kth tuple in the result is evaluated as 100 by the ranking function, we assign n1 as 100 and

assign n2 as 50. This is the best estimation that any mapping strategy can provide.

For the second issue, the original proposal is to build a multi-dimensional index on all

participating attributes. We will continue to use it when we test performance on ranking

cube, where the number of involved dimensions is comparatively low. The dimension order in

the index is first the selection dimensions and then the ranking dimensions. For our ranking

fragments experiment, a single multi-dimensional index is not practical since the number of

dimension is quite high. Instead, we build several partial multi-dimensional indices and each

of them corresponds to one ranking fragment.

Ranking Cube (Fragments): For a fair comparison, we load the ranking cube (frag-

ments) into SQL Server. To simulate the block-level access, we build a clustered index on

selection dimensions Ai and the pseudo block ID (pid) for each cuboid; and a clustered

index on base block ID (bid) for the base block table. We implement our query algorithms

using Visual.net c#. The ranking cube (fragments) have two parameters: the base block

size B and the fragment size F . By default, we set B as 300 and F as 2. We will conduct

experiments to examine the query performance with respect to these two parameters.

Evaluation Metric

We use execution time to evaluate the techniques presented above. For each experiment, we

report the average running time for executing a set of 20 randomly issued queries. Without

loss of generality, we use linear ranking functions in our evaluation. One criterion to measure

the query difficulties of the linear ranking functions is the query skewness, which is defined
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as follows. For a linear ranking function α1N1 + α2N2 + . . . + αrNr, let α = minr
i=1 αi and

α = maxr
i=1 αi, the query skewness is defined as u = α/α.

The parameters and their default values for queries are shown in Table 3.9.

Parameter Default Value
s: Number of selection conditions 2
r: Number of dimensions involved 2

in ranking function
k: Number of top results requested 10
u: Query Skewness 1

Table 3.9: Parameters for Queries

3.5.2 Experiments on Ranking Cube

This section presents experimental results for the top-k query processing using ranking cube.

We use synthetic data set in this set of experiments. To study the query performance with

respect to different criteria, we vary the value of k (the number of top results requested),

u (query skewness), T (the number of tuples in the database), C (the cardinalities of each

dimension), s (the number of selection conditions), r (the number of dimensions involved in

the ranking function) and B (the base block size). Another important measure is the space

requirement, and we will report the result in the next subsection. All the parameters in the

data sets and queries use the default values (if not explicitly specified).

Top-k Query: Figure 3.4 reports the execution time as a function of k (i.e., the number

of tuples requested) on the default synthetic data. Our methods is much more efficient than

the previous approaches. As expected, the baseline approach is not sensitive to the value

of k since it retrieves all the tuples. The execution time of the rank mapping approach

increases slightly. This is because we assign the optimal bound values for range queries and

those bound values increase slightly. Our method progressively retrieves data blocks, and

thus a larger k value asks for more data accesses. When k = 10, the ranking cube is 4 times

faster than the rank mapping approach and 10 times faster than the baseline approach.
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Figure 3.4: Query Execution Time w.r.t. k

Query Skewness: In this experiment, we measure the performance by varying query

skewness. The goal of this experiment is to test the robustness of the base block partitioning.

A skewed query may require the system to retrieve more data since the top results may be

distributed on more base blocks. We vary the value of u and the results are reported in

Figure 3.5. The execution time of our method increases slightly with u. However, it still

performs much better comparing with other alternatives.

Number of Dimensions in Ranking Function: Here we continue to test the query

performance with respect to the ranking function. We generate a synthetic data with 3

selection dimensions and 4 ranking dimensions, and vary the value of r (the number of

dimensions involved in the ranking function) from 2 to 4. The results are shown in Figure

3.6. We observe that the execution time of our method slightly increases when the number

of dimensions decreases. This is because our base block table is constructed on all 4 ranking

dimensions. A 2 dimensional query means the blocks need to be projected onto the lower

dimensions. Hence more block accesses are required. The baseline approach is not sensitive

to r. The rank mapping approach performs worse because the bound estimation, although

it is optimal, is much looser in higher dimensions.
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Figure 3.5: Query Execution Time w.r.t. u
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Figure 3.6: Query Execution Times w.r.t. r
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Figure 3.7: Query Execution Time w.r.t. T

Database Size: To analysis the query performance with respect to the data size, we

change the number of tuples in the synthetic data from 1M to 10M (Figure 3.7). The baseline

performs worse on larger data set since the selection conditions return more qualified tuples

and the database needs to do more random accesses. Although the rank mapping approach

is fed by the optimal bound values, it performs worse with larger data size. This may be

caused by the reason that query execution time is sensitive to the dimensions involved in the

query. If the involved dimensions exactly follow the order on which the multi-dimensional

index was built, it can be answered extremely fast. Otherwise, there will be more random

access and the execution time is also affected by the data size. On the other hand, the

ranking cube approach has stable performance, regardless of the data size. This indicates

that our proposed approach is especially attractive for larger data set.

Cardinality: We generate a set of synthetic data by varying the cardinality of each

selection dimension from 10 to 100. The results are shown in Figure 3.8. Basically, increasing

cardinality favors the baseline approach since the number of tuples filtered by the selection

conditions decreases significantly. There is no clear trend of the rank mapping approach

in this experiment, mainly because we assign the optimal bound value for the transformed
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Figure 3.8: Query Execution Time w.r.t. C

range query and the number of tuples satisfying the range query is thus not sensitive to the

cardinalities. For our method, the scale factor (see Section 3.2) of the pseudo block increases

with the cardinality and the tuples are more sparse in each pseudo block. As the result,

it invokes more get base block methods to verify the tuples and the execution time slightly

increases. When C is large enough (i.e., 100), we observe the execution time decreases again.

This is because the number of tuples retained by the selection conditions is quite small and

many base blocks are not retrieved since they are found to be empty during the get pseudo

block step. This is consistent with our analysis that the combination of two block access

methods is robust (see Section 3.3.1).

Number of Selection Conditions: Here we vary the number of selection conditions

to test the trade-offs between the ranking and selection. The results are shown in Figure

3.9. Generally, involving more selection conditions results in fewer qualified tuples, and

consequently, the baseline approach improves its query performance. The execution time

of rank mapping decreases because the multi-dimensional index has better utilization. In

the experiment, we use a synthetic data with 4 selection dimensions. When the dimensions

involved in the query are the same as those in the multi-dimensional index (i.e., s = 4 in

43



2 3 4
0

0.5

1

1.5

2

2.5

3

ranking cube
rank mapping
baseline

Number of Selection Conditions (s) 

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
) 

 

Figure 3.9: Query Execution Time w.r.t. s

Figure 3.9), the range query can be answered very fast. The execution time of ranking cube

slightly increases with the number of selection conditions, and overall its performance is not

sensitive to the number of selection conditions, for the same reason given in the previous

experiment. We also observe that with 4 selection conditions, the number of qualified tuples

is 22. Ranking is even not necessary in this case.

Block Size: The final experiment with ranking cube is to test the sensitivity with respect

to the block size B. We measure the block size by the expected number of tuples contained

by a block. The results are shown in Figure 3.10. We observe that the execution time is

within 10% between each other cases, and the performance not sensitive to the value of B

(from 100 to 1000). In our experiments, we use 300 as the default value for B.

3.5.3 Experiments on Ranking Fragments

In this subsection, we present experimental results on ranking fragments. We first examine

the cost of storing the fragments, and then test the query execution time. Both synthetic

and real data in our experiments have 12 selection dimensions. We increase the default
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Figure 3.10: Query Execution Time w.r.t. Block Size

number of selection conditions to 3.

Space Consumption: The first experiment is to examine the amount of space needed

to store the ranking fragments. Specifically, how it scales as the dimensionality grows. We

use a synthetic data with 3-12 selection dimensions and build ranking fragments with F = 2.

Figure 3.11 shows the total space consumption in SQL server. The space usage includes both

the data and the indices. We compare the total space usage with baseline (BL) and rank

mapping (RM) approaches. The baseline approach builds a non-clustered index on each

selection dimension and the rank mapping approach builds a multi-dimensional index for

each ranking fragment. Although neither of them generates new tables, the indices used by

them are much larger than the the base table. We also observe that the clustered indices

built by the ranking fragments (RF) occupy small space (roughly 1% of the total space). As

shown in the figure, the space usage of all three methods grow linearly with the number of

dimensions. The space used by ranking fragments is only 2-2.5 times of that of the other

two alternatives. It is a fairly acceptable cost paid for materialization since the online query

processing becomes much more efficient. Comparing with other data cube proposals, the

space requirement by the ranking fragments is more practical. Furthermore, since we store
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Figure 3.11: Space Usage w.r.t. Number of Selection Dimensions

ranking fragments in relational database, a large portion of the space is used to store the

cell identifiers. We believe that the space requirement can be further reduced if we store the

data out of the relational database. We discuss more compression opportunities in Section

3.6.

Number of Covering Fragments: Since the ranking fragments do not guarantee to

cover a query by a single fragment, we test the query performance with respect to the number

of covering fragments. We generate 3 top-k queries, each involving 3 selection dimensions,

and intentionally let them be covered by one, two and three fragments. We use the same

data set as described above, and the execution time is shown in Figure 3.12. The execution

time increases with the number of covering fragments. Typically, the execution time with

2 (3) covering fragments is roughly 1.4 (2) times of that with one covering fragment. We

observe that even with 3 covering fragments, our method is still around 4 times faster than

the baseline and 2 times faster than the rank mapping approach (See Figure 3.4).

Fragment Size: Here we test the query performance with respect to the fragment size.

A larger fragment size will have better coverage of the queries, however, it requires more
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Figure 3.12: Query Execution Time w.r.t. Number of Covering Fragments

space usage as well. Generally, fragment size larger than 3 is too space consuming, and we

test the performance on fragment sizes 1, 2, and 3. We continue to use the same synthetic

data set described above and the queries are generated with 3 selection conditions. The

results are shown in Figure 3.13. We observe that the larger fragment size provides better

query performance.

Number of Dimensions: Here we fixed the fragment size as 2 and vary the number

of selection dimensions from 3 to 12. We compare the query execution time with the base-

line and the rank mapping approaches. The results are shown in Figure 3.14. We have

the following observations. First, the baseline approach is not sensitive to the number of

dimensions. Second, the rank mapping approach becomes worse when dimension increases.

This is because in high dimensional data, the multi-dimensional index in each fragment has

low probability to cover a query. In many cases, the query only accesses one dimension in a

multi-dimensional index and this is quite expensive. Finally, the time used by ranking frag-

ments increases slightly from 3 to 9 dimensions. For queries with three selection conditions,

we expect that the execution time will keep stable with higher dimensions. This is because

query execution in the worst case (i.e., the query is covered by three different fragments) is
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Figure 3.13: Query Execution Time w.r.t. Fragment Size

still quite efficient (see Figure 3.12).

Real Data: Besides synthetic data, we also tested our proposed methods on the real-

world data set: Forest CoverType (see Section 3.5.1). We evenly partition the 12 selection

dimension into 4 groups (i.e., fragment size is 3). The queries has 3 selection conditions

and the ranking function spans on all three ranking dimensions. The query execution time

with respect to k is shown in Figure 3.15. Different from the result in last experiment, here

we observe that the rank mapping approach is more efficient than the baseline approach.

This is because in this real data set, many dimensions have cardinality 2. As a result, the

baseline approach needs to access more tuples. The low cardinalities also enable the rank

mapping approach to efficiently access the multi-dimensional indices. Comparing with these

two alternatives, our proposed method consistently performs the best on both the synthetic

and read data sets.
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Figure 3.14: Query Execution Time w.r.t. S
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Figure 3.15: Query Execution Time on Real Data
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3.6 Discussion

To efficient process top-k queries with multi-dimensional selections, we proposed a novel

rank-aware cube structure which is capable to simultaneously handle ranked queries and

multi-dimensional selections. Based on the ranking cube, we develop a progressive query

processing algorithm. We further extend the ranking cube to ranking fragments, which is

especially useful for high dimensional data. Here we discuss some possible extensions.

3.6.1 Ad Hoc Ranking Functions

Although we demonstrated the solution by convex function, the framework can be extended

to ad hoc ranking functions. The basic idea is to decompose the whole domain of the

function variables into multiple sub-domains so that in each sub-domain, the function has

convex property. The decomposition relies on the scientific computing techniques and is out

of the scope of this thesis. After the convex sub-domains are computed, we can fetch those

starting points in each sub-domain. The algorithm can be modified to merge the current

best tuples from each sub-domain and maintain a global neighboring block list (See Section

3.3), which determines the next candidate block for retrieving tuples.

3.6.2 Variations of Ranking Cube

We have used equi-depth partitioning to build the ranking cube. The proposed methods

can also be combined with other partitioning strategies. For example, a multi-dimensional

partitioning [49] recursively partitions the data domain, one dimension at a time, into bins

enclosing the same number of tuples. Each multi-dimensional bin can be considered as a base

block. We can still use the concept of pseudo block by merging sfi number of consecutive

base blocks in each dimension i, where sfi is the scale factor (See Section 3.2) of dimension

i. The query algorithm remains the same. The trade-off is that we need more space for the

meta information of the base block partitioning.
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To construct ranking fragments, we used a simple grouping method. There are many

other criteria to group the selection dimensions. For example, if the workload (i.e., query

history) is available, one can compute the combination of dimensions that are frequently

used in queries and materializing ranking fragments on those dimension combinations. An-

other criterion is to use the cardinalities of selection dimensions. If a dimension has large

cardinality, further combining this dimension with other dimensions may not be useful, since

the number of tuples in each cell will be too small.

In this thesis, we assume the boolean predicates come from categorical attributes. We can

handle ranking cubes over numerical attributes in two ways. First, the domain of numerical

attributes can be discretized and the ranking cubes are then built based on the discretized

values. During query evaluation, the boolean predicates can be relaxed to the discretization

granularity. A final checking step is needed to verify the exact numerical values. Secondly,

one can build a B-tree or R-tree partition over the numerical attributes, and handle the

boolean predicates B as a special ranking function such that if a tuple t does not satisfy B,

the value of f(t) is infinite large (for minimal query).

3.6.3 ID List Compression

The tid list in each block can be compressed, such that each block contains more tids. As

the result, the system will retrieve less number of blocks for evaluating a ranked query. One

compression method is the bitmap indexing [3, 18]. In many applications, the cardinalities

of selection dimensions are small. For example, in the used car database, the majority of

selection dimensions only have 2 possible values, e.g., whether it has power window, sunroof,

and so on. The bitmap indexing can be used to compress the tid lists in the ranking cube

and improve the space usage. Furthermore, the merge operation in ranking fragments can

be performed much faster using the bit-AND operation than the standard merge-intersect

operation.

Another compression method of the tid-lists come from information retrieval [60]. The
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main observation is that the numbers in the tid-list are stored in ascending order. Thus, it

would be possible to store a list of tid difference instead of the actual numbers. The insight

is that the largest value in the difference list may be bounded, and it maybe possible to store

them using less than the standard 32 bits of an integer.

3.6.4 High Ranking Dimensions

In this chapter, we assume that the number of ranking dimensions is not large. In some ap-

plications where more ranking dimensions are involved, we can construct a variant of ranking

fragments. Similar to our proposal on handling high selection dimensions, we can partition

the ranking dimensions into several groups. The ranking fragments can be assembled by

picking one group from selection dimensions and one group from ranking dimensions. If a

query falls into two ranking fragments with different ranking groups, the query processing

algorithm can be extended as follows. First, the starting base blocks are found in each rank-

ing fragments and the tid lists are merged as we did in Section 3.4. The system then examine

the neighboring blocks in each fragment and compute the best combination of the neighbor-

ing blocks as the next candidate blocks. This procedure repeats until the stop condition is

satisfied. We will discuss this in detail in Chapter 5 and Chapter 6.

52



Chapter 4

Signature as Measure

4.1 Overview

In last chapter, each ranking dimension is partitioned in equi-depth bins, and data tuples are

grouped into grid cells by intersecting the bins from all participating preference dimensions.

For each group-by, the cube stores 〈cell id, tuple id list〉 pairs for each cell. During top-k

query execution, the online search algorithm first locates the cell which contains the extreme

point, and then progressively expands to neighboring cells. This search method is confined

to grid partition and convex functions. The progressive expansion requires the neighbor

cells to be well defined, which is not the case in some other data partition methods (e.g.,

R-tree). Also, relying on grid partition makes the query performance sensitive to data

distribution, since the search algorithm may request many “dead” (i.e., empty) cells. In this

chapter, we discuss an alternative ranking cube implementation based on the hierarchical

partition method, and works with a more general branch-and-bound search framework. We

also exploit data compression to make the ranking cube more compact.

4.1.1 A Unified Framework

OLAPing ranked queries is essentially a task to efficiently find top answers (according to a

function f) with a set of multi-dimensional boolean predicates, B. To do this, an algorithm

can first filter data tuples by B and then compute the top-k results, or first search data

tuples according to f and verify B on each candidate. Both approaches may retrieve data
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that will be pruned by the other criterion later, and thus are not efficient. Ranking cube is

a way to simultaneously combine both ranking and boolean pruning. The whole framework

consists of three components.

1. To facilitate rank-aware data retrieval, data is partitioned into n blocks according

to ranking dimensions. We refer the data partition as P = {b1, b2, . . . , bn}, where

bi = {t1i , t2i , . . . , tli} is the ith data block, and tji is the jth tuple in bi.

2. For each B, we compute a measure M(P |B) = {m(b1|B),m(b2|B), . . . ,m(bn|B)},
where m(bi|B) = {δ(t1i |B), δ(t2i |B), . . . , δ(tli|B)} and δ(tji |B) = 1 if the tuple tji sat-

isfies B. The ranking cube C pre-computes and stores the measure M for all possible

dimensional values.

3. Guided by C, the query processing algorithm S searches for top answers over P such

that a block bi is retrieved if and only if bi may contain tuples better than the current

top-k results, and m(bi|B) 6= 0.

4.1.2 Implementation Issues

In the framework presented above, the data partition P and ranking cube C contain the

semi off-line materialization, and the search algorithm S conducts the semi online compu-

tation. In this subsection, we cast two typical implementations in this framework: the grid

partition with neighborhood search and the hierarchical partition with top-down search. In

each implementation, we will discuss the partition scheme, the measure composition, and

the query algorithm.

Grid Partition

Partition Scheme: We demonstrate the grid partition by the method used in [70]. For each

ranking dimension (e.g., X and Y in Table 4.1), we partition the domain into L bins by

equi-depth partitioning. In our sample database (Table 4.1), suppose A and B are boolean
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dimensions, and X and Y are ranking dimensions. Each ranking dimension is partitioned

into 4 bins, and the data is partitioned into 16 blocks (Figure 3.1). We store the tuples with

the values on ranking dimensions, cell by cell, in a block table. The bin boundaries of the

equi-depth partition are stored in the meta table.

Measure Composition: Following the above example, suppose the block on the ith row and

jth column in Figure 3.1 is b4i+j (i, j = 0, 1, 2, 3). Given a boolean predicate B = a1b1,

only b1 = {t3} and b4 = {t1, t2} contain tuples satisfying B (i.e., t1, t3). Consequently,

m(b1|B) = {1}, m(b4|B) = {10} and m(bi|B) = 0 for all the other bi. We point out

two important issues in implementing M(P |B). First, by merging all m(bi|B), M(P |B)

is basically a bit-array and can be compressed by many compression methods. Secondly,

M(P |B) can be decomposed into several smaller parts (while preserving neighboring bi

together), each of which is retrieved from the ranking cube only when necessary.

Query Algorithm: Given a ranked query with f and B, the query algorithm searches for

blocks that are (1) promising with respect to f , and (2) containing tuples satisfying B. To

begin with, we define f(bi) as the minimal value of f over the region covered by block bi( In

this thesis, we assume minimal top-k is requested.). Given the bin boundaries stored in the

meta table, the search algorithm is able to sort all bi according to f(bi), and retrieves bi one

by one. The algorithm skips a bi if m(bi|B) = 0 since it contains no tuple satisfying B. To

avoid enumerating all blocks, one may first locate the blocks that contain the extreme points,

and progressively search over their neighboring blocks. Among the neighboring blocks, the

algorithm will first examine the block with minimal value of f(bi). We refer this search

method as neighborhood search, and it assumes that the ranking functions are convex.

Hierarchical Partition

Partition Scheme: For hierarchical partition, we use R-Tree as an example [36]. R-Tree

splits space with hierarchically nested and possibly overlapping boxes. Each node stores the

pointers to child nodes and the bounding box of child nodes. The leaf node stores the tids
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and the values on ranking dimensions. Figure 4.1 shows a sample R-Tree, where the root

node contains pointers to child nodes N1 and N2, and so on.

Measure Composition: Each node Ni in the R-Tree partition corresponds to a block in the

ranking cube framework, and we define m(Ni|B) = {δ(n1
i |B), δ(n2

i |B), . . . , δ(nl
i|B)}, where

nj
i is a child node or a tuple. δ(nj

i |B) = 1 if and only if nj
i contains a tuple satisfying B.

Query Algorithm: Given the hierarchical partition, the algorithm follows the branch-and-

bound principle to progressively retrieve data nodes. Specially, the search process first inserts

the root node into a heap h. At each step, the algorithm fetches the node N appearing at

the top of h (i.e., with minimal value of f(N)), and inserts all child nodes nj of N to h

if m(nj|B) 6= 0. The query processing halts when f(N) is no less than the current top-k

results. We refer this search method as top-down search.

Comments on Partition Schemes

We have presented a general framework for ranking cube, and demonstrated it by both grid

and hierarchical partitions. The grid partition is simple and easy to implement. However,

the query performance may be sensitive to data distribution, since the there may be many

dead (i.e., empty) cells for skewed data. The hierarchical partition is more robust with

respect to data distribution. But it may incur additional cost to build and traversal over

the partition. In real application, one may choose different partition scheme accordingly.

4.1.3 Query Model

Without losing generality, we assume that users prefer minimal values. The query results

are a set of objects that belong to the data set satisfying the boolean predicates, and are also

ranked high (for top-k) or not dominated by any other objects (for skylines) in the same set.

For top-k queries, we assume that the ranking function f has the following property: Given

a function f(N ′
1, N

′
2, . . ., N ′

j) and the domain region Ω on its variables, the lower bound of f

over Ω can be derived. For many continuous functions, this can be achieved by computing
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the derivatives of f .

4.2 Signature based Materialization

We compute a signature as the measure for the ranking-cube. The signature uses one

bit (i.e., 0/1) to indicate whether a data partition contains tuples satisfying the boolean

predicates. For efficient storage, retrieval, and incremental maintenance, the signatures are

further decomposed and compressed. In the rest of this chapter, we first describe how to

construct signatures. This includes signature generation, compression and decomposition.

We then discuss how to incrementally maintain signatures.

4.2.1 Signature Generation

Signatures are generated by a partition scheme and group-by conditions. We demonstrate

our methods using a sample database (Table 4.1), where A and B are boolean dimensions, X

and Y are preference dimensions, and path (see Section 4.2.1) is generated by our algorithm

to facilitate the computation of ranking-cube.

tid A B X Y path
t1 a1 b1 0.00 0.40 〈1, 1, 1〉
t2 a2 b2 0.20 0.60 〈1, 1, 2〉
t3 a1 b1 0.30 0.70 〈1, 2, 1〉
t4 a3 b3 0.50 0.40 〈1, 2, 2〉
t5 a4 b1 0.60 0.00 〈2, 1, 1〉
t6 a2 b3 0.72 0.30 〈2, 1, 2〉
t7 a4 b2 0.72 0.36 〈2, 2, 1〉
t8 a3 b3 0.85 0.62 〈2, 2, 2〉

Table 4.1: A Sample Database R

Partitioning Data as Template

Data is partitioned according to the ranking dimensions. There are extensive studies on

different data partitioning methods. In this chapter, we use R-tree as an example. The
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same concept can be applied with other multi-dimensional partition methods. We assume

the data partition always has hierarchical property. Some partition methods (e.g., grid

partition in the last chapter) may not generate tree-structure initially. In this case, we can

create hierarchies by iteratively merging neighboring grid cells. R-Tree splits space with

hierarchically nested and possibly overlapping boxes. Each node of an R-tree has a variable

number of entries (between the minimal value m and the maximal value M [36, 8]). Each

entry within a non-leaf node stores two pieces of data: pointers to child nodes and the

bounding box of child nodes. Each entry within a leaf node stores the tid and the values

on ranking dimensions. The R-tree partition of the sample database is shown in Figure

4.1, where the root node contains pointers to child nodes N1 and N2, and node N1 contains

pointers to child nodes N3 and N4, and so on.

ROOT

N1 N2

t1

t6

t8t2

t4

t5

t7

t3

N1

N3 N4

N5

N6

N2

N3 N4 N5 N6

t7 t8t5 t6t3 t4t1 t2

Y

X

Figure 4.1: Partition data by R-tree, m = 1,M = 2

The grid partition presented in the last chapter does not have hierarchical properties.

We can create a tree structure as follows. Suppose the node of the tree can hold maximum

M child entries, and the number of numerical attributes is n. We evenly divide neighboring

bins on each attributes into blogn Mc larger bins, which leads to (blogn Mc)n ≤ M larger

grid cells. Those cells are the first level nodes linked to the root. Using the same method,

we recursively partition those large grid cells until all leaves are base blocks. A sample tree

construction is shown in Figure 4.2, where the upper-left four base blocks are merged to a

higher level grid cell N1. Empty cells are removed from the tree.
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Figure 4.2: Partition data by grids, k = 4, n = 2,M = 4

Generating Signatures for Group-bys

Given a hierarchical structure of the partition scheme, we generate one signature for each

cell (e.g., A = a1) as follows. Each node in the R-tree contains a list of pointers to its

child nodes, and the length of the list is up bounded by M . We encode the list using a bit

array, where each bit corresponds to a child node. If there is no data belonging to the cell

(e.g., A = a1) in a child node (including all its descendant nodes), we set the bit value as

0. Otherwise, the bit value is 1. As a result, the signature also has a tree structure. Figure

4.3.a shows an example signature for the cell (A = a1), based on the partition scheme shown

in Figure 4.1.

(b) Compute Signature by recursive sorting

10 10

10

11

1 1

1

11

tid    A      Path

(a) Signature

t1     a1  <  1     1     1  >

t3     a1  <  1     2     1  >

Figure 4.3: (A = a1)-signature

A data cube may consist of many cells. A näıve method to generate a signature for each

cell is to traverse the R-tree and verify on every tuple t whether t belongs to the cell. This is

obviously not a scalable solution. Alternatively, we can compute all signatures for a cuboid

in a tuple-oriented way. Note that every tuple is associated with a unique path from the

root. The path consists of a sequence of pointer positions: 〈p0, p1, . . . , pd〉 (1 ≤ pi ≤ M , for

all i), where level-d corresponds to a leaf. For example, the path of the tuple t1 is 〈1, 1, 1〉,
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and that of the tuple t3 is 〈1, 2, 1〉.
To compute all signatures in a cuboid (e.g., cuboid A), we sort tuples according to

the values on dimension A, and extract sub-lists of tuples which share the same value on

dimension A. For example, Figure 4.3.b shows a sub-list of tuples with A = a1. For each

sub-list, we compute a signature as follows: (1) sort the tuples according to p0, (2) scan the

sorted list, and set those p0 bits to 1 in the root bit-array of the signature, and (3) for each

sub-sub-list of tuples that share the same value of p0, sort it on p1, and insert the distinct

p1 to the first child node (i.e., another bit-array) of the root. This procedure is recursively

called until the whole signature is completely built. An example is shown in Figure 4.3.b.

There are many developed algorithms on efficient data cubing, and some of them can be

directly plugged into our framework. For example, it is not difficult to show that the signa-

ture measure is distributive, and that enables shared computation cross multi-dimensional

cuboids [72, 71]. If the database size is too large to fit in memory, database partitioning

techniques can be applied [48].

Besides tuples, we can also assign a path for a node, such that an l-level node corresponds

to a path 〈p0, p1, . . . , pl−1〉. In the future, we will use the path to reference a node in

the signature. For simplicity, we one-to-one map a path to a signature ID (e.g., SID) as

SID = p0 × (M + 1)l + p1 × (M + 1)l−1 + . . . + pl−1. In our example, M = 2 and the path

of the node N3 is 〈1, 1〉. Its SID is 4.

We have the following observations on the signature. First, a signature is a tree, whose

nodes contain bit arrays; and second, 0 bit corresponds to leave (i.e., no sub-trees under the

bit). For storage purpose, we will rewrite the tree-based signature as a binary string.

From Tree-structure to String

For storage purpose, we will rewrite the tree-based signature as a binary string. This can be

done by sequentially recording the bit arrays in nodes by a bread-first traversal. In order to

recover the original tree structure from the binary string, it is important to extract each node
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from the binary string unambiguously. Here we describe a baseline (BL) coding scheme,

and more advanced coding schemes are discussed in the next subsection.

A node may contain b ≤ M children. BL first uses dlog2 Me bits to encode the value of

b, and then write the actual bit array afterwards. To save the space, we apply the one-less

principle: Suppose the actual length is b, we code b− 1 in the dlog2 Me bits. For example,

the bread-first traversal coding of Figure 4.3.b is 01111010. To recover the tree structure

from this bit array, one reads the first bit 0 (i.e., dlog2 Me = 1), indicating that the following

1 bit forms a node. 1 is extracted as the root, and the code implies that there is no right

child. Consequently, we extract the next node 11. This is the left child of the root.

Although a signature is a compact description, the costs of storing and retrieving a

complete signature may become relatively high in large databases. In the following, we

discuss how to compress signatures and how to decompose signatures into smaller partial

signatures.

4.2.2 Signature Compression

We focus on light-weighted node-level lossless compressions. There are other compression

opportunities, such as lossy compression, inter-node compression and inter-cell compression,

which will be discussed in Section 4.5.

Node Level Compression

To compress signatures, one can first rewrite the entire tree to a binary string, and then

conduct compressions. Alternatively, one can first compress the bit array in each node, and

then assemble them to a binary string. We refer the former as tree-level compression and the

latter as node-level compression. In this thesis, we adopt the node-level compression for the

following reasons: (1) There is a large room for compression at the node level. For example,

with page size 4KB, the value of M in R-tree node varies from 204 (for two dimensions) to 94

(for five dimensions) [36, 8]; (2) bit arrays in different nodes may have significantly different
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characteristics, and one may achieve better compression ratio by adaptively choosing differ-

ent compression scheme according to node properties; (3) node-level compression is good for

efficient online computation since only the requested nodes need to decompressed; and (4)

node-level compression can be easily integrated with signature decomposition (Section 4.2.3).

For tree-level compression, conducting decomposition after compression is useless since each

partial compressed piece cannot be recovered; while conducting compression after decom-

position is also difficult since the post-compression size is not available for decomposition

module.

Adaptive Coding

We apply three lossless compression methods: run-length encoding (RL) [32], position index

encoding (PI) (instead of coding the original bit-array, PI encodes the positions of 1’s.)

and prefix compression encoding (PC) [31]. Since the bit-map compression problem is well

studied, we skip the description of those methods. The details can be found in the references.

To adaptively choose the best coding scheme for a node, we use a unified coding structure

as shown in Figure 4.4. The first entry CS (coding scheme) indicates which compression

scheme is used. The second entry Len indicates the length of the coding region. The last

entry coding region stores the compressed bit array.

CS    Len                     Coding Region

Figure 4.4: A unified coding structure for a node

In general, bit arrays among upper level nodes are dense (i.e., contain many 1’s) and

those in lower level nodes are sparse (i.e., contain many 0’s). For each compression scheme,

we implement two coding variations: dense and sparse. In the dense version, we encode 1’s;

and in the sparse version, we encode 0’s.

As a result, we need 3 bits to code the CS : The first two bits represent three different

compression methods (01, 10 and 11 for PI, RL, and PC, respectively) and the last one
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indicates sparse (0) or dense (1) scenario. We use 000 for BL (i.e., baseline coding). In

the following, we examine the compression methods one by one. The example compressed

results are shown in Table 4.2.

Scheme CS Len Coding Region
BL 000 11011 0110000000110000000000000001
RL 100 01110 01001101110011101110
PI 010 11001 0000100010010100101111011
PC 100 11001 0000101100100110111100011

Table 4.2: Encoding a node with M = 32

One Truncation: our first compression strategy is to remove the tailing 0’s in the baseline

coding. The example coding for sparse scenario is shown in Table 4.2. For dense bit array,

we can remove the tailing 1s(i.e., One Truncation). However, the straightforward removal

may introduce ambiguity since we do not know how many 1’s need be added back to recover

the original bit array. For this purpose, we allocate the first dlog2 Me bits in the coding

region to indicate the original length of the bit array. This coding strategy also applies on

the rest compression schemes, and we do not state it explicitly thereafter.

Run-Length: This is a popular compression method for bitmaps. We represent a run

(i.e., a sequence of i 0’s followed by a 1) by some binary encoding of the integer i. Since the

binary representation of i needs dlog2(i + 1)e bits, we first code (dlog2(i + 1)e − 1) 1’s and

a single 0. Then, the value of i in binary follows. Using Table 4.2 as example, the first run

is 01, where i = 1. The run-length code is 01: the first 0 indicates that i uses 1 bit, and the

next 1 indicates that i = 1. In the dense version, a run means a sequence of i 1’s followed

by a 0. Since our signature generation method truncates tailing 0’s in bit arrays, for correct

recovery, we artificially add one 0 in the end of bit array for dense encoding. This strategy

also applies on the rest compression schemes, and we do not state it explicitly thereafter.

Position Index : Here we compressed the baseline coding by only storing the positions of

1’s in a sparse bit array. Each position takes dlog2 Me bits. In the dense version, we will

store the position of 0’s.
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Prefix Compression: This is an improved version of the position index method. Let

n = dlog2 Me. The prefix compression groups all positions by their prefixes (i.e., first p

bits), and stores the suffixes (i.e., rest n− p bits) after each prefix. To get a binary coding,

we first write p-bit prefix, which is followed by the number of suffixes under this prefix.

Since there are at most 2n−p suffixes, the number can be coded by n− p bits (using one-less

principle). Finally, we write individual suffixes, each of which takes n − p bits. Given the

value of n, the optimal value [31] of p is given by log2
2n

n ln 2
. In Table 4.2, n = 5 and p = 3.

00001 and 00010 share a same prefix 000. The number of suffix is coded as 01 and the

suffixes are 0110.

4.2.3 Signature Decomposition

In this subsection, we describe how to decompose the compressed signature into smaller

partial signatures such that each partial signature fits in a data page with size P . In order

to facilitate the incremental updates, we control the size of each partial signature around

αP (α < 1).

The decomposition procedure works as follows. Given a signature tree, we start from the

root node and conduct the bread-first traversal. For each node, we apply all compression

methods and pick the one giving best compression ratio. At the same time, we keep track

of the accumulated size of traversed nodes. If the size reaches αP , we stop the traversal and

the first partial signature is generated. Next, we start from the first child of the root, and

conduct bread-first traversal within the subtree under this node. Nodes coded by previous

partial signatures will be skipped. After finishing the first child, we continue on the following

children of the root. If there are still nodes left after the second-level encoding, we will go to

the third level, and so on. Each partial signature corresponds to a sub-tree, and is referenced

by the SID (Section 4.2.1) of the root of that sub-tree.

We demonstrate the above algorithm using Figure 4.3.a as example. Starting from the

root node, we generate the first partial signature which contains the root node (10) and the
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second-level node (11). This partial signature is referenced by the root SID(= 0). We then

start from the root’s first child node N1. The N1 node has been coded and is skipped. The

two leave nodes N3 and N4 are included. This partial signature is referenced by node N1,

whose SID = 1.

During query processing, we load the partial signatures p only if the node encoded within

p is requested. To begin with, we load the first partial signature referenced by the root. When

the query processing model requests a node n which is not presented in the current signature,

we use the first level node in the path from the root to n as reference to load the next partial

signature. If the partial signature has already been loaded, we check the second-level node

in the path, and so on. For example, in Figure 4.3.a and Figure 4.1, suppose the a bit in

the leaf node N4 is requested but not presented in the current signature. The path from the

root to N4 is 〈1, 2〉, and we load the partial signature referenced by SID = 1 (i.e., node N1).

Algorithm 1 The Cubing Algorithm

Input: A database D
A set of Boolean Dimensions: S
A set of ranking dimensions: R
A set of cuboids to be computed: C

Output: R-Tree and ranking-cube

1: Partition all data tuples using R-tree with R;
2: Generate paths for all tuples;
3: for each cuboid c ∈ C
4: Sort tuples according to dimensions in c;
5: for each cell ∈ c
6: Generate signature from tuple paths;
7: Compress and Decompose signature;
8: Store and index each partial signature by cell

and the root SID of the partial signature;
9: return
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4.2.4 The Cubing Algorithm

After presenting all key steps, we summarize the complete signature cubing procedure in

Algorithm 1. Due to the curse of dimensionality, we may only compute a subset of low

dimensional cuboids, as suggested by [47, 70]. Section 4.3.3 discusses how to assemble an

arbitrary signature online.

Line 1 partitions data tuples by R-Tree, according to the ranking dimensions. Line 2

generates the path for each tuple (Section 4.2.1). For each cuboid c specified by the target

cuboids set C, line 4 sorts the data according to dimensions in c. For each cell in the cuboid

c (i.e., a sub-list of tuples belonging to the cell), line 6 creates a tree-structured signature

(Section 4.2.1). Line 7 traverses the signature tree, compresses the nodes (Section 4.2.2)

and decomposes the signature into several partial signatures (Section 4.2.3). Line 8 stores

and indexes the partial signatures by the attribute values in cell and the root SID’s of the

partial signatures.

4.2.5 Incremental Maintenance

Finally, we discuss incremental updates for signatures. We take insertion as an example

since the processing for deletion and update is similar. Inserting a new tuple to R-tree may

cause node splitting and tuple re-insertion [36, 8]. Before presenting the complete solution,

we first discuss a simpler case where there is no node splitting nor tuple re-insertion.

Insertion without Node Splitting

Every node (including leaf) in R-tree can hold up to M entries. We assume each node keeps

track of its free entries. When a new tuple is added, the first free entry is assigned. In case

there is no node splitting nor tuple re-insertion, only the path of the newly inserted tuple is

updated, and those for other tuples keep the same.

Suppose the database already has t1, t2, t3, t5, . . . , t8, a new tuple t4 in inserted. Figure
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Figure 4.5: Insertion without Node splitting

4.5 demonstrates the change of (A = a3) signature (see Table 4.1). t4 is first inserted into

R-tree and finds an entry in leaf node N4. A new path = 〈1, 2, 2〉 is computed for t4. Since

the paths for all other tuples did not change, only the signatures of cells a3, b3 and a3b3 in

cuboids A, B, and AB are affected. Furthermore, within those signatures, only the entries

on the path from the root to t4 are possibly affected. We then load those partial signatures

containing the path, and flip the corresponding entries from 0 to 1.

Insertion with Node Splitting

Here we discuss the case where the insertion causes node splitting or tuple re-insertion. When

a node is split, the paths of all tuples under the split entry will change. To correctly update

signatures, we need to collect the old and new paths for those tuples. We first traverse the

sub-tree under the entry before splitting to get old paths, and then traverse it again after

splitting to get new paths. Similarly, for tuples scheduled for re-insertion, we compute the

old and new paths before and after re-insertion. As a result, there is a set of tuples whose

paths are updated.

For example, suppose the database already has tuples as shown in Figure 4.6.a. The

insertion of t2 causes the entry N3 in the node N1 being split. The path values of t1, t2 and

t3 may change, and they form an update set U . Before splitting, we get the old paths of t1

and t3 as 〈1, 1, 1〉 and 〈1, 1, 2〉, respectively. After splitting, their new paths are 〈1, 1, 1〉 and

〈1, 2, 1〉. The path for t2 is 〈1, 1, 2〉. Since the path for t1 does not change, t1 is removed

from U .
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Figure 4.6: Insertion with Node splitting

Algorithm 2 describes the procedure for incremental updating signatures. Line 1 inserts

tuples into database and R-tree, and returns the update set U , where each tuple has a new

path and an old path. We identify the target cells (i.e., signatures for updating) on lines 2

to 4. For each old path, line 6 clears the corresponding bit in the signature. Note we only

clear the bit on the leaf node. If all the entries in a node n are 0, we then recursively clear

the entry (in n’s parent node) which points to n. For each new path, line 7 sets all bits along

the path to 1. Finally, the updated signature is written back to the disk.

Algorithm 2 Incremental Maintenance

Input: The database D, R-tree T and ranking-cube C
A set of new tuples S to be inserted

1: Insert S to D and T , and get update set U ;
2: for each cuboid c ∈ C
3: sort tuples in U according to dimensions in c
4: for each cell appearing in U ;
5: load the signature for cell;
6: clear bits according to old paths ;
7: set bits to 1 according to new paths;
8: write back the updated signature;
9: return
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4.3 OLAPing Ranked Queries

Having presented the signature measure and ranking-cube, we discuss how to use signatures

in query processing.

4.3.1 Framework for Query Processing

Given the boolean and ranking criteria, an algorithm can first filter data tuples by boolean

predicates and then compute the top-k (i.e., boolean pruning first). Alternatively, one can

search data tuples according to the ranking functions and verify the boolean constraints on

each candidate (i.e., ranking pruning first). Both approaches may retrieve data that will be

pruned by the other criterion later, and thus are not efficient. To facilitate ranking pruning,

we use a branch-and-bound search paradigm which starts from the root node of the R-tree

and progressively expands a node by examining its child nodes. A node is pruned if its

ranking score is lower than the current top-k results. The search halts when there is no node

left.

To integrate boolean pruning in the above search framework, the algorithm needs to

identify whether an underlying node contains any object satisfying the boolean predicates.

This task consists of two challenges: (1) the boolean pruning needs to be conducted for

arbitrary boolean predicates, and on arbitrary nodes from the root to leaves; and (2) the

boolean pruning component should be fairly efficient and cannot be the bottleneck for the

whole framework. The signature measure materialized in the last section can be used here.

4.3.2 Ranking Pruning

To begin with, we outline the signature-based query processing in Algorithm 3. The al-

gorithm follows the branch-and-bound principle to progressively retrieve data nodes. To

push ranking pruning deep into the database search, the nodes have to be scheduled in the

best-first way. That is, nodes which are most promising for top scores need to be accessed
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Algorithm 3 Framework for Query Processing

Input: R-tree R, ranking-cube C, user query Q

1: topk = φ; // heap with size k to store the result set
2: c heap = {R.root}; // initialize candidate heap
3: while ((c heap 6= φ) and (f(topk.root) ≤ f(c heap.root))
4: remove top entry e;
5: if (signature(e) == false), continue;
6: if (e is a data object)
7: insert e into topk;
8: else // e is a node
9: for each child ei of e // expand the node
10: insert ei into c heap;
11: return

first. Suppose the ranking function is f . We define f(n) = minx∈n f(x), for each node n.

Consequently, the candidate heap uses f(n) to order nodes, and the root has the minimal

score. The ranking pruning consists of two steps. First, for each candidate e (node or data

object) submitted for prune checking, the ranking pruning will first compare f(e) with all

data objects in the top-k (line 3) list. If there are at least k objects whose scores are better

than f(e), then e can be pruned. Second, at any time, we can sort data objects in the top-k

list according to their f scores, and only need to keep k results in the list (with the kth result

at the root of the top-k heap).

We briefly explain each step as follows. Line 1 initializes a heap (with size k) to store the

final results, where the kth data is at the root of the heap. Each node n is associated with a

value f(n), and the root of the c heap contains an entry e with minimal (or best) f(e). Line

5 checks whether e is pruned by the boolean predicate, for every e that passes the checking,

e is a new top-k candidate if it is a data object (lines 6-7). Otherwise, the algorithm further

examines e’s child nodes (lines 9-10).

The correctness of the algorithm is ensured by two facts. First, if a node n ranks lower

than k data objects, all child nodes of n are pruned. Second, for each node n, let f(n) =

minx∈n(f(x)) be the lower bound value over the region covered by n. Clearly, a data object
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t cannot be pruned by any data objects contained by node n if f(t) ≤ f(n). The results

are generated on Line 7, and we shall show that top-k heap contains valid results. This is

because: (1) e passes the boolean pruning, and thus e satisfies the boolean predicate; and

(2) e passes the ranking pruning, and thus e is among the top-k results.

4.3.3 Boolean Pruning

The query processing has two main tasks: ranking pruning and boolean pruning. The boolean

pruning is accomplished by signatures. No matter whether the entry e submitted to the

prune procedure is a data tuple or an intermediate node, we can always get the path of e,

and query the signature using the path. Since we only materialized a subset of cuboids, the

ranking-cube may not have the signature ready for an arbitrary boolean predicate BP . To

assemble a signature for BP online, we need two operators: signature union and signature

intersection. Intuitively, given two signatures s1 and s2, the union operator computes the bit-

or result and the intersection operator computes the bit-and result. Suppose the signature

to be assembled is s. Any bit that is 1 in s1 or s2 will be 1 in s by the union operator.

The intersection operator is defined in a recursive way. For each bit b in s, if either the

corresponding bit in s1 or s2 is 0, the bit is 0. Otherwise, we will examine the intersection

result of b’s child nodes. If the intersection causes all bits in the child nodes being 0’s, we

will set b to 0. An example of signature assembling based on Table 4.1 is shown in Figure

4.7. Note in query execution, we only assemble the partial signatures that are requested by

prune during query processing. To assemble signature for arbitrary BP , we assume that the

ranking-cube always contains a set of atomic cuboids (i.e., one-dimensional cuboids on each

boolean dimensions).

Here we estimate the overall I/O cost of Algorithm 3 for ranked queries. The cost consists

of two parts: Csig and CR-tree. The former represents the cost for loading signatures and the

latter is the cost for loading R-tree blocks. In reality, one partial signature encodes many

R-tree nodes. For example, a partial signature generally has size 4KB (i.e., a page size), and
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Figure 4.7: Assembling signatures

the size of each bit-array in the signature is up bounded by M
8

bytes (without compression).

Here M is the maximal number of child entries in the node. For a 2 dimensional R-tree,

M = 204 and a partial signature can encode 160 nodes. Thus, Csig ¿ CR-tree, and we

focus on CR-tree only. When BP = φ (i.e., no boolean predicates), one can easily show that

the progressive query framework demonstrated in Algorithm 3 is I/O optimal such that the

algorithm only retrieves R-tree blocks that may contain top results. When BP 6= φ, since

the signature provides exact answers for boolean checking, Algorithm 3 only retrieves R-tree

blocks that pass domination checking and boolean checking. We have the following claim.

Lemma 3 For ranked queries with boolean predicates, Algorithm 3 is optimal in terms of

CR-tree such that the number of R-tree blocks retrieved is minimized.

4.4 Performance Study

This section reports our experimental results. We compare the query performance of Algo-

rithm 3 with two other alternatives: (1) the boolean-first approach that evaluates boolean

predicates before the preference criteria, and (2) the ranking-first approach that conducts

boolean verification after each preferred candidate is generated. We first discuss the experi-

mental settings, and then show the computation and space costs of ranking-cube, and online
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query performance. This query processing framework will be used again later in this thesis

to answer general preference queries, and we will show more details and experimental results

in Chapter 7.

4.4.1 Experimental Setting

We defines the data sets and the experimental configurations for all approaches.

Data Sets

We use both synthetic and real data sets for the experiments. The real data set we consider

is the Forest CoverType data set obtained from the UCI machine learning repository web-site

(www.ics.uci.edu/∼mlearn). This data set contains 581, 012 data points with 54 attributes.

We select 3 quantitative attributes (with cardinalities 1989, 5787, and 5827) as ranking

dimensions, and other 12 attributes (with cardinalities 255, 207, 185, 67, 7, 2, 2, 2, 2, 2,

2, 2) as boolean dimensions. We also generate a number of synthetic data sets for our

experiments. For each synthetic data, Dp denotes the number of ranking dimensions, Db the

number of boolean dimensions, C the cardinality of each boolean dimension, T the number

of tuples, S = {E, C,A} the uniform, correlated and anti-correlated data distributions.

Experimental Configurations

We build all atomic cuboids (i.e., all single dimensional cuboids on boolean dimensions) for

ranking0cube. Signatures are compressed, decomposed and indexed (using B+-tree) by cell

values and SID’s. The page size in R-tree is set as 4KB. In the experiments, we compare our

proposed signature-based approach (referred as Signature) against the boolean-first (referred

as Boolean) and ranking-first (referred as Ranking) approaches. For simplicity, we discuss

how Boolean and Ranking are implemented.

Boolean first: We use B+-tree to index each boolean dimension. Given the boolean

predicates in query, we first select tuples satisfying the boolean conditions. To process
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boolean filters, we may use index scan or table scan, we report the best performance of the

two alternatives. In the meanwhile, Boolean maintains a heap with size k to keep track the

current top-k data objects. In this way, the memory requirement for Boolean is bounded by

k.

Ranking first: The Ranking algorithm progressively retrieves R-tree blocks until the

results are computed. The framework is similar to Algorithm 3, except that there is no

boolean checking in the procedure. Since R-tree only keeps values in ranking dimensions,

we build index on tid for the database and keep tid with each tuple in R-tree for boolean

verification. The boolean verification involves random access and we only issue a boolean

checking for a tuple in between lines 6 and 7 in Algorithm 3. That is, we only verify a tuple

which has been determined as a candidate result. In this way, one can prove that the number

of boolean verification is minimized. One may suggest to keep boolean dimensions in R-tree

for cheap verification. This approach may not be a sound solution in reality: first, it reduces

the capacity of each node, and the size of R-tree may increase a lot; and second, it may

violate some constraints (e.g., the tuples must be sorted by a primary key) and introduce

difficulties for other types of data access (e.g., sequential table scan).

4.4.2 Experimental Results

Experiments are conducted to examine (1) the construction and space costs for ranking-

cube, (2) the performance on skyline queries, (3) the performance on top-k queries, and (4)

the effect of boolean predicates on query performance, including the drill-down and roll-up

queries.

Construction and Space Costs for ranking-cube

We first examine the cost to construct (Algorithm 1), store, and incrementally maintain

(Algorithm 2) ranking-cube. We use synthetic data set in this set of experiments. By

default, both the number of boolean dimension Db and the number of ranking dimension Dp
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Figure 4.8: Construction Time w.r.t. T

are 3. The cardinality C of each boolean dimension is 100, and the distribution S among

ranking dimensions is uniform.

To study the scalability of Algorithm 1, we vary T (the number of tuples) from 1M

to 10M. Figure 4.8 shows the costs to build R-tree partition, compute ranking-cube, and

build B+-tree index for all boolean dimensions. The R-tree is shared by both Signature and

Domination approaches and B+-trees are used by Boolean method. We observe that the

computation of ranking-cube is 7-8 times faster than that of R-tree, and is comparable to

that of B+-tree. On the other hand, for space consumption, ranking-cube is 2 times less than

B+-trees and 8 times less than R-tree (Figure 4.9). Figure 4.10 further shows the effectiveness

of node compressions (Section 4.2.2) by varying the cardinality C of each boolean dimension

from 10 to 1000. The compressed ranking-cube is 3 times smaller than that uses baseline

coding only. Note although the space cost for the entire ranking-cube increases with C, the

size of individual signature measure in each cell is significantly reduced.

To examine the performance of incremental update of ranking-cube, we run Algorithm

2 by inserting 1 to 100 new tuples. The execution times in Figure 4.11 show that the

incremental maintenance algorithms are much better than the re-computation since we only
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update target cells. Moreover, maintenance in batch is more scalable than maintenance

tuple by tuple. For example, the execution time for inserting one tuple in 1M data is 0.11

Seconds. While the average cost for inserting 100 tuple on the same data is 0.04 Seconds.

Performance on Query Processing

After reporting the results on the off-line computation, we continue to evaluate the perfor-

mance on top-k queries. We conduct two sets of experiments on query performance with

respect to the value of k and the type of functions.

To demonstrate the query performance, we compare our signature-based approach with

Boolean and Ranking. Suppose the ranking function is formulated on three attributes X,

Y , and Z, and they are partitioned by an R-tree. For demonstration, we use three queries

with controlled functions: (1) a linear query with function fl = aX + bY + cZ, where a,

b, and c are random parameters; (2) a distance query with function fd = (X − x)2 + (Y −
y)2 + (Z − z)2 where x, y, and z are random parameters. This is a typical nearest neighbor

query, which is frequently used in database systems; and (3) a general query with function

fg = (2X − Y − Z)2. This query is often used to measure the min square error.
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We use 1M synthetic data and the query execution time on linear function with respect

to different k values in Figure 4.12. We observe that Boolean is not sensitive to the value of

k; Ranking performs better when k is small; and Signature runs order of magnitudes faster.

We further demonstrate the number of R-tree block accesses by Ranking and Signature in

Figure 4.13 (with k = 100), and the results show that Signature consistently improves the

query performance with respect to all type of functions.

In summary, the signature based approach is the consist winner on both off-line and

online computations. The ranking-cube only consumes small space and can be efficiently

computed. In the meanwhile, it significantly speeds up the query performance since it takes

advantage of both boolean pruning and domination pruning.

4.5 Discussion

Besides the lossless compression discussed in this chapter, lossy compression is also applica-

ble. In this subsection, we discuss several lossy compression opportunities and the adaption

of query processing.

A popular lossy compression methods is bloom filter [10], which uses k hash functions and

maps an entry to k positions in a bit array. During the building phase, the corresponding

bits are set to 1. At the query time, one can apply the k same hash functions to get k

positions, and return true if and only if all of them are 1. False positives are possible.

But it guarantees no false negative. To use bloom filter in our framework, we can build

a bloom filter on all SID’s whose corresponding entries are 1 in the signature. Signature

decomposition is also possible such that we can build a bloom filter for each partial signature.

During query execution, we can load the compressed signature (i.e., a bloom filter), and test

a SID upon that. If the bloom filter returns no, it is safe to prune the entry. Since it is

possible that the filter fails to prune a tuple, we need the boolean verification step as that in

Domination. Incremental maintenance is difficult because bloom filter only allows insertion,
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but no deletion.

Other than bloom filter, we can compress the signature by exploiting the node similar-

ities. For example, one can merge n consequent neighboring nodes to one single node by

computing the bit-or result. To control the false positive rate, it is desirable to only select

and merge similar nodes. To generalize, we can compress the ranking-cube by merging sim-

ilar signatures. The union operator discussed in Section 4.3.3 can be used to compute the

merged result, which will be referenced by both cells. Exploiting signature-level similarity

is especially useful for data set which has strong correlation between boolean attributes.
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Chapter 5

High Dimensional Data

In Chapter 3, we discussed the ranking fragment method to address the case of high boolean

dimensions. In this chapter, we present our solution for the case of high ranking dimensions

[69]. In database systems, the data partition is also referred to index. The methods demon-

strated here is not confined to ranking cube framework only, and it can be applied to more

general application scenarios in database systems. Consequently, we would like to present

this chapter in a more general context by the topic of index-merge. Note in the special case

of ranking-cube, the index-merge corresponds to online data partition assembling.

Our work is closed related to the family of threshold algorithm (i.e., TA), which has been

widely studied for efficiently computing top-k queries. TA uses a sort-merge framework that

assumes data lists are pre-sorted, and the ranking functions are monotone. However, in

many database applications, attribute values are indexed by tree-structured indices (e.g.,

B-tree, R-tree), and the ranking functions are not necessarily monotone. To answer top-k

queries with ad-hoc ranking functions, this chapter studies an index-merge paradigm that

performs progressive search over the space of joint states composed by multiple index nodes.

We address two challenges for efficient query processing. First, to minimize the search

complexity, we present a double-heap algorithm which supports not only progressive state

search but also progressive state generation. Second, to avoid unnecessary disk access,

we characterize a type of “empty-state” that does not contribute to the final results, and

propose a new materialization model, join-signature, to prune empty-states. To demonstrate

the significance of these two challenges, Table 5.1 shows a performance comparison between

the basic index-merge and the improved algorithm developed in this chapter.The results are
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collected on a top-100 query with ranking function f = (A−B2)2, which merges two B+-tree

indices on attributes A and B. The database has 1M tuples.

Index-Merge States Generated Disk Accesses
Basic 420, 323 4, 133

Improved 9, 237 483

Table 5.1: Significance of the two challenges

The rest of this chapter is organized as follows. Section 5.1 presents the framework for

query processing, and analyzes the problem. The double-heap algorithm and state expan-

sion strategies are developed in Section 5.2, and the selective merge with join-signature is

presented in Section 5.3. We report the experimental results in Section 5.4, discuss the

extensions in Section 5.5.

tid A B f = (A−B)2

t1 10 40 900
t2 20 60 1600
t3 30 65 1225
t4 50 45 25
t5 54 10 1936
t6 72 30 1764
t7 75 36 1521
t8 85 62 529

Table 5.2: A Sample Database

[60−65]

72,t6 75,t7 80,t8

A.root (a1, a2, a3)

10,t1 20,t2 30,t3 50,t4 54,t5

[50−54][10−30] [72−85]

60,t2 62,t8 65,t3

B.root (b1, b2, b3)

10,t5 30,t6 36,t7 40,t1 45,t4

[40−45][10−36]

Figure 5.1: Indices on A and B
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(b) States sorted by f(S)

(A.root, B.root)

(a3,b3)......

(a) Tree−structured joined states

(a1, b1) (a1,b2) (a1,b3) (a2,b1)

Joined states
omitted

(A.root, B.root)(a1, b1) (a2,b2) ...... (a3,b1)State:

f(S): 0 0 25 ...... 1296

Figure 5.2: Space of Joint States

5.1 Problem Analysis

5.1.1 Data Model

The task of finding top-k tuples from a database can be posed with either a maximization

or a minimization criterion. Similar to previous chapters, we assume minimization queries

are issued. Given a relation R with attributes A = {A1, A2, . . . , An}, a top-k query with an

evaluation function f , which is formulated on a subset of attributes {A′
1, A

′
2, . . . , A

′
m} ⊆ A,

asks for k data tuples t1, t2, . . . , tk such that for any other t ∈ R, f(t) ≥ maxk
i=1 f(ti).

Following our work in Chapter 4, we also assume that the ranking function f has the following

property: Given a function f and the domain region Ω on its variables, the lower bound of

f over Ω can be derived.

We assume attributes involved in f are indexed by some hierarchical indices (e.g., B-tree

or R-tree), such that a subspace occupied by a tree node is always contained in the subspace

of its parent node. Suppose indices {I1, I2, . . . , Im} are used to answer a top-k query. The

space of joint states inherits the hierarchical property of the index. More specifically, the joint

state can be recursively defined as follows. The root state is (I1.root, I2.root, . . . , Im.root),

and for each joint state (I1.n1, I2.n2, . . . , Im.nm), its child states are the Cartesian products

of child nodes of Ii.ni (i = 1, . . . ,m). If Ii.ni for some i = 1, . . . , m is a leaf node, Ii.ni

itself is used in the Cartesian products to generate child states. If all Ii.ni are leaf nodes,
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the joined state is a leaf state. Table 5.2 shows an example database, which consists of two

attributes A and B (f is a demonstrating ranking function). Indices on A and B are shown

in Figure 5.1 and the joint state space is assembled in Figure 5.2.a.

5.1.2 Framework for Query Processing

To compare with, we review the sort-merge algorithm used by TA. TA sequentially retrieves

data from the sorted lists. At any state, we can classify tuples into three categories: fully

merged, partially merged and unseen. The algorithm maintains an upper bound 1 for the

current top-k fully merged tuples and a lower bound for the partially merged and unseen

objects. If the upper bound score is no larger than the lower bound score, TA halts and

returns the top-k results. Additionally, for those partially merged objects, unknown scores

from some attributes can be looked up by random access, thus facilitating the early termi-

nation.

Similarly, in index-merge, we need to define two strategies: (1) a way to schedule node

access, and (2) a stop condition that guarantees the top-k results are found. Given the value

boundaries in index nodes, each joint state S is associated with a domain region Ω(S). We

define f(S) as the lower bound of the ranking function f over a joint space S. For example,

in Figure 5.2, Ω(a1, b1) = [10, 30]× [10, 36], and f(S) = 0 for ranking function f = (A−B)2.

Clearly, for each joint state, f(S) ≥ f(parent(S)). The index-merge method starts with

the joint root state, progressively finds the state with minimal f(S) and examines its child

states. In the meanwhile, the algorithm maintains an upper bound score of the current top-k

results. The search stops when the upper bound score is no larger than the minimal f(S)

(for all rest S). The procedure is described in Algorithm 4.

We briefly explain the query processing as follows. The algorithm maintains two heaps.

The TopK heap keeps current best k results that are fully merged, and the root of the heap is

the kth tuple. The g heap maintains candidate states for search, and the state with minimal

1Note we use minimization queries in this thesis.
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Algorithm 4 Query Processing by Index-merge

Input: A set of Indices I, ranking function f , top-k

1: TopK = φ; //heap with size k to hold current top-k
2: g heap = {Joint Root}; //heap for state search
3: while (g heap 6= φ and f(TopK.root) > f(g heap.root))
4: remove top entry S from g heap;
5: if S is a leaf state
6: Retrieve data and update TopK;
7: else //S is a non-leaf joint state
8: insert all child states of S to g heap;
9: return

f(S) appears at the root. We also maintain a hashtable h for tuple merge. Whenever a leaf

state is retrieved, we look up tuples in h. If a tuple t is fully merged, and is better than

TopK.root, we remove the root from TopK and insert t to TopK.

5.1.3 Optimal Access Scheduling

We address two types of optimality for access scheduling: type-I that is CPU optimal and

type-II that is disk-access optimal. By bridging Algorithm 4 and the optimal cases, we then

identify two challenges.

Type-I Optimality

Suppose the upper bound score of final top-k results is s∗ (remember that we use minimal k

criteria in this thesis). The type-I optimal scenario is that the algorithm only enumerates state

S such that f(S) ≤ s∗. We denote the optimal number of states as n∗I = |{S|f(S) ≤ s∗}|. As

an example, the top-1 query with function f = (A−B)2 on the sample database (Table 5.2)

returns t4 as the final result. s∗ = 25, and only (A.root, B.root), (a1, b1) and (a2, b2) need

to be enumerated. The states generated by Algorithm 4 can be classified into: (1) examined

states that appear on Line 4; and (2) generated candidates that appear on Line 8. We have

the following lemma.
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Lemma 4 For a top-k query involving m indices, the number of examined states by Algo-

rithm 4 is n∗I , and the number of generated candidates by Algorithm 4 is upper bounded by

n∗I
∏m

i=1 Mi, where n∗I is the optimal number of states given by type-I optimality, and Mi is

the node fanout of index i.

proof We prove the claim for examined states, and the claim for generated candi-

dates naturally follows. We show that for each examined state S, f(S) ≤ s∗. At any

stage, if f(TopK.root) = s∗, f(S) ≤ s∗ is ensured by the while condition on Line 3. If

f(TopK.root) > s∗, the top-k results have not been completely retrieved. Since S ap-

pears at the root of g heap and f(S) is the lower bound value of all future tuples, we have

f(S) ≤ s∗.

While the number of examined states is type-I optimal, the number of generated can-

didates is significantly higher. Fixing the page size as 4kB, the fanout of B-tree node is

204 [32]. The number of child states (i.e., Cartesian product) of two B-tree indices is up to

4.2× 104, and that of three B-tree indices is up to 8.5× 106. This is clearly non-trivial cost

in terms of both CPU and memory. To avoid full expansion, an alternative method that uses

unidirectional expansion was discussed in [39]. To expand a joined state S = (a, b), either a

is paired with all child nodes of b or b is paired with all child nodes of a. In this way, the

number of child states is limited by the fanout of the node. However, the states generated

by unidirectional expansion are less precise than those generated by full expansion, and thus

the access scheduling may not be optimal. We identify the first challenges: how to efficiently

generate candidate states while preserving the optimal (type-I) access scheduling? .

Type-II Optimality

To achieve type-II optimality, we first characterize two types of states: redundant state and

empty state. An index node may appear in many joint states, and thus may be requested for

retrieval for multiple times. We say a leaf index node is redundant if it has been retrieved

previously. A non-leaf index node is redundant if all child nodes are redundant. Conse-
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quently, a joint state is redundant if all composing index nodes are redundant. Redundant

states need not to be retrieved because all data tuples contained by them have already been

seen by the query processing algorithm. Since many index implementations buffer the pre-

viously retrieved index nodes, the redundant nodes (and thus the redundant states) can be

identified on the fly. If the nodes are not buffered, the algorithm can maintain the IDs of

those redundant index nodes in a hash-table.

To illustrate the definition of empty state, we build a mapping between data tuples and

joint leaf states. We say a leaf state contains a tuple t if t appears in all the leaf index nodes

joining the leaf state. A tuple may partially appear in many leaf states. However, there

is a unique leaf state that contains it. On the other hand, a leaf state which contains one

or more tuples is called non-empty state. Otherwise, it is an empty state. For example, in

Figure 5.2.a, (a1, b1) is an empty state and (a2, b2) is a non-empty state. The definition of

empty (non-empty) state can be recursively extended to non-leaf state as follows: A state

is empty if all child states are empty; otherwise, it is non-empty. Let S(t) be the leaf state

containing tuple t. The following lemma shows a necessary condition of access scheduling

using index-merge framework.

Lemma 5 For any top-k query that is processed by the index-merge framework, suppose

the final results are t1, t2 . . . , tk, and f(S(ti)) < f(ti) for all i = 1, . . . , k. The leaf states

S(t1), S(t2), . . . , S(tk) must be retrieved when the query execution terminates2.

proof In Algorithm 4, the query processing terminates when maxk
i=1 f(ti) ≤ f(g heap.root),

for current top-k results t1, . . . , tk. Assume S(ti) has not retrieved. We have f(g heap.root) ≤
f(S(ti)), which contradicts with f(S(ti)) < f(ti) ≤ maxk

i=1 f(ti) ≤ f(g heap.root).

Since each ti in the top-k results will be retrieved from non-empty state S(ti), it is safe to

prune those empty-states. Thus, the type-II optimal scenario is that an algorithm only retrieves

states S such that: (1) f(S) ≤ s∗, (2) S is not empty, and (3) S is not redundant. We refer to

2f(S(ti)) = f(ti) is possible for some special case. Here we simplify the analysis by assuming f(S(ti)) <
f(ti).
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n∗II as the optimal number of states given by type-II optimality. Following our example in

Figure 5.2.b, we may skip state (a1, b1), and only retrieve state (A.root, B.root) and (a2, b2).

We demonstrate the importance of pruning empty states by examining the leaf-states

only. Suppose the database has 1M tuples, and each B+-tree index contains at least 5, 140

leaf nodes (with fanout 204). Merging two indices leads to 2.64 × 107 leaf-states in total.

Among them, there are at most 1M non-empty states. Thus, the probability that a leaf-state

is empty is more than 96%.

The sort-merge framework also has empty-state problem, where objects near top on one

list may rank low in other lists. To avoid accessing the large portion of data which is in the

middle of the sorted lists, random access is used to directly jump to the bottom of the lists

and resolve missing values. In the following, we discuss why random access is not applicable

in the index-merge framework. As presented in the last subsection, tuples can be classified

into three categories: fully merged, partially merged and unseen. Let sk be the upper bound

score for current top-k fully merged tuples, sp and su be the lower bound scores for partially

merged and unseen tuples. The search terminates when sk ≤ min(sp, su). In sort-merge,

we have sp ≤ su because of the monotonicity of the ranking function. By issuing random

accesses on partially merged tuples, sk may decrease and sp may increase. As the result, the

termination condition may be satisfied without continuing to sequentially scan lists. While in

index-merge, su = sp = f(g heap.root) because for each partially merged and unseen tuple t,

S(t) has not been retrieved. Issuing random accesses on partially merged tuples may decrease

sk to s′k. However, since for all partially merged t, f(t) ≥ f(S(t)) ≥ f(g heap.root), we have

s′k ≥ f(g heap.root) = su. We conclude that random access in index-merge does not lead to

early termination.

Different from redundant states, which can be checked on the fly, the empty state can only

be identified with the assistance of some pre-computed module. Moreover, this module needs

to be light-weighted. We identify the second challenge: how to effectively prune empty-states

with low overhead?
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5.2 Progressive Merge

This section presents our solution for the first challenge. In Algorithm 4, to search for the

best child state, a parent state is fully expanded (on Line 8). In fact, most of them are never

examined (on Line 4). For example, in Figure 5.2.a, there are 9 child states expanded by

(A.root, B.root), and only (a1, b1) and (a2, b2) are examined. In fact, to ensure the type-I

optimality, we only need to compute the next best child state, for a given state S. We

abstract3 the interface that fulfills this requirement as S.get next.

In the rest of this section, we first discuss a double-heap method that integrates S.get next

with Algorithm 4, and then discuss two implementations for S.get next.

5.2.1 The Double-heap Algorithm

Let S.num indicate how many times the S.get next is called. In our example, suppose

S = (A.root, B.root). The first call of S.get next returns (a1, b1) and the second call of

S.get next returns (a2, b2). S.get next returns nothing when all child states are returned.

For simplicity, we denote Snum as the numth best child state of S according to f(Snum).

Before we proceed to the implementation of S.get next, we first discuss how to integrate

S.get next to Algorithm 4. To distinguish the integrated algorithm from Algorithm 4, we

refer to the new algorithm as dheap (i.e., double-heap). Instead of fully expanding S, and

then discarding S (on Line 8 of Algorithm 4), dheap gets Snum (by calling S.get next) and

inserts both Snum and S to g heap. We keep S in g heap because the query execution may

further request the next best child state of S. Consequently, to reflect the status of partial

expansion, we update f(S) = f(Snum+1), which is the best possible score for all future

child states. Following our example in Figure 5.2, when S = (A.root, B.root) needs to be

expanded, we get S1 = (a1, b1), update f(S) = f(S2) = f(a2, b2) and insert both S1 and S

into g heap.

3Here we use the object-oriented programming convention.
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Figure 5.3: Local Monotonicity

The complete framework for progressive and selective index merge is outlined in Algo-

rithm 5, where Lines 1 to 15 are the updated query processing procedure, and Lines 21 to 34

are the S.get next method. Particularly, lines 5-6, 22-24 and 32-33 exploit pruning empty-

states by join-signatures. The code is put here for the completeness of the algorithm, and the

details will be discussed in the next section. The key components are neighborhood expand

and threshold expand. The former works for some special scenario such that the best child

state can be analytically found; and the latter is applicable on general cases. To avoid gen-

erating the same states along the multiple calls of S.get next, each S maintains the status

of child states that have been already generated, using a heap (i.e., l heap in S.get next).

We refer to this heap as local heap, in contrast to the global heap (i.e., g heap on Line 2)

used in the main query processing loop. In the following subsections, we describe the two

progressive search strategies one by one. For simplicity, we demonstrate both methods by

merging two B-tree indices. The generalization to multiple indices is straightforward.
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Figure 5.4: Neighborhood Expansion

when s=3 and t=4
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Figure 5.5: Threshold Expansion
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5.2.2 Neighborhood Expansion

Although an ad-hoc ranking function does not perform regularly over the entire region, it

may have monotonicity or semi-monotonicity in some sub-regions. We say a function f is

semi-monotone if f(x1, x2, . . . , xm) ≤ f(x′1, x
′
2, . . . , x

′
m) whenever |xi − oi| ≤ |x′i − oi|, for

every i. f achieves minimal value at (o1, o2, . . . , om). For example, Figure 5.3 shows the plot

of function f = Ae−A2−B2
over two attributes A and B. The function is neither monotone nor

semi-monotone over the entire domain. However, in sub-region (A = [−2, 0], B = [−1, 1]),

f is semi-monotone; and in sub-region (A = [1, 2], B = [−2,−1]), f is monotone. The

index-merge method recursively partitions the joint space and it is very likely that an ad-

hoc function f becomes monotone or semi-monotone within a joint state. We present the

neighborhood expansion for these special cases.

Since the neighborhood expansion requires a total order to be defined on the entries of

an index node, the method may not be used on R-tree indices. Let S = (A1, B1) be the

state to be expanded. a1, . . . , an and b1, . . . , bl are child entries of index node A1 and B1,

respectively. Without loss of generality, we assume both ai (i = 1, . . . , n) and bi (i = 1, . . . , l)

are sorted by attribute values. Suppose f is monotone over S and it achieves minimal value on

(a1, b1) (i.e., initial state, referred as I(S)). Thus, we have f(ai, bj) ≤ min(f(ai+1, bj), f(ai,

bj+1)). The neighborhood expansion starts with the initial state and progressively generates

neighboring states. A straightforward definition for the neighboring states of (ai, bj) is to

enclose both (ai+1, bj) and (ai, bj+1). Since a state (ai+1, bi+1) can be generated by either

(ai, bi+1) or (ai+1, bi), this approach requires duplicate-checking, which incurs additional

overhead. Alternatively, we can define the neighborhood of a child state (ai, bj) as:

N(ai, bj) =





{(ai, bj+1)} if 1 < j < l

{(ai+1, bj), (ai, bj+1)} if j = 1, i < n

φ otherwise
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The definition of N is illustrated in Figure 5.4. Clearly, there is no duplicate states to

be generated. Whenever (ai, bj) appears at the root of the local heap and is to be returned

by S.get next, we will insert N(ai, bj) into the local heap. The procedure of neighborhood

expansion is displayed as neighborhood expand in Algorithm 6.

We briefly discuss how to extend the method to semi-monotone f . Suppose the extreme

point of f is o∗ = (x∗, y∗). If o∗ falls in a child state (as, bt), the initial state is I(S) =

{(as, bt)}. Otherwise, we can find an i (j) such that ai and ai+1 (bj and bj+1) enclose x∗ (y∗).

Accordingly, I(S) = {(ai, bj), (ai+1, bj), (ai, bj+1), (ai+1, bj+1)}. We define the neighborhood

for I(S) = {(as, bt)} case as follows, the definition for the other case is similar:

N(ai, bj) =





{(ai, bj+1)} if t < j < l

{(ai, bj−1)} if 0 < j < t

{(ai+1, bj), (ai, bj+1),

(ai, bj−1)} if j = t, s < i < n

{(ai−1, bj), (ai, bj+1),

(ai, bj−1)} if j = t, 0 < i < s

{(ai−1, bj), (ai, bj+1),

(ai+1, bj), (ai, bj−1)} if i = s, j = t

φ otherwise

In general, to merge m indices, the cardinality of neighborhood for monotone functions is

up to m and that for semi-monotone functions is up to 2m. Lemma 6 gives the computational

performance of the neighborhood expansion.

Lemma 6 Suppose f is monotone (or semi-monotone) over the entire domain, and there

are m indices to be merged. The number of states generated by neighborhood expansion

is upper bounded by mn∗I for monotone functions and 2mn∗I for semi-monotone functions,

where n∗I is the type-I optimal number of states to be generated (Section 5.1.3).

93



proof According to Lemma 4, S.get next will be called at most n∗I times in Algorithm 5.

Each time when the S.get next is called, the neighborhood expansion will generate up to m

child states for monotone f and up to 2m child states for semi-monotone f . The conclusion

follows.

5.2.3 Threshold Expansion

Here we discuss the more general threshold expansion. Different from the neighborhood

expansion, where the initial and consequent child states can be analytically located, threshold

expansion conducts searching over the child state space. Suppose the state to be expanded

is (A1, B1), and their entries are a1, a2, . . . , an and b1, b2, . . . , bl, respectively. We define

f ′(ai) = f(ai, B1) (i = 1, . . . , n), which is the best score that ai can achieve by pairing with

any bj (j = 1, . . . , l). Similarly, we define f ′(bj) = f(A1, bj) (j = 1, . . . , l). We sort ai and

bj in ascending order of f ′(ai) and f ′(bj) values, respectively. Without loss of generality, we

assume the sorted orders are a1, a2, . . . , an and b1, b2, . . . , bl.

The threshold expansion uses a sort-merge paradigm. We start search by inserting (a1, b1)

to l heap (i.e., local heap), and use two variables s and t to keep track of the next positions

on ai and bj sorted lists (i.e., threshold position). Initially, s = t = 2. The stop condition

is f(l heap.root) ≤ min(f ′(as), f
′(bt)). At that time, the l heap.root contains the next best

child state. While the stop condition does not hold, the algorithm conducts progressive

search. Suppose f ′(as) < f ′(bt), the algorithm creates t − 1 new child states (as, bj) (j =

1, . . . , t − 1), inserts them to l heap, and then increases s by 1. For example, when s = 3

and t = 4, the states that have been generated are shown in Figure 5.5.

In general, suppose S is joined by m index nodes (n1, . . ., nm), and each ni consists of child

entries e1
i , . . . , e

Mi
i (Mi is the fanout of node ni). We define f ′(ek

i ) = f(n1, . . . , e
k
i , . . . , nm).

The algorithm maintains a threshold position ti for each ni. Whenever a ts is selected to

advance, we generate the new child states by the Cartesian product [e1
1, . . . , e

t1−1
1 ]× . . . [ets

s ]×
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. . . [e1
j , . . . , e

tm−1
m ]. The algorithm is shown in Algorithm 6 as threshold expand.

A function f is general over the state S if for any ti (i = 1, . . . , m), the lower bound of

f(et1
1 , . . . , etm

m ) can only be derived by minm
i=1(f

′(eti
i )). Accordingly, we refer to algorithms

performing child state search under this assumption as general algorithms. The following

lemma shows that the threshold expansion is instance optimal [30] with optimal ratio 2m,

where m is the number of indices to be merged.

Lemma 7 Assume f is general over state S = (n1, . . . ,nm), and for each node ni, its entries

satisfy f ′(e1
i ) < f ′(e2

i ) < . . . < f ′(eMi
i ). The threshold expand (or te) is instance optimal

such that nte ≤ 2mnalg, where nte is the number of child states generated by te, nalg is the

number of child states generated by any other general algorithm alg that correctly finds the

next best child state.

proof Suppose te halts at ti on each node ni, and the next best child state is nb =

(esi
1 , . . . , esm

m ). Clearly, si < ti for all i = 1, . . . , m. We show that for all i, f ′(eti−2
i ) <

f ′(eti−1
i ) ≤ f(nb). Assume the threshold position at node nk (k 6= i) is t′k when te decides to

advance to ti − 1 on node ni. If f ′(eti−1
i ) > f(nb), we have si < ti − 1 and there must exist

one k such that sk ≥ t′k. Otherwise, the best state nb has already been generated by te and

ti− 1 will not be selected. On the other hand, we have f ′(eti−1
i ) ≤ f ′(e

t′k
k ) ≤ f ′(esk

k ) ≤ f(nb),

which leads to contradiction. Since f is general over S, any general algorithm alg that

correctly finds the best state has to generate and check all states from [e1
1, . . . , e

t1−2
1 ]× . . .×

[e1
m, . . . , etm−2

m ]. Thus, nte =
∏m

i=1(ti − 1) ≤ 2m
∏m

i=1(ti − 2) = 2mnalg.

5.3 Selective Merge

In this section, we address the challenge towards the type-II optimality. To prune empty-

states in merging indices I1, I2, . . . , Im, we materialize a join-signature of these m indices.

Suppose the database has J indices. An ideal scenario is to compute a join-signature on any

combination of two or more indices, and this leads to (2J − J − 1) different join-signatures
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in total. In reality, one can only compute join-signatures on index combinations which are

possibly to be queried. Alternatively, one can also materialize join-signatures on each pair

of indices only, and use them to answer arbitrary queries. In the rest of this section, we

discuss what is join-signature, how to compute join-signature and how to use join-signature

during query processing.

5.3.1 Join-Signature

The join-signature is composed by the state-signatures of all non-leaf and non-empty states.

For each non-leaf and non-empty state S = (n1, . . . , nm), we define card(S) =
∏m

i=1 Mi as

the cardinality of the child states, where Mi is the fanout of node ni. The state-signature

is an m-way bit array, where each entry corresponds to a child state. If a child state is

not empty, the entry is set to 1; otherwise, it is 0. Using our example in Figure 5.2, only

S = (A.root, B.root) is a non-leaf and non-empty state. The state-signature of S is a 3× 3

bit array, as shown in Figure 5.6.

                 

0

0

1 1

1 1

1 0 1

a1

a2

a3

b1 b2 b3

Figure 5.6: signature

tid A.path B.path
t1 〈1〉 〈2〉
t2 〈1〉 〈3〉
t3 〈1〉 〈3〉
t5 〈2〉 〈1〉
t4 〈2〉 〈2〉
t6 〈3〉 〈1〉
t7 〈3〉 〈1〉
t8 〈3〉 〈3〉

Table 5.3: Pathes on Indices
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The space consumption of the join-signature depends on the number of non-leaf and

non-empty states, as well as the size of each state-signature. We discuss these two issues

one-by-one. As defined in Section 5.1.3, a leaf-state is non-empty if it contains at least one

tuple. On the other hand, since tuples are exclusively distributed into different leaf-nodes in

an index, tuples are also exclusively contained by different leaf-states. Suppose the database

has T tuples. We conclude that there are at most T non-empty leaf-states, and at most

(d − 1)T non-empty and non-leaf states (where d is the maximum depth among all joined

indices).

We then discuss how to control the size of each state-signature, such that each of which

can be stored within size P . Typically, P can be set as the page size. Given a state S,

the value of card(S) (i.e., the number of child states) varies significantly from merging two

indices to merging three indices. If card(S) ≤ P , we store the state-signature as it is,

and possibly, put neighboring state-signatures together if their accumulative size does not

exceed P . Since state-signatures are essentially bit-maps, one can further apply bit-map

compression methods, such as run-length encoding [32] and prefix-compression encoding

[31], to reduce the sizes. We omit the details in this chapter.

When card(S) > P , we use bloom filter [10] for compression. Bloom filter uses k hash

functions and maps an entry to k positions in a bit array. During the building phase, the

bits at those k positions are set to 1. At the query time, one can apply the k same hash

functions to get k positions, and return true if and only if all of them are 1. False positives

are possible. But it guarantees no false negative. To use bloom filter for state-signature,

we set the array size as b(≤ P ), and insert to the bloom filter all “1” entries in the state-

signature. During query execution, if the bloom filter returns false for a child state c, c

must be an empty-state. Suppose the number of non-empty child nodes (i.e., “1” entries)

is ne. The optimal choice [10] for k is b
ne

ln 2. To control the computational complexity

(i.e., the number of hash functions), we set the maximum number of hash function as k̄.

Consequently, b = min(P, k̄×ne
ln 2

).
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To reference a state-signature, we compute a unique key for each state S = (n1, n2, . . . , nm)

as follows. A level-k node n is associated with a path from the root (level 1) to n’s parent

(level k−1). The path consists of a sequence of entry positions: path(n) = 〈p1, p2, . . . , pk−1〉,
where pi is the entry position at the level-i node. For example, node a1 in index A (Fig-

ure 5.1) corresponds to path(a1) = 〈1〉. The key of S is a combination of paths of ni:

key(S) = (path(n1), . . . , path(nm)). In implementation, one can one-to-one map key(S) to a

string or an integer. For each join-signature, we build an index on key(S) for state-signatures.

5.3.2 Computing Join-Signatures

A näıve method to compute the join-signature is to traverse the joint state space and find the

non-empty and non-leaf states. This is obviously not a scalable solution, since the space of

joint states grows exponentially with the number of indices. Here we present a tuple-oriented

approach.

Similar to the path generation for nodes, we can also compute a path for each tuple t.

Given an index with depth d, the path of a tuple t is path(t) = 〈p1, . . . , pd〉. Since the joined

space is defined on the node granularity, we only need to know which leaf-node contains t.

Hence, we can ignore the position on the leaf node, and path(t) = 〈p1, . . . , pd−1〉. The paths

for tuples in the sample database (Table 5.2) are shown in Table 5.3.

Treating each index as a dimension, and tuple paths as values, we compute the join-

signature by recursive-sorting. Suppose we need to compute the join-signature for m indices

(I1, . . . , Im), and the depth of each index is di (i = 1, . . . , m). According to the path

generation discussed above, each tuple path has (di−1) entries in dimension Ii. To compute

the state-signature for joint root state, we sort the tuples according to the first path entry

on each Ii (i.e., first compare I1.p1, then I2.p1, and so on). As an example, Table 5.3 is

sorted by the first path entries. We then scan the sorted tuple list again, and insert distinct

(I1.p1, I2.p1, . . . , Im.p1) into the state-signature, which is implemented by a bit array or a

bloom filter. For each sub-list of tuples that share the same (I1.p1, I2.p1, . . . , Im.p1), we
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recursively sort it on the second path entry on Ii. At the same time, (I1.p1, I2.p1, . . . , Im.p1)

is the key to reference the next state-signature.

The above method is similar to some sorting-based data cube computation methods

[9]. In fact, computing multiple join-signatures is indeed a multi-dimensional aggregation

problem. As we mentioned earlier, suppose the database has J indices and we may compute

up to (2J − J − 1) different join-signatures. Some techniques for efficient data cubing can

be directly applied in our problem. First, when database is too large to fit in memory, one

can partition the database (e.g., by I1.p1) and compute each partial database [48]. Secondly,

we can share the sorting on common indices [9] when computing multiple join-signatures.

Finally, when J is large and there are too many join-signatures, we can only compute the

low-dimensional (e.g., pairwise) join-signatures [70]. The low-dimensional join-signatures

can partially fulfill the task to prune empty-states in high-dimensional index-merge, and

this will be addressed in the next subsection.

5.3.3 Pruning Empty-State by Join-Signature

After presenting the join-signature and its computation, we now discuss how to use it

to prune empty-states during query processing. Candidate states are generated by the

S.get next procedure. To avoid generating empty-states, join-signatures can be integrated

into S.get next procedure as shown in Algorithm 5. When S.get next is called for the first

time, we load the state-signature for S using key(S) (Line 22). For each candidate child

state to be returned (i.e., next), we check with the state-signature on Line 33. A null state

will be returned if next is an empty state or a redundant state.

An even better solution is to push the empty-state checking into the threshold expand

and neighborhood expand. For threshold expand, we verify each child state before it is

inserted into l heap (Line 67, Algorithm 6). However, for neighborhood expand, if a child

state cs in N(next) is empty, we still need to keep cs in the l heap. This is because we

may need to further expand to N(cs), which may be non-empty, non-redundant and only
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accessible by cs.

A state-signature may be implemented by a bloom filter, which has false positives such

that an empty state will be falsely recognized as a non-empty state. Suppose S is a non-

leaf empty-state and was falsely passed the signature checking. At certain stage, S may

be scheduled for expansion. Since key(S) does not appear in join-signature, the algorithm

notices that S is an empty state and the previous false positive will be corrected. For this

purpose, we directly return null from S.get next (Line 24 of Algorithm 5). Since S.l heap is

empty, S will also be discarded by the main query processing loop (Line 13 of Algorithm 5).

In this way, the false positives on non-leaf states will not propagate. We have the following

lemma with proof omitted.

Lemma 8 In Algorithm 5, the expect number of states retrieved is (n∗I−n∗II)fp+n∗II , where

n∗I = |{S|f(S) ≤ s∗}| is the type-I optimal state number (Section 5.1.3), n∗II = |{S|f(S) ≤
s∗ and S is neither empty nor redundant}| is the type-II optimal state number (Section

5.1.3), and fp is the expected false positive rate of the join-signature.

When the original bit-array is used (i.e., fp = 0), the number of states retrieved by

Algorithm 5 is type-II optimal. Similarly, the expect number of disk accesses for state-

signatures (referred as ds) is (n′I−n′II)fp+n′II , where n′I and n′II are the number of non-leaf

states with respect to type-I and type-II optimality, respectively. Since the majority states

retrieved are leaf-states, we expect that ds is far less than n∗II . On the other hand, retrieving

a state S does not necessarily incur disk accesses because the index nodes involved in S are

shared by other states and may have already been retrieved. Hence, the number of index

node accesses (referred as di) may also be less than n∗II . In general, we observe ds ¿ di.

Moreover, without state-signature, di will be significantly higher (e.g., Table 5.1).

As mentioned in Section 5.3.2, one can use low-dimensional join-signatures to answer

high-dimensional queries. Suppose the system pre-computed join-signatures on all pairs of

indices. If a query involves m > 2 indices, for each state S = (n1, n2, . . . , nm), we will load
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state-signatures of states Sab = (na, nb) (for all a, b = 1, . . . , m and a 6= b). A child state

is an empty state if any low-dimensional state-signature returns false. The low-dimensional

join-signature may also speed-up child state generation in threshold expand procedure in

that whenever a pair of child entries (ea, eb) is identified as empty, all child states that are

super-sets of (ea, eb) can be safely pruned (on Line 64 of Algorithm 6).

5.4 Performance Study

This section reports our experimental results. We compare the query performance among

four different methods: the table scan (TS ) approach that sequentially scans the data file and

computes top-k; the baseline (BL) index-merge approach using Algorithm 4; the progressive

expansion (PE ) approach with the double heap algorithm only; and the progressive expansion

and join-signature (PE+SIG) approach that applies both double heap algorithm and join-

signatures. We first discuss the experimental setting.

5.4.1 Experimental Setting

We use both synthetic and real data sets for the experiments. The real data set is a variation

of the Forest CoverType data set obtained from the UCI machine learning repository web-site

(www.ics.uci.edu/∼mlearn). This data set contains 1, 162, 024 data points with 6 selected

attributes (cardinalities 255, 207, 185, 1, 989, 5, 787 and 5, 827). We also generate a number

of synthetic data sets for our experiments. The TS approach sequentially reads tuples from

file. In the meanwhile, TS maintains a heap with size k to keep track the current top-k results

seen so far. For other approaches using index-merge framework, we assume the attributes

involved in ranking functions are indexed by either B+-trees or R-trees. By default, the page

size in index nodes is set as 4KB. All methods are implemented in JAVA.
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5.4.2 Experimental Results

We use execution time as evaluation metric and conduct experiments to evaluate the query

performance with respect to different ranking functions, different type of indices and the

number of indices for merging. Guided by the query performance, we further examine how

to configure indices for efficient online query processing. Finally, we show the scalability of

the proposed methods, including both online query and offline computation costs.

Query Performance w.r.t. Ranking Functions

Since the index-merge paradigm is motivated by supporting non-monotonic ranking func-

tions, we first evaluate query performance with respect to different types of functions. Sup-

pose the ranking function is formulated on two attributes A and B, and each of them is

indexed by a B+-tree. For demonstration, we use three queries with controlled functions:

(1) a semi-monotone query with function fs = (A−a)2 +(B− b)2 where a and b are random

parameters. This is a typical nearest neighbor query, which is frequently used in database

systems; (2) a general query with function fg = (A−B2)2. This query is often used to mea-

sure the min square error; (3) a constrained query with function fc = A+B
η(B)

, where η(B) = 1

if b1 ≤ B ≤ b2, and η(B) = 0 otherwise. fc essentially constraints the value of B to be

between b1 and b2, and b1 and b2 are two random parameters.

We use synthetic data sets in this set of experiments. By default, all data contains 1M

tuples. The query execution time with respect to different k values and different ranking

functions are shown in Figures 5.7 to 5.9. We observe that all the approaches using the

index-merge framework perform better than table scan, while the speed-up margin differs

from each ranking function: with fs and fc, both PE and PE+SIG are almost one order of

magnitude faster than BL, which is already one order of magnitude faster than TS ; and with

fg, PE+SIG is 10 times faster than BL and PE, which are only around 2 times faster than

TS. The experimental results show the effect of two optimization techniques (progressive

merge and selective merge) with respect to different ranking functions.
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Figure 5.7: Execution Time w.r.t. K, f = fs
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Figure 5.8: Execution Time w.r.t. K, f = fg
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Figure 5.9: Execution Time w.r.t. K, f = fc

To explain the difference, we first analyze the properties of the three index-merge based

approaches. The overall execution time can be decomposed into two parts: CPU time for

state search and state generation; and I/O time for node retrieval. PE improves BL with

respect to CPU cost, and PE+SIG further improves PE in terms of I/O cost. We then

examine the three ranking functions to see which cost (i.e., CPU or I/O) dominates the

overall performance. In fs, the top answers are close to point (a, b), and it is very likely that

only a few index nodes need to be retrieved. Thus the I/O may be relatively cheap and the

CPU cost dominates. The same observation is also applied on fc. The hypothesis is well

supported by Figures 5.7 and 5.9 in that: (1) BL is significantly faster than TS because BL

requests much less I/O; (2) PE further improves BL by order of magnitude because CPU

cost dominates in BL; and (3) the speed-up of PE+SIG over PE is limited because the

room for improvement is small (i.e., I/O is already very cheap). On the other hand, fg is a

difficult query function since the top results could scatter over the whole domain, and one

has to retrieve more data to answer the query. As the result, the I/O cost dominates. As

shown in Figure 5.8, the speed-up of both BL and PE over TS is not significant. PE+SIG

achieves substantial improvement because the join-signature prunes many empty-states, and
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Figure 5.10: Disk Access w.r.t. f , k = 100

thus reduces the I/O requests.

Figure 5.10 shows the number of disk access for three functions when k = 100. For

PE+SIG, we further plot the number of index node requests and that of the state-signature

requests. Comparing with the I/O for index nodes, the I/O cost for join-signatures is much

less. Among the three functions, fg incurs most I/O costs, and this is consistent with the

above analysis. Figure 5.11 shows the number of generated states. We observe that the

progressive expansion is quite effective in that it generates much less states. Sometimes

PE+SIG generates less states because the pruning of empty states (and whose child states).

Finally, Figure 5.12 shows the peak heap size. The heap size of PE and PE+SIG are

computed by the accumulative size of the global heap and all local heaps. Note that even

for fg, the peak heap size of PE (PE+SIG) is 2, 714 (469) when k = 100. This is actually

a very important property to support in-memory computation. We will further address this

in Section 5.4.2.
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Figure 5.11: States Generated w.r.t. f , k = 100
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Figure 5.12: Peak Heap Size w.r.t. f , k = 100
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Figure 5.13: Execution Time w.r.t. K, Real Data

Query Performance on R-Tree Indices

After reporting the results on B+-tree indices, we evaluate the query performance on R-tree

indices in this subsection. We have demonstrated the differences of three ranking functions

in the last subsection and their behaviors are similar with R-tree indices. For simplicity, we

only use fs in the following experiments. Suppose an R-tree index consists of d dimensions.

Merging two R-tree indices means there are 2d attributes in the ranking function. We define

fs =
∑2d

i=1(Ai − ai)
2, where Ai is an attribute value and ai is the query parameter. It is

possible that some attributes are not involved in ranking, and we will address this in Section

5.4.2. As we discussed in Section 5.2, neighborhood expansion is not applicable in R-tree,

since the nodes are not fully ordered. We use threshold expansion only.

We first conduct experiments on the real data set, whose 6 attributes are evenly divided

into 2 groups. Each group is indexed by an R-tree. We vary the value of k from 10 to

100, and the query execution time is shown in Figure 5.13. Clearly, PE+SIG performs best

among all approaches. An interesting observation is the BL is even worse than TS when

k ≥ 50. This is because the ranking function involves 6 attributes, which make it more

difficult to search for the final results. To verify this, we generate 4 different data sets with
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Figure 5.14: Execution Time w.r.t. R-Tree

2, 4, 6 and 8 dimensions, and build 2 R-tree indices (by evenly partition the attributes) on

each of them. The execution time for k = 100 is shown Figure 5.14. As expected, it is more

expensive to answer queries with more attributes. However, even for 4d R-tree, PE (and

also PE+SIG) finishes query in around 2.5 seconds, which is more than 12 times faster than

that by TS (31.5 seconds).

Query Performance on 3-Way Merge

All the previous experiments are conducted upon 2-way index merge. Here we examine

query performance on 3-way index merge. We use fs =
∑3

i=1(Ai − ai)
2, where Ai are three

attributes, and each of which is indexed by a B+-tree. As discussed in Section 5.3.3, the

PE+SIG approach has two choices: (1) use one 3d join-signature; or (2) use three 2d join-

signatures (e.g., (A1, A2), (A1, A3) and (A2, A3)). We report query performance for both

scenarios.

Figure 5.15 shows the execution time on a synthetic data set with 3 dimensions. We did

not report results of BL, because BL generates too many states and runs out of memory.

Although PE can effectively control the heap size, its execution time becomes worse than TS
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Figure 5.15: Execution Time w.r.t. K, 3 Indices

when k = 100. Both PE+SIG approaches run significantly faster. Particularly, the PE+SIG

with three 2d join-signatures, although not as effective as that with one 3d join-signature,

performs very well in pruning empty states.

Setting k = 100, we plot the peak heap sizes in Figure 5.16 and the number of disk

access in Figure 5.17. Clearly, the margin between PE and PE+SIG becomes much larger

comparing with that in 2-way index merge (Figures 5.12 and 5.10). This is because the

space of joint state grows exponentially with the number of merging indices. Consequently,

both CPU cost for state search and I/O cost for index node retrieval are higher. Moreover,

given the large number of candidate states, the probability that a state is not empty drops

exponentially. PE+SIG achieves significant gain by pruning empty states. We also observe

that in both PE+SIG approaches, the number of join-signature requests is several times less

than that of index node requests.

Index Configuration

Having observed that merging multiple indices introduces high computational complexity

in the above subsection, here we discuss how to alleviate the challenges with proper index
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Figure 5.18: Partial Attributes in Ranking

configuration. Suppose the database consists m dimensions, and the query attributes are

randomly selected. One can build m B+-trees on each attribute. Alternatively, one can

group attributes with size r and build m
r

R-trees on each group. For example, when m = 8,

we can set r = 4 and build two R-tree indices.

In Section 5.4.2, we have shown that the ranking functions consisting 8 attributes can

be answered fairly efficiently by merging R-tree indices (Figure 5.14). The experiments

are conducted under the assumption that all attributes in R-trees are involved in ranking

function. In contrast to using low dimensional indices to answer high-dimensional queries,

it is interesting to further check whether the high-dimensional indices (e.g., R-tree) can

efficiently process low-dimensional queries. We construct three sets of fs by selecting one,

two and all attributes from each R-tree index, and run queries on the same data sets in Figure

5.14. The experimental results of PE+SIG (with k = 100) are shown in Figure 5.18. Not

surprisingly, answering queries with full attributes is the most efficient. However, comparing

with TS, the performance of partial attributes is still very attractive. For example, when

m = 6 and r = 3, the execution time is around 2.4 seconds for one or two attributes. For

the same query, TS needs more than 26 seconds.
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Figure 5.19: Execution Time w.r.t. Node Size

For some database with moderate number of ranking attributes (e.g., 4-8), our experiment

results suggest that partitioning attributes into two groups and building R-tree index on

each of them provides fairly robust query performance for queries involving any subset of

attributes.

As part of the index configuration, we also test the query performance by varying the

index node size. Typically, the node size is chosen from 1KB to 4KB. We generate a 2d

synthetic data sets, and build B+-tree indices with size 1KB to 4KB on each attribute.

The execution time for k = 100 is shown in Figure 5.19. With smaller node size, the

number of nodes increases, and so does the number of empty-states. On the other hand,

with larger node size, the fanout of each node increases, and so does the number of states

to be enumerated. In general, PE+SIG considers both effects, and thus is not very sensitive

to node size.

Scalability

The final set of experiments is to study the scalability of the proposed methods. We use

synthetic data set with 2 B+-tree indices, and vary the number of tuples from 1M to 5M .
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Figure 5.20: Execution Time w.r.t. T

The query execution time (with k = 100) in Figure 5.20 shows that all methods scale quite

well. Besides the online query performance, we also report the construction and space costs

for the join-signature in Figures 5.21 and 5.22. To compare with, we plot the query execution

time used by TS in Figure 5.21, which shows that the join-signature can be computed fairly

efficiently in that it is comparable to table scan. We also compare the size of the join-

signature with the size of one B+-tree index in Figure 5.22, and observe that the size of

join-signature is at least 6 times smaller.

5.5 Discussion

We discuss the related work and two extensions of the proposed methods: (1) merging indices

from multiple relations, and (2) using the index-merge framework to answer other preference

queries.

113



20

40

60

80

100

120

140

160

1 3 5

C
on

st
ru

ct
io

n 
T

im
e 

(S
ec

on
ds

)

Number of Tuples (M)

Sig
TableScan


Figure 5.21: Construction Time w.r.t. T
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5.5.1 Related Work

Our work on high dimensional data is related to index-based ranked spatial join queries [77,

58], which starts from the roots of indices to be joined and finds pairs of overlapped (or closed)

entries. The algorithm is recursively called on the next promising pair which overlaps (or is

close) the most, until the top-k results are found. Plane sweep is the popular optimization

technique to reduce the search complexity. It applies sorting on one dimension in order

to reduce the cost of computing pairs that may belongs to top-k results. Another related

work is to compute top-k by interleaf traversal (in merging indices), which starts search

from the leaf-nodes containing extreme points and progressively traverses to neighboring

leaf-nodes[75].

The join-signature proposed in this chapter is an extension of data cube [27] which pre-

computes multi-dimensional aggregates. We treat each index as a dimension, and index

nodes as values. With a boolean measure that indicates whether a joint state is empty or

not, a join-signature is essentially a data cube over multiple index-dimensions. Materializing

join results is also explored by join indices [65]. The join-signature differs from them in that

the join-signature is built at the index node granularity, rather than on the data record level.

5.5.2 Merge Indices from Multiple Relations

The methods developed in this chapter can also be used to merge indices from multiple

relations. Particularly, we discuss how to extend the method to join primary keys and

foreign keys. A more general problem configuration which involves both ranking and join is

presented in the next chapter. Assume primary keys and foreign keys are stored together

with attribute values in the leaf index nodes. Thus the join condition can be evaluated

during index merge.

While the double heap algorithm with progressive expansions can be directly used, there

is a small variation to compute the join-signatures. To construct the join-signature of index
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A from relation R1 and index B from relation R2, we can first compute paths with respect

to both indices for each tuple. Suppose each tuple in R1 is associated with a path pathA and

each tuple in R2 is associated with a path pathB. We then conduct a sort-merge join on R1

and R2, and keep both pathA and pathB in the join results in R3. The method presented in

Section 5.3.2 can be applied on R3 to compute the join-signature.

5.5.3 General Preference Queries

Top-k queries are related to several other preference queries, such as skyline query [12] and

convex hulls [11]. Skyline query asks for the objects that are not dominated by any other

object in all dimensions. A convex hull query searches a set of points that forms a convex hull

of all the other data objects. The methodology developed in this chapter is also applicable

to these queries. The key observation is that all the queries can be processed progressively

in the top-down fashion. For demonstration, we discuss how to apply our method for skyline

computation as follows. The method for convex hull queries is similar.

In [51], Papadias et al. developed a branch-and-bound search algorithm that progressively

retrieves R-tree nodes, from root to leaves, until all the skylines are found. At any stage, if

a nodes n is dominated by a data object, all the child nodes of n can be pruned. The same

rule can be applied on the state space in this chapter: If a state S is dominated by a data

object, all the child states of S can be pruned. As soon as all the states in the global heap

are pruned, the search for the skyline objects halts. The join-signature can be used without

any modification, since the empty-states do not contribute to the final results either.

The progressive expansion methods are also applicable in skyline computation. Let n

and n be the maximal and minimal attribute values among the region covered by n. Given

a state S = (A1, B1), with child nodes (a1, a2, . . . , an) and (b1, b2, . . . , bm), we sort ai and

bi according to ai and bi, respectively. Similar to the threshold expansion in Section 5.2.3,

we can progressively generate child states until a threshold position (r, t), such that there

exists a generated child state c = (a∗, b∗) satisfying a∗ ≤ ar and b∗ ≤ bt. Consequently, the
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S.get next method returns all the generated child states (instead of one child state in top-k

query) and updates S’s coordinate values as ar and bt.
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Algorithm 5 Progressive and Selective Merge

Input: A set of Indices I, ranking function f , top-k

1: TopK = φ; //heap with size k to hold current top-k
2: g heap = {Joint Root}; //heap for state search
3: while (g heap 6= φ and f(TopK.root) > f(g heap.root))
4: remove top entry S from g heap;
5: if (S is empty or redundant)
6: continue;
7: if (S is a leaf state)
8: Retrieve data and update TopK;
9: else //S is a non-leaf joint state
10: next = S.get next()
11: if (next 6= null) // non-empty non-redundant
12: insert next to g heap;
13: if (S.l heap 6= φ) // more child states in S
14: insert S to g heap;
15: return

Procedure S.get next()
Vars: Local heap: l heap

21: if (l heap = φ)// the first time S.get next is called
22: load state-signature sig;
23: if (sig = null) //no signature for empty-states
24: return null; //return nothing, keep l heap = φ
25: load index nodes of S;
26: if (f is (semi-)monotone in S); //neighborhood
27: next = neighborhood expand();
28: else //threshold
29: next = threshold expand(); //the best child state
30: if (l heap 6= φ) //there are child states left
31: f(S) = f(l heap.root); //l heap was updated
32: if (next is empty or redundant)
33: next = null;
34: return next;
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Algorithm 6 Neighborhood and Threshold Expansions

Procedure neighborhood expand()
41: if (l heap = φ)// the first time S.get next is called
42: l heap = I(S);// insert initial states
43: remove top entry next from l heap;
44: insert N(next) to l heap;
45: return next;

Procedure threshold expand()

Vars: S = (n1, . . . , nm), and ni = (e1
i , . . . , e

Mi
i ) for each i

Current threshold position ti (i = 1, . . . , m)

51: if (l heap = φ)// the first time S.get next is called
52: l heap = (e1

1, . . . , e
1
m); // insert initial states

53: t1 = . . . = tm = 2; //initial threshold positions
54: find next(); //find the first candidate
55: remove top entry next from l heap;
56: find next();//search for next state
57: return next

Procedure find next()
61: while (f(l heap.root) > min(f ′(et1

1 ), . . . , f ′(etm
m ))

62: and (∃i ∈ {1, . . . , m} such that (ti ≤ Mi)))

63: s = arg minj
i=1 f ′(eti

i );
64: news = [e1

1, . . . , e
t1−1
1 ]× . . . [ets

s ] . . . [e1
j , . . . , e

tm−1
m ];

65: ts++;
66: for each cs in news
67: if (cs is not empty or redundant)
68: insert cs to l heap;
69: return;
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Chapter 6

Ranking with Joins

6.1 SPJR Queries

Many ranking queries in the context of relational database are the SPJR (i.e., Selection,

Projection, Join and Ranking) queries, whose boolean predicates consist of both selections

and joins. Given a SPJR query, the current DBMS first generates the complete results ac-

cording to the boolean query constraints, then sort the results and report the top-k answers.

This approach is often inefficient in that joins may generate a huge number of output. To

efficiently processing ranked queries, the query evaluation system should be able to identify

and only touch the subset of joined results that is most promising for top-k answers. This

is found to be more difficult than querying over single relation since the joined results are

generated on-the-fly.

6.1.1 Query Model

Consider m relations R1, R2, . . . , Rm, and each Ri has a set of attributes Ai = {A1
i , A

2
i , , . . .}.

We assume the ranking functions will only involve a subset of pre-determined ranking at-

tributes : Fi = {N1
i , N2

i , . . .} ⊆ Ai. An SPJR query specifies the boolean query constraints

on a subset of non-ranking attributes and formulates a ranking function on a subset of rank-

ing attributes. The result of a top-k query is an ordered set of k tuples that is filtered by

the boolean constraints and ordered according to the given ranking function. A possible

SQL-like notation for expressing SPJR queries is as follows:
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SELECT Top k P
FROM R1, R2, . . . , Rm

WHERE b(A′)
ORDER BY f(F ′)

Here, P ⊆ ∪m
i=1Ai is a subset of the projection attributes; b is a boolean predicate and

A′ ⊆ ∪m
i=1Ai is a subset of any attributes; and f is a ranking function and F ′ ⊆ ∪m

i=1Fi is

a subset of the ranking attributes. Without loss of generality, we assume the ranking has

minimization preference. An example of an SPJR query is shown as follows.

Example 7 Consider a user who wants to fly from Chicago to a coastal city and stay in a

3-star hotel. Given a flight relation F and hotel relation H, the user may issue the following

query to search for a plan which minimizes the combined flight and hotel costs.

SELECT Top 10 H.CityName, H.HotelName
FROM F, H
WHERE F.Departure = “Chicago” and

F.Destination = H.CityName and
H.In Coastal City = true and
H.StarLevel = 3

ORDER BY F.Price + H.Price asc

The task of searching for the interesting data regions relies on the analysis of the ranking

function, which is a typical problem in numerical analysis. However, most ranking functions

in real life applications have nice properties, which can be utilized by the query optimizer.

For simplicity, we demonstrate our query optimizer by two commonly used ranking functions:

the convex functions and the monotone functions.

6.1.2 System Architecture

We extend the original ranking cube framework to multiple relations (i.e., multiple ranking

cubes). Furthermore, we propose a complete system to support SPJR queries. The system

is built on top of ranking cubes, and consists of a query optimizer and a query executer. An
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overview of the architecture is presented in Figure 6.1, with the major features highlighted

as follows.

Query Optimizer: The goal of the query optimizer is to minimize the retrieval of data

in answering SPJR queries. The query optimizer determines whether the system should

continue to retrieve data and what data needs to be retrieved. Our query optimizer differs

from the traditional cost-based optimizer [56] in two ways. First, current query optimizers

try to select the best access path for a given query. We argue that in most ranked queries,

all of the related data can be loaded into memory. Hence the access path will not play a

critical role in query optimization. This is because only a small portion of the data which

may contribute to the final top-k answers need to reside in memory, whereas most of the

data is neither retrieved nor thrown away after being determined as non-contributing to

answers. Second, most current query optimizers are static in the sense that the query plan

is determined before the query is executed. Instead of estimating the size of the interesting

tuples beforehand, it is much easier for an SPJR query optimizer to find the promising data

regions dynamically and progressively. As a result, our query optimizer is also involved

during the query execution, and the query plan is dynamic.

Query Executer: The query executer consists a set of operators, which includes Selec-

tion (i.e., select the tid list from ranking cubes); Join (i.e., join multiple tid lists); Retrieve

(i.e., retrieve the candidate tuples from original relations) and Sort (i.e., sort the candidate

results by ranking functions). The query executer can be summarized as a two-phase ap-

proach. In the candidate-generation phase, the query executer progressively selects tid lists

from ranking cubes, according to the instruction from the query optimizer. The selected tid

lists are then evaluated by the join operator. The candidates generated by this phase are

then feeded into the second phase, the candidate verification phase , where the values of the

candidates are retrieved from the base relations and their rankings are evaluated.

The remainder of this chapter is organized as follows. We discuss the query optimizer

in Section 6.2, and the query executer in Section 6.3. Section 6.4 presents the performance
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Figure 6.1: An overview of Ranking Cube System

study.

6.1.3 Ranking Cube for Join

The ranking cube is built on the non-ranking attributes and the block attribute B. Each

cuboid in the ranking cube is named by the involved attributes. For example, the cuboid AB

corresponds to non-ranking attributes (or selection dimension) A and the block attribute

B. Each cell in a cuboid consists of a cell identifier (e.g., A = a1, B = b1) and a list of

corresponding tids (e.g., {t1, t4}). An multi-dimensional index is built on the attributes to

efficiently access the tid lists. There are two typical ordering of attributes in the multi-

dimensional index: B in head and B in tail.

First, B is the first attribute and some non-ranking attributes are arranged after B in

the index. When a tid list is selected by the value of B, they are grouped by the values on
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the non-ranking attributes. This data organization is typically useful for evaluating joins

and this type of cuboid is called join cuboid. Second, when B is the last attribute and

some non-ranking attributes are arranged before B in the index, the cuboid can be used

to answer data request with boolean selection conditions on those non-ranking attributes.

We call this type of cuboid as selection cuboid. In selection cuboid, tid lists are selected

by a specified B value and other boolean selection conditions, the size of tid list is often

much smaller (sometimes empty) than the expected block size P . To avoid issuing multiple

random access, we discusses the pseudo block in Chapter 3, where nearby blocks are grouped

and retrieved together.

6.2 Query Optimizer

In this section, we examine the query optimizer based on the ranking cube model (in Chapter

3). The base unit in query optimization is block. The query optimizer progressively

instructs the query executer which data block to be retrieved. A data retrieval request

on a ranking cube consists of three components: (1) S, a boolean selection predicate (i.e.,

from the boolean query constraint), (2) J , a set of join attributes (i.e., the attributes used

in Join), and (3) B, a target block ID. Ex. 8 shows a sample request.

Example 8 Following Ex. 7, the ranking cubes of relation H and F are built. A data

retrieval request on the Ranking Cube of F could be: S =(Departure=“Chicago”); J =

{Destination} and B = b1.

While both S and J are determined from the boolean query constraint, the value of B
is dynamic during query execution. B = ∗ means all blocks are requested (i.e., the ranking

function does not have attributes from this ranking cube). In the following, we discuss how

to progressively search for B, and what is the stop condition for query execution. We first

review the method on one relation, and then extend it to multiple relations.
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6.2.1 Query Optimization over Single Relation

A block is necessary to be retrieved if and only if without retrieving this block, the system

is not able to claim that the top-k results are found. The query optimizer makes one block

request at a time, and the data retrieved from the ranking cube is first evaluated by the

boolean query constraints and then sorted by the ranking function. Suppose the current top

kth result has score vk. If there is no block which may contain a data tuple whose score is

less than vk, then it is safe to claim the top-k results are found and the query execution can

be stopped. Otherwise, it is necessary to retrieve more data for further evaluation. Given

a block b, let v(b) be the possibly minimal score in the region covered by b. The following

claim says the optimal choice is to get the block with minimal v(b).

Claim 1 Let L be the set of blocks already retrieved, if vk < min∀b/∈Lv(b), B = argmin∀b/∈Lv(b).

In most cases, the ranking function is convex or monotone, we can easily find the extreme

point which has the globally minimal score, and B is the block containing this point. When

there are some blocks already retrieved, the following claim shows how to reduce the search

space.

Claim 2 If the ranking function is convex or monotone, B = argmin{∀b|N(b,b′),b/∈L,b′∈L}v(b),

where L 6= φ is the set of blocks already retrieved, N(b, b′) = true if and only if b and b′ are

neighboring blocks.

The method can be generalized to handling ad hoc ranking functions. The basic idea

is to decompose the whole domain of the function variables into multiple sub-domains so

that in each sub-domain, the function has convex property. The candidate blocks in each

sub-domain then compete for the global next block to be retrieved.

125



6.2.2 Query Optimization on Multiple Relations

For multiple relational queries, the optimizer works on a joint space of blocks from each

involved ranking cube. A joint block can be written as l = (b1, b2, . . . , bm), where b1, b2, . . . , bm

are the blocks from the m involved ranking cubes. To clarify, we call the joint block space

as logical block, and the block spaces in individual ranking cubes as physical blocks.

Claim 1 still holds in the logical block space. To execute a query, the optimizer needs

to figure out which physical block to be retrieved. Before we generalize Claim 2 to multiple

relations, we first introduce some terminologies in terms of logical block space. Let v(l) be

the possibly minimal score of the ranking function in the joint block space. We say a logical

block is retrieved if all involved physical blocks are retrieved. Two logical blocks l and l′

are neighboring blocks (i.e., N(l, l′) = true) if and only if there is only one physical block

in l differs from that in l′, and the differing blocks are neighboring physical blocks in the

corresponding ranking cube. Suppose the differing physical blocks are bi and b′i. We denote

D(l|l′) = bi. Below is the extension of Claim 2 to the logical block space. Ex. 9 demonstrates

the procedure of query optimization on multiple relations.

Claim 3 If the ranking function is convex or monotone, and (l∗, l′∗) = argmin{∀(l,l′)|N(l,l′),l /∈L,l′∈L}v(l),

then B = D(l∗|l′∗), where L 6= φ is the set of logical blocks already retrieved, v(l), N(l, l′)

and D(l∗|l′∗) are defined above.

Example 9 Table 6.1 shows two relations R1 (with ranking attributes N1 and N2) and

R2 (with ranking attributes M1 and M2). Suppose the range of all ranking attributes is

[0, 1]. The bin boundaries used in partitioning R1 are BinN1 = [0.4, 0.45, 0.8] and BinN2

= [0.2, 0.45, 0.9], and those used in partitioning R2 are BinM1 = [0.25 ,0.7, 0.8] and BinM2 =

[0.4, 0.5, 0.7] (Fig. 6.2).

Suppose the query has a join condition R1.A = R2.B, and a ranking function f =

R1.N1 + R1.N2 + R2.M1 + R2.M2. Top 2 results are requested. The globally minimal value

of f is 0 (by R1.N1 = R1.N2 = R2.M1 = R2.M2 = 0). The optimizer locates the first logical
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tid A N1 N2

t1 1 0.05 0.05
t3 2 0.05 0.25
t4 1 0.35 0.15
... ... ... ...

tid B M1 M2

s1 1 0.05 0.15
s2 2 0.02 0.05
s5 1 0.30 0.05
... ... ... ...

Table 6.1: Relations R1 (left) and R2 (right)

block as l1 = (R1.b1, R2.b1) (Fig. 6.2), and retrieves R1.t1, R1.t4, R2.s1 and R2.s2. Both

R1.t1 and R1.t4 can join with R2.s1, and their ranking scores are 0.3 and 0.6, respectively.

R2.s2 cannot pass the join condition at this stage, thus are not considered. There are four

neighboring logical blocks of l1: (R1.b1, R2.b2), (R1.b1, R2.b5), (R1.b2, R2.b1) and (R1.b5 ,

R2.b1). The logical block l = (R1.b5, R2.b1) has the best possible score v(l) = 0.2, which is

less than the current top 2nd candidate score 0.6. We continue to retrieve the physical block

R1.b5. R1.t3 is retrieved and joins with R2.s2. The new candidate (R1.t3, R2.s2) has score

0.37. The system continues to look for the neighboring logical blocks. However, none of them

has less score than 0.37. The top-2 results (i.e., (R1.t1, R2.s1), (R1.t3, R2.s2)) are found, and

the query execution stops.
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Figure 6.2: Processing a top-2 query with 2 relations

6.2.3 Comments on Query Optimizer

Our query optimizer is an extension of the sort-merge framework [28, 30] in the middle-ware

scenario. The ranking cube can be considered as a data source in their framework. However,

the original data source is a sorted list (thus there is only one way to access the data),

and only monotone functions are applicable. Our system can support more general ranking
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functions. Moreover, the block-level design provides more flexible data access, and the query

optimizer addresses an important optimization problem: what is the optimal way to retrieve

data blocks?

We use convex and monotone functions to demonstrate the query optimization. The

framework can be generalized to handling ad hoc ranking functions. The basic idea is to

decompose the whole domain of the function variables into multiple sub-domains so that

in each sub-domain, the function has convex property. The candidate blocks in each sub-

domain then competent for the global next block to be retrieved.

6.3 Query Executer

This section discusses the operators in the query executer. As shown in Fig. 6.1, there

are four operators: Rank-aware Selection, Multi-way Join, Retrieve tuples from R1, . . . , Rm

and Sort by Ranking Function. The first two operators manipulate tid lists, and generate

candidates which satisfy the boolean query constraint. Each candidate is a set of tids from

different relations. Given those candidates, the retrieve operator uses those tids to get the

tuples from the original relations and the sort operator evaluates the ranking function with

each candidate and discard those candidates whose scores are less than vk (i.e., the current

top kth score). In the following, we present the detailed implementations of the selection

and join operators.

6.3.1 Rank-aware Selection

As discussed in Section 6.2, a selection request issued by the query optimizer consists of a

triple: (S, J , B). To answer the data request, there are three steps in the selection operator.

First, using the attributes involved in S and J , the query executer determines which

cuboid to be used: an attribute in S links to a selection cuboid, and an attribute in J links

to a join cuboid.
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Example 10 Continue on Ex. 8. The ranking cube of the flight relation F has cuboids

ADepartureB, ADestinationB, BADeparture and BADestination. Here ADeparture and ADestination

represent the attributes of departure city and destination city in F , and B is the block

attribute created by ranking cube. Given a data request (S = (Departure=“Chicago”),

J ={Destination}, B = b), the query executer will select the selection cuboid ADepartureB

and join cuboid BADestination.

Second, in order to maximize the benefit of block-level access, we group neighboring

cells in selection cuboids, and those cells will be retrieved together. Suppose in cuboid

ADepartureB, cells c = (“Chicago′′, b), c1 = (“Chica go′′, b1) and c2 = (“Chicago′′, b2) are

grouped together. The selection operator retrieves all three cells from disk at the same time.

Cell c is returned by the request, and cells c1, c2 are buffered for the future requests.

Third, an ideal cuboid to answer the data request in Ex. 10 is ADepartureBADestination.

Since this cuboid was not materialized, we will need to compute the requested cell online.

We first retrieve a tid list l1 from ADepartureB cuboid using ADeparture = “Chicago′′ and

B = b; then retrieve a tid list l2 from BADestination cuboid using B = b. The two lists l1 and

l2 are intersected, and the result is returned.

6.3.2 Multi-way Join

After the tid lists are selected from the ranking cube, the query executer uses a multi-way

join operator to evaluate the join constraints. Before we proceed to the details of the join

operator, we characterize two types of tid lists. A tid list is associated with a data request

(S,J ,B). We call a tid list as ranked list if B 6= ∗, otherwise, the tid list is a non-ranked list.

The ranked lists are typically short since it is selected from a particular block, while the non-

ranked list could have large size. According to the input list, we discuss two implementations

of the join operator: list merge and index search.

List Merge: When join is applied on ranked lists (or short non-ranked list), we imple-
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ment the join by list merging. This approach retrieves all lists from the ranking cube, and

validate the join conditions in memory. Candidates passed the join condition will be fed to

the sort operator. The tid lists which fail to pass the join filter may or may not need to be

kept in memory (Section 6.3.3). This is because our data selection has ranking preference

and is progressive. It is possible that some lists retrieved in future can join with the current

lists. To save the space and computational costs, we can use join indices [65] in the physical

implementation, as shown in the following example.

Example 11 Follow Ex. 7, the rank-aware selections return two tid lists from the rank-

ing cubes of H and F , respectively. The list from F ranking cube (i.e., lF ) is indexed by

ADestination, and the list from H ranking cube (i.e., lH) is indexed by ACityName. Suppose lF

= {(“Hawaii”, list1), (“Miami”, list2)}, and lH = {(“Hawaii”, list3), (“Cancun”, list4)}.
The join index with respect to F.ADestination = H.ACityName is lFH = {(“Hawaii”, list1,

list3)}.

Index Search: Sometimes a non-ranked list could have large size. Instead of retrieving

the whole list, which might be expensive, we can use index search on the non-ranked list.

One scenario is demonstrated in Ex. 12.

Example 12 Follow Ex. 7. Suppose a user only looks for cheapest flight tickets to a coastal

city, and the query is: select top 10 F.Price from F and H where F.Destination=H.City-

Name and H.In Costal City=true, the query executer needs to join a ranked list from F and

a non-ranked list from H. An index search approach retrieves the ranked list from F, and

issue multiple index search on H to verify whether a destination city is a coastal city.

Each index search incurs a random access, which is also not trivial. It is often beneficial

to identify the misses (i.e., the index search fails) beforehand. A possible solution is to pre-

compute a signature of the keys in the non-ranked list, and only search those keys confirmed

by the signature (without false negative). A well-known method for this purpose is the

Bloom Filter [10]. Retrieving the signature is far more efficient than the original list.
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To decide whether to Merge or to Search, we can use a standard cost based solution.

Let the average cost of one random access be Cr, and the average unit cost of retrieving a

list be Cl. Suppose the join selectivity of join in a top-k query is s and the length of the

list is L. The cost of index search is kCr

sL
, and the cost of list merge is LCl. The value of L

can be maintained by ranking cube and only requires one random access. Cr and Cl can be

determined by experiments. The estimation of s is addressed by some previous works, such

as [13].

6.3.3 List Pruning

Our query evaluation assumes that all lists retrieved so far can fit in memory. An important

issue for memory management is to identify the subset of retrieved tids which are not able

to contribute for top results (i.e., do not exist in final answers). Removing these tids from

memory can reduce not only the memory requirement, but also the computational cost of

join operator.

For simplicity, we use a two-way join as an example to demonstrate how to determine

that a tid is safe to be discarded. Suppose the kth best score on the current joined candidates

is vk. The best possible score that a tid can generate can be computed by the block where

the tid resides and the best untouched block in the other ranking cube. Searching for the

best untouched block in the ranking cube is similar to our optimizing method discussed in

Section 6.2.2, and we omit the details here.

6.4 Performance Study

6.4.1 Experimental Setting

We compare the performance of ranking cube with the baseline solution, where we directly

issue the query to Microsoft SQL-Server 2005. To test the performance with different pa-
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rameters, we use the synthetic data sets. Given a relation with m non-ranking attributes

A1, . . . , Am, we create m selection cuboids AiB and m join cuboids BAi (see Section 6.2.1).

For a fair comparison, we load all cuboids into SQL Server, and build a clustered index for

each cuboid. For the baseline approach, we build an index on each non-ranking attribute.

We use a simple SPJR query as shown below for performance evaluation.

Select Top 10 R1.id, R2.id From R1, R2

Where R1.A1 = 1 and R2.A1 = 1 and R1.A2 = R2.A2

Order By R1.N1 + R1.N2 + R2.N1 + R2.N2

6.4.2 Experimental Results

The synthetic relations R1 and R2 have two ranking attributes (N1, N2) and two non-ranking

attributes (A1, A2). To test the effect of boolean selectivity, we fix the number of tuples as

1M and vary the cardinality of each non-ranking attributes from 10 to 30. The query

evaluation time using both methods is shown in Fig. 6.3. We then fix the cardinality as 30

and vary the number of tuples in each relation from 1M to 5M . The experimental results

are shown in Fig. 6.4. We observe that our method is 1-2 orders of magnitudes faster than

the baseline approach. The performance of the baseline approach becomes better when the

query is more selective. When we increase the database size, we see a clear trend that the

time used by our method is fairly robust, while the time used by baseline approach grows

exponentially.

In terms of the space usage, when a relation has 5M tuples (with cardinality 30), the

base table consumes 143MB; the indices built on the base table consumes 328MB; and the

ranking cube consumes 606MB. The overall space requirement of our system is 606+143
328+143

= 1.6

times that of the baseline approach. This is a fairly acceptable cost paid for materialization

since the online query processing becomes much more efficient. Furthermore, since we store
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ranking fragments in relational database, a large portion of the space is used to store the

cell identifiers. The space requirement can be further reduced if we store the data out of the

relational database.
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Chapter 7

General Preference Queries

7.1 Querying Skylines with Boolean Predicates

7.1.1 Introduction

The preference queries have been studied in the context of skyline query [12, 26, 42, 51, 62],

top-k query, convex hull query, etc. [12, 46]. In this chapter we focus on skyline queries,

however, the developed methodology applies to other types of preference queries as well.

Given a set of n objects p1, p2, . . . , pn, a skyline query returns all the objects pi such that pi

is not dominated by any other object pj. Let the value of pi on dimension d be v(pi, d). We

say pi is dominated by pj if and only if for each preference dimension d, v(pj, d) ≤ v(pi, d),

and there is at least one d where the equality does not hold. We refer the results computed

by this criterion as static skylines since the value of v(pi, d) is fixed and does not depend

on any specific query. A more powerful criterion, called dynamic skyline [51], conducts the

domination analysis through user-defined mapping functions. Suppose f1, f2, . . . , fm are m

mapping functions, each of which takes an object as input and generates a real value as

output. The m functions map each object into a new m-dimensional space. A dynamic

skyline is the set of all objects pi such that pi is not dominated by any other object pj in

the transformed space.

We address the problem of efficient processing dynamic skyline queries with multi-dimensional

boolean predicates, i.e., OLAPing dynamic skylines. In the following, we give the motivating

examples and the problem formulation.
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7.1.2 Examples

One application scenario is to support skyline query based on user-specified preferences in

any subset of data (Ex. 1). Another is to compare skylines by drilling in multi-dimensional

space to get deep insights for business analysis (Ex. 2).

Example 1. (Multi-dimensional skyline query) Consider a used car database (e.g., kbb.com)

with schema (type, maker, color, price, milage). The first three are boolean dimensions,

whereas the last two are preference ones. A static skyline query may ask for skyline (on

price and milage) objects among a subset of cars with type = “sedan” and color = “red”. A

dynamic skyline query has more flexibility in expressing user preference:

select dynamic skylines from R

where type = “sedan” and color = “red”

preference by (price− 10k)2 and (milage− 10k)2

This query asks for every red sedan whose price is close to 10k and whose milage is close

to 10k, and there is no other red sedan which is closer on both preferences.

Example 2. (Multi-dimensional skyline comparison) Consider a digital camera compari-

son database (e.g., bizrate.com) with schema (brand, type, price, resolution, optical zoom).

Suppose the last three dimensions are preference dimensions. An analyzer who is interested

in canon professional cameras may first issue a skyline query with boolean predicate type

= “professional” and brand = “canon”. The analyzer then rolls up on the brand dimension

and checks the skylines of professional cameras by all makers. By comparing two sets of

skylines, the analyzer will find out the position of canon cameras in the professional market.

As shown in the above examples, the static skylines are fixed for a given data-set. The

dynamic skylines support ad-hoc user preferences and are more powerful in applications.

135



7.1.3 Query model

Consider a relation R with boolean dimensions A1, A2, . . . , Ab, and preference dimensions

(i.e., ranking dimensions in top-k query) N1, N2, . . . , Np. The two sets of dimensions are not

necessarily exclusive. A dynamic skyline query specifies the boolean predicates on a subset

of boolean dimensions and preference functions on a subset of preference dimensions. A

possible SQL-like notation for expressing dynamic skyline queries is as follows:

select dynamic skylines from R

where A′
1 = a1 and · · · and A′

i = ai

preference by f1, f2, . . . , fm

where {A′
1, A

′
2, . . . , A

′
i} ⊆ {A1, A2, . . . , Ab} and f1, f2, . . . , fm are formulated on {N1, N2, . . . , Np}.

Without losing generality, we assume that users prefer minimal scores. The query results

are a set of objects that belong to the data set satisfying the boolean predicates and are not

dominated by any other objects in the same set.

We assume that functions f1, f2, . . . , fm have the following property: Given a function

f(N ′
1, N

′
2, . . . , N

′
i) and the domain region Ω on its variables, the lower bound of f over Ω can

be derived. For many continuous functions, this can achieved by computing the derivatives

of f .

To support such on line analytical domination queries, it is important to restructure

the source data such that both multi-dimensional boolean predicates and dynamic skyline

queries can be addressed simultaneously. In this chapter, we adopt the ranking-cube for

answering preference queries. In the rest of this chapter, we first presents the method for

static skyline queries, and then discuss the extension to dynamic skylines. We report the

experimental results in Section 7.3.
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7.2 OLAPing Skyline Queries

7.2.1 Problem Analysis

Given the boolean and domination criteria, an algorithm can first filter data tuples by

boolean predicates and then compute the skylines (i.e., boolean pruning first). Alternatively,

one can search data tuples according to the domination relationship and verify the boolean

constraints on each candidate (i.e., domination pruning first). This is similar to our analysis

in top-k query processing.

We use the signature-based ranking-cube (Chapter 4) in this chapter, and adopt the

branch-and-bound search paradigm. Based on the R-tree partition, [51] proposed a branch-

and-bound search paradigm which starts from the root node of the R-tree and progressively

expands a node by examining its child nodes. A node is pruned if it is dominated by

some other data points. The search halts when there is no node left. To integrate boolean

pruning in the above search framework, the algorithm can use signature to identify whether

an underlying node contains any object satisfying the boolean predicates.

7.2.2 Querying Static Skylines

We outline the signature-based query processing in Algorithm 7. The algorithm follows

the branch-and-bound principle to progressively retrieve data nodes. To demonstrate the

correctness of the algorithm, we first present two facts. First, if a node n is dominated

by some data objects, all child nodes of n are dominated. Secondly, for each node n,

let d(n) = minx∈n(
∑m

i=1 f 2
i (x)) be the lower bound value over the region covered by n.

A data object t can not be dominated [51] by any data objects contained by node n if
∑m

i=1 f 2
i (t) ≤ d(n).

We briefly explain each step as follows. Line 1 initializes a list to store the final results.

Line 2 loads signature measure from ranking-cube according to the boolean predicates BP .

The construction and retrieval of signature measure is presented in Chapter 4. Each node n
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Algorithm 7 Framework for Query Processing

Input: R-tree R, ranking-cube C, boolean predicates BP , and
a set of preference functions F

1: sky = φ; // initialize the result set
2: sig = signature measure of BP in C; // load signature
3: c heap = {R.root}; // initialize candidate heap
4: while (c heap 6= φ)
5: remove top entry e;
6: if (prune(e, sky, sig))
7: continue;
8: if (e is a data object)
9: insert e into sky;
10: else // e is a node
11: for each child ei of e // expand the node
12: if (!prune(ei, sky, sig))
13: insert ei into c heap;
14: return

Procedure prune(e, sky, sig)
Global Lists: b list, d list;

15: if (e is dominated by sky) // domination checking
16: insert e into d list;
17: return true;
18: if (e does not satisfy boolean predicates) // check sig
19: insert e into b list;
20: return true;
21: return false;

is associated with a value d(n), and the root of the c heap contains an entry e with minimal

d(e) (line 5). Line 6 checks whether all tuples contained by e satisfy BP , or are dominated

by previously retrieved data objects (as we mentioned above, e can not be dominated by

any future data objects). For all e that pass the checking, e is a new skyline object if it is a

tuple (line 8). Otherwise, the algorithm further examine e’s child nodes (lines 11-13).

The prune procedure is the key component in the framework. An algorithm is optimal

if prune procedure does not return false positives. The signature measure provides correct

answers for boolean pruning. While the domination pruning for static skylines is straightfor-
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ward, it is more complicated for dynamic skylines. In Section 7.2.3, we explain why this is

the case and discuss how to reduce the false positives. The prune procedure also maintains

two optional global lists: the b list and d list. The b list keeps all the entries pruned by

boolean predicates and the d list keeps all the entries pruned by skyline domination. The

sole purpose of maintaining these two lists is to efficiently support roll-up and drill-down

queries (Section 7.2.4).

7.2.3 Querying Dynamic Skylines

Here we discuss the domination pruning for dynamic skylines. The difficulty lies on the

fact that an entry e submitted to the prune procedure may be an intermediate node, which

corresponds to a region. In static skyline computation, this region is a rectangle. While in

dynamic skyline computation, the region is mapped by preference functions and could form

arbitrary shape.

(a) Static Skyline Checking
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f1
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X

e

(b) Dynamic Skyline Checking

Figure 7.1: Domination Pruning

Suppose the preference functions for a dynamic skyline query are f1 = X2 + Y 2 and

f2 = (10−X)2 + Y 2, where X and Y are two preference dimensions. Figure 7.1 shows the

difference of pruning between static skylines and dynamic skylines. Suppose t1, t2 and t3

are skyline objects, and e is an entry submitted for domination checking. In static skyline

checking, if e does not contain any possible skyline result, there must exist one existing

skyline object that completely dominates e. Consequently, the prune procedure does not

have false positive. In dynamic skyline checking, though the entry e should be pruned, there
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is no single existing skyline object that completely dominates e. Instead, t1 dominates a

sub-region of e and t2 dominates the rest.

To analytically determine whether a region with arbitrary shape is dominated by a set of

skyline objects is a challenge task. Instead, we present an alternative sub-optimal solution.

Motivated by the fact that the whole region is dominated by multiple objects, and each of

which dominates a sub-region, we evenly partition e into sub-regions e1, e2, e3 and e4 (Figure

7.1). We observe that e1 is dominated by t1, e4 is dominated by t2, e2 and e3 are dominated

by both t1 and t2. Thus, we can safely prune e. In the case when there is a sub-region

not being dominated, we can further partition it. The algorithm specifies a threshold k to

control the depth of the recursive partition.

7.2.4 Drill Down and Roll up Queries

Drill-down and roll-up are typical OLAP operators applied on boolean dimensions. Given

the current boolean predicate BP , the drill-down query strengthens BP by augmenting

an additional boolean predicate and roll-up query relaxes BP by removing some boolean

predicate in BP . For example, let BP = {A = a1, B = b1}. BP ′ = {A = a1, B = b1, C = c1}
is a drill-down, whereas BP ′ = {A = a1} is a roll-up. Drill-down and roll-up queries are

incremental in that they always follow a standard skyline query. Moreover, for both queries,

we assume that the preference functions for dynamic skylines keep the same.

A standard skyline query starts with an empty c heap and searches from the root node.

While in drill-down and roll-up queries, we can avoid searching from scratch. Thus, the I/O

cost may be reduced. Recall that in Algorithm 7, we maintain three lists: sky, b list and

d list, where sky contains the results for current query, d list contains entries dominated by

objects in sky, and b list contains entries not satisfying boolean predicates. Lemma 9 shows

how to re-construct c heap without starting from the root node.

Lemma 9 Suppose sky, b list and d list are maintained by the last query. For a continuing
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drill-down (or roll-up) query, re-constructing the candidate heap as c heap = sky ∪ d list

(or c heap = sky ∪ b list) returns the correct answers.

sky+b_list+d_list

Root

R−tree

Figure 7.2: Re-constructing candidate heap

proof We prove the drill-down case, and the proof for roll-up is similar. Let the union of sky,

b list and d list be N . According to Algorithm 7, each retrieved node is either expanded

(by inserting child nodes to c heap) or inserted into N . When the search completes, c heap

is empty. Thus N forms a closure (e.g., Figure 7.2) such that for any unvisited node n, there

is a node n′ ∈ N and n′ is an ancestor of n. If we re-construct c heap by N , we will not

miss any unvisited node and all skyline objects will be discovered. Since drill-down query

strengthens the boolean condition, all entries in b list (and their descendants) are pruned

by the new boolean predicates. Thus we can remove b list from c heap.

With the re-constructed c heap, we execute Algorithm 7 from Line 4. Note the size

of c heap can be further reduced by enforcing boolean checking and domination checking

beforehand. Using drill-down as example, for each previous skyline object in sky, it continues

to be a skyline objects if it satisfies the drill-down boolean predicate. Otherwise, it is directly

moved to b list. For each entry in d list, we filter it by the prune procedure before we insert

it into c heap.

7.3 Performance Study

This section reports our experimental results. We compare the query performance of Algo-

rithm 7 with two other alternatives: (1) the boolean-first approach that evaluates boolean
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predicates before the skyline computation, and (2) the domination-first approach that con-

ducts boolean verification after each candidate skyline is generated. We first discuss the

experimental settings, and then show the computation and space costs of ranking-cube, and

online query performance.

7.3.1 Experimental Setting

We defines the data sets and the experimental configurations for all approaches.

Data Sets

We use both synthetic and real data sets for the experiments. The real data set we consider

is the Forest CoverType data set obtained from the UCI machine learning repository web-site

(www.ics.uci.edu/∼mlearn). This data set contains 581, 012 data points with 54 attributes.

We select 3 quantitative attributes (with cardinalities 1, 989, 5, 787 and 5, 827) as preference

dimensions, and other 12 attributes (with cardinalities 255, 207, 185, 67, 7, 2, 2, 2, 2, 2, 2, 2)

as boolean dimensions. We also generate a number of synthetic data sets for our experiments.

For each synthetic data, Dp denotes the number of preference dimensions, Db the number of

boolean dimensions, C the cardinality of each boolean dimension, T the number of tuples,

S = {E, C, A} the uniform, correlated and anti-correlated data distributions.

Experimental Configurations

We build all atomic cuboids (i.e., all single dimensional cuboids on boolean dimensions) for

ranking-cube. Signatures are compressed, decomposed and indexed (using B+-tree) by cell

values and SID’s. The page size in R-tree is set as 4KB. In the experiments, we compare our

proposed signature-based approach (referred as Signature) against the boolean-first (referred

as Boolean) and domination-first (referred as Domination) approaches.

Boolean first: We use B+-tree to index each boolean dimension. Given the boolean

predicates in query, we first select tuples satisfying the boolean conditions. To process
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boolean filters, we may use index scan or table scan, we report the best performance of the

two alternatives. The selected data tuples are inserted into a candidate heap (i.e., c heap).

The key value for comparison in the heap is d(t) =
∑m

i=1 f 2
i (t). We fetch and remove tuples

from c heap one by one, and compute the skyline objects. In this approach, we assume

c heap fits in memory. A simple optimization is applied to improve the performance: let

dmax(t) = maxm
i=1 fi(t) and dmin(t) = minm

i=1 fi(t). During tuple retrieval, we maintain the

minimal value (i.e., minmax) of dmax among all seen tuples. For each arrival tuple t, if

dmin(t) > minmax, t can be directly discarded without inserted into c heap since it must

be dominated by some other tuples.

Domination first: We adopted the bbs algorithm [51], which is best known in the

literature. The algorithm progressively retrieves R-tree blocks until the results are computed.

The framework is similar to Algorithm 7, except that there is no boolean checking in the

prune procedure. Since R-tree only keeps values in preference dimensions, we build index

on tid for the database and keep tid with each tuple in R-tree for boolean verification. The

boolean verification involves random access and we only issue a boolean checking for a tuple

in between line 8 and line 9 in Algorithm 7. That is, we only verify a tuple which has been

determined as a candidate skyline. In this way, one can prove that the number of boolean

verification is minimized. One may suggest to keep boolean dimensions in R-tree for cheap

verification. This approach may not be a sound solution in reality: first, it reduces the

capacity of each node, and the size of R-tree may increase a lot; and secondly, it may violate

some constraints (e.g., the tuples must be sorted by a primary key) and introduce difficulties

for other types of data access (e.g., sequential table scan).

7.3.2 Experimental Results

Experiments are conducted to examine (1) the query performance on static skylines, (2) the

query performance on dynamic skylines, and (3) the effect of boolean predicates on query

performance, including the drill-down and roll-up queries.
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Figure 7.3: Execution Time w.r.t. T

Query Performance on Static Skylines

To begin with, we examine the query performance on static skylines. All queries use single

selection condition on one boolean dimension. The results on multiple boolean predicates

are reported in Section 7.3.2.

We run static skyline queries on the same synthetic data sets as those in Figure 4.8,

and the execution time is shown in Figure 7.3. We compare Signature with Boolean and

Domination. Clearly, the signature-based query processing is at least one order of magnitude

faster. This is because in Boolean, disk access is based on boolean predicates only, and

in Domination, disk access solely relies on domination analysis. Signature combines both

pruning opportunities and thus avoids unnecessary disk accesses.

To take a closer look, we compare the number of disk accesses between Signature and

Domination in Figure 7.4. Domination consists of two types of disk accesses: R-tree block

retrieval (DBlock) and random tuple access for boolean verification (DBool). Signature also

consists of two types of disk access: signature loading (SSig) and R-tree block retrieval

(SBlock). We observe that (1) in Signature, the cost of loading signature is far smaller

(≤ 1%) than that of retrieving R-tree blocks, and (2) guided by the signatures, our method
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Figure 7.4: Number of Disk Access w.r.t. T

prunes more than 1/3 R-tree blocks comparing with Domination and avoids even more

random tuple accesses for boolean verification.

From another perspective, reducing the memory requirement is equally important for

the scalability issue. Note this is not necessarily implied by minimizing disk accesses. For

example, we adopt a lazy verification strategy in Domination and this has trade-off of keeping

more candidates in heap. Figure 7.5 compares the peak size of candidate heap in memory

for all three methods. With Signature, the number of entries kept in memory is an order of

magnitude less than that of Domination and Boolean.

The performance of Boolean and Domination depends on the boolean and preference

selectivity, respectively. The boolean (preference) selectivity determines the filtering power

by boolean predicates (multi-dimensional dominations). We first vary the cardinality C of

each boolean dimension from 10 to 1000, while keeping T = 1M . The query execution time

is shown in Figure 7.6. As expected, Boolean performs better when C increases and the

performance of Domination deteriorates. The preference selectivity is affected by the data

distribution among preference dimensions and also the number of preference dimensions. We

generate two sets of synthetic data: (1) with correlated, uniform and anti-correlated distri-
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Figure 7.5: Peak Candidate Heap Size w.r.t. T
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Figure 7.6: Execution Time w.r.t. C
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Figure 7.7: Execution Time w.r.t. S

butions on preference dimensions (by fixing Dp = 3), and (2) with the number of preference

dimension varying from 2 to 4 (by fixing uniform distribution). The query performance is

shown in Figures 7.7 and 7.8, respectively. When data is correlated or the number of pref-

erence dimensions is low, it is easier to find static skylines. When data is anti-correlated or

the number of preference dimensions increases, domination relationship between objects is

weaker. As the result, it becomes more challenging to compute the skyline results, and the

computation time for Domination increases. On the other hand, the preference selectivity

has limited effect on Boolean. In all experiments, Signature performs fairly robustly and is

consistently the best among the three.

Query Performance on Dynamic Skylines

We continue to evaluate the query performance on dynamic skylines. The algorithms have

similar behaviors as those in static skylines in many tests, such as scalability and boolean

selectivity. The preference selectivity can be affected by preference functions specified by a

user, since they may map the data to an arbitrary space.

To demonstrate this, we use distance functions for preference functions in our experi-
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Figure 7.8: Execution Time w.r.t. Dp
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Figure 7.9: Execution Time w.r.t. m
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Figure 7.10: Execution Time w.r.t. Hardness

ments. Given a data set with Dp preference dimensions, a distance function fi measures the

distance between a tuple t and a fixed Dp dimensional point Pi by fi(t) =
∑Dp

j=1(t
j − P j

i )2,

where tj and P j
i are the values on the jth preference dimension of the tuple t and data point

Pi. We first vary the number of preference functions m from 2 to 5. The synthetic data set

has 1M tuples, 3 preference dimensions, 3 boolean dimensions (with cardinality 100). The

data point Pi for each fi is randomly generated. The query execution time is shown in Fig-

ure 7.9. The curve trends are similar to those shown in Figure 7.8, and the signature-based

approach again performs the best.

The above experiment also suggests an important application scenario for dynamic sky-

line. A well known short-coming of static skyline is the curse of dimensionality: There are

too many skyline objects in high-dimensional data since objects are difficult to dominate

each other. Dynamic skylines are more attractive in high-dimensional space since one can

combine several dimensions together by a single preference function. The number of dimen-

sions in the mapped space is reduced, and so is the number of skyline objects. For example,

in our experiment, the number of skyline objects decreases from 602 (m = 5) to 95 ( m = 2).

In case where only one preference function is used, the query is identical to a top-1 ranked
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Figure 7.11: Execution Time w.r.t. Boolean Predicates

query.

We can also simulate different data distributions on the mapped space by varying the

distance between Pi’s in preference functions. When Pi’s are closer to each other, the mapped

data forms a more correlated distribution since any tuple t gets closer values on all fi. We

refer this as query hardness and measure it by maximal distance1 between Pi’s. Fixing the

number of preference functions as 3, we vary the maximal distance allowed between Pi’s.

The query performance on the same data set is shown in Figure 7.10. As expected, the

curves are similar to those in Figure 7.7.

Query Performance with Boolean Predicates

The last group of experiments evaluates the query performance w.r.t. boolean predicates.

We use the real data set Forest CoverType, which consists of 12 boolean dimensions and 3

preference dimensions.

We issue dynamic skyline queries with 1 to 4 boolean predicates and the execution time

is shown in Figure 7.11. Signature and Boolean are not sensitive to boolean predicates, and

the former performs consistently better. Domination requests more boolean verification, and

1The domain of maximal distance is scaled to [0, 1]
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Figure 7.12: Signature Loading Time vs. Query Time

thus the execution time grows significantly. When there are k > 1 boolean predicates, we

essentially need to load k one-dimensional signatures since only atomic cuboids are materi-

alized. The comparison of execution time used by signature loading and query processing is

shown in Figure 7.12. The time used for loading signatures increases slightly with k. How-

ever, even when there are 4 boolean predicates, the signature loading time is still far less

than the query processing time (i.e., less than 10%). Figure 7.12 suggests that materializing

atomic cuboids only may be good enough in real applications. This also reduces the costs

for off-line computation and incremental maintenance.

Figures 7.13 and 7.14 show the performance gains of drill-down and roll-up queries over

new queries, respectively. For each query with k (k ≥ 2) boolean predicates in Figure

7.11, the drill-down query is executed in two steps: (1) submit a query with k − 1 boolean

predicates, and (2) submit a drill-down query with the additional kth boolean predicate.

Similarly, for each query with k (k ≤ 3) boolean predicates, the roll-up query is executed by

first submitting a query with k + 1 boolean predicates, and then rolling-up on the (k + 1)th

boolean dimension. In most cases, we observe more than 10 times speed-up by caching the

previous intermediate results and re-constructing candidate heap upon them. In general,
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Figure 7.13: Drill-Down Query vs. New Query
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Figure 7.14: Roll-Up Query vs. New Query
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the margin of speed-up depends on certain data properties such as cardinalities and data

correlation.

7.4 Discussion

7.4.1 Related Work

There have been extensive studies on efficiently computing skylines in database systems,

including divide-and-conquer and block nested loop algorithms by Borzsonyi et al. [12], sort-

first skyline by Chomicki et al. [26], bitmap and index methods by Tan et al. [62], nearest

neighbor approach by Kossmann et al. [42] and branch-and-bound search by Papadias et al.

[51]. All these approaches assume the queries consist preference dimensions only, and the

problem of skyline queries with boolean predicates was not well addressed. For example, the

branch-and-bound search algorithm progressively retrieves R-tree blocks until all the skylines

are found. The method is optimal in that it only accesses blocks that may contain skyline

objects. The definition of dynamic skyline was first proposed in [51] which shows that the

same branch-and-bound approach can be used for dynamic skylines queries. Unfortunately,

as shown later in this chapter, the optimality of the algorithm does not hold if the query

involves either boolean predicates or dynamic skylines. The former is true because it may

retrieve blocks which contain no tuple satisfying boolean conditions; and the latter is true

because of the new challenge of domination checking introduced by dynamic mapping.

Skyline computation is also studied under the multi-dimensional context. Tao et al. [63]

studied subspace skyline computation, Yuan et al. [74] exploited computation sharing for

skyline cube, Chan et al. [19] addressed k-dominated skylines in high dimensional data, and

Pei et al. [52] studied the semantics of skyline cube. A data cube design for domination

analysis queries was proposed by Li et al. [46]. Again, all these studies are conducted under

the context that there is no boolean predicate.

The dynamic skyline query builds a bridge between traditional static skyline and top-k
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queries. In skyline query, one is interested in multi-dimensional domination, while in top-k

query, one is interested in a combined ranking criterion over several participating dimensions.

A top-1 query is essentially a special dynamic skyline query with only one preference function.

To extend 1 to k, we only need to make a slight modification on the prune procedure in

Algorithm 7. For the domination checking, we will keep a list of the current top-k results

and prune an entry if its score is worse than the kth score in the list.

7.4.2 Other Preference Queries

Here we briefly discuss how to extend Algorithm 7 to support other preference queries, such

as skyline queries [51] and convex hull queries [11]. We briefly use convex hull query as an

example.

In [11], Bohm and Kriegel proposed an algorithm for progressively computing convex

hulls in databases indexed by R-trees. The algorithm decomposes the complete convex hull

into 2Dp partial convex hulls by the extreme values on each preference dimension. We can

adopt Algorithm 7 to compute each partial convex. Again, the signature-based boolean

checking can be used without any modification. For the domination checking, one can keep

a list of the current objects which constitute a convex hull. A new entry is pruned if it is

entirely inside the hull.
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Chapter 8

Conclusions and Future Work

To efficient process top-k queries with multi-dimensional selections, we proposed a novel

rank-aware cube structure which is capable to simultaneously handle ranked queries and

multi-dimensional selections. The ranking-cube consists of two components: the data par-

tition and the cube measure that summarizes data distribution with respect to multi-

dimensional group-bys. We motivated our research by a simple grid-partition, and used

ID-list as measures. We then extended the framework by using hierarchical partition, and

generating compact signature as measures.

Based on the ranking cube, we developed efficient ranked query processing algorithms.

For grid-partition, we adopted the neighborhood search, and for hierarchical partition, we

adopted the branch-and-bound search. Both search algorithms are optimal in terms of the

number of partition blocks retrieved from the disk. Our experimental results show that the

proposed methods significantly improve the query performance over the previous approaches.

We discussed the extensions of ranking-cube to high dimensional data. For high selection

dimensions, we extended the ranking cube to ranking fragments, where many ranking frag-

ments share a single data partition. for high ranking dimension, we extended the sort-merge

paradigm to index-merge framework. We addressed two challenges within the index-merge

paradigm. First, to reduce the search complexity, we developed a double heap algorithm

that consists of the neighborhood expansion and the threshold expansion. Second, to avoid

retrieving empty-state, we proposed join-signature which is compact, easy to compute and

incurs low overhead in query processing.

Finally, we extended the ranking cube methodology to processing top-k queries in multiple
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relations by bridging multiple ranking cubes, each of which is derived from its corresponding

relation. Based on this new methodology, we build a SPJR (namely, Selection, Projection,

Join and Ranked queries) query evaluation system which consists of a query optimizer and a

query executer. We also demonstrated how to use the ranking-cube model to answer general

preference queries.

There are many interesting research issues on further extensions of the ranking-cube

methodology. It will be useful to integrate our method to current DBMS. Ranking-cube can

be either implemented as an external DB application or as part of the core database engine.

Currently, we implemented ranking-cube in two ways. The grid partition based version is

implemented as an external DB application, where each cuboid is a relational table. We use

SQL operators to access ranking cube and the data. The hierarchical partition based version

is implemented directly on file systems, and we use R-tree and B-trees to index the ranking

cube and data. It is interesting to integrate ranking-cube to the core DBMS engine. It is

also interesting to identify cases where the ranking-cube is not beneficial. By doing this, the

query optimize may choose the right plan in query processing.

It is also interesting and important to exploit ranking-cube method on IR-style appli-

cations, typically on text data. Take news data as example. One can rank documents by

there relevance to the query terms, and one can also impose hard selection conditions such

as document type, time, source, etc.. In text retrieval, the ranking criteria are mostly the

relevance to the query, and the ranking function may belong to certain classes. The system

can leverage this and design more effective data partitioning strategy.
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[6] D. Barbará and X. Wu. Using loglinear models to compress datacube. In Proc. 1st
Int. Conf. Web-Age Information Management (WAIM’2000), pages 311–322, Shanghai,
China, 2000.

[7] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. Io-top-k: Index-
access optimized top-k query processing. In Proc. 2006 Int. Conf. Very Large Data
Bases (VLDB’06), pages 475–486, 2006.

[8] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. In Proc. 1990 ACM SIGMOD
Int. Conf. Management of Data (SIGMOD’90), pages 322–331, Atlantic City, NJ, June
1990.

[9] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes.
In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pages
359–370, 1999.

157



[10] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

[11] C. Bohm and H.-P. Kriegel. Determining the convex hull in large multidimensional
databases. In Proceedings of 2000 International Conference on Data Warehousing and
Knowledge Discovery (DaWaK’00), pages 294–306. Springer-Verlag, 2001.

[12] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. pages 421–430, 2001.

[13] N. Bruno and S. Chaudhuri. Exploiting statistics on query expressions for optimization.
pages 263–274, 2002.

[14] N. Bruno, S. chaudhuri, and L. Gravano. Top-k selection queries over relational
databases: Mapping strategies and performance evaluation. ACM Transactions on
Database Systems, 27:153–187, 2002.

[15] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-accessible
databases. pages 369–380, 2002.

[16] M. J. Carey and D. Kossmann. On saying “Enough already!” in SQL. Proceedings of the
1997 ACM SIGMOD International Conference on Management of Data (SIGMOD’97),
pages 219–230, 1997.

[17] K. Chakrabarti, V. Ganti, J. Han, and D. Xin. Ranking objects based on relationships.
In Proc. 2006 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’06), pages
371–382, 2006.

[18] C. Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation. Proceedings of the
1998 ACM SIGMOD International Conference on Management of Data (SIGMOD’98),
pages 355–366, 1998.

[19] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. Finding k-
dominant skylines in high dimensional space. In Proc. 2006 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’06), pages 503–514. ACM Press, 2006.

[20] K. C.-C. Chang and S. won Hwang. Minimal probing: Supporting expensive predicates
for top-k queries. Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data (SIGMOD’02), pages 346–357, 2002.

[21] Y. Chang, L. Bergman, V. Castelli, M. L. C. Li, and J. Smith. Onion technique: Index-
ing for linear optimization queries. Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (SIGMOD’00), pages 391–402, 2000.

[22] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. Proceedings of 1999
International Conference on Very Large Data Bases (VLDB’99), pages 397–410, 1999.

[23] B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. Proceedings of
2005 International Conference on Very Large Data Bases (VLDB’05), pages 982–993,
2005.

158



[24] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-dimensional regression
analysis of time-series data streams. In Proc. 2002 Int. Conf. Very Large Data Bases
(VLDB’02), pages 323–334, Hong Kong, China, Aug. 2002.

[25] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-dimensional regression
analysis of time-series data streams. Proceedings of 2002 International Conference on
Very Large Data Bases (VLDB’02), pages 323–334, 2002.

[26] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In Proc. 2003
Int. Conf. Data Engineering (ICDE’03), pages 717–816, 2003.

[27] S. Churdhuri and U. Dayal. An overview of data warehousing and data cube. SIGMOD
Record, 26:65–74, 1997.

[28] R. Fagin. Fuzzy queries in multimedia database systems. Proceedings of the 1998
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’98), pages 1–10, 1998.

[29] R. Fagin. Combining fuzzy information: an overview. SIGMOD Record, 31(2):109–118,
2002.

[30] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
Proceedings of the 2001 ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’01), 2001.

[31] A. Fraenkel and S. Klein. Novel compression of sparse bit-strings - preliminary report.
Combinatorial Algorithms on Words, NATO ASI Series, 12:169–183, 1985.

[32] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete
Book. Prentice Hall, 2002.

[33] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,
and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by,
cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29–54, 1997.

[34] H. Gupta. Selection of views to materialize in a data warehouse. In Proc. 7th Int. Conf.
Database Theory (ICDT’97), pages 98–112, Delphi, Greece, Jan. 1997.

[35] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for OLAP.
In Proc. 1997 Int. Conf. Data Engineering (ICDE’97), pages 208–219, Birmingham,
England, April 1997.

[36] A. Guttman. R-tree: A dynamic index structure for spatial searching. In Proc. 1984
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’84), pages 47–57, Boston,
MA, June 1984.

[37] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes with
complex measures. In Proc. 2001 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’01), pages 1–12, Santa Barbara, CA, May 2001.

159



[38] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently.
In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’96), pages
205–216, Montreal, Canada, June 1996.

[39] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial
databases. In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’98), pages 237–248, 1998.

[40] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A system for the efficient
execution of multi-parametric ranked queries. Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data (SIGMOD’01), pages 259–270, 2001.

[41] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. Elmagarmid. Rank-aware
query optimization. Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data (SIGMOD’04), pages 203–214, 2004.

[42] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online algorithm
for skyline queries. In Proc. 2002 Int. Conf. Very Large Data Bases (VLDB’02), pages
275–286, 2002.

[43] L. V. S. Lakshmanan, J. Pei, and J. Han. Quotient cube: How to summarize the se-
mantics of a data cube. In Proc. 2002 Int. Conf. on Very Large Data Bases (VLDB’02),
pages 778–789, Hong Kong, China, Aug. 2002.

[44] L. V. S. Lakshmanan, J. Pei, and Y. Zhao. QC-Trees: An efficient summary structure
for semantic OLAP. In Proc. 2003 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’03), pages 64–75, San Diego, CA, June 2003.

[45] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql: Query algebra and optimiza-
tion for relational top-k queries. Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data (SIGMOD’05), pages 131–142, 2005.

[46] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. Dada: a data cube for dominant
relationship analysis. In Proc. 2006 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’06), pages 659–670, 2006.

[47] X. Li, J. Han, and H. Gonzalez. High-dimensional olap: A minimal cubing approach.
Proceedings of 2004 International Conference on Very Large Data Bases (VLDB’04),
pages 528–539, 2004.

[48] K. Morfonios and Y. Ioannidis. Cure for cubes: cubing using a rolap engine. In Proc.
2006 Int. Conf. Very Large Data Bases (VLDB’06), pages 379–390, 2006.

[49] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms for estimating selectivity
factors for multi-dimensional queries. Proceedings of the 1988 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’88), pages 28–36, 1988.

160



[50] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. In Proc. 1998 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’98), pages 13–24, Seattle, WA, June 1998.

[51] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database
systems. ACM Trans. Database Syst., 30(1):41–82, 2005.

[52] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of skyline: A semantic
approach based on decisive subspaces. In Proc. 2005 Int. Conf. Very Large Data Bases
(VLDB’05), pages 253–264, 2005.

[53] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tuples
satisfying a condition. Proceedings of the 1984 ACM SIGMOD International Conference
on Management of Data (SIGMOD’84), pages 256–276, 1984.

[54] K. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 1997 Int.
Conf. Very Large Data Bases (VLDB’97), pages 116–125, Athens, Greece, Aug. 1997.

[55] W. Rudin. Principles of mathematical analysis, 3rd ed. New York: McGraw-Hill, 1976.

[56] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data (SIGMOD’97),
pages 23–34, 1979.

[57] J. Shanmugasundaram, U. M. Fayyad, and P. S. Bradley. Compressed data cubes for
OLAP aggregate query approximation on continuous dimensions. In Proc. 1999 Int.
Conf. Knowledge Discovery and Data Mining (KDD’99), pages 223–232, San Diego,
CA, Aug. 1999.

[58] H. Shin, B. Moon, and S. Lee. Adaptive and incremental processing for distance join
queries. IEEE Trans. Knowl. Data Eng., 15(6):1561–1578, 2003.

[59] A. Shukla, P. M. Deshpande, and J. F. Naughton. Materialized view selection for
multidimensional datasets. In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98),
pages 488–499, New York, NY, Aug. 1998.

[60] A. Singhal. Modern information retrieval: A brief overview. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 24(4):35–43, 2001.

[61] Y. Sismanis, N. Roussopoulos, A. Deligianannakis, and Y. Kotidis. Dwarf: Shrinking the
petacube. In Proc. 2002 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’02),
pages 464–475, Madison, WI, June 2002.

[62] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation. In
Proc. 2001 Int. Conf. Very Large Data Bases (VLDB’01), pages 301–310, 2001.

[63] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of skylines in subspaces. In
Proc. 2006 Int. Conf. Data Engineering (ICDE’06), page 65, 2006.

161



[64] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava. Ranked join
indices. pages 277–288, 2003.

[65] P. Valduriez. Join indices. ACM Trans. Database Syst., 12(2):218–246, 1987.

[66] J. S. Vitter, M. Wang, and B. R. Iyer. Data cube approximation and histograms via
wavelets. In Proc. 1998 Int. Conf. Information and Knowledge Management (CIKM’98),
pages 96–104, Washington, DC, Nov. 1998.

[67] W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed cube: An effective approach to
reducing data cube size. In Proc. 2002 Int. Conf. Data Engineering (ICDE’02), pages
155–165, San Fransisco, CA, April 2002.

[68] D. Xin, C. Chen, and J. Han. Towards robust indexing for ranked queries. In Proc.
2006 Int. Conf. Very Large Data Bases (VLDB’06), pages 235–246, 2006.

[69] D. Xin, J. Han, and K. C.-C. Chang. Progressive and selective merge: Computing top-k
with ad-hoc ranking functions . In Proc. 2007 ACM-SIGMOD Int. Conf. Management
of Data (SIGMOD’07), pages 103–114, 2007.

[70] D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries with multi-dimensional
selections: The ranking cube approach. In Proceedings of 2006 International Conference
on Very Large Data Bases (VLDB’06), pages 463–475, 2006.

[71] D. Xin, J. Han, X. Li, Z. Shao, and B. W. Wah. Computing iceberg cubes by top-down
and bottom-up integration: The starcubing approach. IEEE Trans. Knowl. Data Eng.,
19(1):111–126, 2007.

[72] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing iceberg cubes by
top-down and bottom-up integration. In Proc. 2003 Int. Conf. Very Large Data Bases
(VLDB’03), pages 476–487, Berlin, Germany, Sept. 2003.

[73] D. Xin, J. Han, Z. Shao, and H. Liu. C-cubing: Efficient computation of closed cubes
by aggregation-based checking. In Proc. 2006 Int. Conf. Data Engineering (ICDE’06),
Atlanta, Georgia, April 2006.

[74] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient computation of
the skyline cube. In Proc. 2005 Int. Conf. Very Large Data Bases (VLDB’05), pages
241–252, 2005.

[75] Z. Zhang, S. won Hwang, K. C.-C. Chang, M. Wang, C. A. Lang, and Y.-C. Chang.
Boolean + ranking: querying a database by k-constrained optimization. In Proc. 2006
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’06), pages 359–370, 2006.

[76] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultane-
ous multidimensional aggregates. In Proc. 1997 ACM-SIGMOD Int. Conf. Management
of Data (SIGMOD’97), pages 159–170, Tucson, AZ, May 1997.

162



[77] M. Zhu, D. Papadias, J. Zhang, and D. L. Lee. Top-k spatial joins. IEEE Trans. Knowl.
Data Eng., 17(4):567–579, 2005.

163



Vita

Dong Xin received his B. Eng degree from the Department of Computer Science and Engi-

neering, Zhejiang University, China in 1999, and his M.S. degree in Computer Science from

the same department in 2002.

His research interests include data mining, data warehousing and database systems.

164


