577 research outputs found

    Security Protocol Analysis and Blockchains

    Get PDF
    This work serves to explore the use of protocol verification tools, in this case AVISPA and SPAN, to verify a protocol used to establish blockchain identities as well as a protocol used for electronic voting that runs on top of a blockchain, leveraging blockchain as a platform. We explore the protocol verification tools themselves, as well as the modeling languages, CAS+ and HLPSL, used to write protocol specifications for verification by these tools. We determine that it is possible to verify a protocol regarding establishment of blockchain identities as well as that it is not possible to verify protocols which leverage blockchain as a platform, at least with the toolchain used and the CAS+ encoding of the protocol

    Automatic generation of high speed elliptic curve cryptography code

    Get PDF
    Apparently, trust is a rare commodity when power, money or life itself are at stake. History is full of examples. Julius Caesar did not trust his generals, so that: ``If he had anything confidential to say, he wrote it in cipher, that is, by so changing the order of the letters of the alphabet, that not a word could be made out. If anyone wishes to decipher these, and get at their meaning, he must substitute the fourth letter of the alphabet, namely D, for A, and so with the others.'' And so the history of cryptography began moving its first steps. Nowadays, encryption has decayed from being an emperor's prerogative and became a daily life operation. Cryptography is pervasive, ubiquitous and, the best of all, completely transparent to the unaware user. Each time we buy something on the Internet we use it. Each time we search something on Google we use it. Everything without (almost) realizing that it silently protects our privacy and our secrets. Encryption is a very interesting instrument in the "toolbox of security" because it has very few side effects, at least on the user side. A particularly important one is the intrinsic slow down that its use imposes in the communications. High speed cryptography is very important for the Internet, where busy servers proliferate. Being faster is a double advantage: more throughput and less server overhead. In this context, however, the public key algorithms starts with a big handicap. They have very bad performances if compared to their symmetric counterparts. Due to this reason their use is often reduced to the essential operations, most notably key exchanges and digital signatures. The high speed public key cryptography challenge is a very practical topic with serious repercussions in our technocentric world. Using weak algorithms with a reduced key length to increase the performances of a system can lead to catastrophic results. In 1985, Miller and Koblitz independently proposed to use the group of rational points of an elliptic curve over a finite field to create an asymmetric algorithm. Elliptic Curve Cryptography (ECC) is based on a problem known as the ECDLP (Elliptic Curve Discrete Logarithm Problem) and offers several advantages with respect to other more traditional encryption systems such as RSA and DSA. The main benefit is that it requires smaller keys to provide the same security level since breaking the ECDLP is much harder. In addition, a good ECC implementation can be very efficient both in time and memory consumption, thus being a good candidate for performing high speed public key cryptography. Moreover, some elliptic curve based techniques are known to be extremely resilient to quantum computing attacks, such as the SIDH (Supersingular Isogeny Diffie-Hellman). Traditional elliptic curve cryptography implementations are optimized by hand taking into account the mathematical properties of the underlying algebraic structures, the target machine architecture and the compiler facilities. This process is time consuming, requires a high degree of expertise and, ultimately, error prone. This dissertation' ultimate goal is to automatize the whole optimization process of cryptographic code, with a special focus on ECC. The framework presented in this thesis is able to produce high speed cryptographic code by automatically choosing the best algorithms and applying a number of code-improving techniques inspired by the compiler theory. Its central component is a flexible and powerful compiler able to translate an algorithm written in a high level language and produce a highly optimized C code for a particular algebraic structure and hardware platform. The system is generic enough to accommodate a wide array of number theory related algorithms, however this document focuses only on optimizing primitives based on elliptic curves defined over binary fields

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Advanced Features in Protocol Verification: Theory, Properties, and Efficiency in Maude-NPA

    Full text link
    The area of formal analysis of cryptographic protocols has been an active one since the mid 80’s. The idea is to verify communication protocols that use encryption to guarantee secrecy and that use authentication of data to ensure security. Formal methods are used in protocol analysis to provide formal proofs of security, and to uncover bugs and security flaws that in some cases had remained unknown long after the original protocol publication, such as the case of the well known Needham-Schroeder Public Key (NSPK) protocol. In this thesis we tackle problems regarding the three main pillars of protocol verification: modelling capabilities, verifiable properties, and efficiency. This thesis is devoted to investigate advanced features in the analysis of cryptographic protocols tailored to the Maude-NPA tool. This tool is a model-checker for cryptographic protocol analysis that allows for the incorporation of different equational theories and operates in the unbounded session model without the use of data or control abstraction. An important contribution of this thesis is relative to theoretical aspects of protocol verification in Maude-NPA. First, we define a forwards operational semantics, using rewriting logic as the theoretical framework and the Maude programming language as tool support. This is the first time that a forwards rewriting-based semantics is given for Maude-NPA. Second, we also study the problem that arises in cryptographic protocol analysis when it is necessary to guarantee that certain terms generated during a state exploration are in normal form with respect to the protocol equational theory. We also study techniques to extend Maude-NPA capabilities to support the verification of a wider class of protocols and security properties. First, we present a framework to specify and verify sequential protocol compositions in which one or more child protocols make use of information obtained from running a parent protocol. Second, we present a theoretical framework to specify and verify protocol indistinguishability in Maude-NPA. This kind of properties aim to verify that an attacker cannot distinguish between two versions of a protocol: for example, one using one secret and one using another, as it happens in electronic voting protocols. Finally, this thesis contributes to improve the efficiency of protocol verification in Maude-NPA. We define several techniques which drastically reduce the state space, and can often yield a finite state space, so that whether the desired security property holds or not can in fact be decided automatically, in spite of the general undecidability of such problems.Santiago Pinazo, S. (2015). Advanced Features in Protocol Verification: Theory, Properties, and Efficiency in Maude-NPA [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4852

    Model Transformation For Validation Of Software Design

    Get PDF
    • …
    corecore