
Model Transformation For Validation Of
Software Design

Shadi Al Dehni

München, 2008

2

Institut für Informatik
Lehr- und Forschungseinheit für
Programmierung und Softwaretechnik

Ludwig
Maximilians
Universität
München

LMU

Dissertation im Fach Informatik
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von
Shadi Al Dehni

aus Damaskus, Syrien

4

LMUPST
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�Programmierung und Softwaretechnik Institut für Informatik

Erstgutachter: Prof. Dr. Martin Wirsing

Zweitgutachter: Dr. rer. nat. habil. Stephan Merz

Prüfer: Prof. Dr. Hans-Peter Kriegel

Prüfer: Prof. Dr. Rolf Hennicker

Tag der mündlichen Prüfung: 08. Juli 2008

Abstract

Model checking is a method for formally verifying finite-state concurrent systems such as circuit
designs and communication protocols. System specification is expressed as temporal logic for-
mula, where efficient symbolic algorithms are used to traverse the model defined by the system
and check if the specification holds or not. Large state space can often be traversed in min-
utes. Graphical notation plays an important role in software modeling and designs. The Unified
Modeling Language (UML) is a standard language for specifying, visualizing, constructing, and
documenting the artifacts of software systems. Nowadays graph grammars enable a high level of
abstraction of software architecture and form a basis for various analysis and transformations.
Their methods, techniques, and results have already been applied in many fields of computer
science.

In this thesis, we propose new techniques for an efficient transformation of UML software de-
signs into a formalization for the model checking software, expressed by the approach of graph
grammars and graph transformation systems. We have implemented our techniques in several
case studies like ATM designs and security protocols. We demonstrate empirically that our
transformation techniques are well-suited to apply them in specific UML software designs. Our
transformation techniques run along two lines: The first line is to transform the UML state ma-
chines into equivalent simpler state machines called executable state machines, where the model
checker HUGO and SPIN are called upon to verify whether certain required properties are in-
deed realized by the UML state machine designs. The second line is to transform the UML state
machines into predicate diagrams, whereas the JML assertions and the Bandera Specification
Language (BSL) are used to verify the desired properties. The model checker DIXIT attempts
to verify the properties against the created predicate diagrams. Our prototype tool DAMAS
is developed to use our transformation strategies to transform and compile the UML software
designs into formalization of model checking software and vice versa.

6

Zusammenfassung

Model Checking ist eine Methode zur formalen Verifikation von nebenläufigen Systemen mit
endlichem Zustandsraum. Beispiele solcher Systeme sind elektrische Schaltungen oder Kom-
munikationsprotokolle. Eine Systemspezifikation ist durch temporallogische Formeln gegeben,
für die es effiziente symbolische Algorithmen gibt, um das Systemmodell zu durchlaufen und
die Gültigkeit der Spezifikation zu überprüfen. Sogar große Zustandsräume können mit diesen
Algorithmen in wenigen Minuten überprüft werden. Graphische Notationen spielen bei der
Modellierung und beim Entwurf von Software eine große Rolle. Die Unified Modeling Lan-
guage (UML) bildet dabei einen Standard für die Spezifikation, Visualisierung, Konstruktion
und Dokumentation von Artifakten von Software-Systemen. Heutzutage erlauben Graphgram-
matiken einen hohen Grad der Abstraktion von Software-Architekturen und bilden eine Basis
für verschiedene Analysen und Transformationen. Die verwendeten Methoden, Techniken und
Ergebnisse wurden bereits in vielen Bereichen der Informatik angewandt.

In dieser Arbeit wurden neue Techniken zur effizienten Transformation von UML-Software-
Entwurfsmodellen in eine für eine Model Checking Software geeignete Form, die durch Graph-
grammatiken und Graphtransformationssysteme erzeugt wird, entwickelt. Diese Techniken wer-
den an verschiedenen Fallstudien, wie u.a. an Entwurfsmodellen von Geldautomaten-Software
oder von Sicherheitsprotokollen, erprobt. Die Erfahrung hat gezeigt, dass die entwickelten
Transformationstechniken bei bestimmten UML-Entwurfsmodellen besonders gut geeignet sind.
Die Transformationstechniken arbeiten auf zwei Wegen: auf dem ersten werden UML-Zustands-
maschinen zunächst in einfachere Zustandsmaschinen, die so genannten ausführbaren Zustands-
maschinen transformiert. Auf diese werden dann die Model Checker HUGO und SPIN angewen-
det, um zu prüfen, ob bestimmte geforderte Eigenschaften von den UML-Zustandsmaschinen
tatsächlich erfüllt werden. Auf dem zweiten Weg werden UML-Zustandsdiagramme in Prädika-
tendiagramme transformiert, wobei JML-Zusicherungen und die Bandera Specification Lan-
guage (BSL) zum Nachweis der gewünschten Eigenschaften verwendet werden. Der Model
Checker DIXIT kann zur Überprüfung der erzeugten Prädikatendiagramme verwendet werden.
Die vorgestellten Strategien zur Transformation und Kompilation von UML-Entwurfsmodellen
in eine für eine Model Checking Software geeignete Form, und umgekehrt, wurden in dem
Werkzeug-Prototyp DAMAS implementiert.

7

Acknowledgement

This PhD thesis is the result of almost five years of work at the Ludwig Maximilians University
in Munich. The move from Syria to Germany and everything I learned and experienced during
this time is impossible to describe in full. Writing a PhD thesis in another continent is a pro-
cess that requires not only hard work but a lot of support from family, friends, and colleagues.
Therefore, it is my pleasure to thank the many people who made this thesis possible.

I am especially grateful to my supervisor, Professor Martin Wirsing, for his patient guidance
into the theoretical, conceptual, and methodological areas of my PhD research. Prof. Wirsing
has supported me not only by providing a research assistantship over the five years, but also he
has provided me with inspiration and motivation to complete this thesis. Herrn Wirsing, Vielen
herzlichen Dank an Sie!

I would like also to thank Professor Fred Kröger, his recommendations and suggestions have
been invaluable to my research project.

My sincere thanks go out to Prof. Alexander Knapp for all his help and support especially in the
initial period of my research studies. Danke Alex!

Special thanks also go to Dr. Jan Jürjens for the collaborative work in the security systems, and
many thanks for the time we spent together in the workshop in UK.

It is an honor to have a thesis committee devised of scholarly and dedicated educators. I would
like to thank Dr. Stephan Merz for his invaluable suggestions to improve my thesis. I am also
highly grateful to prof. Rolf Hennicker and prof. Hans-Peter Kriegel for the great discussions.

My profound gratitude to the PST team in the Institute of Informatics in LMU for providing me
invaluable scientific assistance and an excellent and very stimulating working atmosphere. I am
very grateful to Matthias Ludwig for his continuous help in Latex during writing my dissertation
and many thanks for Dr. Hubert Baumeister for our great discussions.

The financial support of DAAD (Deutscher Akademischer Austauschdienst) allowed the real-
ization of my PhD at the LMU München. Many thanks to DAAD for the help and care during
my research study at LMU.

8

A special word of thanks goes to my parents, my brothers Fadi and Nour. Mum and dad,
thank you for teaching me to have the patient to achieve this scientific work. Many thanks to my
twin brother Dr. Fadi for his constant support and encouragement of my academic pursuits, and
for Nour for all his help. Above all, thanks to my friends for their warm friendship.

Shadi Al-Dehni,

München, 05.06.2008

9

10

Contents

Abstract 6

Zusammenfassung 7

Acknowledgement 8

1 Introduction 15
1.1 UML Software Design . 16
1.2 Software Model Checking . 17
1.3 Graph Grammars Approach . 19
1.4 Abstraction Techniques . 20
1.5 Security Model Transformation . 21
1.6 Case Studies and Tool Design . 22
1.7 Thesis Structure . 22

2 Logical Foundations and Tools 25
2.1 Introduction . 25
2.2 Temporal Logic . 29

2.2.1 Introduction . 29
2.2.2 Concurrent Systems . 30
2.2.3 Kripke Structures . 30
2.2.4 Linear Temporal Logic LTL . 33
2.2.5 Computation Tree Logic CTL . 37
2.2.6 The Computation Tree Logic CTL∗ 39
2.2.7 Fairness . 40

2.3 Model Checking . 41
2.3.1 Software Model Checking . 41
2.3.2 CTL Model Checking . 43
2.3.3 Symbolic Model Checking . 47
2.3.4 Binary Decision Diagram . 47

11

Contents

2.4 Model Checking Tools . 50
2.4.1 SPIN Model Checker . 51

2.4.1.1 Specification Language PROMELA 52
2.4.1.2 PROMELA Specification of Two-Phase Commit Protocol . . 54

2.4.2 HUGO Model Checker . 57
2.5 Result and Discussion . 63

3 Graph Language 65
3.1 Introduction . 65
3.2 From Scenario to Graph Language . 68

3.2.1 The Scenario . 68
3.2.2 Type and Instance Graph . 70

3.3 From Scenario to Rules and Transformations 75
3.4 Graph Transformation . 79

3.4.1 Gluing Condition . 79
3.4.2 Double-Pushout Approach DPO . 79
3.4.3 Single-Pushout Approach SPO . 81

3.5 Constraint . 82
3.6 Graph Transformation Tools . 85

3.6.1 Attributed Graph Grammar (AGG) . 86
3.7 Result and Discussion . 88

4 Graph Transformation for UML Software Design 89
4.1 Introduction . 89
4.2 Unified Modeling Language . 90
4.3 UML State Machines . 95

4.3.1 States . 96
4.3.2 Transitions . 97
4.3.3 State Machines of 2PC-Protocol . 98

4.4 Executable State Machine . 99
4.4.1 Executable state machines . 99

4.5 Graph Models of UML State Machines . 103
4.5.1 Type Graph of UML State Machine 104
4.5.2 Graph Model of UML State Machine 105

4.6 Graph Model of ATM state machines . 106
4.7 Graph Transformation of Executable State Machines 108

4.7.1 Executable State Machine of ATM . 108
4.7.2 Transformation Rules . 108

12

Contents

4.8 Two-Phase Commit Protocol (2PC) . 111
4.8.1 Graph Model of 2PC . 112
4.8.2 Executable State Machines of 2PC . 114

4.9 Verifying Results using HUGO . 114
4.10 Result and Discussion . 118

5 Secure System Transformations 119
5.1 Introduction . 119
5.2 JAVA Secure Sockets Extension (JESSIE) . 121
5.3 SSL-Handshake Protocol . 122

5.3.1 Send and Receive Data in JESSIE . 124
5.4 Specification Language JML . 125

5.4.1 Informal Specifications . 126
5.4.2 JML Annotations . 127
5.4.3 Example ATM . 129
5.4.4 JML Checker . 130

5.5 SSL Protocol in JESSIE . 131
5.5.1 Client State Machine in JESSIE . 132
5.5.2 Server State Machine in JESSIE . 134

5.6 JML Assertions in JESSIE . 136
5.6.1 Verifying Client State Machine in JESSIE 137
5.6.2 Verifying Server State Machine in JESSIE 138

5.7 Verifying SSL-Handshake via Bandera . 140
5.7.1 Verifying BSL via Spin . 142

5.8 Graph Transformation of Handshake Protocol 144
5.8.1 Designing Graph Models . 144
5.8.2 Type and Instance Graph . 144
5.8.3 Graph Model of Client State Machine 144
5.8.4 Graph Model of Server State Machine 146

5.9 Predicate Diagrams . 147
5.9.1 Dining Philosophers Example . 147
5.9.2 Predicate Diagram of SSL−Handshake Protocol 149

5.10 Rules Transformations of SSL−Handshake Protocol 150
5.11 Properties verification via DIXIT . 152

5.11.1 SSL-Handshake in DIXIT . 153
5.12 Result and Discussion . 155

13

Contents

6 DAMAS 157
6.1 DAMAS and UML Software Design . 158
6.2 DAMAS and Graph Transformation Engine 161
6.3 DAMAS and Model Checking . 163
6.4 Verifying Properties using DAMAS . 166
6.5 Result and Discussion . 167

7 Conclusion 169
7.1 Further Work . 170

Appendix A 173
Textual UML format (UTE) . 173

Appendix B 181
Model checking SSL-Handshake protocol via DAMAS 181

Appendix C 187
Verifying SSL-Handshake via Bandera . 187

List of Tables 199

List of Figures 201

Index 206

Bibliography 209

14

1 Introduction

Object-oriented methods are widely accepted for software development in the business appli-
cation domain and have also been advertised for the design of embedded and real-time sys-
tems [SS99]. Software architecture and design are usually modeled and represented by informal
diagram languages, such as architecture diagrams and UML diagrams, while these graphical
notations are easy to understand and are convenient to use, they are not amenable to automatic
verification and transformation. Validation methods make it possible to check both the correct-
ness of the specification, and to establish that the known requirements of the specified system
are clearly and unambiguously expressed within the standard. The main validation techniques
implemented in automatic tools are interactive simulation and various types of state space explo-
ration, but the kind of methods is still not well-developed for analysing and validation design.

Verification techniques for reactive systems are traditionally classified as either deductive or
algorithmic. Whereas deductive verification can in principle establish properties of arbitrary
complex systems, algorithmic verification such as model checking is usually restricted to finite-
state systems [CMMag]. Model checking is the most successful approach that has emerged for
verifying requirements. Model checking is a method for formally verifying finite-state concur-
rent systems such as circuit designs and communication protocols. It explores all possible paths
through a design which implies that the number of paths is finite. It uses a specification language
based on some kind of temporal logic for expressing properties.

In applying model checking to software design, in particular of UML, we find the software
design usually involves infinite state spaces. This is not directly suited for model checking,
since model checkers accept only designs where the state space is finite. On the other hand,
the semantic definitions of software model checking are also very different from the semantic
definition of the software design.

Applying model checking to software design, confronts us with two problems:

1. Infinite state spaces: Software design usually infinite state spaces, but model checkers
accept only those cases where the state space is finite.

2. Bridging the semantic gap: Bridging together, the semantics of software design with
model checking semantics.

15

1 Introduction

In the last few years, several techniques have been developed for abstracting the infinite state
spaces to finite ones. The construction of abstraction is essential for reducing large or infinite
state space systems to small or finite systems to be explored. That is, to solve the first problem,
we use the concept of executable state machines trying to reduce state space of UML software
design to be explored and allow model checking of more complex system to be run. For the
second problem, we use the concept of graph grammar and graph transformation for representing
and implementing the software design to be well-suited for the software model checking.

In my thesis we illustrate the application of graph grammar and graph transformation systems
of UML state machines for software model checking. We compile UML state machines to new
graph representation (graph models) and transform the graph models into new models suitable
for model checking softwares, where the model checkers HUGO and DIXIT are used.

In the following sections we briefly discuss some basic approaches of our work that underline
the thesis. In section 1.1 we describe the Unified Modeling Language (UML) which provides
the ability to capture the characteristics of a system by using notations for documenting systems
based on the object-oriented design principles. In section 1.2 we outline the technique of soft-
ware model checking and discuss model checking tools like SPIN and HUGO. Section 1.3 gives
a short overview on graph grammar and graph transformation system and the tool that we use
to implement our case studies. In section 1.4 we present two important abstraction techniques;
executable state machines and the predicate diagram to refine the UML designs. Section 1.5
illustrates the transformation of security model using graph grammars approach into software
model checker DIXIT to implement the approach of predicate diagram. We introduce our case
studies and our prototype tool DAMAS for automatic transformation in section 1.6. Finally, the
last section 1.7 describes the structure of my thesis.

1.1 UML Software Design

Graphical notations are widely used in software design and development. These notations can
greatly help with modeling and representing of software architecture and design [SG95]

Notations like UML [BRJ99] are very good for communicating designs. UML is a graphical
language for visualizing, specifying, constructing, and documenting the artifacts of a software-
intensive system. UML consists of two parts: a notation, used to describe a set of diagrams
(also called the syntax of the language) and a metamodel (also called the semantics of the lan-
guage) that specifies the abstract integrated semantics of UML modeling concepts. The UML
defines nine diagram types, which allow different aspects (static, behavioral, interaction, and
implementation) and properties of a system design to be expressed.

16

1.2 Software Model Checking

The diagram which is relevant to my work is the UML state machine diagram. A state machine
diagram is a specification that describes all possible behaviors of some dynamic model element.
Behavior is modeled as a traversal of a graph of state nodes interconnected by one or more
joined transition arcs that are triggered by the dispatching of series of event instances. During
this traversal, the state machine executes series of actions associated with various elements of it.

UML 2.0 incorporates an action semantics, which adds to UML the syntax and semantics of
executable actions and procedures [Gro03b]. Action semantics refers to the ability to formally
describe actions that can be analyses by a computer and executed. Formal actions make models
executable. Action semantics is a partial metamodel integrated in the global UML metamodel. It
allows the specification of many kinds of actions, such as computational algorithms to be applied
to data, as well as reactive and concurrent behavior with asynchronous and synchronous com-
munication. Therefore, action correspond to a manipulation of the object model; it can modify it
or just read it. There are numerous actions like creating and deleting an object, getting an object
attribute value, setting an object attribute value, calling an object operation, creating, deleting
and traversing an association linking two objects, sending a signal to an object or receiving a
signal of an object.

There are several modeling tools for designing UML diagrams [Qua98,RVR+99,Poe04,Mag04].
ArgoUML is an open source Java-based UML tool [RVR+99]. It supports most of the nine
standard UML diagrams, it has also the ability of reverse engineering compiled Java code and
generating UML diagrams for the code. Commercial tools are e.g. Rose [Qua98], Together
[Tog04], Poseidon [Poe04] and MagicDraw [Mag04]. Among them, MagicDraw is a visual
UML modeling and CASE tool with team work support. MagicDraw contains a handy UML
editor, a powerful code engineering tool, UML model reporting facilities, a custom OO model
generator, a team modeling tool, and a database modeling tool.

In our study we use MagicDraw to create the UML state machines diagrams of our case studies.
MagicDraw stores the UML state machines diagrams as standard XMI files in a ZIP archive.
Most of our case studies and examples are represented using MagicDraw.

1.2 Software Model Checking

Verifying a program is providing, in a formal mathematical way, that the program satisfies a
specification written in a logical language. Therefore verification has often been claimed to be a
promising approach for ensuring the correctness of software. Formal verification, where a sys-
tem is verified with respect to desired behavior, has now become popular in industry, especially
in mission and safety critical applications. Specifically model checking methods, which can be

17

1 Introduction

fully automated, are being used extensively to verify that a finite state system meets a desired
behavior. The desired behavior is often specified by a temporal logic formula. Software model
checking is typically applied to system whose intricacy resides more in the control than in the
data; this includes for instance hardware, concurrent protocols, process control systems, and
more generally as reactive systems [MQR95].

A model checking tool accepts a design (called system model) and a property (called specifica-
tion) that the final system is expected to satisfy. The model checker explores all paths through
the state space in order to check whether the specification holds for the model. The tool then
outputs yes if the given model satisfies the given specification and generates a counter example
otherwise (see figure 1.1) . A consequence of this procedure is that the state spaces has to be
finite. The counter example details why the model doesn’t satisfy the specification. By studying

Model

System
Specification

No
+

Counter−
example

Yes

Model
Checker

Figure 1.1: Model Checker Tool Mechanism

the counter example, we can pinpoint the source of the error in the model, correct the model, and
try again. The idea of this iterative process is to ensure that the model satisfies enough system
properties.

There are several model checking tools such as SPIN [Hol04b], FDR [(Lt], UPPAAL [BLPY97],
and NuSMV [Nus02]; SPIN is one if the most popular software tool that can be used for the
formal verification of distributed software systems [Hol04b]. SPIN uses a high-level language
to specify system descriptions, called PROMELA. SPIN has been used to trace logical design
errors in distributed systems design, such as operating systems, data communication protocols
etc. The tool checks the logical consistency of a specification. It reports on deadlocks, un-
specified receptions, flags incompleteness, race conditions, and unwarranted assumptions about
the relative speeds of processes, SPIN and the model checkers mentioned above do not accept
software design directly, but use logic and automata formalisms for describing models and spec-
ifications. A tool for UML software model checking is the HUGO system [KM11]. HUGO

18

1.3 Graph Grammars Approach

validates UML software designs by translating UML models to different model checkers and
theorem provers and by reflecting the results of theses systems back to UML. More specifically,
HUGO connects UML state diagrams and OCL with the model checkers SPIN, UPPAAL and
the system language of the interactive theorem prover KIV [KIV86].

We use HUGO to check the desired properties against the UML state machines. HUGO takes
as input standard XMI files that can be produced by MagicDraw and allows both the model and
the properties to be specified in terms of UML diagrams. We use HUGO to verify the properties
against the diagrams.

1.3 Graph Grammars Approach

The research area of graph grammar and graph transformations dates back to 1970 [Roz97]. It
combines ideas from graph theory, algebra, logic, and category theory. Its methods, techniques,
and results have already been applied in many fields of computer science. This wide applicability
is due to the fact that graphs are a very natural way to explain complex situations on an intuitive
level. A graph grammar can be used to define the set of syntactically correct diagrams in an
application area, whereas graph transformation bring the evolution of structures. It has become
an attractive means to model and to study very different structures in a uniform way.

The field of graph grammars applies formal language theory to the specification of graphs. A
graph grammar consists of a set of productions that can be used to construct valid sentences in
a graph (network) language. The production are analogous to macros that can be applied to edit
the network or graph. For example, vehicle routine systems commonly provide a mechanism to
reroute a customer. figure 1.2 shows a production of a graph grammar for reroutings. The left

c

b

d
e

f

aa

e

To Here

a

c

b

d
e

f

Reroute
This
Customer

NAC RHSLHS

Figure 1.2: Graph Grammar Production

side of this figure shows that we want to reroute the customer a which is placed between b and

19

1 Introduction

c to another route between d and e. On the right hand side, the result of reroutings a is depicted
by the graph. Applying the production rule to a network (matching the left hand side of the rule)
will perform this reroutings of a.

Graph transformations associated with graph grammars are well-suited for modeling the dy-
namic behavior of systems [Roz97]. Therefore graph grammars and graph transformations
become attractive as a programming paradigm for software and graphical interfaces.

Tools for graph transformation systems are VIATRA [VVP02], Fujaba [Hom02], AGG [TER99].
VIATRA ”Visual Automated model Transformation” is a prototype tool which provides a gen-
eral and automated framework for specifying transformations between arbitrary models con-
forming to their metamodel. Fujaba, AGG are visual tools environments which support a hybrid
programming style based on graph transformation and Java. They consist of editors, interpreters
and debuggers for attributed graph transformation and attribute computation by Java.

We use AGG transformation tool to represent our case studies as graph models. More precisely
we define attributed type graphs and the rules leading to transformation of the host graph into
new graph models which are suitable for software model checking.

1.4 Abstraction Techniques

For applying software model checking to software design we face the problem, that infinite state
spaces are not suited for software model checking. In the last few years, several techniques have
been developed for abstracting from infinite state spaces to finite ones. In general, abstraction
concerns the transformation of the formal description of a system into a simpler form. We use
two techniques to abstract our UML software design:

1. Abstracting the UML state machines in equivalent simpler designs called executable state
machines, which are an UML state machines consists of just simple states with actions
and guards [SM05].

2. The second technique is to refine the UML software design using predicate diagrams for
the design of reactive system [CMMag]. In this case we have to define the system as TLA
specification and a model as predicate diagram, and then to verify if the model satisfies
the system specification. A specification Spec satisfies a property F if and only if the
implication Spec ⇒ F is valid [Lam94]. Predicate diagram can be used to refine this
implication into two conditions: first, all behaviors allowed by Spec must also be traces
through the diagram (in other words, the diagram is a correct abstraction of Spec), and
second, every trace through the diagram must satisfy F .

20

1.5 Security Model Transformation

In my approach, we use the previous abstraction techniques to refine the UML software design.
We transform the UML software design using graph transformation engine (usually AGG) to one
of the previous abstraction techniques and then we check the validity of the desired properties
using the software model checker HUGO and DIXIT.

1.5 Security Model Transformation

A security protocol (cryptographic protocol or encryption protocol) is an abstract or concrete
protocol that performs a security-related function and applies cryptographic methods. Secure
Sockets Layer (SSL), is a cryptographic protocol that provide secure communications on the
Internet for such things as web browsing, e-mail, and other data transfers. The SSL protocol
exchanges a series of messages between an SSL-enabled server and an SSL-enabled client when
they first establish an SSL connection. This exchange of messages is designed to facilitate the
following actions:

• Authenticate the server to the client.

• Allow the client and server to select the cryptographic algorithms, or ciphers, that they
both support.

• Optionally authenticate the client to the server.

• Use public-key encryption techniques to generate shared secrets.

• Establish an encrypted SSL connection.

JESSIE is a free, clean-room implementation of the Java Secure Sockets Extension, the JSSE.
It provides the core API for programming network sockets with the Secure Socket Layer (SSL),
which creates an authenticated, unforgeable, and protected layer around network communica-
tions. Its goal is to be a drop-in package for free Java class libraries such as Classpath and
its derivatives, and is being written to depend only on free software, and only with the API
specification and the public protocol specifications [JES].

We propose an approach for verfying implementations of security protocols. In particular, we
use the JML (Java Modeling Language) and BSL (Bandera Specification Language) assertions
to verify whether the cryptographic connection is correctly implemented. As an example for our
approach we present the verification process of JESSIE.

Graph transformation techniques are used to transform the security protocols into new designs
that are well-suited for software model checking.

21

1 Introduction

1.6 Case Studies and Tool Design

Case studies and examples are important for illustrating the research results, and for giving feed-
back whether the results are usable in practice. In my PhD research, I developed some examples
and case studies for validating the research results. Case studies like ATM state machines and the
state machines of 2-phase commit protocol are carried out in my thesis. We check the validation
of the state machine model using the model checker and we use the concept of graph grammar
and graph transformation to transform the state machine models into new simpler abstracted
models. The case study SSL-Handshake protocol is produced during our researching on secu-
rity transformation approach. We transform the protocol using graph transformation approach
into new design that is well-suited for the model checkers DIXIT and HUGO.

In order to make our theoretical results applicable to larger examples and practical case studies,
we developed a tool called DAMAS to support our model transformation techniques. DAMAS
provides the user the ability to transform the UML state machines into simpler one (executable
state machines) automatically and to check if the required properties using the model checker
HUGO and DIXIT are valid in the design or not. DAMAS implements also an appropriate graph
translator for HUGO and DIXIT.

1.7 Thesis Structure

The thesis is organized as follows: In the second chapter we shall review briefly the tempo-
ral logic approach and model checking software techniques. In this chapter we present the
case study state machines of ATM (Automatic Teller Machine) and check using HUGO model
checker whether certain specified collaborations are indeed feasible for the required ATM state
machines. Technically, HUGO compiles state machines into a PROMELA model, and collabo-
rations into sets of Büchi automata (” never claim”). The model checker SPIN is then called to
verify the model against the automata.

In the third chapter we discuss the approach of graph grammar and graph transformation sys-
tems. We introduce in this chapter the formal definition of graph grammar and graph transfor-
mation rules. We pursue strategy to create the graph model from the observed behavior of the
scenario. We illustrate the approach of attributed graph transformations systems and the graph
transformation mechanisms like SPO (single pushout) and DPO (double pushout). We use in
this chapter the theoretical definitions of graph grammars and graph transformation systems to
represent some practical examples like PacMan game.

In chapter 4 we develop a new transformation techniques to transform the UML state machine

22

1.7 Thesis Structure

designs into simpler form. That is, we transform the state machine into simpler executable state
machine using the graph transformation approach. In this chapter, we transform the case study
(state machine of ATM) into simpler state machines whereas the model checker HUGO and
SPIN are called upon to see if our transformation strategies are useful in reducing the state space
of the model.

In chapter 5 we introduce the approach of security protocols. We research in this chapter the
SSL security protocols and we introduce the implementation of these protocols in the security
software JESSIE. In order to ensure that the security protocols are indeed well-implemented in
JESSIE, we use the JML and Bandera assertions. The next step is to transform the protocol
into new graph models that are well-suited for software model checking. We use the approach
of predicate diagram to automatically verify whether the required security properties are indeed
realized by the protocols or not.

Finally, chapter 6 introduces our tool DAMAS and illustrates verifying some protocols automat-
ically using DAMAS.

Appendix A illustrates the UTE specification language of HUGO model checker for the state
machine models of ATM, whereas appendix B illustrates how we automatically verify SSL-
Handshake protocol using DAMAS. Appendix C shows the Bandera abstraction tool to ver-
ify using the Bandera Specification Language (BSL) if the Java implementation of the SSL-
Handshake protocol in JESSIE is indeed verify the disered features of the encrypted connec-
tions.

23

1 Introduction

24

2 Logical Foundations and Tools

2.1 Introduction

The serious study of logic as an independent discipline began with the work of Aristotle (384-
322 BCE). Generally, however, Aristotle’s sophisticated writings on logic dealt with the logic of
categories and quantifiers such as ”all”, and ”some”, which are not treated in propositional logic.
However, in his metaphysical writings, Aristotle espoused two principles of great importance in
propositional logic, which have since come to be called the Law of Excluded Middle and the
Law of Contradiction. Interpreted in propositional logic, the first is the principle that every
statement is either true or false, the second is the principle that no statement is both true and
false. These are, of course, cornerstones of classical propositional logic. There is some evidence
that Aristotle, or at least his successor at the Lyceum, Theophrastus (d. 287 BCE), did recognize
a need for the development of a doctrine of ”complex” or ”hypothetical” propositions, i.e., those
involving conjunctions (statements joined by ”and”), disjunctions (statements joined by ”or”)
and conditionals (statements joined by ”if... then...”), but their investigations into this branch of
logic seem to have been very minor.

Statement A statement can be defined as a declarative sentence, or part of a sentence, that is
capable of having a truth-value, such as being true or false. So, for example, the following are
statements:

Angela Merkel is the Chancellor of Germany

Berlin is the capital of Germany.

Proposition The term proposition is sometimes used synonymously with statement. How-
ever, it is sometimes used to name something abstract that two different statements with the
same meaning are both said to ”express”. In this usage, the German sentence, ”Es regnet”, and
the French sentence ”Il pleut”, would be considered to express the same proposition. However,
the nature or existence of propositions as abstract meanings is still a matter of philosophical
controversy.

25

2 Logical Foundations and Tools

Propositional logic is a branch of logic that studies ways of combining or altering state-
ments or propositions to form more complicated statements or propositions. Joining two sim-
pler propositions with the word ”and” is one common way of combining statements. When two
statements are joined together with ”and”, the complex statement formed by them is true if and
only if both the component statements are true. Because of this, an argument of the following
form is logically valid:

Berlin is the capital of Germany and Berlin has a population of over four million.
Therefore, Berlin has a population of over four million.

Propositional logic largely involves studying logical connectives such as the words ”and” and
”or” and the rules determining the truth-values of the propositions they are used to join, as well
as what these rules mean for the validity of arguments, and such logical relationships between
statements as being consistent or inconsistent with one another.
Propositional logic also studies way of modifying statements, such as the addition of the word
”not” that is used to change an affirmative statement into a negative statement. Here, the fun-
damental logical principle involved is that if a given affirmative statement is true, the negation
of that statement is false, and if a given affirmative statement is false, the negation of that state-
ment is true [ABKS]. On the other hand, Propositional logic can also be thought as the study of
logical operators. A logical operator is any word or phrase used either to modify one statement
to make a different statement, or join multiple statements together to form a more complicated
statement. In English, words such as ”and”, ”or”, ”not”, ”if ... then...”, ”because”, and ”neces-
sarily”, are all operators. we will use the abbreviation PL to refer to the propositional logic in
the next sections.

A Statement Letter of PL is defined as any uppercase letter written with or without a nu-
merical subscript. According to this definition, ’A’, ’B’, ’B2’, ’C3’, and ’P14’ are examples of
statement letters. The numerical subscripts are used just in case we need to deal with more than
26 simple statements: in that case, we can use ’P1’ to mean something different than ’P2’, and
so forth.

A Connective or operator of PL is any of the signs ¬ (negation), ∧ (conjunction), ∨ (dis-
junction),→ (implication), and↔ (equivalence).

A well-formed formula of PL is defined recursively as follows:

1. Any statement letter is a well-formed formula.

26

2.1 Introduction

2. α is a well-formed formula, then so is ¬α.

3. α and β are well-formed formulas, then so is α ∧ β.

4. α and β are well-formed formulas, then so is α ∨ β.

5. α and β are well-formed formulas, then so is α→ β.

6. α and β are well-formed formulas, then so is α↔ β.

7. Nothing that cannot be constructed by successive steps of (1)-(6) is a well-formed formula.

The notion of a well-formed formula should be understood as corresponding to the notion of
a grammatically correct or properly constructed statement of language PL. This definition tells
us, for example, that ”¬(Q ∨ ¬R)” is grammatical for PL because it is a well-formed formula,
whereas the string of symbols, ”)¬Q¬v(↔ P&”, while consisting entirely of symbols used in
PL, is not grammatical because it is not well-formed.
In proposition logic a fact such as ’Alison likes Falafel’ would be represented as a simple atomic
proposition, let’s call it AP. we can use now the logical connectives ∧ , ∨ , ¬ ,→ to build more
complex expressions. So if we had the proposition Q representing the fact ’Alison eats Falafel’
we could have the facts:

P ∨Q : Alison likes Falafel or Alison eats Falafel.
P ∧Q : Alison likes Falafel and Alison eats Falafel.
¬Q : Alison doesn’t eat Falafel.
P → Q : If Alison likes Falafel then Alison eats Falafel.

A truth table is a complete list of the possible truth values of a sentence. We can determine the
truth value of arbitrary sentences using truth tables which define the truth values of sentences
with logical connectives. The truth tables provide a simple semantics for expressions in propo-
sitional logic. As sentences can only be true or false, truth tables are in this case very simple, for
example:

X Y X → Y

T T T

T F F

F T F

F F F

Formal Definition of PL Let’s assume a set P = p, q, p1, ... of (atomic) propositions which
can be either true or false. For example the propositions stack-is-empty denotes the fact that the
stack is really empty. We can now write the syntax of the propositional logic PL as following:

27

2 Logical Foundations and Tools

PL ::= P| ⊥ |(PL→ PL) that is,

1. every p ∈ P is a well-formed formula of propositional logic,

2. ⊥ is a well formed formula ’the falsum’,

3. if ϕ and ψ are well-formed formula, then so is (ϕ→ ψ), and

4. nothing else is a formula.

Interpretation An Interpretation I for the propositions is a function assigning a truth value
from {true, false} to every proposition. For example, the propositions stack-is-empty is inter-
preted differently on a farm, in a library, or in front of a computer terminal.

Propositional Model M , (U , I) consists of the fixed binary domain U , {true, false}
and an interpretation for P .

Validation Relation |= between a model M and a formula ϕ is defined by the following
clauses.

1. M |= p iff I(p) = true,

2. M 6|= ⊥, and

3. M |= (ϕ→ ψ) iffM |= ϕ impliesM |= ψ

That is,M |= (ϕ → ψ) iffM 6|= ϕ orM |= ψ, ifM |= ϕ. Then we say thatM validates ϕ,
or, equivalently, ϕ is valid inM.

28

2.2 Temporal Logic

2.2 Temporal Logic

2.2.1 Introduction

Temporal logic is rooted in the field of exact philosophy and is a variant of modal logic. Modal
logic deals with properties which are interpreted with respect to a set of possible worlds. The
truth value of propositions depends on the respective world and basically two operators ”nec-
essarily” and ”possibly” exist which denote that a proposition is true in all or some possible
worlds. Even the ancient Greek philosophy schools of the Megarians, Stoics, and Peripatetic
as well as Aristotle used some temporalized form of these modal operators. During the Middle
Ages Arabian and European logicians resumed and refined the ancient approaches in order to
discern different types of necessity and possibility. In modern times, the interest in symbolic
logic grew during the first half of the 20th century, and - with some delay- new modal and
temporal logic approaches occurred. First publications date back to the 1940’s.

In particular, the logicians Prior, Rescher, Kripke, and Scott contributed to the development of
modern temporal logic. Kripke presented a formal possible world semantics for modal logics.
Prior proposed a temporal interpretation. An ordered set of possible worlds can correspond
to a temporal sequence of states. In result, the two basic modal operators ”necessarily” and
”possibly” become the temporal quantifiers ”always” and ”eventually”. Based on the linearity
of time additional operators like ”next” and ”until” as well as past operators were introduced.
Rescher and Urquhart outlined the history and introduced several major systems of temporal
logic in [RU71]. In 1974, Burstall proposed the application of temporal logic in computer
science for the first time. Pnueli improved this approach in [Pnu77, MP92], which is regarded
as the classic source of temporal logic based program specification and verification.

In temporal logic one can specify and verify how components, protocols, objects, modules, pro-
cedures and functions behave as time progresses. The specification is done with temporal logic
statements that make assertions about properties and relationships in the past, present, and the
future. In other words, temporal logic is a formalism for describing sequences of transition be-
tween states in a reactive systems; such systems whose role is to maintain an ongoing interaction
with their environment rather than produce some final value upon termination. Typical exam-
ples are Air traffic control system, Programs controlling mechanical devices such as a train, a
plane, or ongoing processes such as a nuclear reactor. In this section we introduce some formal
definitions of temporal logic, compositional tree logic and linear tree logic. Some examples are
also presented here to explain the concepts of temporal logic.

29

2 Logical Foundations and Tools

2.2.2 Concurrent Systems

A concurrent system consists of a set of components that execute together. Normally the com-
ponents have some means of communicating with each other. The mode of execution and the
mode of communication may differ from one system to another. We will consider two modes of
execution: Asynchronous execution, in which only one component makes a step at a time, and
synchronous execution, in which all of the components make a step at the same time.

We use interpreted first order formula to describe concurrent systems. Thus the predicate and
function symbols that occur in such formulas will have a predefined meaning. Usually, this
meaning will be clear from the context. Let V = {v1, ..., vn} be the set of system variables.
We assume that the variables in V range over a finite set D (sometimes called the domain or
universe of the interpretation). A valuation for V is a function that associates a value in D with
each variable v in V .

State of a concurrent system can be described by giving values for all of the elements in V .
In other words, a state is just a valuation s : V → D for the set of variables in V . Given a
valuation, we can write a formula that is true for exactly that valuation. For example, given
V = {v1, v2, v3} and the valuation < v ← 2, v2 ← 3, v3 ← 5 >, we derive the formula (v1 = 2)

∧ (v2 = 3) ∧ (v3 = 5). In addition to representing sets of states, we must be able to represent
sets of transitions between states. To do this, we extend the idea used above. This time we use a
formula to represent a set of ordered pairs of states. We cannot do this using just a single copy
of the system variables V , so we create a second set of variables V ′. We think of the variables
in V as present state variables and the variables in V ′ as next state variables. Each variable v
in V has a corresponding next state variables in V ′, which are denote by v′. A valuation for the
variables in V and V ′ can be viewed as designating an ordered pair of states or a transition, and
we can represent sets of these valuations using formulas as above. We refer to a set of pairs of
states as a transition relation. If R is a transition relation, then we write R(V, V ′) to denote a
formula that represents it. In this case, the AP will typically have the form v = d where v ∈ V
and d ∈ D. A proposition v = d will be true in a state s if s(v) = d. When v is a variable over
the boolean domain {True, False}, it is not necessary to include both v = True and v = False

in AP. We will write v to indicate that s(v) = True and ¬v to indicate that s(v) = False.

2.2.3 Kripke Structures

Let AP be a set of atomic propositions. A Kripke structure M over AP is a four tuple M =

(S, S0, R, L) where

• S is a finite set of states.

30

2.2 Temporal Logic

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is a transition relation that must be total, that is, for every state s ∈ S there is
a state s′ ∈ S such that R(s, s′).

• L : S → 2AP is a function that labels each state with the set of atomic propositions true
in that state.

For example, consider a simplified model of ATM1 of figure 2.1.

s0

wait_card
s1

ask_pin
s2

check_pin

s5

ask_amount

s7

no_auth

s8
give_money

s6

card_back

s3

wrong_pin

s4

pin_ok

Figure 2.1: ATM model using Kripke Structure

Figure 2.1 represents the ATM as following:

• S is a finite set of states, where S = {s0, s1, s2, ..., s8}.

• S0 ⊆ S is the set of initial states, where S0 = {s0}.

• R ⊆ S × S is the transition relation, where:
R = {(s0, s0), (s0, s1), (s1, s2), (s2, s3), (s3, s1), (s2, s4), (s4, s5), (s5, s7), (s5, s8),

(s7, s6), (s8, s6), (s6, s0)} and.

• L : S → 2AP , is a label function where L(s0) = {wait card}, L(s1) = {ask pin},
L(s2) = {check pin}, L(s3) = {wrong pin}, L(s4) = {pin ok}, L(s5) = {ask amout},
L(s6) = {card back}, L(s7) = {no auth} and L(s8) = {give money}.

The remainder of this section contains a precise description of the syntax and semantics of
temporal logic. We define the semantics of temporal logic with respect to a Kripke structure.
Recall that a Kripke structure M is a triple (S,R, L), where S is the set of states; R ⊆ S × S

1An Automatic Teller Machine ”ATM” is a computerized telecommunications device that provides a financial
institution’s customers a method of financial transactions in a public space without the need for a human support.

31

2 Logical Foundations and Tools

is a transition relation, which must be total (i.e., for all states s ∈ S there exists a state s′ ∈ S
such that (s, s′) ∈ R); and L : S → 2AP is a function that labels each state with a set of atomic
proposition true in that state.

A path in M is an infinite sequence of states σ = s0, s1, ... such that for every i ≥ 0, (si, si+1)

∈ R. (Alternative, we can think of a path as an infinite branch in the computation tree that
corresponds to the Kripke structure.). We use σi to denote the suffix of σ starting at si.

There are two types of formulas in temporal logic: State Formulas (which are true in a specific
state) and Path Formulas (which are true along a specific path). If f is a state formula, the
notation M, s � f means that f holds at state s in the Kripke structure M . Similarly, if f is a
path formula, M,σ � f means that f holds along path σ in the Kripke structure M

Boolean Operators For a negation ¬p, we define

(σ, j) � ¬p iff (σ, j) 2 p

Thus, ¬p holds at position j iff p does not.
For a disjunction p ∨ q we define

(σ, j) � p ∨ q iff (σ, j) � p ∨ (σ, j) � q

Thus, p ∨ q holds at position j iff either p or q does.
For illustration, we display the evaluation of some boolean combinations of formulas. For ex-
ample, in computer networking, the two-phase commit protocol is a distributed algorithm that
lets all nodes in a distributed system agree to commit a transaction. The protocol results in either
all nodes committing the transaction or aborting it.

σ s0 s1 s2 s3

co A C A A

pa C A C A

pa = co F F F F

¬ (pa = co) T T T T

¬ (pa = co) ∨ (pa = A) T T T T

We mean by the symbol ’co’ the coordinator, whose sends and receives the transaction from
the participant and ’pa’ the participant whose also sends or receives the transactions from the
coordinator. We mean by ’A’ the Abort result and ’C’ is the Commit result of the protocol,
where ’T ’ and ’F ’ are denote to the true and false values.

32

2.2 Temporal Logic

2.2.4 Linear Temporal Logic LTL

Linear temporal logic is a temporal logic with modalities referring to time. In LTL, one can
encode formulae about the future of paths such as that a condition will eventually be true, that a
condition will be true until another fact becomes true, etc. Linear temporal logic built up from
a set of proposition p1, p2, ..., the usual logic connectives ¬,∨,∧,→ and the following temporal
operators:

• The Next Operator© or X If p is a temporal formula, then so is X p, read as next p. Its
semantic defined by:

(σ, j) � Xp iff (σ, j + 1) � p

Thus, X p holds at position j iff p holds at the next position j + 1. The following table
illustrate the evaluation of the formula (pa = A) ∧ X (pa = C), which holds for all
positions sj such that pa = A at sj and pa = C at sj+1.

σ s0 s1 s2 s3 s4 s5 s6

pa A C A A C A C

pa = A T F T T F T F

pa = C F T F F T F T

X (pa = C) T F F T F T F

(pa = A) ∧ X (pa = C) T F F T F T F

• The Always Operator � or G If p is a temporal formula, then so is Gp , read always p.
Its semantics is defined by:

(σ, j) � Gp iff (σ, k) � p for all k ≥ j

Thus, G p holds at position j iff p holds at position j and all following positions (from
now on). For example, this table illustrates the formula G(pa = A).

σ s0 s1 s2 s3 s4 s5 s6

pa A C A A C A A

pa = A T F T T F T T

G (pa = A) F F F F F T T

if G p holds at j, then it also holds at any k ≥ j.

33

2 Logical Foundations and Tools

• The Eventually Operator ♦ or F If p is a temporal formula, then so is F p, read as
eventually p. Its semantics is defined by

(σ, j) � Fp iff (σ, k) � p for some k ≥ j

Thus, F p holds at position j iff p holds at some position k ≥ j. As an example we
illustrate the evaluation of the formula F (co = C).

σ s0 s1 s2 s3 s4 s5 s6

co A C A A C A C

co = C F T F F T F T

F (co = C) F T F F T F T

The eventually operator is dual to the always operator. This means that F p holds at a
position j iff G ¬p does not hold there.
if F p holds at position j, then it also holds at any k, 0 ≤ k ≤ j.

• The Until Operator U The formula F q predicts the eventual occurrence of q and the
formula G p states that p will hold continuously from now on. The until formula p U q

(read p until q) combines these statements by predicting the eventual occurrence of q and
stating that p holds continuously at least until the (first) occurrence of q. Formally, we
define

(σ, j) � p U q iff there exists a k ≥ j, such that (σ, k) � q, and for every
i, j ≤ i < k, (σ, i) � p

The following table evaluate the formula (pa = A) U (pa = C).

σ s0 s1 s2 s3 s4 s5 s6

pa A C A A C A C

pa = A T F T T F T F

pa = C F T F F T F T

(pa = A) U (pa = C) T T T T T T T

Note that if position j satisfies formula q, it also satisfies p U q for any p With k = j in
the definition, the requirement that p holds at all positions i, such that j ≤ i < k = j, is
fulfilled vacuously.
Note also that if p U q holds at position j, then F q also holds there.

34

2.2 Temporal Logic

• The Unless (or Waiting-for) Operator R The until formula p U q guarantees that q will
eventually occur. In some cases we need a weaker property, which states that p holds
continuously either until the next occurrence of q or throughout the sequence.
This is expressed by the formula pW q, read p unless q (also p waiting for q). Using the
previously defined operators, its formal definition is given by

(σ, j) � p R q iff (σ, j) � p U q or (σ, j) � Gp

We illustrate the evaluation of the formula [(pa = A) ∨ (pa = C)] R (co = C) in the
following table:

σ s0 s1 s2 s3 s4 s5 s6

pa A C A A C A C

pa = A T F T T F T F

pa = C F T F F T F T

(pa = A) ∨ (pa = C) T T T T T T T

[(pa = A) ∨ (pa = C) R (co = C)] T T T T T T T

LTL Formula An LTL formula can be evaluated over a sequence of truth evaluations and a
position on the given path. An LTL formula is satisfied by a path if and only if it is satisfied for
some position on that path. The semantics for the above operators is given in figure 2.2.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
������� ����������������������

Finally F : has to hold somewhere on the subsequent path.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
������� ����������������������

Globally G : has to hold on the subsequent path.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
������� ����������������������

Next X : has to hold at the next state.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�������������������������������

p p p

pU

At that position does not have to hold any more.
and has to hold until that position.

p
p

 holds at the current or a future position,

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
������� ����������������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
��������� ������������������������

pR

p

or

position in which is ture (or forever if such a
position does not exist).

p
p : unless , if is true until the first

Figure 2.2: Linear Temporal Logic Semantics

Some Examples
Following are several frequently used formulas and their interpretations. We mean by σ � φ For
the considered formula φ, that φ holds at position 0 of σ. We assume that the subformulas pa
and co appearing below are state formulas:

35

2 Logical Foundations and Tools

1. co = A→ Fpa = A

This formula states that if the model σ satisfies that the coordinator has the Abort value in
the position s0, in this case the participant also satisfies the subformula Fpa = A which
means that the participant has the value Abort for some position j ≥ 0, pa holds at sj . In
other words; initially co then eventually pa.

2. G(co = A→ Fpa = A)

This formula states the property; if co = A holds at position j then pa = A holds at some
position not smaller than j for j = 0. Adding the always operator in front of the formula
states that this property holds for all positions j ≥ 0. In other words; every co position
coincides with or is followed by a pa position.

3. GFco = C

This Formula obtain a property that every position in the sequence coincides with or is
followed by a later position satisfying co = C. In other words; The sequence σ contains
infinitely many co = C positions.

4. FGco = C

There exists a position j ≥ 0 that satisfies Gco = C, i.e., there exists a position such that
co = C holds at all later position. In other words; eventually permanently co = C, or
equivalently; the sequence σ contains only finitely many ¬ co = C positions.

5. (¬co = C) R pa = A

The formula states that either ¬co = C holds forever or that it holds until an occurrence
of pa = A. This means; the first co position must coincide with or be preceded by a pa
position.

6. G(pa = A→ Xpa = A)

The formula states that the subformula pa = A → Xpa = A holds at all positions. The
subformula holds at position i either if pa is false there or if pa is true both at i and at i+1.
In other words The successor of every pa = A state is another pa = A state.

7. G(pa = A→ Gpa = A)

The formula states that if pa = A holds at position i, then it also holds at every position
j ≥ i. Therefore, it expresses the following property Once pa = A, always pa = A.

8. G ∃u : ((x = u) ∧X(x = u+ 1))

36

2.2 Temporal Logic

The formula refers to a rigid variable u and a flexible variable x. It states that at every
position j, there exists a value of u such that, at position j, x equals u and, at the next
position j + 1, x equals u + 1. It follows that sj+1{x} = sj{x} + 1 . This is a way to
specify a sequence in which x increase by 1 from each state to the next.

2.2.5 Computation Tree Logic CTL

Computational tree logic [BAMP83,SKM01,CE81] (CTL) is a branching-time logic, meaning
that its model of time is a tree-like structure in which the future is not determined; there are
different paths in the future, any one of which might be ’actual’ path that is realised. In CTL
the temporal operators X, F, G, U, and R must be immediately preceded by a path quantifier;

If f and g are state formulas, then Xf , Ff , Gf , fUg, and fRg are path formulas.

Conceptually, CTL formulas describe properties of computation trees. The tree is formed by
designating a state in Kripke structure as the initial state and then unwinding the structure into
an infinite tree with the designated state at the root, as shown in figure 2.3, the computation tree
shows all of the possible executions starting from the initial state.

a b

cb c

c

a b

b c

c

c

a b

State Transition or Kripke Structure Model

Unwind State Graph to obtain Infinite Tree

Figure 2.3: Computation Trees

CTL Syntax Each CTL operator is a pair of symbols. The first one is either A (”for All
paths”), or E (”there Exists a path”). The second one is one of X (”neXt state”), F (”in a Future
state”), G (”Globally in the future”) or U (”Until”), where U is a binary operator, it could be
written EU(p, q) or AU(p, q).

Example: AG(p→ (EFq)) is read as ”It is Globally the case that, if p is true, then there Exists
a path such that at some point in the Future q is true”.

37

2 Logical Foundations and Tools

CTL Semantics LetM = (S,R, L) be a kripke structure. Let ϕ be aCTL formula and s ∈ S.
M, s � ϕ is defined inductively on the structure of ϕ, as follows:

M, s � p iff p ∈ L(s).

M, s � ¬ϕ iff M, s 2 ϕ.

M, s � ϕ ∧ ψ iff M, s � ψ and M, s � ψ.

M, s � ϕ ∨ ψ iff M, s � ϕ or M, s � ψ.

M, s � AXϕ iff ∀ś ∈ S and sRś then M, ś � ϕ.

M, s � EXϕ iff ∃ś ∈ S where sRś then M, ś � ϕ.

M, s � AGϕ iff for all paths (s1, s2, s3, s4, ...) where si ∈ S and siRsi+1 for all i, it
is the case that M, si � ϕ.

M, s � EGϕ iff there is a path (s1, s2, s3, s4, ...) where si ∈ S, siRsi+1and for all i,
it is the case that M, si � ϕ.

M, s � AFϕ iff for all paths (s1, s2, s3, s4, ...) si ∈ S, siRsi+1, there is a state si

where s ∈ S,M, si � ϕ.

M, s � EFϕ iff there is a path (s1, s2, s3, s4, ...) where si ∈ S, siRsi+1, and there is
a state si ∈ S, and M, si � ϕ.

M, s � A[ϕUψ] iff for all paths (s1, s2, s3, s4, ...) where siRsi+1, si ∈ S and si � ψ,
there is a state sj ∈ S where sj � ϕ, for all i > j.

M, s � E[ϕUψ] iff there exists a path (s1, s2, s3, s4, ...) where siRsi+1, si ∈ S and si �

ψ, there is a state sj ∈ S where sj � ϕ, for all i > j.

Figure 2.4 illustrates some of these operators.

Some Examples

• AG(EF (pa = C ∧ co = C)) This formula means that from any state it is possible to get
to the state where the participant and the coordinator are in the commit situation.

38

2.2 Temporal Logic

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

���
���
���

���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

����M, s
0 EF (pa = commit) ����M, s

0
AF (pa = commit)

����M, s
0

EG (pa = commit) ����M, s
0

AG (pa = commit)

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

���
���
���

���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

Figure 2.4: Some CTL operators

• EF (Start ∧ ¬Ready): It is possible to get to a state where Start holds but Ready does
not hold.

• AG(Reg → AFAck): If a request occurs, then it will be eventually acknowledged.

• AG(AFcard back): The proposition that the card will be back in the ATM machine holds
infinitely often on every computation path.

• AG(EFRestart): From any state it is possible to get to the Restart state.

2.2.6 The Computation Tree Logic CTL∗

CTL∗ is an extension of CTL as it allows path quantifiers E and A to be arbitrarily nested with
linear temporal operators (such as X and U).

In other words, CTL∗ formulas are composed of path quantifiers and temporal operators. The
path quantifiers are used to describe the branching structure in the computation tree. There are
two such quantifiers A (for all computation paths) and E (for some computation path). These
quantifiers are used in particular state to specify that all of the paths or some of the paths starting
at that state have some property. We can say that the CTL∗ formula is a logic that combines the
expressive power of LTL and CTL.

The difference between CTL and CTL∗ is that the CTL∗ allows more complex formulas inside
path quantifiers such as Boolean combinations and nesting of temporal operators. For example,
the following are CTL∗ formulas, but not CTL formulas: E(Fp ∧Gq), A(FGp), EA(Gq).

Also LTL can be considered as a sublanguage of CTL∗ by transforming every LTL formula φ
to Aφ, there are things we might want to say using LTL that we cannot say in CTL:

39

2 Logical Foundations and Tools

FGp: Along every path from the initial state S there is a state from which p will hold forever.

GFp: The fairness constraint in LTL.

On the other hand, there are some formulas can’t be expressed in LTL:

AG(EFp): The reset formulas.

There are also formulas cannot be expressed neither in CTL nor in LTL:

E(GFp): There is a path with infinitely many p.

2.2.7 Fairness

It is often necessary to provide the reactive systems with some of fairness constraints. For
example, if the system allocates a shared resource among several users, only those paths along
which no user keeps the resource forever should be considered. Also in our case study ”two-
phase commit protocol”, if we want to consider the property that no message is transmitted from
the coordinator but never received to the participants, we have to add the fairness constraint.

Two very commonly used forms of fairness are weak fairness and strong fairness:

• Weak fairness can captured by using the LTL formula:

∧
1≤i≤n

(FG pi → GFqi)

It means, if an event is continuously enabled it will occur infinitely often. For example in
the ATM protocol, if the ATM card Entry is true then it is always eventually card back
is ture.

• The strong fair is characterized by the LTL formula:

∧
1≤i≤n

(GF pi → GFqi)

It means, if an event is infinitely often enabled it will occur infinitely often. For example in
the two-phase commit protocol, if all participants are commit infinitely often, coordinator
will eventually commit, and hence commit infinitely often.

Strong fairness is less often used and is stronger than (implies) weak fairness.

40

2.3 Model Checking

2.3 Model Checking

Model checking is a method for formally verifying finite-state concurrent systems such as cir-
cuit designs and communication protocols. System specifications are expressed as temporal
logic formulas, and efficient symbolic algorithms are used to traverse the model defined by the
system and check if the specification holds or not. Large state space can often be traversed in
minutes. In this section we will illustrate the basic concepts of software model checking and it’s
useful algorithms in detecting the error like CTL and Binary Decision Diagram BDD. Finally
some tools are represented to implements our case study and see that the required properties are
satisfied or not.

2.3.1 Software Model Checking

Verifying a program is proving, in a formal mathematical way, that the program satisfies a spec-
ification written in a logical language. Therefore verification has often been claimed to be a
promising approach for ensuring the correctness of software. Formal verification, where a sys-
tem is verified with respect to desired behavior, has nowadays become popular in industry, espe-
cially in mission and safety critical applications. Specifically model checking methods, which
can be fully automated, are being used extensively to verify that a finite state system meets a
desired behavior. The desired behavior is often specified by a temporal logic formula. Software
model checking is typically applied to hardware systems, concurrent protocols, process control
systems, and more generally as reactive systems [MQR95].

Model

System
Specification

No
+

Counter−
example

Yes

Model
Checker

Figure 2.5: Model Checking Strategy

A model-checking tool accepts a design (called system model) and a property (called specifica-
tion) that the final system is expected to satisfy. The model checker explores all paths through

41

2 Logical Foundations and Tools

the state space in order to check whether the specification holds for the model. The tool then
output yes if the given model satisfies the given specification and generates a counter example
otherwise (see figure 2.5).

The counter example details why the model doesn’t satisfy the specification. By studying the
counter example, we can pinpoint the source error in the model, correct the model, and try again.
The idea of this iterative process is to ensure that the model satisfies enough system properties.
There are several model checking tools such as SPIN [Hol04b], FDR [(Lt], UPPAAL [BLPY97],
and NuSMV [Nus02]. SPIN is one of the most popular software tool that can be used for the for-
mal verification of distributed software systems [Hol04b]. SPIN uses a high-level language to
specify system descriptions, called PROMELA. SPIN has also been used to trace logical design
errors in distributed systems design, such as operating systems, data communications protocols
etc. The tool checks the logical consistency of a specification. It reports on deadlocks, un-
specified receptions, flags incompleteness, race conditions, and unwarranted assumptions about
the relative speeds of processes. SPIN and the model checkers mentioned above do not ac-
cept software design directly, but use logic and automata formalisms for describing models and
specifications.

HUGO is another tool for software model checking [KM11]. HUGO is based on ArgoUML
[arg], it validates software designs by translating UML model to different model checkers and
theorem provers and by reflecting the results of these systems back to UML. More specifically,
HUGO connects UML state diagrams and OCL with the model checkers SPIN, UPPAAL and
the system language of the interactive theorem prover KIV.

The model checking problem is formally easy to describe. Suppose we have a Kripke structure
M = (S, R, L) that represents a finite-state concurrent system and a temporal logic formula f
expressing some desired specification, the model checking means to make all states in S satisfy
the formula f :

{ s ∈ S |M, s � f }.

Normally, some states of the concurrent system are designed as initial states. The system satisfies
the specification provided that all of the initial states are in the set S also.

The first algorithms for solving the model checking problem used an explicit representation of
the Kripke structure as a labeled, directed graph with arcs given by pointers. In this case, the
nodes represent the states in S, the arcs in the graph give the transition relation R, and the labels
associated with the nodes describe the function L : S → 2AP .

42

2.3 Model Checking

2.3.2 CTL Model Checking

Let M = (S,R, L) be a Kripke structure. Assume that we want to determine which states in
S satisfy the CTL formula f . The algorithm will operate by labeling each state s with the set
label(s) of subformulas of f which are true in s. Initially, label(s) is just L(s). Recall that any
CTL formula can be expressed in terms of ¬,∧, EX,EU and EG. Thus, it is sufficient to be
able to handle six cases, depending on whether g is atomic or has one of the following forms:
¬f1, f1 ∧ f2, EXf1, E[f1Uf2], or EGf1.

We could write the following algorithm for formula has the form (¬f):

procedure CheckNegation (f)
for all s ∈ {s|f /∈ label(s)}
do label(s) := label(s) ∪{¬f}
end procedure

For f1 ∨ f2, we do as following:

procedure CheckConjunction (f1, f2)
for all s ∈ {s|f1 ∈ label(s) ∧ f2 ∈ label(s)}
do label(s) := label(s) ∪{f1 ∧ f2}
end procedure

To handle formula of the form g = E[f1Uf2] we first find all states that are labeled with f2. We
then work backwards using the converse of the transition relation R and find all states that can
be reached by a path in which each state is labeled with f1. All such states should be labeled
with g.

In the following Algorithm, we give a procedure CheckEU that add E[f1Uf2] to label(s) for
every s that satisfies E[f1Uf2], assuming that f1 and f2 have already been processed correctly,
that is, for every state s, f1 ∈ label(s) iff s � f1 and f2 ∈ label(s) iff s � f2. This procedure
requires time O(|S|+ |R|).

43

2 Logical Foundations and Tools

Procedure CheckEU (f1, f2)

T := {s|f2 ∈ label(s)};
for all s ∈ T do label(s) := label(s) ∪ {E[f1Uf2]};
While T 6= φ do
choose s ∈ T ;
T := T�{s};
for all t such that R(t, s) do
if E[f1Uf2] /∈ label(t) and f1 ∈ label(t) then
label(t) := label(t) ∪ {E[f1Uf2]};
T := T ∪ {t};
end if;
end for all;
end while;
end procedure

The case in which g = EGf1 is slightly more complicated. It is based on the decomposition
of the graph into nontrivial strongly connected components. A strongly connected component
(SCC) C is maximal subgraph such that every node in C is reachable from every other node in C
along a directed path entirely contained within C. C is nontrivial iff either it has more than one
node or it contains one node with a self-loop.

Let M’ be obtained from M by deleting from S all of those states at which f1 does not hold
and restricting R and L accordingly. Thus M ′ = (S ′, R′, L′) where S ′ = s ∈ S|M, s � f1 ,
R′ = R‖S′×S′ , and L′ = L‖′S . Note that R′ may not be total in this case. The states with
no outgoing transitions may be eliminated, but this is not essential for the correctness of our
algorithm. The algorithm depends on the following observation.

LEMMA 1 M, s � EGf1 iff the following two conditions are satisfied:

1. s ∈ S ′

2. There exists a path M ′ that leads from s to some node t in nontrivial strongly connected
component C of the graph (S ′, R′).

Proof Assume that M, s � EGf1. Clearly s ∈ S ′. Let σ be an infinite path starting at s such
that f1 holds at each state on σ. Since M is finite, it must be possible to write σ as σ = σ0σ1

where σ0 is a finite initial segment and σ1 is an infinite suffix of σ with the property that each
state on σ1 occurs infinitely often. Then, σ0 is contained in S’. Let C be the set of states in σ1.
Clearly, C is contained in S ′. We now show that there is a path within C between any pair of

44

2.3 Model Checking

states in C. Let s1 and s2 be states in C. Pick some instance of s1 on σ1. By the way in which
σ1 was selected, we know that there is an instance of s2 further along σ1. The segment from s1

to s2 lies entirely within C. This segment is a finite path from s1 to s2 in C. Thus, either C is
strongly connected component or it is contained within one. In either case, both conditions (1)
and (2) are satisfied.

Procedure CheckEG (f1)

S ′ := {s|f1 ∈ label(s)};
SCC := {C|C is a nontrivial SCC of S ′};
T :=

⋃
c∈SCC{s|s ∈ C};

for all s ∈ T do label(s) := label(s) ∪ {EGf1};
while T 6= φ do
choose s ∈ T ;
T := T�{s};
for all t such that t ∈ S ′ and R(t, s) do
if EGf1 /∈ label(t) then
label(t) := label(t) ∪ EGf1;
T := T ∪ t;
end if;
end for all;
end while;
end procedure

We will illustrate the model checking algorithm for CTL on a small example that describes the
behavior of a microwave oven. Figure 2.6 gives the Kripke structure for the oven. For clarity,
each state is labeled with both the atomic propositions that are true in the state and the negations
of the propositions that are false in the state. The labels on the arcs indicate the actions that
cause transitions and are not part of the Kripke structure.
We check the CTL formula AG(Start → AF Heat) which is equivalent to the formula ¬
EF (Start ∧ EG ¬Heat) (here, we use EFf as an abbreviation for E[true U f]). We start
by computing the set of states that satisfy the atomic formulas and proceed to more complicated
subformulas. Let S(g) denote the set of all states labeled by the subformula g. Note that, with a
suitable data structure, the computation of S(p) for all p ∈ AP requires time O(|S|+ |R|).
S(Start) = { 2, 5, 6, 7 }.

S(¬Heat) = { 1, 2, 3, 5, 6 }.

In order to compute S(EG¬Heat) we first find the set of nontrivial strongly connected com-
ponent in S ′ = S(¬Heat). SCC = {{1, 2, 3, 5}}. we proceed by setting T , the set of all states

45

2 Logical Foundations and Tools

that should be labeled by EG¬ Heat to be the union over the elements of SCC, that is, initially
T = {1, 2, 3, 5}. Note other state in S’ can reach a state in T along a path in S’. Thus, the
computation terminates with

S(EG¬Heat) = {1, 2, 3, 5}

Next we compute

S(Start ∧ EG ¬Heat) = {2, 5}.

When computing S(EF (Start∧EG ¬Heat)), we start by setting T = S(Start∧EG¬Heat).
Next, we use the converse of the transition relation to label all states in which the formula holds.
We get:

S(EF (Start ∧ EG¬Heat)) = {1, 2, 3, 4, 5, 6, 7}.

Finally, we compute that

S(¬EF (Start ∧ EG¬Heat)) = φ

Since the initial state 1 is not contained in this set, we conclude that the system described by the
Kripke structure does not satisfy the given specification.

~Start
~Close
~Heat
~Error

Start
~Close
~Heat
Error

~Start
Close
~Heat
~Error

~Start
Close
Heat
~Error

Start
Close
~Heat
Error

Start
Close
~Heat
~Error

Start
Close
Heat
~Error

1

2
3 4

5 6
7

start oven open door close door open door

open door close door start cooking

warmup

reset start oven

done

cook

Figure 2.6: Microwave oven example

46

2.3 Model Checking

2.3.3 Symbolic Model Checking

In this section we describe how to represent finite state systems symbolically using binary de-
cision diagrams. first of all we discuss how binary decision diagrams can be used to represent
boolean functions. The boolean functions are defined over 0 and 1 where 0 represents False and
1 represents True. We show that the size of the binary decision diagrams depends strongly on
the ordering that is selected for the variables and briefly discuss some heuristics that can be used
for selecting good orderings. We also describe how various logical operations can be efficiently
implemented using this representation.

2.3.4 Binary Decision Diagram

The Binary Decision Diagrams are widely used for a variety of applications in computer aided
design, including symbolic simulation and verification of finite-state concurrent systems. Let’s
discuss the binary decision tree. A binary decision tree is rooted, directed tree that consists of
two types of vertices, terminal vertices and nonterminal vertices. Each nonterminal vertex v is
labeled by a variable var(v) and has two successors: low(v) corresponding to the case where
the variable v is assigned 0, and high(v) corresponding to the case where v is assigned 1. Each
terminal vertex v is labeled by value(v) which is either 0 or 1.

A binary decision tree for the two-bit comparator, given by the formula f(co, pa1, pa2, pa3) =
(co ↔ pa1) ∧ (co ↔ pa2) ∧ (co ↔ pa3), is shown in figure 2.7. One can decide whether a
particular truth assignment to the variables make the formula true or not by traversing the tree
from the root to a terminal vertex. If the variable v is assigned 0, then the next vertex on the path
from the root to a terminal vertex will be low(v). If v is assigned 1 then the next vertex in the
path will be high(v). The value that labels the terminal vertex will be the true of the function
for this assignment. For example, the assignment < co := 1, pa1 := 0, pa2 := 1, pa3 := 1 >

leads to a leaf vertex labeled 0; hence, the formula is false for this assignment.

Binary decision trees are essentially the same size as truth tables. Fortunately, there is usually
a lot of redundancy in such trees. For example, in the tree of figure 2.7 there are eight subtrees
with roots labeled by participant 3 (pa3), but only two are distinct. Thus, we can obtain a more
concise representation for the boolean function by merging isomorphic subtrees. This results
in a directed acyclic graph (DAG) called a binary decision diagram: More precisely, a binary
decision diagram is a rooted, directed acyclic graph with two types of vertices, terminal vertices
and nonterminal vertices. As in the case of binary decision trees, each nonterminal vertex v is
labeled by a variable var(v) and has two successors, low(v) and high(v). Each terminal vertex
is labeled by either 0 or 1. Every binary decision B with root v determines a boolean function
fv(x1, ..., xn) in the following manner:

47

2 Logical Foundations and Tools

pa3 pa3 pa3 pa3pa3 pa3 pa3

pa2pa2pa2

pa1pa1

pa2

co

pa3

1

1

1

1

1

111

1

1

1

1 11

0

0

0

0

0

00 0

0 0

0 0

0

00 1

11 00000000000000

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

1

0

0

1

0

1

0

0

1

1

0

0

0

1

1

0

1

0

1

1

1

1

1

co

pa1

pa2

pa3

f

0

0

0

0

1

1

0

0

0

0

1

0

1

1

0

Figure 2.7: Truth Table and Binary Decision Tree for the Formula f

1. if v is a terminal vertex:

If value(v) = 1 then fv(x1, ..., xn) = 1.

If value(v) = 0 then fv(x1, ..., xn) = 0.

2. If v is a nonterminal vertex with var(v) = xi then fv is the function

fv(x1, ..., xn) = (¬xi ∧ flow(v)(x1, ..., xn)) ∨ (xi ∧ fhigh(v)(x1, ..., xn))

Two binary decision diagrams are morphic if there exists a one-to-one and onto function h that
maps terminals of one to terminals of the other and nonterminals of one to nonterminals of the
other, such that for every terminal vertex v, value(v) = value(h(v)) and for every nonterminal
vertex v, var(v) = var(h(v)), h(low(v)) = low(h(v)), and h(high(v)) = high(h(v)).

Bryant [Bry] showed how to obtain a canonical representation for boolean functions by placing
two restrictions on binary diagrams. First, the variables should appear in the same order along
each path from the root to a terminal. Second, there should be no isomorphic subtrees or redun-
dant vertices in the diagram. The first requirement is archived by imposing a total ordering <
on the variables that label the vertices in the binary decision diagram and requiring that for any
vertex u in the diagram, if u has a nonterminal successor v, then var(u) < var(v). The second
requirement is achieved by repeatedly applying three transformation rules that do not alter the
function represented by the diagram:

1. Remove duplicate terminals Eliminate all but one terminal vertex with a given label and
redirect all arcs to the eliminated vertices to the remaining one.

48

2.3 Model Checking

2. Remove duplicate nonterminals If two nonterminals u and v have var(u) = var(v), low(u)
= low(v) and high(u) = high(v), then eliminate u or v and redirect all incoming arcs to the
other vertex.

3. Remove redundant tests If nonterminal v has low(v) = high(v), then eliminate v and redi-
rect all incoming arcs to low(v).

Starting with a binary decision diagram satisfying the ordering property, the canonical form is
obtained by applying the transformation rules until the size of the diagram can no longer be
reduced. Bryant shows how this can be done in a bottom-up manner by a procedure called
Reduce in time which is linear in the size of the original binary decision diagram [Bry]. The
term ordered binary decision diagram (OBDD) will be used to refer to the graph obtained in this
manner. For example, if we use the ordering co < pa1 < pa2 < pa2 for the two-bit comparator
function, we obtain from the OBDD shown in figure 2.8.

0

0 1

10

00

11

01

0 1

1

co

pa1 pa1

pa2

pa3pa3

Figure 2.8: OBDD for two-bit comparator

We next explain how to implement various important logical operations using OBDDs. We
begin with the function that restricts some argument xi of the boolean function f to a constant
value b. This function is denoted by f |xi→b and satisfies the identity

f |xi→b(x1, ..., xn) = f(x1, ..., xi−1, b, xi+1, ..., xn).

If f is represented as an OBDD, then the OBDD for the restriction f |xi→b can be easily computed
by a depth-first traversal of the OBDD. For any vertex v which has a pointer to a vertex w such
that var(w) = xi, we replace the pointer by low(w) if b is 0 and by high(w) if b is 1. The
boolean operations can be implemented uniformly by using the Shannon expansion

49

2 Logical Foundations and Tools

f = (¬x ∧ f |x→0) ∨ (x ∧ f |x → 1).

Bryant [Bry] gives a uniform algorithm called Apply for computing all boolean operations. Be-
low we briefly explain how Apply works. Let * be an arbitrary two-argument boolean operation,
e.g.,∗(x, y) = x ∧ y, or ∗(x, y) = x → y, or ∗(x, y) = x and let f and f ′ be two boolean
functions represented by OBDD nodes v and v′, where x = var(v), x′ = var(v′). To simplify
the explanation of the algorithm we introduce the following cases:

1. If v and v′ are terminal, then f ∗ f ′ = value(v) ∗ value(v′).

2. If x = x′, then
f ∗ f ′ = (¬x ∧ (f |x→0 ∗ f ′|x→0)) ∨ (x ∧ (f |x→1 ∗ f ′|x→1))

3. If x < x′ in the ordering of variables, then f ′|x→0 = f ′|x→1 = f ′ since f ′ does not depend
on x. thus f ∗ f ′ = (¬x ∧ (f |x→0 ∗ f ′)) ∨ (x ∧ (f |x→1 ∗ f ′))

4. If x > x′, dualize the previous case.

2.4 Model Checking Tools

There are a wide variety of Model checking tools available nowadays, most of them accepts
system requirements or design (called models) and a property (called specification) that the final
system is expected to satisfy. The tool then outputs yes if the given model satisfies the required
specifications and generates a counterexample otherwise. The counterexample details why the
model doesn’t satisfy the specification. By studying the counterexample, we can pinpoint the
source of the error in the model, correct the model, and try again. The idea is that by ensuring
that the model satisfies enough system properties, we increase our confidence in the correctness
of the model. SPIN is a popular open-source software tool, used worldwide for the formal ver-
ification of distributed software systems [SP]. It was written by Gerard J. Holzmann [Hol04a]
and others, and has evolved for more than 15 years. SPIN is an automata-based model checker.
Systems to be verified are described in PROMELA (Process Meta Language), which supports
modeling of asynchronous distributed algorithms as non-deterministic automata. Properties to
be verified are expressed as Linear Temporal Logic (LTL) formulas, which are negated and then
converted into Büchi automata as part of the model-checking algorithm. In addition to model-
checking, SPIN can also operate as a simulator, following one possible execution path through
the system and presenting the resulting execution trace to the user.

NuSMV is a symbolic model checker developed as a joint project between the Formal Methods
group in the Automated Reasoning System division at ITC-IRST [Itl], the Model Checking

50

2.4 Model Checking Tools

group at Carnegie Mellon University , the Mechanized Reasoning Group at University of Genova
and the Mechanized Reasoning Group at University of Trento. NuSMV is a reimplementation
and extension of SMV [Itl], the first model checker based on BDDs. NuSMV has been designed
to be an open architecture for model checking, which can be reliably used for the verification
of industrial designs, as a core for custom verification tools, as a testbed for formal verification
techniques, and applied to other research areas.

The Unified Modeling Language provides two complementary notations, state machines and
collaborations, for the specification of dynamic system behavior. HUGO is designed to auto-
matically verify whether the interactions expressed by a collaboration can indeed be realized by
a set of state machines [SKM01]. HUGO compile state machines into a PROMELA model and
collaborations into set of Büchi automata (”never claims”). The model checker SPIN is called
upon to verify the model against the automata. For the purpose of my research, we focused on
the model checkers SPIN and HUGO, our case studies are represented using SPIN and HUGO.
The next subsections give more details about the tow model checkers.

2.4.1 SPIN Model Checker

The tool SPIN supports a high level language to specify systems descriptions, called PROMELA
(a PROcess MEta LAnguage), which is the specification language to model finite-state systems
allows the dynamic creation of concurrent processes, where Communication via message chan-
nels can be defined to be synchronous or asynchronous. SPIN has been used to trace logical
design errors in distributed systems design, such as operating systems, data communications
protocols, switching systems, concurrent algorithms, railway signaling protocols, etc. The tool
checks the logical consistency of a specification. It reports on deadlocks, unspecified receptions,
flags incompleteness, race conditions, and unwarranted assumptions about the relative speeds of
processes. SPIN works on-the-fly, which means that it avoids the need to pre-construct a global
state graph, or Kripke structure, as a prerequisite for the verification of system properties. SPIN
can be used as a full LTL model checking system, supporting all correctness requirements ex-
pressible in linear time temporal logic, but it can also be used as an efficient on-the-fly verifier
for more basic safety and liveness properties. Correctness properties can be specified as system
or process invariants (using assertions), as linear temporal logic requirements (LTL), as formal
Büchi Automata, or more broadly as general omega-regular properties in the syntax of never
claims.

51

2 Logical Foundations and Tools

2.4.1.1 Specification Language PROMELA

PROMELA model consists of type declarations, channel declarations, variable declarations,
process declarations and init process. A PROMELA model corresponds with usually very large,
but a finite transition system, so no unbounded data, no unbounded channels, no unbounded pro-
cesses and no unbounded process creation. Figure 2.9 explain the PROMELA model body. The
process type (proctype) consist of a name, a list of formal parameters, local variable declara-
tions and the body which consist of a sequence of statements. A process is defined by a proctype

bit sndB, rcvB ;
do
:: out ! MSG, sndB −>

in ? ACK, rcvB;
if
:: sndB == rcvB −> sndB = 1−sndB
:: else −> skip
fi

od

name formal parameters

local variables

Process body

body

create processes

mtype = {MSG, ACK}
chan toS = ...
chan toR = ...
bool flag;

proctype Sender (chan in; chan out) {

}

proctype Receiver () {
 . . .

}

init {

}
 . . .

Figure 2.9: PPROMELA body

definition, executes concurrently with all other processes, independent of speed of behavior,
communicate with other processes using global (shared) variables and channels. There may be
several processes of the same type. Each process has its own local state; process counter (lo-
cation within the proctype), contents of the local variables. Processes are created using the run
statement (which returns the process id). Processes can be created at any point in the execution
(within any process) and usually start their executing after the run statement. Processes can also
be created by adding active in front of the proctype declaration.

The following example presents a sample PROMELA program which calculate the factorial
value of a number n at the process fact, returning the result through the channel p [Hol].

proctype fact (int n; chan p) {

int result;

if

:: (n <= 1) -> p!1

52

2.4 Model Checking Tools

:: (n >= 2) ->

chan child = [1] of {int};

run fact(n-1, child);

child?result;

p!n*result;

fi

}

init {

int result;

chan child = [1] of {int};

run fact(5, child);

child?result

printf("result: $\%dn"$, result)

}

}

The statement p!1 means the sending of the constant one through the channel p. To receive a
value or a message from the head of a channel, a receive statement expressed in the symbol ?

is used such as child?result. The channel in the example can store up to one integer value be-
cause the size of each channel is declared as one. For synchronous communication, the channel
size has zero. There are three kinds of control flow constructs in PROMELA namely, selection,
repetition, and unconditional jumps. The if selection contains several execution sequence, each
preceded by a double colon. A sequence can be selected only if its first statement is executable.
The first statement is therefore called a guard. If none of the guards of the statement is exe-
cutable, the construct blocks. In the above example, the if construct has two sequences, but
only one sequence can be selected among the sequences. The repetition construct do conducts
the same mechanism as if. But it repeats the construct until it meets the break. Another way
to terminate the repetition is to jump to a label outside the statement goto. A label identifies a
unique control state and can appear before a statement.

By prefixing a sequence of statements enclosed in parentheses with the keyword atomic a user
can indicate that the sequence is to be executed as one indivisible unit, that is noninterleaved
with any other processes. Meanwhile, SPIN is able to express the correctness properties in the
PROMELA statements such as assert, end label, progress label, accept label, and never claims
[Hol93].
The following shows a result of validation of the factorial program using SPIN:

(Spin Version 4.1.3 -- 24 April 2004)

+ Partial Order Reduction

53

2 Logical Foundations and Tools

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

State-vector 124 byte, depth reached 27, errors: 0

28 states, stored

0 states, matched

28 transitions (= stored+matched)

0 atomic steps

hash conflicts: 0 (resolved)

(max size 2ˆ18 states)

unreached in proctype fact

(0 of 9 states)

unreached in proctype :init:

(0 of 4 states)

Internally, SPIN maintains three key data structure [HDR02]: statevector, depthfirst stack, and
seen set. The state-vector shows the size of a state which is composed of the value of local and
global variables, control flow location of each process, and the contents of message channels. In
the example, each state occupies 124 bytes.

The depth reached field represents the deepest stack depth reached during the depth first search
of the state space. The seen set holds the state already explored during the search. Thus, the
stored means the number of states stored in the seen set. The matched is the number of states
that were already found in the seen set.

2.4.1.2 PROMELA Specification of Two-Phase Commit Protocol

Two-phase commit is a transaction protocol designed for the complications that arise with dis-
tributed resource managers. With a two-phase commit protocol, the distributed transaction man-
ager employs a coordinator to manage the individual resource managers. One can specify the
protocol in two phases as following:

• Phase 1

54

2.4 Model Checking Tools

– Each participating resource manager coordinates local operations and forces all log
records out.

– If successful, respond ”OK”.

– If unsuccessful, either allow a time-out or respond ”OOPS”.

• Phase 2

– If all participants respond ”OK”.

∗ Coordinator instructs participating resource managers to ”COMMIT”.

∗ Participants complete operation writing the log record for the commit.

– Otherwise:

∗ Coordinator instructs participating resource managers to ”ROLLBACK”

∗ Participants complete their respective local undos

BEGIN

ABORT

ABORT
MUST

WAITING MUST
COMMIT COMMIT

VOTE−REQ
SEND VOTE−COMIT

RECEIVE ALL SEND
COMMIT

RECEIVE ANY

VOTE−ABORT

SEND ABORT

BEGIN CAN
COMMIT COMMIT

ABORT

DECIDE
COMMIT
RECEIVEVOTE−COMMIT

SEND

VOTE−REQ
RECEIVE

OR RECEIVE ABORT

SEND VOTE ABORT
RECEIVE
ABORT

PARTICIPANT

CO−ORDINATOR

Figure 2.10: Two-Phase Commit Protocol

Figure 2.10 explains the two-phase commit protocol as a finite state machine. The specification
of two-phase commit protocol in PROMELA is given as follows:

#define PARTICIPANTS 4

mtype = {START, COMMIT, ABORT, NODECISION}

55

2 Logical Foundations and Tools

chan pchannel[PARTICIPANTS] = [0] of {mtype},

cchannel = [0] of {mtype}

int globaldecision = NODECISION;

proctype participant (int id)

{

mtype decision = NODECISION;

pchannel [id] ? START ->

if

:: cchannel ! ABORT; decision = ABORT

:: cchannel ! COMMIT; pchannel[id] ? decision

fi; assert (decision == globaldecision)

}

init

{

int count = 0;

do

:: (count < PARTICIPANTS) -> run participant(count);

count++

:: (count == PARTICIPANTS) -> break

od; run coordinator();

}

proctype coordinator ()

{

int count1 = 0, count2 = 0, count3 = 0; mtype vote;

do

:: (count1 < PARTICIPANTS) ->

pchannel[count1] ! START;

count1++

:: (count1 == PARTICIPNATS) ->

break

od;

globaldecision = COMMIT;

do

:: (count2 < PARTICIPANT) ->

cchannel ? vote ; count2++ ;

if

:: (vote == ABORT) ->

56

2.4 Model Checking Tools

globaldecision = ABORT

:: (vote == COMMIT) ->

skip

fi

:: (count2 == PARTICIPANTS) ->

break

od;

do

:: (count3 < PARTICIPANTS) ->

pchannel[count3] ! globaldecision;

count3 ++

:: (count3 == PARTICIPANTS) ->

break

od

}

2.4.2 HUGO Model Checker

HUGO is a prototype tool designed to automatically verify whether the interactions expressed
by a collaboration diagram can indeed be realized by a set of state machines. Technically, this
is achieved by compiling state machines into a PROMELA model, and collaborations into
sets of Büchi automata 2 (” never claim”). The model checker SPIN is then called to verify
the model against the automata. The idea to analyze UML state machines and other variants of
Statecharts using model checking has been suggested before [Kwo00, LMM99, LP99, MLS97,
MLSH99], but HUGO is based on dynamic computation of Statechart behavior rather than a pre-
determined, static calculation of possible state transitions in response to input events. HUGO has
the advantage of being more modular, more flexible, and easier to adapt to variants of Statechart
semantics, including possible changes to the semantics of UML state machines.

Besides model checking, HUGO also supports animation and the generation of Java code from
UML state machine models, based on the same structure of implementation. HUGO provides
us also the correctness of the generated code with respect to the properties verified from the
PROMELA model. (see figure 2.11)

2A Büchi automata is the extension of a finite state machine to infinite inputs. It accepts an infinite input sequence,
iff there exists a run of the automaton (in case of a deterministic automaton, there is exactly one possible run)
which has infinitely many states in the set of final states. It is named after the Swiss mathematician Julius
Richard Büchi. Finite state machine (FSM) is a model of behavior composed of a finite number of states,
transitions between those states, and actions.

57

2 Logical Foundations and Tools

XMIUML − Editor

Hugo / Java

Hugo / Spin

Hugo / RT

.java

.pr

.ta

javac

uppaal

spin

simulation

code selection

(counter) example

verification

verification

(counter) example

Figure 2.11: HUGO model checker

Verifying ATM State Machines using HUGO We design our case study the state ma-
chines of ATM using UML notations with MagicDraw software as shown in fig 2.12, The class
diagram in this figure specifies two (active) classes ATM and Bank connected by an association
such that instances of Bank can refer to an instance of ATM via atm. Classes define attributes,
i.e., local variables of its instances, and operation and signals that may be invoked on instances
by call or send actions, respectively.
The state machine for class Bank is shown in figure 2.13, consisting of states and transitions

Figure 2.12: Two-Phase Commit Protocol

between states. States can be simple (such as Idle and PINCorrect) or composite (such as
V erifying); a concurrent composite state contains several orthogonal regions, separated by
dashed lines. Moreover, fork and join (pseudo−) states, shown as bars, synchronize several
transitions to and from orthogonal regions; junction (pseudo-)states, represented as filled cir-
cles, chain together multiple transitions. Transitions between states are triggered by events.
Transitions may also be guarded by conditions and specify actions to be executed or events

58

2.4 Model Checking Tools

to be emitted when the transition is fired. For example, the transition leading from state Idle
to the fork pseudostate requires signal verifyPIN to be present; the transition branch from
V erifyingCard to CardV alid requires the guard cardV alid to be true; the transition branches
from CardV alid to Idle set the Bank attribute cardV alid.

Events may also be emitted by entry and exit actions that are executed when a state is ac-
tivated or deactivated. Transitions without an explicit trigger (e.g. the transition leaving
DispenseMoney), are called completion transitions and are triggered by completion events
which are emitted when a state completes all its internal activities.

Figure 2.13: State Machine of the Bank in ATM

The state machine for class ATM is shown in figure 2.14, it consists of some simple states (like
CardEntry and a composite state (GivingMoney). Transitions in this state machines have also
triggers like (reenterPIN) or events like (bank.verifyPIN()) or (bank.done). This example
of ATM simulate the interaction of an ATM with a single hypothetical user and a bank computer.
The simulation focuses on card and PIN validation, after the user has entered his bank card, the
ATM requests a PIN to be entered and then asks the bank to verify the entry, waiting for a reply.
If both card and PIN are valid, the ATM may proceed to dispense money; if the PIN is invalid the
ATM will have the user reenter the PIN; if the card is invalid the ATM will be requested to abort
the transaction and return the card immediately (this ATM does not keep invalid cards). After
having retrieved his card, the user may reenter the same card as many times as he wishes or end

59

2 Logical Foundations and Tools

Figure 2.14: State Machine of the atm in ATM

the interaction. As shown in Fig. 2.13, the bank computer validates the bank card concurrently
to the PIN code. If the card is not valid, the concurrent validation is exited immediately and
the ATM is requested to abort the transaction. The completion transition leaving VerifyingPIN
simulates any possible PIN entry by branching non-deterministically into the states PINCorrect
and PINIncorrect. The two join transitions evaluate the results of the concurrent validations.
If an incorrect PIN has been entered and the card is valid, the counter of invalid PIN entries
is incremented; however, if the counter numIncorrect exceeded a maximum value, the card
is invalidated and the transaction aborted. In contrast, if a correct PIN has been entered, the
counter is reset to zero [SKM01].

Verifying Collaborations HUGO is mainly intended to verify whether certain specified
collaborations are indeed feasible for the required state machines. To do so, it generates Büchi
automata that accept all executions that conform to the collaboration, and calls on SPIN to verify
that no execution of the model is accepted by these ”never claims”. If the collaboration is possi-
ble, SPIN will produce a ”counter example” that allows the successful execution to be replayed.
HUGO/RT reads UML models in either XMI or UTE 3 format. We discuss in Appendix A the
representation of our case study UML state machine of ATM as UTE textual format.

We can add our own collaboration and the desired properties at the end of the UTE specification
to show if the properties are indeed verified in our case study or not. For example we can add
the following text inside the UTE file.

3The UTE is a proprietary UML text format reflects all UML features that are handled by HUGO/RT.

60

2.4 Model Checking Tools

collaboration test {

object bank : Bank {

atm = atm;

}

object atm : ATM {

bank = bank;

}

interaction success {

atm -> bank : verifyPIN();

bank -> atm : reenterPIN();

atm -> bank : verifyPIN();

bank -> atm : pinVerified();

}

assertion deadlockFree {

AG not deadlock;

}

}

The property success in the previous text check if the bank sends the message pinVerified
after successfully verifying the pin number of the card.

HUGO first compiles the UML model into PROMELA code. Given a configuration of instances,
each with its corresponding state machine, it will use SPIN to check whether the model contains
any deadlocks. As we add also our collaboration to be satisfied, HUGO generates never claims
and calls on SPIN to generate an analyzer and run the verification. If SPIN finds a way to
satisfy the collaboration, it will generate a trail, and HUGO causes that trail to be executed.
The following text is the result of SPIN for the exhaustive search proving that the interaction
(success) specified in the collaboration is indeed impossible.

(Spin Version 4.1.3 -- 24 April 2004)

+ Partial Order Reduction

Full statespace search for:

never claim - (not selected)

assertion violations - (disabled by -A flag)

cycle checks - (disabled by -DSAFETY)

invalid end states +

State-vector 60 byte, depth reached 2, errors: 0

3 states, stored

61

2 Logical Foundations and Tools

0 states, matched

3 transitions (= stored+matched)

0 atomic steps

hash conflicts: 0 (resolved)

(max size 2ˆ19 states)

Stats on memory usage (in Megabytes):

0.000 equivalent memory usage for states

0.266 actual memory usage for states

(unsuccessful compression: 130545.10%)

State-vector as stored =

88763 byte + 8 byte overhead

2.097 memory used for hash table (-w19)

0.320 memory used for DFS stack (-m10000)

2.622 total actual memory usage

The result shows that the added interaction ”success” is valid in the ATM state machine model.
The assertion deadlock is also valid in the case study.

let’s try to write a new assertion that is not valid in our model:

interaction failing {

atm -> bank : verifyPIN();

bank -> atm : abort();

atm -> bank : verifyPIN();

bank -> atm : pinVerified();

}

Now if we want to use HUGO to see if this property is valid in the atm model or not, we have to
write the following command:

hugort spin -i = failing models/models/atm.ute

It means, satisfy the property failing in the given model atm using SPIN model checker. The
result of HUGO is: Property is not satisfied

62

2.5 Result and Discussion

2.5 Result and Discussion

We introduced in this chapter the basic concepts of propositional logic, temporal logic and model
checking theories. Two case studies are also presented; automatic teller machine and two-phase
commit protocol. Model checker tools like HUGO and SPIN are used to verify if the desired
properties in our case studies are valid or not.

The UML is widely used for the description of object-oriented software designs and provides
an excellent environment for implementation the software. Therefore we represented our case
studies as UML state machines and we used HUGO model checker to verify the desired proper-
ties of the case studies. HUGO takes the standard XMI files as input and translates them into an
intermediate textual specification language called UTE. The desired properties are also specified
in the UTE language. HUGO uses the SPIN model checker for verifying the required behavior.

63

2 Logical Foundations and Tools

64

3 Graph Language

3.1 Introduction

Software architecture and design are usually modeled and represented by informal diagrams
such as Unified Modeling Languages (UML) diagrams. While these graphic notations are easy
to understand and are convenient to use, they are not amenable to automated verification and
transformation. Graphic notations are widely used in software design and development. These
notations can greatly help on the modeling and representing of software architecture [CES86]
and design [Lam94]. Nowadays graph grammars enable a high level of abstraction of software
architectures and form a basis for various analysis and transformations. Furthermore, software
verifications are also performed through these new concepts of graph grammar and graph trans-
formation system [KZDS].
The research area of graph grammars and graph transformations dates back to 1970 [Roz97]. It
combines ideas from graph theory, algebra, logic, and category theory. Its methods, techniques,
and results have already been applied in many fields of computer science [EEPT06]. This wide
applicability is due to the fact that graphs are very natural way to explain complex situations
on an application area, whereas graph transformations bring theses situations to be built and
interpreted. The field of graph grammars applies formal languages theory to the specification
of graphs. A graph grammar consists of a set of productions that can be used to construct valid
sentences in a graph (network) language. Graph transformations associated with graph gram-
mars are well-suited for modeling the dynamic behavior of Systems [Roz97]. Therefore graph
grammars and graph transformations become attractive as a programming paradigm for software
and graphical interfaces.

Graph transformation has originally evolved in reaction to shortcomings in the expressiveness
of classical approaches to rewriting, like Chomsky grammars 1 [Cho56] and term rewriting, to
deal with non-linear structures. The first proposal, appearing in the late sixties and early sev-
enties [PA69, Pra71] are concerned with rule-based image re-cognation, translation of diagram
languages, etc. In Particular, graphs provide a simple and a powerful approach to a variety of

1This hierarchy of grammars was described by Noam Chomsky in 1956. It is also named after Marcel-Paul
Schützenberger who played a crucial role in the development of the theory of formal languages.

65

3 Graph Language

problems that are typical to software engineering [GJM91a].

A graph transformation rule describe the evolution of models in a visual language in a general
way. Simply, a graph transformation rule r = (LHS, RHS, NAC) contains a left-hand
side graph LHS, a right-hand side graph RHS, and negative application condition NAC. The
application of a rule r to a host model (instance graph) M replaces a matching of the LHS in M
by an image of the RHS. This is performed in two phases:

• Pattern matching : Find a match of LHS in the model M (by graph pattern matching),
then check the negative application condition NAC 2 [EEHP04].

• Updating: Remove a part of the model M that can be mapped to LHS but not to RHS
yielding to the context model, then glue the context model with an image of the RHS
by adding new objects and links (that can be mapped to the RHS but not to the LHS) to
obtain the derived model M ′

Example: Vehicle routine systems commonly provide a mechanism to reroute a customer. Fig-
ure 3.1 shows a production of a graph grammar for rerouting. As we see in the left side of this
figure, we can reroute the customer a which is placed between b and c to another route between
d and e. On the right hand side, the result of rerouting a is depicted by the graph. Applying the
production rule to a network (matching the left hand side of the rule) performs this rerouting of
a.

a

e

NAC RHSLHS

To Here

a

c

b

d
e

f

Reroute
This
Customer

c

b

d
e

f

a

Figure 3.1: The graph grammar production

This production has a negative application condition NAC, which expresses that the process
cannot be done if there is already route between the node a and e.

2We discuss the negative application condition in the next sections

66

3.1 Introduction

This production can be applied on the model as we presented in figure 3.2. Suppose that in the
pattern matching phase, a, b and c of the production are mapped to a, b and c of the network,
respectively; thus the idea of pattern matching has been terminated successfully. Since the
selected production does not have any associated requests and the negative application condition
does not prohibit the execution of the rule. In the updating stage, the edges between b and a and
between a and c are removed from the model, and new edges between d and a and also between
a and e are created.

a

c

b

d
e

f

n

o

l

m

k
c

b

d
e

f

n

o

l

m

k

a

Before The Transformation After The Transformation

Figure 3.2: Implementing the production at the network graph

Definition (Graph) A graph G = (V,E, source, target) consists of a set V of nodes (also
called vertices), E of edges and two functions source, target : E → V , the source and target
functions.

E V

s

t

Example (Graph) The graph GS = (VS, ES, sS, tS), with nodes set VS = {u, v, x, y}, edge
set ES = {a, b}, source function sS : ES → VS : a, b 7→ u and target function tS : ES → VS :

a, b 7→ v, is represented as shown in figure 3.3:

Gs

. ...ux v

y

a

b

Figure 3.3: Example of graph with edges and vertices

67

3 Graph Language

Definition (graph morphism) graph morphism Given graphsG1, G2 withGi = (Vi, Ei, si,

ti) for i = 1, 2, a graph morphism f : G1 → G2, f = (fV , fE) consists of tow functions fV :

V1 → V2 and fE : E1 → E2 that preserve the source and target functions, i.e. fV ◦ s1 = s2 ◦ fE

and fV ◦ t1 = t2 o fE:

E V

VE

s

t

t

1

1

2

11

22

f
E V

f

s2

In the next section we discuss the process of creating the graph models from the observed sce-
nario. Section 3.3 provides more advance concepts to create the rules for the transformation
processes from the observed scenario. We illustrate the mechanism of transformations in sec-
tion 3.4, and section 3.5 provides some formal definitions of graph constraints. Finally section
3.6 discusses the tools that are useful to represent our examples and case studies. Some exam-
ples are also presented in this chapter to give a better understanding of graph transformation
approaches.

3.2 From Scenario to Graph Language

Business applications support business processes, processes which can be described using a
variety of process models (hence the term). It’s important in the modeling stage to extract the
concepts from concrete objects, or rules from observed behavior. We can create graph models
after our well-understanding to the objects of the system and the way that make these objects
active. In this section we illustrate in details how we define our graph models from the observed
scenarios.

3.2.1 The Scenario

Actions, Events, Entries, Exists ... etc, are concepts of scenario. The scenario is a method that
some organizations use to make flexible long-term plans or is a synthetic description of an event
or series of actions. Scenario should represent a situation that can be encountered in the real
world. Avoiding this discussion, we illustrate the forms of scenario by means of a simple video
game of PacMan. The insights gained from this example is to show how we build our graph
model from the given scenario and to explain the main concepts of graph grammar and graph
transformation systems.

68

3.2 From Scenario to Graph Language

Figure 3.4 exemplifies the concepts and behaviors of PacMan game. Imagine that you are Pac-
Man, and you must eat all the small dots to get to the next level. You must also keep away from
the ghosts, if they take you, you lose one life, unless you have eaten a large dot, then you can (for
a limited amount of time) chase and eat the ghosts. Our observation of the game is represented

PacMan is allowed to move right, left,
up and down.

left, up and down.

A level, or board, is finished when all dots
are eaten.

The Ghosts are allowed also to move right,

maze in an attempt to eat the PacMan.
Four Ghosts like monsters also wander the

Figure 3.4: The scenario of PacMan video game

by the scenario as shown in figure 3.5 in three successive parts. Conceptual where we have to
notice that there are three types of characters. PacMan, Ghost, and Marble, each of which has
several instances in the scenario. This conceptual part and the corresponding relation between a
concept (type) and it’s instances is the first main basic idea in the graph transformation systems.

Rules can be derived systematically by determining their scope in the movement and cutting
off (abstracting from) the irrelevant context (see figure 3.5). For the rules collect and kill in
this figure, their scope is given when the PacMan eat the marble and when the Ghost kill the
PacMan, respectively.

The idea of extracting rules as general behavior descriptions from sample state transformation
action is called programming by example. Programming by example provides a perfect example
of the second basic idea of graph transformation: the definition of rules as specifications of state
transformations.

69

3 Graph Language

Rules

Concepts

collect
kill

Scenario

Figure 3.5: The scenario of PacMan video game

3.2.2 Type and Instance Graph

Graphs are used to specify software by distinguishing individual components and their relation-
ships. A graph consists of a set of vertices V and a set of edges E such that each edge e in E
has a source and a target vertex s(e) and t(e) in V , respectively. Graphs can represent States
by modeling concrete entities as vertices and relations between these entities as edges. In our
model, The type of vertices; P : PacMan,G : Ghost,M : Marble represent the corresponding
characters in the scenario. In other words P is a vertex from type PacMan, G is a also a vertex
from type Ghost and M is a vertex from type Marble. We need also another type of vertex to
represent fields, i.e., the open spaces in the scenario where characters can be located. Edges
represent the current location of characters as well as the neighborhood relation of fields.

In modeling this scenario we have implicitly assumed that vertices have a type, like F1 to F4 of
figure 5.22 having type of Field. The type of a vertex (or an edge) represents the conceptual part
of the corresponding real-world entity. The collection of these concepts may be represented as
a type graph. At the top side of figure 5.22 we shows an example of a type graph representing
the conceptual part of the PacMan game, whereas at the bottom side is an instance graph of this
game. The relation between concepts and their occurrences in the scenario is formally captured
by the notion of typed graphs: TG which represents the type (concept) part of the scenario and
it’s instance graphs the individual states in the scenario.

70

3.2 From Scenario to Graph Language

G:Ghost
P:PacMan
marbles = 3

M:MarblesF1:Field

F2:Field

F3:Field

F4:Field

Field

Marble

marbles: int
PacMan

Ghost

represent as

represent as

Type Graph

Instance Graph

Figure 3.6: Type and instance graphs from the scenario

We get the concepts of type and instance graphs and their relationship from the notation of
class and object diagrams in the Unified Modeling Language (UML), i.e., o : C represents a
vertex o (like an object) of type C (like the class). In addition to vertices and edges, graphs may
contain attributes to store values of pre-defined data types. In our example, this notion is used to
represents the number of marbles where PacMan has collected before his movement to the next
state. Also attributes have a type-level declaration a : T , where a is the name of the attribute
and T is the data type of this attribute, and an instance-level occurrence a = v where attribute a
is assigned to value v

The relation between type and instance level is determined as following:

• For each vertex o : C in the instance graph there must a vertex type C in the type graph;

• For each edge between objects o1 : C1 and o2 : C2 there must be a corresponding edge
type in the type graph between vertex types C1 and C2;

• For each attribute value a = v associated with a vertex o : C in an instance graph, there
must be a corresponding declaration a : T in vertex type C such that v is of data type T ;

Definition (typed graph) A type graph is a distinguished graph TG = (VTG, ETG, sTG,

tTG) . VTG and ETG are called the vertex and the edge type alphabets, respectively. A tuple
(G, type) of a graph G together with a graph morphism type : G → TG is the called a typed
graph

71

3 Graph Language

Definition (typed graph morphism) Given typed graphs GT
1 = (G1, type1) and GT

2 =

(G2, type2), a typed graph morphism f : GT
1 → GT

2 is a graph morphism f : G1 → G2 such
that type2 ◦ f = type1 as explained in figure 3.7.

G G 1
2

TG

type type
=

1 2

f

Figure 3.7: Type graph morphism

In order to model attributed graphs with attributes for nodes and edges, we have to extend the
classical notion of graphs to E−graphs. An E−graph has two different kinds of nodes, repre-
senting the graph and data nodes, and three kind of edges, the usual graph edges and special
edges used for the node and edge attribution. The differences between E−graphs, graphs, and
labeled graphs are discussed below.

Definition (E−graph) An E−graph G with G = (VG, VD, EG, ENA, EEA, (sourcej,

targetj)j∈{G,NA,EA}) consists of the sets

• VG and VD, called the graph and data nodes (or vertices), respectively;

• EG, ENA and EEA called the graph, node attribute, and edge attribute edges, respectively;

and the source and target functions

• sourceG : EG → VG, targetG : EG → VG for graph edges;

• sourceNA : ENA → VG, targetNA : ENA → VD for node attribute edges; and

• sourceEA : EEA → EG, targetEA : EEA → VD for edge attribute edges:

Figure 3.8 illustrate the E−graph model.

Definition (E−graph morphism) Consider the E−graphs G1 and G2 with Gk = (VGk ,

VDk , EGk , ENAk , EEAk , (sourcejk , targetjk)j∈{G,NA,EA}) for k = 1, 2. An E−graph mor-
phism f : G1 → G2 is a tuple (fVG

, fVD
, fEG

, fENA
, fEEA

) with fVi
: Vi1 → Vi2 and fEj

:

Ej1 → Ej2 for i ∈ {G,D}, j ∈ {G,NA,EA} such that f commutes with all source and target
functions, for example fVG

◦ source1G = source2G ◦ fEG
.

72

3.2 From Scenario to Graph Language

EG

EEA

VD

VG

E NA

source

target

target

source

target

G

EA

EA
G

NA

Figure 3.8: The E graph

An attributed graph is an E−graph combined with an algebra over a data signature DSIG 3. In
the signature, we distinguish a set of attribute value sorts. The corresponding carrier sets in the
algebra can be used for the attribution.

Definition (attributed graph and attributed graph morphism) LetDSIG = (SD, OPD)

be a data signature with attribute value sorts S ′
D ⊆ SD. An attributed graph AG = (G,D) con-

sists of an E−graph G together with a DSIG− algebra D such that ∪s∈S
′
D
DS = VD.

For two attributed graphs AG1 = (G1, D1) and AG2 = (G2, D2), an attributed graph morphism
f : AG1 → AG2 is a pair f = (fG, fD) with an E− graph morphism fG : G1 → G2 and
an algebra homomorphism fD : D1 → D2 such that (1) commutes for all s ∈ S

′
D, where the

vertical arrows below are inclusions:

f D,s

fG,VD

D

V

D

V

1
s

1
D

2
s

2
D

(1)

Attributed graph morphisms are used later for transformations but they are also the basis for
defining a type graph, which restricts the structure of graphs in a system.

Example (attributed graph) Let’s try to represent the states PINEntry, Verification and
transition between these two states of the case study ATM state machines as attributed graph. In
figure 3.9 we represent the state PINEntry and Verification as nodes in the graph. The transitions
between PINEntry and Verification is also represented as nodes in the attributed graph. Figure
3.9 shows that every node has a special attribute refers to the name of this node. For example, the
state PINEntry in the ATM state machine is represented as a node from type State in attributed
graph, and this node has an attribute called St name =′′ PINEntry′′ from type string. The
same strategy is also implemented for other states and transitions in ATM state machines.

3Consider a data signature DSIG = < S, OP > with attribute value sorts S and a graph G =< V, E >.

73

3 Graph Language

State

St_name = "PINEntry"

Transition

T_name="VerPin"

Verification"St_name="

State

trigger

source ..incoming

target...outgoing

source ..incoming

target...outgoing

effectTransition

T_name= "PinVer"

Activity

Ac_name="bank.verifyPIN()"

Trigger

Tr_name="reenterPIN"

Figure 3.9: Part of ATM state machines as attributed graph

Definition (Typed Attributed Graph and Typed Attributed Graph Morphism) Given
a data signature DSIG, an attributed type graph is an attributed graph ATG = (TG,Z),
where Z is the final DSIG−algebra. A typed attributed graph (AG, t) over ATG consists
of an attributed graph AG together with an attributed graph morphism t : AG → ATG. A
typed attributed graph morphism f : (AG1, t1) → (AG2, t2) is an attributed graph morphism
f : AG1 → AG2 such that t2 ◦ f = t1. The following examples of attributed graphs are shown

AG 1

t1

t2

AG 2

ATG
f

in a compact notation according to UML class diagrams, where the attributes are written inside
the corresponding nodes or edges, respectively.

This notation is also used in the graph transformation tool AGG4 for attributed graph grammars,
which is used in our case studies as described later.

Example This example of attributed type graph (figure 3.10) shows the representation of
states and transitions of the case study ATM state machines as nodes and edges in the type
graph, respectively. Every node has a type (type of the node) and a special attribute refers to the
name of the node.

4AGG: is abbreviation for Attributed Graph Grammar, which is a tool for graph grammar implementations, AGG
is discussed in the last section.

74

3.3 From Scenario to Rules and Transformations

source ..incoming

target...outgoing

exit

quardtrigger

effect

Activity

Constraint

String Co_name

Transition

Trigger

String Ac_name

doActivity

entry

String T_name

String Tr_name

String St_name

State

Figure 3.10: Part of ATM state machines as attributed type graph

3.3 From Scenario to Rules and Transformations

As we discussed in the previous section, we could represent the states of scenario as instance
graph over a type graph. Let’s try to represent the actions between the states in the scenario.
If we can determine an instance graph and transform it to another instance graph, we extract
actually the rule which represent the transformation of this step of movement. Following the
idea of extracting rules from transformation scenario, figure 3.11 shows a graph representation
of the behavioral part of the scenario. The rule is achieved by focusing on the relevant subgraph

G:GhostG:Ghost
P:PacMan
marbles = 3

M:Marbles

Instance Graph
to another

F1:Field

F2:Field

F3:Field

F4:Field

P:PacMan

Instance Graph

F1:Field

F2:Field

F3:Field

F4:Field

marble = 4

Figure 3.11: Representing the behavioral part as graph transformation

in the source state and observing its changes in the target state. But besides cutting off context,
we also abstract from the concrete attribute values replacing, e.g., marble = 4. The marble
number is increased by one as we show in figure 3.11. The resulting rules are shown in the right
hand side of this figure, with the rule for moving PacMan one step to the bottom.

Formally, fixing a type graph TG, a graph transformation rule p : L→ R consists of a name p

75

3 Graph Language

and a pair of instance graphs over TG whose structure is compatible 5. The left-hand side L rep-
resents the pre-conditions of the rule while the right-hand side R describes the post-conditions.
Rules do also have a constructive meaning, besides being generalizations of transformation, they
generate transformations by replacing in a given graph an occurrence of the left-hand side with
a copy of the right-hand side. Thus, a graph transformation from a pre-state G to a post-state
H , as shown in figure 3.12 denoted by G =⇒p(o) H , is performed in three main steps:

• Find an occurrence oL of the left-hand side L in the given graph G.

• Delete from G all vertices and edges matched by L�R.

• Paste to the result a copy of R�L, yielding the derived graph H .

P:PacMan
marbles = m+1

M1:MarblesF1:Field

P:PacMan
marbles = 3

F2:Field

F3:Field
M2:Marbles

F1:Field

F2:Field

F3:Field

P:PacMan
marbles = 4

R
P:PacMan
marbles = m

G H

M2:Marbles

f1:Field f2:Field f1:Field f2:Field

m1:Marbles

p −−> P, m1 −−> M1

f1 −−> F2, f2 −−> F1 occurenceoccurence

L

Figure 3.12: Creating graph transformation from behavioral scenario

In figure 3.12 the occurrence oL of the rule’s left-hand side is indicated next to the left downward
arrow. The variable marble representing the value of the marble attribute before the step is
assigned value 3. The transformation deletes the edges from PacMan P to Field F2, because it
is matched by the edge from F1 to p in L which does not occur in R. The same applies to the
value 3 of the marbles attributes of vertex P . To the graph obtained after deletion, we paste a
copy of the edge from p to f2 in R. The occurrence oL tells us where this edge must be added,
i.e., to the images of p and f2, P and F1, respectively. At the same time, the new attribute value
marbles = 3 + 1 = 4 is computed from the memorized old value m = 3.

5Vertices with the same identity in L and R have the same type and attributes, and edges with the same identity
have the same types, source, and target

76

3.3 From Scenario to Rules and Transformations

However, this is not the only possibility for applying this rule. Another option would be to map
f1 → F2, f2 → F3, p → P , m → M2, collecting the lower marble instead. Also, we could
have chosen to apply the movePM rule. That means, there are two causes of non-determinism:
choosing the rule and the occurrence at which it is applied.

The total behavior of our PacMan game is given by the set of all sequences of consecutive
transformation steps G0 → ... → Gn using the rule of the game and starting from a valid
instance graph G0. As a simple example, we recall the two-step sequence in figure 3.13 which
is re-generated by application of the two previously extracted rules. Note that all graphs of a
sequence must be valid instances of the fixed type graph TG.

F3:Field

F4:Field

G:Ghost

M:Marbles

P:PacMan
marbles = 3

F1:Field

F2:Field

F3:Field

F4:Field

G:Ghost

P:PacMan
marbles = 4

F1:Field

F2:Field

F3:Field

F4:Field

G:Ghost

marbles:int
PacMan

Field

Marble

Ghost

collect

G1G0

G2

F1:Field

F2:Field

kill
typing

typing

typing

Type Graph (TG)

Figure 3.13: The total behavior of PacMan game

Definitions (Graph Production) A graph productions p = (L ←l K →r R) consists
of graphs L, K, and R, called the left-hand side, the interface, and the right-hand side of P
respectively, and two injective graph morphisms l : K → L and r : K → R.

Given a graph production p, the inverse production is defined by p−1 = (R←r K →l L)

Definitions (Graph Grammar) A graph grammar GG is a pair GG =< (p : L ←l K →r

R)p∈P , G0 > where the first component is a family of productions indexed by production names
in P , and G0 is the start graph.

77

3 Graph Language

Example Our example specifies the dining philosophers problem [oP]. Five philosophers sit
around a circular table. Each philosopher spends his time alternatively thinking and eating. In
the center of the table is a large plate of noodles. A philosopher needs two forks to eat from
the noodles. Unfortunately, the philosophers can only afford five forks. One fork is placed be-
tween each pair of philosophers and they agree that each will only use the fork to his immediate
right and left. The graph grammar which models Dinning Philosophers problem represented
in figure 3.14 as Attributed graph includes five productions, named getHungry, getLeftFork,
getRightFork, ReleaseFork, FinishEating, respectively. Every philosopher could changed to sta-
tus hungry using the production getHungry. Each philosopher may claim a fork next to her using
the productions getLeftFork and getRightFork. Once a hungry philosopher has two forks in her
possession, she may start eating. Finally, an eating philosopher can release her forks at any time
and return to thinking using productions ReleaseFork and FinishEating. If each of the philoso-

Phil
Status = "think"

ForkFork

Phil
Status = "think"

Fork

Phil
Status = "think"

Phil
Status = "think"

Fork

Phil
Status = "think"

Fork

rightleft

rightleft

left

right

right

left

left

right

The Start Graph

Phil
Status = "hasR"

Fork Fork

right

Phil
Status = "think"

hold

right

Production ReleaseFork

Phil
Status = "eat"

Phil
Status = "hasR"

ForkFork

Phil
Status = "hasL"

Fork Fork

Phil
Status = "think"

Phil
Status = "hungry"

Phil
Status = "hasL"

Fork Fork

Phil
Status = "eat"

right
hold

right

Phil
Status = "hungry"

leftleft

hold

Production FinishEating

left left hold

Production getLeftFork

Production getRightFork

Production getHungry

Figure 3.14: Productions and graph grammars of dinning philosopher problem

phers picks up the fork to her left then no further productions are possible and the philosophers
starve to death. In order to avoid deadlock, one specifies that each of the initial actions can be
reversed 6.

6In this case, we have to implement the reversing of the initial actions as new grammar in the philosopher example.

78

3.4 Graph Transformation

3.4 Graph Transformation

For the application of graph transformation rule to a graph, we need a technique to glue graphs
together along a common subgraph, Intuitively, we use this common subgraph and add all other
nodes and edges from both graphs. The idea of a pushout generalizes the gluing construction
in the sense of category theory, i.e. a pushout object emerges from gluing two objects along a
common subobject.

3.4.1 Gluing Condition

Within the algebraic approach and the application of graph transformation, we will only have a
valid graph transformation if the match of the left graph L of the rule of transformation in the
given graph G satisfies the gluing condition. The gluing condition is verified if and only if the
two sub conditions are valid:

• The identification condition, this condition will be satisfied if two different elements x
and y of the left graph L either are mapped injectively (none two different elements of
the definition quantity are mapped to the same element of the target quantity) or may only
not be mapped injectively if these two elements are not deleted by the transformation rule.
Formally O(x) = O(y) only if x = y or x, y ∈ L

⋂
R

• The dangling condition, this condition will be satisfied if an edge e of M − g(L) neither
has its source node nor its target node in g(L)− g(K). That means that, if we delete one
node, we have to delete all edges that are adjacent to this node.

The addition of these two sub conditions forms the gluing condition [Kwo00]

3.4.2 Double-Pushout Approach DPO

The double−pushout approach, shortly called DPO, is a sub approach of the algebraic approach
and is the frequently used approach for graph transformations. The DPO adopts a specific rule
for the graph transformation which answer two important questions in graph transformations:

• which parts are replaced by which other?

• which kinds of transformations are allowed?

From the perspective of the DPO a graph rewriting rule is a pair of morphisms in the category of
graphs with total graph morphisms as arrows, specified by the formal rule r = (L← K → R).

79

3 Graph Language

The graphs L and R are respectively called as we already also mentioned, the left-hand side and
the right-hand side of the rule. The graph K is often called gluing graph or interface graph. A
rewriting step with the application of the DPO−production is defined as a pair (L ← K → R)

or (L ⊇ K ⊆ R) of two graph morphisms as arrows in the category of graphs with an interface
graph K, where K → L is injective. Because of that the interface graph K is a real subgraph of
L as well as of R [CER79, EKRR91]. A rule application r = (L ⊇ K ⊆ R) can be depicted

L R L R

G

OL

Figure 3.15: Mechanism to find a match

by the following diagrams. They will illustrate the formal step of a graph rewriting and will
describe why this approach is called double−pushout approach. The gluing graph K is rightly
described in the diagrams as L ∩ R (see Fig. 3.15). The graph morphism OL in the shown

L R

L R

L R

G D

OOL

Figure 3.16: building the temporary graph

diagram models an occurrence of L in G and is called the match. Practical understanding of this
is that L is a subgraph that is matched from G and after a match is found, the left side of the rule
(L) is replaced by the right side of the rule (R) in the host graph G where K as L ∩ R serves as
some kind of interface.

L R

L R

L R

G D H

O OL OR

Figure 3.17: construction of the final graph

If a match is found (see Fig. 3.15) there are two steps to achieve the graph rewriting. First you
have to build a temporary graph (D) as a subgraph of the host graph G by deleting the matching

80

3.4 Graph Transformation

elements 7 (figure 3.16). Finally we have to build the final transformed graph H by adding the
elements of R− L

⋂
R to the built temporary graph D (see Fig. 3.17).

Formally:

• The single graph morphisms OL
T

R : L
⋂
R → D and OR: R → H are given by

OL
T

R(v) = OL(v) for all v ∈ VL
T

R

• OL
T

R(e) = OL(e) for all e ∈ EL
T

R

• OR(v) = OL

⋂
R(v) if v ∈ VL

⋂
R.

• OR(v) = v if v ∈ VR − VL
T

R

• OR(e) = OL
T

R(e) if e ∈ EL
T

R

• OR(e) = e if e ∈ ER − EL
T

R [KKHK].

3.4.3 Single-Pushout Approach SPO

In contrast to the recently mentioned DPO, a graph rewriting rule of the SPO approach is only
a single morphism and therefore only a single derivation of the host graph G with context again
to the category of graphs.

The SPO is often used in cases where the interface graphK as in theDPO is only a set of nodes
but without any adjacent edges. Then we do not have to look at the edges for the graph rewriting
step. We can use the graphical rule representation without an interface graph by depicting only
the graphs L and R. Thus a rewriting step is only defined by a single pushout diagram with a
single graph morphism as arrows as the formal rule (production) r : L→ R [AGG].

L

H

p

m m*

p*

R

G

Figure 3.18: building the temporary graph

Figure 3.18 illustrate the practical understanding of the SPO. We perform the rewriting step only
a single derivation (morphism) as a single−pushout from the host graph L to the target graph R.

7The dangling condition within the gluing condition ensures that D is graph

81

3 Graph Language

Definition (Graph Transformation) Given a (typed) graph production p = (L ←l K →r

R) and a (typed) graph G with a (typed) graph morphism m : L ← G, called the match,
a direct (typed) graph transformation G ⇒p,m H from G to a (typed) graph H is given by the
following double-pushout (DPO) diagram, where (1) and (2) are pushout in the categoryGraphs
or GraphsTG , respectively :

KL R

G D H

l

f

(1) k n(2)

r

m

g

A sequence G0 ⇒ ... ⇒ Gn of direct (type) graph transformations is called a (typed) graph
transformation and is denoted by G0 ⇒∗ Gn. For n = 0, we have the identical (typed) graph
transformation G0

∼= G
′
0, because pushout and hence also direct graph transformations are only

unique up to isomorphism.

The application of a production to a graph G can be reversed by it’s inverse production. The
result is equal or at least isomorphic to the original graph G

Definition (Graph Language) A graph transformation system GTS = (P) consists of a
set of graph productions P .

A typed graph transformation system GRS = (TG, P) consists of a type graph TG and a set of
typed graph productions P .

A (typed) graph grammar GG = (GTS, S) consists of a (typed) graph transformation system
GTS and a (typed) start graph S.

The (typed) graph languageL ofGG is defined byL = {G|∃ (typed) graph transformation S →∗

G} We shall use the abbreviation ”GT system” for ”graph and typed graph transformations
system”.

3.5 Constraint

Usually we implement the constraints at the host graphs, However type graphs are not expressive
enough to define such restrictions. For example, in order to model the PacMan gameboards, it
makes sense to require that each Ghost, PacMan, or Marble vertex is linked to exactly one Filed
vertex. Such constraints need to be expressed by additional cardinality annotations as shown in
the type graph of Fig.3.19.

82

3.5 Constraint

More complex constraints could mean with the (non-) existence of certain patterns, including
paths, cycles, .. etc. They can be expressed in terms of logic formulae or as graphical constraints.
As we show in figure 9, the constraint expresses by means of a forbidden subgraph that there
must not be a Ghost and a PacMan situated at the same Field. In order to satisfy the constraint,

G:Ghost P:PacMan

F:Field

Figure 3.19: The constraint as forbidden subgraph

a graph G must not contain a subgraph isomorphic to it. In first order logic, the same property
could read ¬∃g : Ghost; p : PacMan; f : Filed.at(g, f) ∧ at(p, f).

Definition (Graph Constraint) An atomic (typed) graph constraint is of the form PC(a),
where a : P → C is a (typed) graph morphism.

A (typed) graph constraint is a boolean formula over atomic (typed) graph constraints. This
means that true and every atomic (typed) graph constraint are (typed) graph constraints, and for
(typed) graph constraints c and ci with i ∈ I for some index set I,¬ci,∧i∈Ici are (typed) graph
constraints: A (typed) graph G satisfies a (typed) graph constraint c, written G |= c, if

P a C

G

qp =

• c = true;

• c = PC(a) and, for every injective (typed) graph morphism p : P → G, there exists an
injective (typed) graph morphism q : C → G such that q ◦ a = p;

• c = ¬c′ and G does not satisfy c′;

• c = ∧i∈Ici and G satisfies all ci with i ∈ I;

• c = ∨i∈Ici and G satisfies some ci with i ∈ I .

Two (typed) graph constraints c and c′ are equivalent, denoted by c ≡ c
′ , if for all (typed) graphs

G, G |= c if and only if G |= c
′ .

83

3 Graph Language

Definition (Application Condition) An atomic application condition over a (typed) graph
L is of the form P (x, Vi∈I xi), where x : L → X and xi : X → Ci with i ∈ I for some index
set I are (typed) graph morphisms.

An application condition overL is a boolean formula over atomic application overL. This means
that true every atomic application condition are application conditions, and, for application con-
ditions acc and acci with i ∈ I,¬acci,∧i∈I acci, and ∨i∈I acci are application conditions: A

xi

qi

XL Cix

G

=pm

typed attributed graph morphism m : L → G satisfies an application condition acc, written
m |= acc, if

• acc = true;

• acc = P (x, Vi∈I xi) and for all injective typed attributed graph morphisms p : X → G

with p◦x = m, there exists an i ∈ I and an injective (typed) graph morphism qi : Ci → G

with qi ◦ xi = p;

• acc = ¬acc′ and m does not satisfy acc′;

• acc = ∧i∈I acci and m satisfies all acci with i ∈ I;

• acc = ∨i∈I acci and m satisfies some acci with i ∈ I

Two application conditions acc and acc′ over a (type) graph L are equivalent, denoted by acc ≡
acc′, if for all (typed) graph morphisms m : L → G for some G, m |= acc if and only if
m |= acc′.

The application condition ¬true is abbreviated as false.

Definition (Negative Application Condition NAC) A simple negative application con-
dition is of the form NAC(x), where x : L→ X is a typed attributed graph morphism. A typed
attributed graph morphism m : L → G satisfies NAC(x) if there does not exist an injective
typed attributed graph morphism p : X → G with p ◦ x = m. A positive application condition
PAC(x) for a rule demands a pattern in a graph for its application and is just the negation of a
negative application condition.

84

3.6 Graph Transformation Tools

3.6 Graph Transformation Tools

Model transformation techniques and tools have become very common nowadays. Any model
design problems can be formulated as graph transformation problems, thus, a variety of tools
choose this new technique as underlying mechanism for the transformation engine. We explain
in this section some of these tools to model transformation that apply graph grammar and graph
transformations techniques. The most powerful tools are AGG [AGG], AToM3 [dLV02], VIA-
TRA2 [VP04] and VMTS [VMT, LLMC04].

The underlying concepts of these four tools are all based on graph transformation and model
transformations. We illustrate the basic task of these tools. Most of our case studies and exam-
ples are represented using AGG.

Attributed Graph Grammar (AGG) is a development environment for attributed graph
transformation systems supporting an algebraic approach to graph transformation. It aims at
specifying and rapid prototyping applications with complex, graph structured data. Since graph
transformation can be applied on very different levels of abstraction, it can be non−attributed,
attributed by simple computations or by complex processes, depending on the abstraction level.
AGG supports typed graph transformations including type inheritance and multiplicities. Rule
application can contain non−deterministic choice of rules which may be controlled by rule lay-
ers. Due to its formal foundation, AGG offers validation support being consistency checking of
graphs 8 and in graph transformation systems according to graph constraints, critical pair 9 anal-
ysis to find conflicts between rules and checking of termination criteria for graph transformation
systems.

AToM3 (A Tool for Multi-formalism and Meta-Modeling) is a tool for the design of
Domain Specific Visual Languages [dLV02]. It allows defining the abstract and concrete syntax
of the Visual Language by means of meta-modeling and expressing model manipulation by
means of graph transformation [EEKR99]. With the meta-model information, AToM3 generates

8A graphical consistency constraint is a total injective morphism c : P− > C, the left graph P called premise
and the right graph C conclusion. A graphical consistency constraint is satisfied by a graph G, if for all total
injective morphisms p : P− > G there is a total injective morphisms q : C− > G such that q ◦ c = p . If CC

is a set of graphical consistency constraints, we say that G satisfies CC, if G satisfies all constraints in CC.
9A critical pair is a pair of transformations (p1, p2) , where p1(m1) : G ⇒ H1 and p2(m2) : G ⇒ H2 which

are in conflict, and such that graph G is minimal, i.e., G is gluing of the left−hand sides of the rules p1 and
p2. It can be computed by overlapping L1 and L2 in all possible ways, such that the intersection of L1 and L2

contains at least one item that is deleted or changed by one of the rules and both rules are applicable to G at
their respective occurrences.

85

3 Graph Language

a customized modeling environment for the described language. Recently, AToM3 has been
extended with functionalities to generate environments for Multi-View Visual Languages (such
as UML) and triple graph grammars [Sch].

VIsual Automated model TRAnsformation (VIATRA2) is an Eclipse-based general-
purpose model transformation engineering framework that will support the entire life−cycle
for the specification, design, execution, validation and maintenance of transformations within
and between various modeling languages and domains. Using efficient importers and exporters.
VIATRA2 is able to cooperate with an arbitrary external system, and execute the transformation
with a native transformation model (plug-in), which is generated by VIATRA2. Its rule spec-
ification language combines the graph transformation and abstract state machines into a single
paradigm. Essentially, elementary transformation steps are captured by graph transformation
rules, while complex transformations are assembled from these basic steps by using abstract
state machine rules as control flow specification. Furthermore, model constraints are also cap-
tured by the same graph pattern concept.

The Visual Modeling and Transformation System (VMTS) is a general purpose meta-
modeling and transformation environment. VMTS is a highly configurable environment offering
capabilities for specifying visual languages applying meta-modeling techniques. VMTS uses
the instantiation relationship residing between the M0 and M1 layers in the MOF standard
[Gro03a], namely, the one between the UML class diagram and object diagram. The VMTS
Presentation Framework (VPF) facilitates a means of rapid development for plug-ins as a cus-
tomized presentation of the concrete syntax of the models. VMTS defines the model constraints
in terms of OCL constraints placed in the meta-model. Since the rules in VMTS are specified by
meta-model elements of the input and the output models, the transformation constraints are also
expressed in OCL. VMTS has an automated support for preserving, guaranteeing, and validating
constraints. The crosscutting concerns are handled with aspect−oriented techniques.

3.6.1 Attributed Graph Grammar (AGG)

AGG graph transformation rules consist of a left−hand and right−hand side graph, a mapping
morphism between nodes (and edges) on both sides, and a set of ”negative application condi-
tions” (NAC). A Screenshot of the AGG system shows the working graph and the rules which
are present. In the upper right, the selected rule can be found, and in the lower right, the actual
working graph is shown. Rules having a NAC are displayed by three graphs (NAC, left−hand
side, right−hand side), rules without a NAC are displayed by two graphs. Numbers in front of

86

3.6 Graph Transformation Tools

node labels represent the morphism of the rule. The working graph in Fig. 3.20 corresponds to
our PacMan example in Fig. 3.4.

Figure 3.20: AGG Tool Interface

The transformation rules as shown in Fig. 3.20 are;Go PacMan, to move PacMan continuously
forward,Back PacMan, to move PacMan continuously backward,Go Ghost, to move also the
ghost continuously one step, Back Ghost to move the ghost continuously one step backward,
eat to eat the apple which suited in the same position where the PacMan is suited and. Finally
the kill rule which responsible to delete the PacMan from the Map, if the ghost is at the same
position where the PacMan arrived.

The rules in AGG are actually executed by clicking the ”⇒ ” button in the Toolbar.

As we see also in Fig. 3.20 the tool environment provides graphical editors for graphs and
rules and an integrated textual editor for Java expressions. Moreover, visual interpretation and
validation is supported. Using AGG we could design complex data structures as graphs which

87

3 Graph Language

may be typed by a type graph [AGG]. The system’s behavior is specified by graph rules using an
if − then description style. Application of a graph rule in AGG transforms the structure graph
(host graph), whereas application of several rules sequentially shows the implementations of the
required scenario. AGG graphs could be attributed by Java objects and types. Basic data types
as well as object classes already available in Java class libraries may be used. Moreover, new
Java classes could be included. The graph rules may be attributed by Java expressions which are
evaluated during rule applications and the rules may have attribute conditions as boolean Java
expressions.

3.7 Result and Discussion

In this chapter, we have shown how graph grammars and graph transformation rules can be
defined from the observed behavior of a given scenario. It was interesting to note that (typed)
attributed graph transformation systems can be used to represent the behavior of the system
(PacMan game). Moreover, we introduced in this chapter some of the formal definitions of
graph grammars. Graph transformation mechanisms like SPO or DPO are also illustrated in
this chapter. Our case studies (state machines of ATM or state machines of two-phase com-
mit protocol) are also presented here to show that such case studies can be modeled by typed
attributed graph transformations. As pointed out in this chapter, the theory of typed attributed
graph transformation described here provides a good basis for defining and implementing the
model transformations. For a more detailed discussion of attributed graph transformation, we
refer to [EE05].

88

4 Graph Transformation for UML
Software Design

4.1 Introduction

UML diagrams are a modeling technique to define the dynamic behavior of a system [GJM91b].
They provide us the following two important parts:

1. The structure part provides diagram techniques to define the static structure of a system
including the well known and widely used class diagrams.

2. Dynamic aspects of a system can be specified with diagrams of the behavior part. It allows
defining e.g. Activities, Interactions, and state machines by the common diagram types
Activity Diagrams, Sequence Diagrams, and state machine Diagrams.

The division of static and dynamic behavior diagram techniques is fundamental in computer
science and especially in formal specification techniques. As Sequence Diagrams belong to the
second property of the UML they specify parts of the behavior.

The visual language of Sequence Diagrams was defined by the Object Management Group and
their contributors. The redefinition of this language using the approach of graph grammar and
graph transformation systems is nowadays strongly required and leads to some advantages. It
provides on the one hand a strict formal definition for the UML diagrams, on the other hand pos-
sibilities for transformation in means of model checking system to verify the required properties
of UML diagrams.

Section 4.2 focuses on the UML (Unified Modeling Language) diagrams with an overview.
What is UML and how is it used? Section 4.3 illustrates the state machine diagrams and the no-
tations of the UML state machine (state, transition, initial state ...etc). Section 4.4 concentrates
on the fundamental issue of executable state machines and the transformation requirements to
transform the UML state machines to the executable state machines. A detailed presentation of
creating the graph models of UML state machines and the application areas of our case stud-
ies is given in section 4.5, 4.6 and 4.7. The transformation rules are discussed in section 4.8.

89

4 Graph Transformation for UML Software Design

Finally section 4.9 discusses using the model checker HUGO and SPIN to verify some desired
properties. Some Discussion and the result of this chapter are provided in section 4.10.

4.2 Unified Modeling Language

Graphical notations are widely used in software design and development. These notations can
greatly help with modeling and representation of software architecture and design [SG95]. No-
tations like UML [BRJ99] are very good for communicating designs. UML is a graphical
language for visualizing, specifying, constructing, and documenting the artifacts of a software−
intensive system. UML consists of two parts: a notation, used to describe a set of diagrams
(also called the syntax of the language) and a metamodel (also called the semantics of the lan-
guage) that specifies the abstract integrated semantics of UML modeling concepts. The UML
defines nine diagram types, which allow different aspects (static, behavioral, interaction, and
implementation) and properties of a system design to be expressed.

In its current form UML is comprised of two major components: a Meta-model and a notation.

• The Meta-model UML is unique in that it has a standard data representation. This rep-
resentation is called the metamodel. The meta-model is a description of UML in UML.
It describes the objects, attributes, and relationships necessary to represent the concepts
of UML within a software application. Interested readers can learn more about the Meta-
model by downloading the UML documents from the rational web site [Rat]

• The UML notation is very rich and specify all the required design. It is comprised of two
major subdivisions. There is a notation for modeling the static elements of a design such
as classes, attributes, and relationships. There is also a notation for modeling the dynamic
elements of a design such as objects, messages, and finite state machines.

UML defines nine types of diagrams: class, object, use case, sequence, collaboration, statechart,
activity, component, and deployment. we will give the reader a short introduction for every type
of UML diagrams:

• Class Diagrams The purpose of a class diagram is to depict the classes within a model.
In an object oriented application, classes have attributes (member variables), operations
(member functions) and relation-ships with other classes. The UML class diagram can
depict all these things quite easily. The fundamental element of the class diagram is an
icon which represents a class. This icon is shown in figure 4.1.

90

4.2 Unified Modeling Language

Class

Attribute

operation ()

Figure 4.1: The Class Icon

A class icon is simply a rectangle divided into three compartments. The topmost compart-
ment contains the name of the class. The middle compartment contains a list of attributes
(member variables), and the bottom compartment contains a list of operations (member
functions).

• Package diagrams are a subset of class diagrams, but developers sometimes treat them as
a separate technique. Package diagrams organize elements of a system into related groups
to minimize dependencies 1 between packages (see Fig. 4.2).

+ Attribute 1
+ Attribute 2
− Attribute 3

Package Name

+ Attribute 1
+ Attribute 2
− Attribute 3

Package Name

+ Attribute 1
+ Attribute 2
− Attribute 3

Package Name

<<import>>

Figure 4.2: Package Diagrams

• Object diagrams describe the static structure of a system at a particular time. They can be
used to test class diagrams for accuracy as shown in figure 4.3.

As with classes, we can list object attributes in a separate compartment. However, unlike
classes, object attributes must have values assigned to them.

1Dependency defines a relationship in which changes to one package will affect another package. The figure
shows importing dependency which is a type of dependency that grants one package access to the contents of
another package.

91

4 Graph Transformation for UML Software Design

Object Name: Class

Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’

Object Name: Class

Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’

Object Name: Class

Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’

Object Name: Class

Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’

Object Name: Class

Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’
Attribute type = ’value’

Figure 4.3: Object Diagram

• Use case diagrams model the functionality of system using actors and use cases. We
draw use cases using ovals. Label with ovals with verbs represents the system’s functions.
Actors are the users of a system. When one system is the actor of another system, label
the actor system with the actor stereotype.

Use Case

Use Case

Use Case

Use Case

Use Case

Use Case

Actor

Actor

<<uses>>

Figure 4.4: Use Case Diagram

• Sequence diagrams describe interactions among classes in terms of an exchange of mes-

92

4.2 Unified Modeling Language

sages over time. Messages are arrows that represent communication between objects. We
use half-arrowed lines to represent asynchronous messages (see figure 4.5). Asynchronous
messages are sent from an object that will not wait for a response from the receiver before
continuing its tasks.

Object: Class
Actor

Object: Class

[condition]
message name

[condition]
message name

[condition]
message name

Figure 4.5: Sequence Diagram

• Collaboration diagrams represent interactions between objects as a series of sequenced
messages. Collaboration diagrams describe both the static structure and the dynamic be-
havior of a system. Unlike sequence diagrams, collaboration diagrams do not have an

Object: Class

Object: Class

Object: Class

Object: Class

Actor

1:message
2:message
3:message

message
 1.2: [condition]

message
2.3: [condition]

Figure 4.6: collaboration Diagram

explicit way to denote time and instead number messages in order of execution as shown
in figure 4.6. Sequence numbering can become nested using the Dewey decimal system.
For example, nested messages under the first message are labeled 1.1, 1.2, 1.3, and so on.

• Statechart or state machine diagrams describe the dynamic behavior of a system in re-
sponse to external stimuli. State machine diagrams are especially useful in modeling
reactive objects whose states are triggered by specific events. States represent situations

93

4 Graph Transformation for UML Software Design

State

do/activity

State

do/activity

State

do/activity

State

do/activity

��
��
��
��

�
�
�
�

������

������

Event[Quard] / Action
Event[Quard] / Action

Figure 4.7: State Machine Diagram

during the life of an object. We can easily illustrate a state in MagicDraw by using a rect-
angle with rounded corners. Transition shown as solid arrow represents the path between
different states of an object. The transition is labeled with the event that triggered it and
the action that results from it as shown in figure 4.7.

• Component diagrams describe the organization of physical software components, includ-
ing source code, run-time (binary) code, and executables.

Component

Component

Component

Figure 4.8: Component Diagram

We draw dependencies among components using dashed arrows (see figure 4.8).

• Deployment diagrams depict the physical resources in a system, including nodes, com-
ponents, and connections. A node is a physical resource that executes code components.
Association refers to a physical connection between nodes, such as Ethernet.

As shown in figure 4.9 we place components inside the node that deploys them.

For the purpose of this research we concentrate our work on the UML state machine diagrams,
which is a specification that describe all possible behaviors of some dynamic model element.
Behavior is modeled as a traversal of a graph of state nodes interconnected by one or more

94

4.3 UML State Machines

Component

Component

Node
name

Component

Component

Node
nameComponent

Component

Node
name

Figure 4.9: Deployment Diagram

joined transition arcs that are triggered by the dispatching of series of event instances. During
this traversal, the state machine executes series of actions associated with various elements of it.

UML 2.0 incorporates an action semantics, which adds to UML the syntax and semantics of
executable actions and procedures [Gro03b]. Action semantics refers to the ability to formally
describe actions that can be analyzed by a computer and executed. Formal actions make models
executable, also referred to as model simulation. Action semantics is a partial metamodel inte-
grated in the global UML metamodel. It allows the specification of many kinds of actions, such
as computational algorithms to be applied to data, as well as reactive and concurrent behavior
with asynchronous and synchronous communication. Therefor, action semantics are applicable
to both information and embedded systems. The key concept is action. An action corresponds
to a manipulation of the object model; it can modify it or just read it.

There are several modeling tools for designing UML diagrams [Qua98, RVR+99, Poe04,
Mag04]. ArgoUML is an open source Java-based UML tool [RVR+99]. It supports most of the
nine standard UML diagrams, it has also the ability of reverse engineering compiled Java code
and generating UML diagrams for the code. Commercial tools are e.g. Rose [Qua98], Together
[Tog04], Poseidon [Poe04] and MagicDraw [Mag04]. Among them, MagicDraw is a visual
UML modeling and CASE tool with teamwork support. MagicDraw contains a handy UML
editor, a powerful code engineering tool, UML model reporting facilities, a custom OO model
generator, a team modeling tool, and a database modeling tool.

4.3 UML State Machines

UML state machine diagrams describe the behavior of a class over time through illustrations
of the states and transitions of a single object progressing through its lifetime. State machine
diagrams are a traditional object-oriented way to show behavior and to document how an object

95

4 Graph Transformation for UML Software Design

responds to events, including internal and external stimuli.

In this section we discuss the two important parts of UML state machine; states and the transi-
tions.

4.3.1 States

A state is a condition or situation during the life of an object, which it satisfies some condition,
performs some activity, or waits for some event. An object remains in a state for a finite amount
of time. For example, the ATM machine in the bank might be in any of six states CardEnry
(waiting for somebody to enter his Bank Card), PINEntry (Waiting for customer to enter his
pin number), Verification (the ATM determine where the card and the pin number are satisfied)
AmountEntry (Waiting for the customer to enter the required amount), GivingMoney (the
ATM machine will give the required money to the customer) and the ReturningCard state
(Returning the card to the customer).

When an object’s state machine is in a given state, the object is said to be in that state. For
example, an instance of ATM might be CardEntry or perhaps ReturningCard. A state has several
properties Fig 4.10. The Name of the state which is a textual string that distinguishes the state
from other states; a state may be anonymous, meaning that it has no name. Entry/Exit actions
which are executed on entering and exiting the state, respectively. Internal transitions are
transitions that are handled without causing a change in state. The Substates is the nested
structure of a state, involving disjoint (sequentially active) or concurrent (concurrently active)
substates. and finally the Deferred events which are a list of events that are not handled in that
state but, rather, are postponed and queued for handling by the object in another state.

entry / Print("Welcom to our Bank");
exit / Print("Card Entered");
do / ("Enter your card");

CardEntry
name

do activity

exit action

entry action

Figure 4.10: Properties of the State in UML State Machine

Initial and Final States There are two special states that may be defined for an object’s state
machine. First, the initial state, which indicates the default starting place for the same machine
or substate. An initial state is represented as a filled black circle. Second, the final state, which
indicates that the execution of the state machine or the enclosing state has been completed. A
final state is represented as a filled black circle surrounded by an unfilled circle as shown in
figure 4.11.

96

4.3 UML State Machines

Initial State Final State

Figure 4.11: Initial and final States in UML State Machine

4.3.2 Transitions

A transition is a relationship between two states indicating that an object in the first state will
perform certain actions and enter the second state when a specified event occurs and specified
conditions are satisfied. On such a change of state, the transition is said to fire, it is said to be in
the target state. For example, in our case study the state machines of ATM the transition from
the Verification state to ReturningCard state will be done when an event such as abort occurs.

The properties of transitions are as follows; the source state which mean if an object is in the
source state, an outgoing transition may fire when the object receives the trigger event of the
transition and if the guard condition, if any, is satisfied. The Event trigger is an event whose
reception by the object in the source state makes the transition eligible to fire, providing its
guard condition is satisfied. The Guard condition is a boolean expression evaluated when the
transition is triggered by the reception of the event trigger; if the expression evaluates True, the
transition is eligible to fire; if the expression evaluates False, the transition does not fire and
if there is no other transition that could be triggered by that same event, the event is lost. the
Action is an executable atomic computation that may directly act on the object that owns the
same machine, and indirectly on other objects that are visible to the object. Finally the Target
state which is a state that is active after the completion of the transition. As figure 4.12 shows, a

State Statetrigger [Condition] / event

source state target state

event trigger

quard condition

action
self transition

Figure 4.12: The Transition in UML State Machine

transition is rendered as a solid directed line from the source to the target state. A self−transition
is a transition whose source and target states are the same.

Note: A transition may have multiple sources (in which case, it represents a join from multiple
concurrent states) as well as multiple targets (in which case, it represents a fork to multiple
concurrent states).

97

4 Graph Transformation for UML Software Design

4.3.3 State Machines of 2PC-Protocol

We have already discussed in the first chapter section 2.2.6, the two-phase commit protocol
which is a distributed algorithm which lets all sites in a distributed system agree to commit
a transaction. The protocol results in either all nodes committing the transaction or aborting,
even in the case of site failures and message losses. The two phases of the algorithm are bro-
ken into the COMMIT−REQUEST phase, where the coordinator attempts to prepare all the
participants, and the COMMIT phase, where the coordinator completes the transactions at all
participants.

In this section we introduce the two-phase protocol as UML state machines diagrams as follows:

Coordinator State Machine At the beginning of the interaction between the client and the
server, the coordinator is in the preparing transaction state (figure 4.13 at the left), it waits for re-
sponses from each of the participant. If any participant responds vote abort() then the transaction
must be aborted and proceed to the Abort state. In this case the coordinator sends the Partic-
ipant.Abort() message to each participant. If all participants respond vote commit() then the

Log_begin

Log_ready

Log_abort

Prepare

Commit
Abort

Ready

/^coordinator.vote_abort()

Commit

/^coordinator.vote_commit()

Abort

prepare

Log_begin_commit

Log_commit
Log_abort

Prepare

AbortCommit

/Participant.Abort/Participant.Commit

vote_abort()

vote_commit()

/^participant.prepare

Figure 4.13: UML State Machines for Two-Phase Commit Protocol

98

4.4 Executable State Machine

transaction may be committed, and proceed to state Commit, then sends the participant Commit
message to all participants.

Participant State Machine If a prepare message is received from the coordinator state ma-
chine (figure 4.13 at the right), the participant must be ready to make his decision, either he
responds with yes and go to the next state Log Ready, or it decides with no and go to the state
log begin. If the participant is in the Log Ready state, it sends the message Coordinator.vote com-
mit to the coordinator state machine and be in the state Ready waiting for a message from
the coordinator state machine. If the participant is in the Log begin state, it sends the signal
Coordinator.vote abort to the coordinator state machine, and it removes to the state Abort.

In the Ready state if an abort message is received then it finishes the transition and go to the
Abort state. If a commit message is received then the transaction is prepared for committal and
go to the Commit state.

4.4 Executable State Machine

Executable UML is a major innovation in the field of software development. They use it to
produce a comprehensive and understandable model of a solution independent of the organiza-
tion of the software implementation. Executable UML models are nowadays gaining interest in
embedded systems design. This domain is strongly devoted to the modeling of reactive behav-
ior using stateChart variants. In this context, the direct execution of UML state machines is an
interesting alternative to native code generation approaches since it significantly increases porta-
bility. In this section we will describe, how the UML state machines can be represented using a
small set of states enables an efficient execution called executable state machines [SM05].

In this section we illustrate the representation of the UML state machines as graph models and
the transformation techniques that we used to transform the UML state machines into Executable
state machines.

4.4.1 Executable state machines

The Executable State Machines (ESMs) are equivalent to simpler state machines, which are
more suitable for efficient execution [SM05]. We can consider that ESMs are a subset of UML
state machines. Figure 4.14 shows the model of ESMs. The major changes are the removal of
composite states and the limitation to only the doActivity. After removing the hierarchy, the
entry and exit activities become meaningless anyway.

99

4 Graph Transformation for UML Software Design

Transition

StateMachine

Region

Vertex

Trigger

State
Activity

0..1

1+region

0..1

+container

+transitions *

+container

+subvertex *

0..1

*

0..1+trigger

+source +outgoing

+target +incoming

1 *

*1

0..1

+region 0..1

0..10..1

+doActivity

Figure 4.14: Executable State Machine (ESM) Model

This approach of executable state machines is based on using a fully featured of UML state
machine to describe the behavior of an operation [SM05]. In this section we will illustrate
the mechanism to get the executable state machine from the UML state machines. The essential
different between UML state machines and executable state machines are eliminating composite
states, removing entry/exit activities from states, and effect and guard from transition

Initial Model We assume that the initial model is valid and contains complete sets of initial
and final states for at all levels. Composite states must contain at least one substate. The strategy
for eliminating composite states is to replace all transitions on the composite state with equiva-
lent transitions to its substates. Ones the transitions are replaced, we move the substates from the
lowest level one level up and push the according entry/exit behavior into the transition effect. To
remove incoming transitions on a composite state, we replace those with direct transitions to the
state marked by the initial pseudostate and remove that pseudostate (see figure 4.15). Since it is
the only pseudostate in this approach, this also ensures that the region afterwards only contains
states and final states.

Super State Transition The step in 4.16 transfer all transitions from a super state to the
contained states. Before doing this step, all outgoing transitions of each state are marked for
copy and each final state is replaced by a normal state and has all completion transitions (these
may have different guards) from the super state marked to be copied to that state. It is important

100

4.4 Executable State Machine

<ParentState>:
State

<ParentT>:
Transition

<Region>:
Region

Pseudostate
<InitialState>:

State
<FirstState>:

Transition
<Transition>:

<ParentState>:
State

<Region>:
Region

<ParentT>:
Transition

State
<FirstState>:

+target +incoming

+region

+container

+subvertex

+outgoing+sopurce

+incoming+target

+region

+incoming

+target

Figure 4.15: Initial Substate

to notice, that at this point all Vertices in the Region are exactly states. The second step in
4.16 replicate such a marked transition for a state and marks it as copied. The third step deletes
transitions that have been copied to all relevant substates.

Creating New States As ESMs do not support transition effects, we have to move these
effects from the transitions into states. Thus, we have to encode the effect into the target state of
each transition. As that target state is likely to have several incoming transitions, it is necessary
to replicate the state for each incoming transition. An additional state will be introduced to apply
these mechanisms to transition to a final state. The rule in figure 4.17 is for that purpose. A copy
of the target state including deferred triggers and outgoing transitions is made using the copy
mechanism for transition. A new doActivity is created from the transition effect and the state
doActivity. Again, if the state has none, a similar simpler strategy can be used, but has been
omitted here.

After exhaustive application of this strategy considered so far, we yield a flat state machine
where states have only a doActivity and transitions have no effect. However, a state still may
have deferred triggers.

We finally have to eliminate the guards by replacing all outgoing transition to a new state eval-
uating the respective guards in the doActivity. This doActivity then may directly trigger the
according transition. If none of the guards evaluates to true, we go directly to a new state em-
bedding the same set of outgoing transitions we installed on the original state.

Example In this example, we will create from a default UML state machine a new executable
state machines. Figure 4.18 shows the original UML state machine, which has simple states with

101

4 Graph Transformation for UML Software Design

Mark all triggered
from Super State
transition for copy
to contained State

<T>:Transition <T>:Transition

+region

+container

+subvertex

<Super>:State
+sopurce+outgoing

<R>:Region

<State>:State

copy

+sopurce

<Tr>:Trigger

<R>:Region

:FinalState :Pseudostate

<T>:Transition<Super>:State

+subvertex

+container

<Tr>:Trigger

+trigger

+outgoing+sopurce

+region

+container

+subvertex

<State>:State

<T>:Transition

<Target>:State

+trigger

+guard

+effect

0..1

0..1

<Trigger>:
Trigger

Constraint
<Guard>:

Activity
<Effect>:

+incoming

+target

+source

+marked

copy

<State>:State

<T>:Transition

<Target>:State
Copy marked transitions
and mark as copied

<R>:Region

<Tr>:TriggerDelete completly
replicated Transitions
having Trigger

+trigger +trigger

+marked

+region

+container

+subvertex

<Super>:State
+sopurce+outgoing

<R>:Region

<State>:State

copy

+sopurce

<Tr>:Trigger

+trigger

+guard

+effect

0..1

0..1

<Trigger>:
Trigger

Constraint
<Guard>:

Activity
<Effect>:

+incoming

+target

+source

+marked

copy

<State><T>:
Transition

+trigger

+guard

+effect

+parent

+target

<Super>:State

+region

Figure 4.16: Move outgoing Superstate Transitions to Substates

activities and a composition state that include simple, initial and final states. we will explain the
creating of executable state machines in three parts:

• The first part shows the state machine (figure 4.19) after removing the initial and final state
and all the transition from the composite state

• The next part shows the state machine after the removal of the composite state where
the entry and exit activities have been moved to the transition effects for all inter-level
transitions from the composite state as shown in figure 4.20. Furthermore, trigger conflicts
have been resolved resulting in the removal of the composite state transition from C to A
and the extended guard condition of the transition from D to A.

102

4.5 Graph Models of UML State Machines

:State

<State>:State

<Target>:State

:Activity

:ActivityReference

:Activity

:Activity

Region
<Region>:

<Effect>:
Activity

Region
<Region>:

<State>:State

<T>:Transition

<Target>:State

:InitialNode :CallBehaviorAction :CallBehaviorAction :FinalNode

:ControlFlow :ControlFlow:ControlFlow

<Effect>:
Activity

<RemoteT>:
Transition

+outgoing

<RemoteDo>:
Activity

<Defered>:
Trigger

<T><Target>:
Activity

<T><Target>:
State

+container

+subvertex

+source

+outgoing

+source

+source

+outgoing

+target

+incoming

+source

+outgoing

+target

+incoming

+source

+outgoing

+target

+incoming

+node

+activity

+action+action+node

+target

+behavior

+doActivity
+deferrable Trigger+marked

+source

copy2
+behavior

+incoming

+target

+
de

fe
rr

ab
le

 T
ri

gg
er

+container

+subvertex

+region

<T>:Transition

+source

+outgoing

+incoming

+target

Transition
<RemoteT>:

+source

+outgoing

+exit

+effect

<RemoteDo>:
Activity

Trigger

<Deferred>:

+entry

+doActivity

+exit

+deferrableTrigger

Figure 4.17: Move Transition Effect to new State

A
exit/ a_exit
entry/ a_entry
do/ a_do

exit/ b_exit
entry/b_entry

exit/ c_exit
entry/c_entry
do/c_do

exit/ d_exit
entry /d_entry
do /d_do

�
�
�
�

�
�
�
�

�
�
�
��

�
�
�

��������

D
t1[g1]/ e1

t2[g2]/ e2

t2

C
B
t2[g4] / e4

t3[g3] / e3

t5[g5] / e5

Figure 4.18: The Original Form of UML State Machine

• The last part (figure 4.21) shows the state machine after moving the transitions effect into
states by introducing new states for every incoming transition.

4.5 Graph Models of UML State Machines

UML state machines are popular and very useful to specify the dynamic components of software
design. Graph transformation constitutes a well-studied area with many theoretical results and
practical application domains. In this section, the representation of UML state machines as graph
models based on graph grammars and graph transformation systems is proposed. In more detail,
we represent the UML state machine as a graph model in such a way that the properties of UML
state machines are satisfied and the transitions between the states in the state machines must

103

4 Graph Transformation for UML Software Design

A
exit/ a_exit
entry/ a_entry
do/ a_do

exit/ b_exit
entry/b_entry

exit/ c_exit
entry/c_entry
do/c_do

exit/ d_exit
entry /d_entry
do /d_do

�
�
�
�

�
�
�
�

t2

B
C t2[g4] / e4

t3[g3] / e3

D BFinal
t5[g5] / e5t1[g1]/ e1

t2[g2]/ e2

t2[g2]/ e2

Figure 4.19: Removing Initial, Final, and Transition from Composite State

t2[g2^!(g4)] /
e2;d_exit;b_exit;a_entry

t3[g3]
e3;c_exit;d_entry

t2[g4] /
e4;d_exit;c_entry

�
�
�
�

�
�
�
�

t2[g2] / e2;b_exit;a_entry

C D
do / c_do() do / d_do()

a_entry
e1:a_exit;c_entry
t1[g1]/

t2 /
c_exit;b_exit;a_exit

t5[g5] /e5; d_exit
BFinal

A

do/ a_do

b_exit

Figure 4.20: Removing Initial, Final, and Transition from Composite State

correspond to the application of the graph models. We illustrate in this section the definition of
type graph and graph model of UML state machines. Our case studies state machines of ATM
and state machines of two-phase commit protocol are also represented as a graph models based
on graph transformation system.

4.5.1 Type Graph of UML State Machine

In the second chapter we have already described how we create from the given scenario the type
graph and the graph models. If we consider UML state machine as a scenario to be represented
as a graph models, we can use the same strategy as we defined the graph models of PacMan
scenario. In order to define the type graph of UML state machines, we must researched the
concepts of UML state machines. The UML state machines consist of the following concepts:
transitions, states, triggers, events, constraints, entries, exists, doActivities ...etc. We represent
the states in UML state machines as nodes in the type graph, and each activity of the state as also
node in the type graph (entry activity as node in the type graph, exit activity as node in the type
graph, and doActivity as also node in the type graph). We can define the activities of the states
in UML state machine as nodes in the type graph and the edges between these nodes represent
the relationships between the states and their activities as shown in figure 4.22.

104

4.5 Graph Models of UML State Machines

�
�
�
�

�
�
�
�

Dt2[g2]A

BFinalt2[g2]A

InitialA

Ct2A

BFinalFinal

do / e2

do / e2

do / a_entry

do / c_exit

do / b_exit

At2[g1]c

do / e1

Dt2[g4]c

do / e4

t2

t2

t1[g1]

t1[g1]

t1[g1] t1[g1]

t3[g3]

t3[g3]

t2[g4] t2[g5]Ct3[g3]D

do / e3

Dt5[g5]BFinal

do / e5

t2[g2]

t2[g2^!(g4)]

Figure 4.21: Creating New State for every Incoming Transition

exit /
enty /
doActivity

State 1

exit /
enty /
doActivity

State 2

�
�
�
�

�
�
�
�

trigger [guard] / effect

Activity

Transition

Transition_name

State

entry

doActivity

exit

State_name

source..outgoing

target .. incoming
Constraint

Trigger

Constraint_name

Trigger_name

quard

trigger

Activity_name

Concepts of State Machine Scenario Type Graph of State Machine

Figure 4.22: Type Graph of the State Machine

4.5.2 Graph Model of UML State Machine

We have already defined the type graph of UML state machine. Figure 4.23 shows the graph
model of two states and one transition between them. The first state state 1 in this figure is
represented as four nodes in the graph model, three of them are represented for the activities of
the state and the fourth ones is for the state that consists of attribute denotes to the name of the
state. The second state state 2 is also represented in the same manner. The transition between
state 1 and state 2 is represented as four nodes in the graph model, three of them represent the
actions of the transition (trigger, guard and effect) and the fourth one denotes to the transition
name. That is, in this way we can represent every state machine as graph model. The number of
the nodes and the edges depend on the size UML state machines.

105

4 Graph Transformation for UML Software Design

exit /
enty /
doActivity

State 1

exit /
enty /
doActivity

State 2

�
�
�
�

�
�
�
�

trigger [guard] / effect

Activity

exit

Activity

entry

Concepts of State Machine Scenario Graph Model of the State Machine

State 1

State

State

State 2

Activity

doActivity

target .. incoming

source .. outgoing

transition

Transition
Constraint

quard

Trigger

trigger

Activity

effect

trigger

quard

effect

entry

exit

doActivity

Figure 4.23: Type Graph of the State Machine

4.6 Graph Model of ATM state machines

We represent the state machines of the ATM case study in the same manner as illustrated in the
previous section.

Suppose we have two state machines of ATM as we already illustrated in chapter 2 (see
figure 2.13 and figure 2.14). We discussed in the scenario of UML state machine that every
state is represented as four nodes and every transition is represented also as four nodes. In this
case study, we have also to represent the initial state, the final state and the composite state. If
the state is initial state, we add new special node to denote to the initial state. If the state is
final one, we also add new special node to denote to the final state. If our case study has any
composite state, we should refer to every state in the composite state with a special edge between
the composite state and it’s internal states. The ATM graph model is shown in figure 4.24

In this graph model we represent the initial state in ATM state machine as new node called Pseu-
dostate with two string attributes. One of them represents the name of the Pseudostate Ps name
and the other is for the type of this Pseudostate Ps kind. The same strategy is implemented for
the final state in ATM state machines.

The edge which labeled with ”source .. outgoing” denotes to the outgoing transition in the UML
state machine, whereas the edge that labeled with ”target .. incoming” denote to the incoming
transition in the UML state machine.

There is a special edge for the composite state labeled with ”container .. subvertex”, this edge is
represented to denote to the composite state and it’s internal states.

106

4.6 Graph Model of ATM state machines

source..outgoing Transition

T_name="In_CardEntry"

target..incoming State

St_name="CardEntry"

Activity

AC_name="no" Activity

AC_name="no"

Activity

AC_name="no"

Pseudostate

Ps_name="InitialState"
Ps_kind=Initial"

Activity

AC_name="no"

Activity

AC_name="no"

Activity

AC_name="no"

doActivity exitentry

State

St_name="Counting"

Transition

T_name="InitToCount"AC_name="no"

Trigger

AC_name="no"

Constraint
Activity

AC_name="no"

trigger

guard
effect

Transition

T_name="CounToDisp"

Activity

AC_name="no"

Activity

AC_name="no"

Activity

AC_name="no"

doActivity exitentry

State

St_name="Dispensing"

AC_name="no"

Constraint

Activity

AC_name="no"
AC_name="no"

Trigger

State

St_name="PINEntry"

Activity

AC_name="no" Activity

AC_name="no"

Activity

AC_name="no"

entry

doActivity
exit

Activity

AC_n="bank.verifyPIN()"

AC_name="no"

Constraint

Trigger

trigger

guard

effect

T_n="reenterPIN"

Transition

T_name="VeriToPINE"

Activity

AC_n="bank.verifyPIN()"
AC_name="no"

AC_name="no"

Constraint

Trigger

trigger

guard

effect

Transition

T_name="PinToVerifi"

Activity

AC_name="no" Activity

AC_name="no"

Activity

AC_name="no"

entry

doActivity
exit

State

St_name="Verification"

AC_name="no"

Activity

AC_name="no"
Constraint

Trigger

trigger

guard

effect

Transition

T_name="VerToRetun"

T_n="abort"

Activity

AC_name="no" Activity

AC_name="no"

Activity

AC_name="no"

Activity

AC_name="no"

AC_name="no"

Trigger

AC_name="no"

Constraint

Region

R_n="Gi_Money"

Activity

AC_name="no"

Activity

AC_name="no"

trigger

guard
effect

Transition

T_name="RegionToRet" source..outgoing

exit

entry

Pseudostate

Ps_kind=Initial"
Ps_name="InitialGiving"

Activity

AC_name="no"

Trigger

T_n="PINVerifie

AC_name="no"

Constraint

trigger
Transition

T_name="VerToAmou"

effect
guard

Activity

AC_name="no"

Activity

AC_name="no"

Activity

AC_name="no"

State

St_name="AmountEntry"

target..incoming

exit
doActivity

entry

Activity

AC_n="no"

AC_name="no"

Constraint

Trigger

trigger
Transition

effectguard

T_name="AMToGIMO"

T_n="no"

source..outgoing

target..incoming

target..incoming

Constraint

Transition

AC_name="no"

T_n="abort"

Trigger

trigger
T_name="RetToCardEn"

guard Activity

AC_name="no"

Pseudostate

Ps_name="FinalState"
Ps_kind="Final"

Transition

T_name="ReToFinal"
T_name="CardToPIN"

Transition

AC_name="no"

Constraint

Activity

Ac_n="bank.done"

entry exit

doActivity

source..outgoing

target..incoming

source..outgoing

target..incom
ing

so
ur

ce
..o

ut
go

in
g

countainer .. subvertex

Pseudostate

Ps_name="FinalState"
Ps_kind="Final"

source..outgoing

target..incoming

guard

T_name="DisToFinal"

source..outgoing

effect

target..incoming

source..outgoing

target..incoming

entry

doActivity
exit

State

St_name="RetturnCard"

source..outgoing

source..outgoing

Transitiontrigger

target..incoming

countainer .. subvertex

countainer .. subvertex

target..incoming

source..outgoing

source..outgoing

target..incoming

countainer .. subvertex

source..outgoing

target..incoming

trigger

T_n="abort"
AC_name="no"

AC_name="no"

Activity

AC_name="no"
Constraint

Trigger

trigger

guard

effect
trigger

source..outgoing

effect
guard

Figure 4.24: The Graph Model of ATM State Machine

107

4 Graph Transformation for UML Software Design

4.7 Graph Transformation of Executable State
Machines

In this section we illustrate the transformation from UML state machine to an executable state
machine using the strategy that declared in chapter 3 (see section 3.3) and give an overview
about the tool AGG (Attributed Graph Grammar).

First, we have to define the state machine as graph model, as a running example for this section
we choose our case study ATM state machines. We have already defined the graph model for
the ATM state machines as illustrated in section 4.6. The transformation modifies the static
structure of the graph model; One transformation for example for removing the composite state
in the graph model of ATM state machine, the other transformation is for removing the initial or
final state.

In order to implement this transformation as a graph transformation, we need to implement our
graph models using the AGG system. AGG graph transformation rules consist of a left-hand and
a right-hand side graph, a mapping morphism between nodes (and edges) on both sides, and a
set of ”negative application condition ”(NAC). A Screenshot of the project shows the working
graph and the rules which are present. In the upper right, the selected rule can be found, and in
the lower right, the actual working graph is shown. Rules having a NAC are displayed by three
graphs (NAC, left-hand side, right-hand side), rules without a NAC are displayed by two graphs.
Number in front of node labels represent the morphism of the rule. The working graph in figure
4.25 corresponds to the graph model of ATM as explained in figure 4.24.

4.7.1 Executable State Machine of ATM

We represented the ATM state machines as graph model, so we can transform the state machines
of ATM to an executable form using the concepts of executable state machine. The new form
of ATM is shown in figure 4.26. This figure shows us that every state has just one activity, and
every transition has also one trigger. This new model of executable state machine of ATM is
correspond to the UML state machine model of ATM.

4.7.2 Transformation Rules

In order to transform the graph model of ATM state machine into new graph model repre-
sents the executable state machine of ATM, we need about 30 rules as shown in figure 4.25 .
In this section we illustrate some of them. The first transformation rule which called ”Trans-

108

4.7 Graph Transformation of Executable State Machines

Figure 4.25: Executable Graph Model of ATM State Machine

form Init Sub State” as shown in figure 4.27 deletes the initial state in the composite state and
create a new transition from the super state to every internal states in composite states. The
second rule ”Transform Final Sub State” is to remove the final state from the Composite state.

To apply the rule, the rule name from left-hand side must be matched in the working graph.
This can be done through AGGs ’map’ mode, available through the context menu. The rule is
actually executed by clicking the ”⇒” button in the Toolbar.

The rule number 14 is an interesting one (see Fig. 4.28), it is responsible for moving the exit
activity from it’s state to the outgoing transition. This node has a negative application condition
(NAC) ”No exit befor”, the NAC is for checking if the state has already move the exit activity
or not.

109

4 Graph Transformation for UML Software Design

State

St_name="ReCardEn"

Activity

AC_name="no" Transition

T_name="CardPINE"

Transition

T_name="ReCaEN"

Transition

T_name="ReToFin"

State

St_name="RetoFin"

Activity

AC_name="bank.done"

Transition

T_name="ReToFin"

Pseudostate

Ps_kind="Final"
Ps_name="FinalState" State

St_name="VerAmou"

Activity

AC_name="no"

Transition

T_name="AmoToGiv"

State

St_name="AmouCou"

Activity

AC_name="no"

Transition

T_name="CouToDisp"

State

St_name="CouDisp"

Activity

AC_name="no"
Transition

T_name="DispToFina"
State

St_name="DispToFi"

Activity

AC_name="no"

T_name="reenterPIN"

Trigger

Transition

T_name="CouReCar"

State

St_name="CouReCar"
Activity

AC_name="no"

Transition

T_name="ReCaToCE"

Pseudostate

Ps_kind=Initial"
Ps_name="InitialState"

source..outgoing Transition

T_name="InToCard"

target..incoming State

St_name="INITCard"

Activity

AC_name="no"

Transition

T_name="CardToPI"

Activity

AC_name="no"

Transition

T_name="PIToVer"

State

St_name="VReCard"

Transition

T_name="VerToRe"

Activity

AC_name="no"

target..incoming

State

St_name="VerPIN"

Transition

T_name="PINToVer"

Transition

T_name="VerToPIN"

Trigger

T_name="abort"

Activity

AC_name="no"

Activity

AC_name="bank..verifyPIN()"

State

St_name="PINVER"

target..incoming

source..outgoing

target..incoming

source..outgoing

target..incoming

Transition

T_name="VerToAmo"target..incoming

doActivity

source..outgoingtarget..incoming

doActivity

doActivity

source..outgoing
target..incoming

target..incoming

source..outgoing

doActivity

source..outgoing

target..incoming

source..outgoing

doActivity

target..incoming

source..outgoing

target..incoming

doActivity

source..outgoing target..incoming State

St_name="CardPIN"

doActivity

source..outgoing

target..incoming

target..incomingsource..outgoing

source..outgoing

doActivity

source..outgoing

doActivity

source..outgoing

Trigger

T_name="PINVerified"

trigger

source..outgoing

trigger

doActivity

trigger

Figure 4.26: Executable Graph Model of ATM State Machine

Figure 4.27: Removing Initial State from Composite State

After transforming the corresponding nodes to their new places, we begin to remove the transi-
tion and the states that are meaningless. Figure 4.29 shows a rule to delete the transition between
two states. We are actually allowed to apply this rule after 25 executions of the previous rules.

If we apply all the 30 transformation rules shown in Fig 4.25, we will have the graph model
of executable state machine. Figure 4.30 shows the final graph after transforming the UML state
machine of ATM in graph model into new graph models represent the ESMs approaches.

110

4.8 Two-Phase Commit Protocol (2PC)

Figure 4.28: Removing the Exit Activity from State

Figure 4.29: Removing Transition between States

4.8 Two-Phase Commit Protocol (2PC)

The state machines of two-phase commit protocol are shown in figure 4.13. We design the
second case study as a state machine graph model in three steps:

• Creating the graph model of two-phase commit state machine using our experience in
defining the graph model of state machine.

• We use the pre-defines rules to transform the two-phase commit graph model to new exe-
cutable state machines graph model. We have already the pre-defined rules (graph gram-
mars) in AGG transformation tool.

• We translate the graph model of executable state machine (Manuel or Automatic) to UML
state machine. We usually use the MagicDraw tool to see the new executable Form of
UML state machine.

111

4 Graph Transformation for UML Software Design

Figure 4.30: Model Graph of ESMs in AGG

4.8.1 Graph Model of 2PC

We create the graph model of two-phase commit protocol using the same strategy which declared
in chapter 3 section 3.2 to represent the state machine as a graph model. The graph model of two-
phase commit protocol is shown in figure 4.31 consisting of nodes and edges between the nodes.
Node can be state node like the state node of ”prepare” or pseudo state node like ”InitialNode”.
The state nodes are connected with other kind of nodes represent the entry, exit and doActivity
of the state node. Nodes that represent transition between state nodes are connected also with
three nodes that represent trigger, guard and effect nodes.

112

4.8 Two-Phase Commit Protocol (2PC)

source..outgoing

Pseudostate

Ps_kind=Initial"
Ps_name="InitialState"

Transition

T_name="InToPrepa"

Trigger

T_n="no "

Constraint

C_n="no "

Activity

A_n=" no"

State

St_name="Prepare"

Activity

A_n=" no"

Activity

A_n=" no"

Transition

T_name="PrepToJun"

Constraint

C_n="no "

Activity

A_n=" no"

Activity

A_n="no"

Trigger

T_n="prepare "

State

St_name="Junction"
Activity

A_n=" no" Activity

A_n=" no"
Activity

A_n=" no"

Trigger

T_n="no "

Activity

A_n=" no"

Constraint

C_n="no "

Transition

T_name="JunToLog"Activity

A_n=" no"

Activity

A_n=" no"

Activity

A_n=" no"

State

St_name="Jog_begin"

Trigger

T_n="no "

Constraint

C_n="no "

Transition

T_name="loToAbort"

A_n=" coordinator.vote_abort"

Activity

State

St_name="Abort"

Activity

A_n=" no"

Activity

A_n=" no"

Activity

A_n=" no"

Transition

T_name="AbortToFi"

Trigger

T_n="no "
Constraint

C_n="no "

Activity

A_n=" no"

Pseudostate

Ps_name="FinalState"
Ps_kind="Final"

Activity

A_n=" no"

Activity

A_n=" no"

Activity

A_n=" no"

State

St_name="Ready"

Activity

A_n=" no"

Transition

T_name="ReToCom"

T_n="global_commit "

Trigger

Activity

A_n=" no"

Activity

A_n=" no"

Activity

A_n=" no"

Trigger

T_n="no "

Activity

A_n=" no"

Constraint

C_n="no "

Transition

T_name="ComToFi"

Activity

A_n=" no"

Constraint

C_n="no "

Trigger

T_n="global_abort "

Activity

A_n=" no"

Activity

A_n=" no"

Activity

A_n=" no"

State

St_name="Log_Abo"

Trigger

T_n="no "

Activity

A_n=" no"

Transition

T_name="logToAbo"

Constraint

C_n="no "

Trigger

T_n="no "

Activity

A_n=" no"

Transition

T_name="JunToLoR"

Constraint

C_n="ready "

trigger

quard
effect

State

St_name="log_Read"

Activity

A_n=" no"

Activity

A_n=" no"

Activity

A_n=" no"

entry

doActivity

exit

Trigger

T_n="no "

Constraint

C_n="no "

Activity

A_n="coordinator.vote_Commit

trigger
quard

effect

target..incoming

entry
doActivity

exit

source..outgoing

trigger
quard

effect

entry

doActivity

exittrigger
quard

effect

source..outgoing
target..incoming

entry

doActivity

exit

source..outgoing

trigger
quard

effect

target..incoming

entry
doActivity

exit

source..outgoing

trigger
quard

effect

target..incoming

entry

doActivity exit

trigger

quard effect

Constraint

C_n="no "

target..incoming

State

St_name="Commit"

entry

trigger

quard

effect

target..incoming

source..outgoing

target..incoming

trigger

quard

effect

Transition

T_name="RedToAb" source..outgoing

target..incoming

entry

doActivity

exit

target..incoming

target..incoming

source..outgoing

doActivity

exit

source..outgoing

Transition

T_name="LogToR"

trigger
quard

effect

source..outgoing

target..incoming

target..incoming

Figure 4.31: Graph Model of 2PC Protocol

113

4 Graph Transformation for UML Software Design

4.8.2 Executable State Machines of 2PC

In this section we describe our new graph model of 2PC. The graph which shown in 4.32 is the
graph model of executable form for the two-phase commit protocol. Every state node in this
graph model is connected with one activity node, whereas the transition nodes are connected
with two nodes represent the trigger and the guard node. This graph has no representation for
the pseudo, final and composite states. The graph model is created after running the rules using
the graph transformation tool AGG.

4.9 Verifying Results using HUGO

To verify the graph model using HUGO, we first need to compile the graph model into UML state
machine, then we use HUGO to verify the required properties. Figure 4.33 shows the executable
UML state machine diagram after compiling the graph model of ATM state machine. We notice
in this figure that the diagram contains one Initial Pseudostate and one final Pseudostate. The
simple states in this diagram have one doActivitis, whereas the transition between simple states
have triggers and guards.

HUGO supports us the correctness of the UML state machines diagrams (e.g no deadlock in
the diagrams), the model checker SPIN is called upon to verify the model against the desired
behavior. We use HUGO to verify the state machines of ATM and the state machines of two-
phase commit protocol before and after running the transformation rules to create the executable
state machines diagrams.

As we see below in SPIN’s statistics for the exhaustive search proving that the given properties
(usually specified as PROMELA model, or UTE file) is indeed satisfied. This result is mentioned
for UML state machine of ATM case study before the transformation step.

Spin Version 4.1.1 -- 24 April 2006)

+ Partial Order Reduction

Full statespace search for:

never claim -(not selected)

assertion violations -(disabled by -A flag)

cycle checks -(disabled by -DSAFETY)

invalid end states +

State-vector 60 byte, depth reached 2, errors: 0

114

4.9 Verifying Results using HUGO

source..outgoing

Pseudostate

Ps_kind=Initial"
Ps_name="InitialState"

Transition

T_name="InToPrepa"

Trigger

T_n="no "

State

St_name="IniPrepare"

Activity

A_n=" no"

Constraint

C_n="no "

Transition

T_name="PrepToJun"

Trigger

T_n="prepare "

Constraint

C_n="no "

Activity

A_n=" no"

State

St_name="PreJuncti"

Activity

A_n=" no"Transition

T_name="JunToLob"

Trigger

T_n="no "

Constraint

C_n="no "

State

St_name="JunLogBe"

Activity

A_n=" no"

Transition

T_name="logToAbo"

Constraint

C_n="no "

Trigger

T_n="no "

State

St_name="LogAbort"

Activity

A_n=" coordinator.vote_abort"

Transition

T_name="AboToFin"

Constraint

C_n="no "

Trigger

T_n="no "

State

St_name="AbortFina"

Activity

A_n=" no"

Transition

T_name="ToFinal"

Pseudostate

Ps_name="FinalState"
Ps_kind="Final"

Transition

T_name="JunToLRe"

Trigger

T_n="no "

Constraint

C_n="ready "

State

St_name="JunLogRe"

Activity

A_n=" no"

Trigger

T_n="no "

Transition

T_name="LogToRe"

Constraint

C_n="no "

State

St_name="LogReady"

A_n=" coordinator.vote_commit"

Activity

Transition

T_name="ReToCom"

Constraint

C_n="no "

T_n="global_commit "

Trigger

State

St_name="ReadCom"

Activity

A_n=" no" Transition

T_name="ComToFin"

Constraint

C_n="no "

Trigger

T_n="no "

State

St_name="ComFinal"

Activity

A_n=" no"

Transition

T_name="ToFinal"

Transition

T_name="ReToLoA"

Constraint

C_n="no "

Trigger

T_n="global_abort "

State

St_name="ReLoAb"

Activity

A_n=" no"

Transition

T_name="LoToAbo"

Trigger

T_n="no "

Constraint

C_n="no "

State

St_name="LogAbort"

Activity

A_n=" no" Trigger

T_n="no "

Constraint

C_n="no "

Transition

T_name=AboToFina"

Activity

A_n=" no"

T_name="AbrtFinal"

State

target..incoming

trigger
doActivity

quard

source..outgoing

trigger

effect

quard

target..incoming

doActivitytrigger

quard

source..outgoing

doActivity

trigger

quard

doActivity

source..outgoing

source..outgoing

source..outgoing

target..incoming

target..incoming

target..incoming

target..incoming

trigger

quard

doActivity
quard

trigger

doActivity

trigger

quard
doActivity

trigger

quard

doActivity

quardtrigger

doActivity trigger
quard

doActivity
trigger quard

doActivity

Transition

T_name=ToFina"

source..outgoing

source..outgoing

source..outgoing

source..outgoing

source..outgoing

source..outgoing

source..outgoing

source..outgoing

source..outgoing

source..outgoing

target..incoming

target..incoming

target..incoming

target..incomingtarget..incoming

target..incoming

target..incoming

target..incoming

target..incoming

Figure 4.32: Graph Model of Executable 2PC Protocol

3 states, stored

0 states, matched

3 transitions (= stored+matched)

0 atomic steps

hash conflicts: 0 (resolved)

(max size 2ˆ19 states)

115

4 Graph Transformation for UML Software Design

Figure 4.33: Graph Model of Executable 2PC Protocol

stats on memory usage (in Megabytes):

0.000 equivalent memory usage for states (stored*(state-vector

+ overhead))

0.266 actual memory usage for states (unsuccessful compression:

130545.10%)State-vector as stored = 88763 byte +

8 byte overhead

2.097 memory used for hash table (-w19)

116

4.9 Verifying Results using HUGO

0.320 memory used for DFS stack (-m10000)

2.622 total actual memory usage

Again we use HUGO to check the state machines of ATM case study in the executable form.
We translate the graph model of executable ATM state machine to UML state machine, then we
use HUGO to verify this executable form of ATM, we get the following result:

Spin Version 4.1.1 -- 24 April 2006)

+ Partial Order Reduction

Full statespace search for:

never claim -(not selected)

assertion violations -(disabled by -A flag)

cycle checks -(disabled by -DSAFETY)

invalid end states +

State-vector 60 byte, depth reached 2, errors: 0

3 states, stored

0 states, matched

3 transitions (= stored+matched)

0 atomic steps

hash conflicts: 0 (resolved)

(max size 2ˆ19 states)

stats on memory usage (in Megabytes):

0.000 equivalent memory usage for states (stored*(state-vector

overhead))

0.244 actual memory usage for states (unsuccessful compression:

119384.31%)State-vector as stored = 81173 byte +

8 byte overhead

2.097 memory used for hash table (-w19)

0.320 memory used for DFS stack (-m10000)

2.622 total actual memory usage

Comparing model results
The application of graph transformation system to UML state machine, to create an executable
state machines, give us a very useful result; Using the described transformation rules reduce the
state space in the model checker memory about 10 percent (see fig. 4.1). We implement the
case study state machines of ATM, the state machines of two-phase commit protocol, and we

117

4 Graph Transformation for UML Software Design

ATM Model checking in UML Form ATM Model checking in ESMs Form
0.000 equivalent memory for states 0.000 equivalent memory for states
0.266 actual memory for states 0.244 actual memory for states
2.097 memory used for hash table 2.097 memory used for hash table
0.320 memory used for DFS stack 0.320 memory used for DFS stack

Table 4.1: Reducing State Space about 10 Percent

extended the two-phase commit protocol to manipulate more than two participants (maximal
five participants) and we get always the same result as shown in the table 4.1.

4.10 Result and Discussion

In this chapter, we proposed a new graph transformation strategy based on graph grammars and
graph transformation systems to transform UML state machines into executable state machines.
After sketching the main concepts of our approach, we carried out several test cases to evaluate
our implementation using the transformation engine of AGG tool and HUGO model checker.

The main conclusion that can be drawn from our experiments is that executable state machines
help us to reduce the state space of UML software model checking systems. We noticed after
implementing the case studies using our transformation strategy that the state space of the model
are reduced about 10 percent. We call attention to the fact that our transformation strategy is
indeed realistic to implement it in UML software design, especially, for model checking software
with a large state space.

118

5 Secure System Transformations

5.1 Introduction

Modern business techniques depend on networked information systems, even the smallest com-
pany uses the Internet and deploys at least one or two security software packages. Nowadays
more and more attack tools are appearing, Attacks against the software can threats the economi-
cal or even physical well-being of people and organizations. There is widespread interconnection
of information systems via the Internet, while is becoming the world’s largest public electronic
marketplace and being accessible to untrusted users. Attacks can be waged anonymously and
from a safe distance. If the Internet is to provide the platform for commercial transactions, it
is vital that sensitive information (like credit card numbers or cryptographic keys) is stored and
transmitted securely.

When security software is deployed on an application server alongside other day-to-day pro-
ductivity applications, and when that server runs a standard, commercial operating system, their
security software is vulnerable to the same attacks that target the other applications. The secu-
rity software therefore must not only be able to protect the network and the other applications,
it must also protect itself from attack. The security system is the first thing the attacker want to
see, and if it is vulnerable to the same attacks as the rest of the network. In this case, it is useless.
For example, as part of a 1997 exercise, an NSA hacker team demonstrated how break into US
Department of Defense computers and the US electric power grid system, among other things
simulating a series of rolling power outages and 911 emergency telephone overloads in Wash-
ington, DC, and other cities [NSN99]. While there are of course many more recent examples of
security breaches, this particular example also shows that there is more to be concerned about
than website defacement and credit card misuse.
Indeed, the fact that in different applications fundamentally different security protocols is dif-
ficult and error prone. Part of the difficulty of secure systems development is that the goal of
correctness is often in conflict with that of low development cost. Where the methods of system
design are high cost through personnel training and use, they are all too often avoided.

Developing secure software systems correctly is difficult and error-prone. Many flaws and pos-

119

5 Secure System Transformations

sible sources of misunderstanding have been found in protocol or system specification [Jue04].
In this chapter we propose a flexible new technique to easily verify the implementation of the
software designs (like the security software JESSIE).

Our treatment in this chapter depends on two parts:

The first one is to verify the software at the implementation level, we describe an efficient tech-
nique for software analysis, that enables an automatic verification of the source code. JML
annotations and Bandera specification language (BSL) are used to verify the desired behavior
of the software. As an example for the verification task of the source code, we present the
verification of the SSL-Handshake protocol in JESSIE.

The second part concentrates on the specification level, we specify the software as graph models
and we use the approach of graph grammars and graph transformation systems to transform the
graph models into well-suited designs for model checking software. Different model checkers
(like DIXIT and HUGO) are used to verify whether the required properties are indeed realized
in the software. As an example for the verification task at the specification level, we create the
graph models of SSL-Handshake protocol and transform them into predicate diagrams where
the model checker DIXIT is called upon to verify the diagrams.

120

5.2 JAVA Secure Sockets Extension (JESSIE)

5.2 JAVA Secure Sockets Extension (JESSIE)

JESSIE is a free, clean−room implementation of the Java Secure Sockets Extension, the JSSE.
It provides the core API for programming network sockets with the Secure Socket Layer (SSL),
which creates an authenticated, unforgeable, and protected layer around network communica-
tions. Its goal is to be a drop-in package for free Java class libraries such as Classpath and
its derivatives, and is being written to depend only on free software, and only with the API
specification and the public protocol specifications.

The SSL protocol is a security protocol based on Web applications. It specifies the security
mechanism for data exchanges between application protocols, (for example HTTP, Telnet and
FTP) and the TCP/IP protocol, and provides TCP/IP connections with data encryption, server
authentication, and optional client authentication.

protocol
SSL

Handshake
protocol

Key exchange
protocol

Alarm
protocol

TCP / IP

HTTP / FTP / SMTP

SSL record protocol

Figure 5.1: SSL Protocols

The SSL protocol comprises the SSL record protocol, handshake protocol, key exchange proto-
col, and alarm protocol (as shown in Fig. 5.1). All these protocols jointly provide authentication,
encryption and anti-distortion functions to application access connections. The SSL handshake
protocol is mainly used for the mutual authentication between the server and the client. The ne-
gotiation encryption algorithm and the message authentication code (MAC) 1 algorithm are used
to generate encryption keys in SSL records. The SSL record protocol provides basic security
services to higher-layer protocols. Its working mechanism is as the follows: Each application
program message is divided into several manageable data blocks, with the data to be zipped,
and a MAC message is generated; the data blocks and the MAC message are encrypted and a
new file head is added in; all the data is transmitted via the transfer control protocol (TCP) . It
receives end decapsulates the received data, authenticate, unzip and regroup the data before the

1A cryptographic message authentication code (MAC) is a short piece of information used to authenticate a mes-
sage. A MAC algorithm accepts as input a secret key and an arbitrary-length message to be authenticated, and
outputs a MAC

121

5 Secure System Transformations

data is finally submitted to higher-layer applications. The SSL key exchange protocol comprises
a message; it is used to copy the uncertain status as the current status, and update a key group
used for the current connection. The SSL alarm protocol is to transmit SSL−related information
to peer bodies; alarms transmitted are classified into three levels: warnings, major alarms and
critical alarms.

JESSIE depends on the cryptographic algorithms from GNU Crypto [CRY99], GNU Crypto
is part of the GNU project aims at providing free, high-quality, and provably correct imple-
mentations of cryptographic primitives and tools in the Java programming language for use by
programmers and end−users. JESSIE is meant to be run on Java platforms that use GNU Class-
path as their class libraries, including GCJ [ORG] and Kaffe [KAF]. JESSIE also uses the GNU
Crypto package for its cryptography algorithms.

The whole JESSIE project currently consists of about 5 MB of code, but the part which relevant
to my work (Implementation of SSL Handshake Protocol) consists of less than 700 KB in about
70 classes.

5.3 SSL-Handshake Protocol

An SSL session always begins with an exchange of messages called the SSL handshake. The
handshake allows the server to authenticate itself to the client using public-key techniques, then
allows the client and the server to cooperate in the creation of symmetric keys used for rapid
encryption, decryption, and tamper detection during the session that follows. Optionally, the
handshake also allows the client to authenticate itself to the server.

The exact programmatic details of the messages exchanged during the SSL handshake [BJ08]
are shown in figure 5.2 and explained in the next steps:

1. The client sends the server the client’s SSL version number Pver, cipher settings Ciph,
randomly generated data Rc, and other information the server needs to communicate with
the client using SSL Comp.

2. The server sends the client the server’s SSL version number, cipher settings, randomly
generated data, and other information the client needs to communicate with the server
over SSL. The server also sends its own certificate and, if the client is requesting a server
resource that requires client authentication, requests the client’s certificate(X509 Certs).

3. The client uses some of the information sent by the server to authenticate the server (there
are a special authentication methods but we don’t need them in our running example). If
the server cannot be authenticated, the user is warned of the problem and informed that

122

5.3 SSL-Handshake Protocol

an encrypted and authenticated connection cannot be established. If the server can be
successfully authenticated, the client goes on to Step 4 [ver(Certs)].

4. Using all data generated in the handshake so far, the client (with the cooperation of the
server, depending on the cipher being used) creates the premaster secret for the ses-
sion PMS, encrypts it with the server’s public key (obtained from the server’s certifi-
cate, sent in Step 2) enc K 5, and sends the encrypted premaster secret to the server
ClientKeyExchange.

[md5’ = md5 sha’ = sha]s s^

[md5’ = md5 sha’ = sha]cc ^

[ver(Cert)]s

Finished (symenc (md5), symenc (sha)) kk

Finished (symenc (md5), symenc (sha)) kk

k5
ClientKeyExchange (enc , (PMS))

C: Client

ClientHello (Pver, Rc, Sid, Ciph[], Comp[])

Certificate (X509Certs)

ServerHello (Pver, Rc, Sid, Ciph, Comp)

ExchangeData

S: Server

Figure 5.2: SSL−Handshake Protocol

5. If the server has requested client authentication (an optional step in the handshake), the
client also signs another piece of data that is unique to this handshake and known by both
the client and server. In this case the client sends both the signed data and the client’s own
certificate to the server along with the encrypted premaster secret.

6. If the server has requested client authentication, the server attempts to authenticate the
client (There is also a special method for client authentication but we don’t need it in
our running example). If the client cannot be authenticated, the session is terminated. If
the client can be successfully authenticated, the server uses its private key to decrypt the
premaster secret, then performs a series of steps (which the client also performs, starting
from the same premaster secret) to generate the master secret.

123

5 Secure System Transformations

7. Both the client and the server use the master secret to generate the session keys, which
are symmetric keys used to encrypt and decrypt information exchanged during the SSL
session Symenc and to verify its integrity. that is, to detect any changes in the data
between the time it was sent and the time it is received over the SSL connection.

8. The client sends a message to the server informing it that future messages from the client
will be encrypted with the session key. It then sends a separate (encrypted) message
indicating that the client portion of the handshake is finished Finished.

9. The server sends a message to the client informing it that future messages from the server
will be encrypted with the session key. It then sends a separate (encrypted) message
indicating that the server portion of the handshake is finished Finished.

10. The SSL handshake is now complete, and the SSL session has begun. The client and the
server use the session keys to encrypt and decrypt the data they send to each other and to
validate its integrityExchangeData.

We use the SSL−handshake protocol given in figure 5.2 together and the open-source Java
implementation JESSIE (http://www.nongnu.org/jessie) of the Java Secure Socket Extension
(JSSE) as a running case study in the remainder of this chapter.

5.3.1 Send and Receive Data in JESSIE

First of all, we want to see the implementation of sending and receiving the data in the JESSIE
software, se we reseach the mechnisms that implement send and receive the data. We notice that
each message is represented by a message class, it stores the data to be written in the communi-
cation buffer [Jue07]. At the same time, this class can also read messages from the communica-
tion buffer (as visualized in figure 5.3). We found that this mechanism is implemented using the
methods write() for sending messages, and read() for receiving messages. As explained above,

Buffer bytes Buffer

Send Receive

read(data), ... , read(data)1
write(data), ... , write (data)

1 nn

Figure 5.3: Sending and Receiving Data in JESSIE

communication is implemented as follows: With the method call msg.write(dout, version),

124

5.4 Specification Language JML

the message msg is written into the output buffer dout. Each occurrence of such a method call
can be identified and associated with the abstract function send(msg) in the specification model.
The method call dout.f lush later flushes the buffer. The assignment msg = Handshake.read

reads a message from the buffer during the handshake part of the protocol. As an example, the
code fragment for initializing and sending the ClientHello message is given in figure 5.4.

ClientHello clientHello = new ClientHello(session.protocol, clientRandom, sessionId,
 session.enabledSuites, comp, extensions);

Handshake msg = new Handshake (Handshake.Type.CLIENT_HELLO, clientHello) ;
msg.write (dout, version) ;

Figure 5.4: Initializing and sending the ClientHello message

In our case study (SSL-Handshake protocol), setting up the connection is done by two methods:
doClientHandshake() on the client side and doServerHandshake() on the server side, which
are part of the SSLsocket class in JESSIE. After some initializations and parameter checking,
both methods perform the interaction between client and server that is specified in the protocol.
Each of the messages is implemented by a class, whose main methods are called by the doClien-
tHandshake() rp. doServerHandshake() methods. The associated data is given in table 5.1.

5.4 Specification Language JML

JML is a behavioral interface specification language for Java modules, Specifications can be
written as annotations in Java program files, or stored in separate specification files. Various tools
are available that make use of the extra behavioral information that JML specifications provide,
and, because JML annotations take the form of Java comments, whether embedded in Java code
or in separate files, Java modules with JML specifications can be compiled unchanged with any
Java compiler. The behavior of the program inside it’s class is specified in JML by writing pre-

ClientHello

ServerHello

Certificate

ClientKeyExchange

Finished

ServerHello

Certificate *

Finished

ClientKeyExchange

ClientHello

CLIENT_KEY_EXCHANGE

FINISHED

CERTIFICATE

SERVER_HELLO

CLIENT_HELLO

Class of message type in JessieMessage name in protocol Message type in Jessie

Table 5.1: Data for Handshake message

125

5 Secure System Transformations

and postconditions of the methods exported by the module. Using JML specifications must be
guarantee that before calling a methods exported by the module, some of preconditions must
holds, and after such a call other postconditions must hold also. The use of such pre- and
postconditions is dates back to Hoare’s 1969 paper on formal verification [Hoa69]. The pre-
and post conditions depend on the approach of design by contract [Mey92].

The following sections describe some abstract syntax (Informal and formal specification), and
the most useful JML annotations that are used in our case study (SSL-Handshake protocol)

5.4.1 Informal Specifications

Comment usually is a programming language construct used to embed information in the source
code of a program to describes method’s behavior. JML supports this without requiring that
these comments be formalized by allowing informal descriptions in specifications. An informal
description looks like this one:

(* Text to describe the properties of the method*)

JML treats an informal description as a boolean expression. This allows informal descriptions to
be combined with formal statements, and is convenient when the formal statement is not easier
to write. For example, the following JML specification describes the behavior of the method
sqrt using informal descriptions.

//@ requires (*x is positive *);

/*@ ensures (*\result is an

@ approximation to

@ the square root of x *)

@ && \result >= 0;

@*/

public static double sqrt(double x) {

return Math.sqrt(x); }

Informal specifications are convenient for organizing informal documentation. Informal specifi-
cations can also be very useful when there’s not enough time to develop a formal description of
some aspect of the program. For example, currently JML does not have a formal specification for
input and output. Thus, methods that write to and read from files typically have to use informal
descriptions to describe parts of their behavior. However, there are several drawbacks to using
informal descriptions. A major drawback is that informal descriptions are often ambiguous or
incomplete. Another problem is that informal descriptions cannot be manipulated by tools. For

126

5.4 Specification Language JML

example, JML’s runtime assertion checker has no way of evaluating informal descriptions, so
these cannot be checked at runtime. Thus, whenever time permits, one should try to use formal
notation instead of informal descriptions.

5.4.2 JML Annotations

JML specifications are added to Java code in the form of annotations in comments. Java com-
ments are interpreted as JML annotations when they begin with an @ sign [JML]. That is,
comments of the form

//@ <JML specification>} or /*@ <JML specification> @*/

Overview of JML Syntax The syntax of JML allows one to write specifications that consist
of individual clauses, so that one can say just what is desired. Some of JML Syntax are given
in the following table 5.2. JML supports several kinds of quantifiers in assertions. Table 5.3

Syntax Meaning
requires Defines a precondition on the method that follows
ensures Defines a postcondition on the method that follows
signals Defines a condition on when a given Exception can be thrown by the

method that follows
assignable Defines which fields are allowed to be assigned by the method that follows

pure Declares a method to be side effect free2 (this shorthand for
assignable \nothing)

invariant Defines an invariant property of the class
also Declares that a method should inherit conditions from its super types

assert Defines a JML assertion

Table 5.2: JML Syntax

illustrates some of these quantifiers.

The main restriction in JML is that expressions used in JML’s assertions cannot have side effects.
Thus Java’s assignment expressions (=,+ =, etc.) and its increment (++) and decrement (−−)

operators are not allowed. In addition, only pure methods can be called in assertions. Some
authors call such methods ”query” methods, because they can be used to ask about the state of
an object without changing it. One must tell JML that a method to be pure by using the pure
modifier in the method’s declaration.

127

5 Secure System Transformations

Quantifier Meaning
\result An identifier for the return value of the method that follows

\old(<name>) A modifier to refer to the value of variable < name > at the time
of entry into a method

\ for all The universal quantifier
\ exists The existential quantifier
a =⇒ b The logical construct a implies b
a⇐⇒ b The logical construct a if and only if b

Table 5.3: JML Quantifiers

non-null annotations In JML, there are two ways to make such an assertion. If we want to
make sure that a variable is never null (for example, we would call its method in a moment and
it could produce a Null Pointer Exception), we add the / ∗@ non null @ ∗ / annotation like this
one:

/*@ non_null @*/ String s = "Hi there!";

A more interesting example is the method dentition. If we want a method argument to be
non null, we could write something like this:

public void checkLength(/*@ non_null @*/ String s);

or, we could add something like:

// @$ requires s $!=$ null

public void checkLength(String s);

Notice the subtle difference between those examples. In the first one, if the method body would
contain the line:

s = null;

we would get an error. In the second example, as long as at entry point the non null assertion is
fulfilled, the statement won’t generate an error.

Invariants An invariant is a property that should hold in all client−visible states. It must be
true when control is not inside the object’s methods. That is, an invariant must hold at the end
of each constructor’s execution, and at the beginning and end of all methods. In JML, a public
invariant clause allows one to define the acceptable states of an object that are client-visible;
such invariants are sometimes called type invariants. In JML one can also specify invariants with
more restrictive visibility; such invariants, which are not visible to clients, are sometimes called

128

5.4 Specification Language JML

representation invariants. Representation invariants can be used to define acceptable internal
states of an object; for example, that a linked list is circular, or other similar design decisions.
Public invariants about spec public, private fields, such as this one in Person, have the flavor of
both type and representation invariants.

5.4.3 Example ATM

As an example about JML assertions we choose our case study the Java classes of ATM. We
wrote some JML annotations inside the Java code of ATM to verify a special feature as follow-
ings:

public class ATM {

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/

boolean CustomerAutonticated = false;

/*@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ assignable customerAuthenticated;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

// the rest of the implementation.

another specification:

/*@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ assignable wrongPINCounter;

@ ensures wrongPINCounter

@ == \old(wrongPINCounter) + 1;

@ ensures !customerAuthenticated;

@*/

public void enterPIN (int pin) {

129

5 Secure System Transformations

// the rest of the implementation.

\old(wrongPINCounter) refers to the value of the field wrongPINCounter before
method invocation.

example for static invariant

public class BankCard {

/*@ public static invariant

@ (\forall BankCard p1, p2 ;

@ \created (p1) && \created (p2);

@ p1 != p2 ==> p1.cardNumber != p2.cardNumber)

@*/

private /@ spec_public @/ int cardNumber;

// the rest of the class follows

5.4.4 JML Checker

An annotation language like JML would be quite useless without a tool that can extract informa-
tion from the annotations and use it to verify some, if not all, of its required features. In general,
we divide the checkers into two categories:

• Run-time checking tools, like JMLrac [CL02] annotations are converted into assertions
that are verified when the code they describe is executed

• Static checking tools, like ESC/Java and ESC/Java2 [CL] do not require running the pro-
gram; instead they try to prove that annotations are fulfill by statically analyzing possible
execution paths.

Advantages and disadvantages of each method can be clearly seen. Run-time checkers can check
any assertion, no matter how complicated, but if a method is never run, its assertions will not be
executed and verified. Besides, the execution time is longer due to additional instructions in the
code. Static checkers, on the other hand, are limited by their reasoning capabilities. Hence they
can sometimes show nonexistent errors (false positives) or fail to find some existing ones (false
negatives).

130

5.5 SSL Protocol in JESSIE

5.5 SSL Protocol in JESSIE

In JESSIE, setting up the connection is done by two methods: doClientHandshake() on the
client side and doServerHandshake() on the server side, which are part of the SSL socket
class in JESSIE 3. After some initializations and parameter checking, both methods perform
the interaction between client and server that is specified in figure 5.2. Each of the messages
is implemented by a class, whose main methods are called by the doClientHandshake() rp.
doServerHandshake() methods. First of all, we research the state machines that represents the

ServerHello

sended

Client_Ready

Certificate

Finished

ExchangeData

ReturnFinished

ServerReady

getHello

getCertificate

Finished

ClientFinished

ClientKeyExchange

ExchangeData

/Server_ClientHello(Pver, Rc, Sid, Ciph[], Comp[])

Server_Hello(Pver, Rs, Sid, Cip, Comp)

Certificate(X509Certs)

[Ver(certs)] / Server.ClientKeyExchange(encks, PMS);

Server.Finished (symenck, symencks(sha))

Finished(symenck(md5), symenck(sha))

[md5s’ = md5 && shas’ = sha] /

Echange Data()

ClientHello (Pver, Rc, Sid, Ciph[], Comp[])

/Client.ServerHello (Pver, Rs, Ciph, Comp[]);

Client.Certificate (X509Certs)

ClientKeyExchange(encks, PMS)

Finished(symenck(md5), symenck(sha))

[md5c’ = md5 && shac’ = sh] /

ClientFinished(symenck(md5), symenck(sha))

/ ExchangeData

Figure 5.5: SSL State Machines

interaction of the client and the server as specified in SSL-Handshake protocol. We examine
the Java code of both methods (doClientHandshake() rp. doServerHandshake()) to specify our

3/org/metatstatic/jessie/provider

131

5 Secure System Transformations

UML state machines of the protocol that shown in figure 5.5.

At the left hand side of figure 5.5 is the state machine of the client and at the right hand side is
the state machine of the server. First of all we illustrate the client’s state machine then we will
discuss the server state’s machine. The implementation of SSL-Handshalke protocol in Java is
also in [Kir06] declared.

5.5.1 Client State Machine in JESSIE

The following describes the interaction of the client’s state machine as explained also in [Kir06]:

1. ClientHello: The client sends the message ClientHello to the sever. It has client version,
the version of the SSL protocol by which the client wishes to communicate during this
session, generated client’s random structure Rc, session−ID which is the ID of a session
the client wishes to use for this connection Sid, a list of the cryptographic options sup-
ported by the client, sorted with the client’s first preference first Ciph[], and finally a list
of the compression methods supported by the client, sorted by client preference Comp[].

C ⇒ S : ClientHello(Pver ,R c, Sid ,Ciph[],Comp[])

We examine the Java code of the JESSIE software to find that figure 5.6 implements
sending the message ClientHello.

ClientHello clientHello = new ClientHello (session protocol, clientRandom, sessionId,
 session.enabledSuites, comp, extensions);
Hanshake msg = new Handshake (Handshake.Type.CLIENT_HELLO, clientHello) ;
msg.write (dout, version) ;

Figure 5.6: Sending the Message ClientHello to the Server

2. ServerHello: The answer of the server which consists of Server version Pver,R swhich
is random number generated by the server and must be different from (and independent
of) ClientHello.random. Sid The single cipher suite selected by the server from the list in
ClientHello.cipher suites. Comp is a single compression algorithm selected by the server
from the list in ClientHello.compression methods. The answer message from the server
is implemented in JESSIE as shown in figure 5.7

S ⇒ C : ServerHello(Pver,R s, Sid, Ciph, Comp)

3. Certificate* If the server is to be authenticated (which is generally the case), the server
sends its certificate immediately following the server hello message. The certificate type

132

5.5 SSL Protocol in JESSIE

msg = Handshake.read(din);

ServerHello serverHello = (ServerHello) msg.getBody();

Figure 5.7: Receiving ServerHello message from the Server in JESSIE

must be appropriate for the selected cipher suite’s key exchange algorithm, and is gener-
ally an X.509.v3 certificate. The same message type will be used for the client’s response
to a certificate request message. The Certificate message is implemented also in JESSIE
as shown in figure 5.8.

S ⇒ C : Certificate ∗ (X509Cert s)

msg = Handshake.read (din, certType) ;

Certificate serverCertificate = (Certificate) msg.getBody();

Figure 5.8: The Server’s Certificate which sent to the Client

4. ClientKeyExchange If RSA is being used for key agreement and authentication, the
client generates a 48-byte pre-master secret PMS, encrypts it under the public key from
the server’s certificate or temporary RSA key from a server key exchange message, and
sends the result in an encrypted premaster secret message to the server.

C ⇒ S : ClientKeyExchange(enc K S(PMS))

Figure 5.9 shows the implementation of sending the message ClienKeyExchange.

ClientKeyExchange ckex = null ;
ckex = new ClientKeExchange (Util.trim(bi)) ;
msg = new Handshake (Handshake.Type.CLIENT_KEY_EXCHANGE, ckex) ;
msg.write (dout, version) ;

Figure 5.9: SendClientKeyExchange

5. Finished: At the end of Client’s side, the client sends the message Finished to the server.
This message contains two hashes, which are created using the hash algorithmsHashMD5

and HashSHA. Figure 5.17 shows the implementation of sending the message Finished
in JESSIE.

C ⇒ S : Finished(symenc K(md5, sha))

133

5 Secure System Transformations

Finished finis = null ;
finis = generateFinished (version, (IMessageDigest) md5.clone() ,
 (IMessageDigest) sha.clone(), true) ;
msg = new Handshake (Handshake.Type.FINISHED, finis) ;
msg.write (dout, version) ;

Figure 5.10: Sending the message Finished

6. Finished: The client receives the message Finished from the server which contains two
hashes, which are created using the hash algorithms HashMD5 and HashSHA. Figure
5.16 shows the implementation of receiving the message Finished in JESSIE.

C ⇐ S : Finished(symenc(md5, sha)K

msg = Handshake.read (din, suite, null) ;
finis = (Finished) msg.getBody() ;

Figure 5.11: Receiving the message Finished

5.5.2 Server State Machine in JESSIE

The following steps are states of the server’s state machine as explained also in [Kir06]:

1. ClientHello: The server receives the message ClientHello from the Client. It contains
the client version, which is the version of the SSL protocol by which the client wishes
to communicate during this session, generated client’s random structure Rc, session−ID
which is the ID of a session the client wishes to use for this connection Sid, a list of
the cryptographic options supported by the client, sorted with the client’s first preference
first Ciph[], and finally a list of the compression methods supported by the client, sorted
by client preference Comp[]. We reseach in JESSIE for the Java code which implement
the message ClientHello, we find that the figure 5.12 implements receiving the message
ClientHello to the server.

S ⇐ C : ClientHello(Pver,R c, Sid, Ciph[], Comp[])

2. ServerHello: The server processes the client hello message and responds with either a
handshake failure alert or server hello message. The server Hello message contains the
Protocol version Pver, Rs a generated structure random by the server and must be dif-
ferent from (and independent of) ClientHello.random. Sid the session id which is the

134

5.5 SSL Protocol in JESSIE

Handshake msg = Handshake.read (din) ;
ClientHello clientHello = (ClientHello) msg.getBody () ;

Figure 5.12: Receiving the ClientHello message from the Client

identity of the session corresponding to this connection. Ciph The single cipher suite se-
lected by the server from the list in ClientHello.cipher suites. Comp The single compres-
sion algorithm selected by the server from the list in ClientHello.compression methods
[FKK96]. We reseach in JESSIE for the Java code which implement the message Clien-
tHello, we find that the figure 5.13 implements sending the message ServerHello in JESSIE.

S ⇒ C : ServerHello(Pver,R c, Sid, Ciph, Comp)

ServerHello serverHello = new ServerHello (version, serverRandom,
 session.getId(), suite, comp, extensions) ;
msg = new Handshake.Type.SERVER_HELLO, serverHello) ;
msg.write (dout, version) ;

Figure 5.13: Sending the message ServerHello to the Client

3. Certificate If the server is to be authenticated (which is generally the case), the server
sends its certificate immediately following the server hello message. The certificate type
must be appropriate for the selected cipher suite’s key exchange algorithm, and is gener-
ally an X.509.v3 certificate. The same message type will be used for the client’s response
to a certificate request message. Figure 5.14 shows the implementation of Certificate mes-
sage in JESSIE.

S ⇒ C : Certificate ∗ (X509Cert S)

Certificate serverCert = new Certificate (certs) ;
 msg = new Handshake (Handshake.Type.CERTIFICATE, serverCert) ;
 if (DEBUG_HANDSHAKE_LAYER) debug.println (msg) ;
 msg.write (dout, version) ;

Figure 5.14: Sending the Certificate Message

4. ClientKeyExchange The server received generates 48-byte pre-master secret message by
the client, which encrypted under the public key from the server’s certificate or temporary
RSA key from a server key exchange message. Figure 5.15 shows this step of receiving
the message ClientKeyExchange.

135

5 Secure System Transformations

msg = Handshake.read (din, suite, kexPair.getpublic()) ;
ClientKeyExchange ckex = (ClientKeyExchange) msg.getBody () ;

Figure 5.15: Receiving ClientKeyExchnge message

C ⇒ S : ClientKeyExchange(enc K S(PMS))

5. Finished The server receives the message Finished from the client. This message contains
two hashes, which are created using the hash algorithms HashMD5 and HashSHA.
Figure 5.16 shows the implementation of the message Finished in JESSIE.

S ⇐ C : Finished(symenc K(md5, sha))

Finished finis = null ;
msg = Handshake.read (din, suite, null) ;
finis = (Finished) msg.getBody () ;

Figure 5.16: Receiving the message Finished

6. Finished Finally, the server sends the message Finished to the client. This message con-
tains two hashes, which are created using the hash algorithmsHashMD5 andHashSHA.
Figure 5.17 shows the implementation of the message Finished in JESSIE.

S ⇒ C : Finished(symenc K(md5, sha))

finis = generateFinished (version, md5, sha, false) ;
msg = new Handshake (Handshake.Type.FINISHED, finis) ;
msg.write (dout, version) ;

Figure 5.17: Sending the message Finished to the client

The ExchangData message in the both state machines (client and server’s state machines) mean
that the application data messages are carried by the Record Layer and are fragmented, com-
pressed and encrypted based on the current connection state. The messages are treated as trans-
parent data to the record layer.

5.6 JML Assertions in JESSIE

Determining the security properties satisfied by software using cryptography is difficult: Se-
curity requirements such as secrecy, integrity and authenticity of data are notoriously hard to

136

5.6 JML Assertions in JESSIE

establish, especially in the context of cryptographic interactions [Jue06].

In order to be sure that the implemented protocol in JESSIE indeed verify the SSL-Handshake
protocol, we write our JML assertions inside the Java code of JESSIE. For example let’s explain
this strategy for the Java code which implements sending the message HelloServer to the sever
in the procedure doClientHandshake(), by inspecting the location where the assertions must be
written. We write our JML assertion as shown in figure 5.18 whereas the keyword ensures
checks if the properties that follows are verified or not. As written in the Protocol, the server

msg == new Handshake(Handshake. Type.CLIENTHELLO, clientHello));

new ClientHello (session.protocol, clientRandom, sessionId, session.enabledSuites,
comp, extension) &&

//@ ensures (DEBUG_HANDSHAKE_LAYER == true && clientHello ==

Figure 5.18: JML specifications for Message ClientHello

now should receive the message from the client. This part of protocol is implemented with Java
in doServerHandshake procedure in JESSIE as shows in figure 5.12. In order to verify if the
server indeed receive the message from the client, we add our JML specification which ensures
that the message is delivered to the server. The JML specifications are shown in figure 5.19.

 && serverHello != null
//@ ensures (Handshake.Type == Handshake.Type.SERVER_HELLO

Figure 5.19: JML specifications for Message ClientHello

5.6.1 Verifying Client State Machine in JESSIE

To verify the client state machine in JESSIE, we write JML assertions before the procedure’s
name inside Handshake class. The assertions must verify the states in the client’s state machine.
Figure 5.20 shows the name of the states in the client’s state machine and the appropriate JML
assertions. The ensure clause in this figure satisfy the pre-conditions for the procedure doClien-
tHandshake. For example the first ensure clause means that the object clientHello is created
and assigned to the variable msg, whereas the condition serverCertificate != null means that
the variable is assigned to the appropriate certificate code.

137

5 Secure System Transformations

// state sended in client’s state machine
// Transition serverHello (Pver, Rc, Sid, Cip, Comp) in client’s state machine

// State serverHello in client’ state machine
// Transition Certificate (X509Certs) in Client’s state machine

// State Certificate in Client’s state machine
// Transition Server.ClientKexExchange in client’s state machine

// State Certificate in client’ state machine
// Transition Server.Finished in client’s state machine
@ ensures (Handshake.Type == Handshake.Type.FINISHED && finis != null) ;

// State Finished in client’s state machine
// Transition Finished () in client’s state machine
@ ensures (Handshake.Type == Handshake.Type.FINISHED && Returnfinis != null);

// State ReturnFinished in client’s state machine
// Transition ExchangeData() in client’s state machine

@ assignable msg, finis, Returnfinis;
@*/

@ensure (DEBUG_HANDSHAKE_LAYER == true && clientHello == new ClientHello (session.protocol,
clientRandom, sessionId, session.enabledSuites, comp, extensions) && msg == new
Handshake (Handshake.Type.Client_HELLO, clientHello)) ;

@ ensures (Handshake.Type == Handshake.Type.CLIENT_KEY_EXCHANGE && ckex != null);

@ ensures (Handshake.Type == Handshake.Type.CERTIFICATE && serverCertificate != null);

// Transition Server.ClinetHello (Pver, Rc, Sid, Cip, Comp) in client’s state machine
// State Client_Ready in client’ state machine

/*@ spec_public @*/ private void doClientHandshake () throws IOException

@ ensure (Handshake.Type == Handshake.Type.SERVER_HELLO && serverHello ! = null) ;

Figure 5.20: JML assertions for client’s state machine

5.6.2 Verifying Server State Machine in JESSIE

In order to verify the server state machine in JESSIE, we write JML assertions before the pro-
cedure’s name inside the Handshake class. The assertions must verify the states in the server
state machine. Figure 5.21 shows the name of the states in the client state machine and the
appropriate JML assertions. The assertions are written before the procedure name. For example
the assignment ServerClientHello != null denotes to assign a new valid value to the variable
ServerClientHello, when the variable ClientFinished has no null value any more, it means that
the client sends the request messages to the server and finished the protocol.

We have identified JML as a good candidate for verifying the SSL-Handshale protocol in
Jessie. The most basic tool support for JML is parsing and typechecking. The parsing and
typechecking JML tools will catch any type incompatibilities, references to names that no longer
exist, etc. The JML checker (jml) developed at Iowa State University performs parsing and
typechecking of Java programs and their JML annotations. We use the (jml) checker to check
our JML assertions, first we get some typechecking errors. Howerver, The errors have already

138

5.6 JML Assertions in JESSIE

// State ServerReady in server’ state machine
// Transition ClientHello () in server state machine
@ ensures ServerClientHello != null && ServerMsg ! = null ;

// State getHello in server’ state machine
// Transition Client.ServerHello in server’s state machine
@ ensures (Handshake.Type == Handshake.Type.SERVER_HELLO &&
Server_ServerHello ! = null) ;

// state getHello in server’s state machine
// Transition Client.Certificate (X509Certs)
@ ensures (Handshake.Type == Handshake.Type.CERTIFICATE && serverCert != null) ;

// State getCertificate in server’s state machine
// Transition ClientKeyExchange (encks, PMS) in server’s state machine
@ ensures (Handshake.Type == Handshake.Type.CLIENT_KEY_EXCHANGE &&
Server_ckex != null);

// state ClientKeyExchange in server’s state machine
// Transition Finished in server’s state machine
@ ensures (Handshake.Type == Handshake.Type.FINISHED && Server_finis != null);

// State Finished in server’s state machine
// Transition ClientFinished () in server’s state machine
@ ensures (Handshake.Type == Handshake.Type.FINISHED && ClientFinished != null);
@* /

/*@ spec_public @*/ private void doServerHandshake() throws IOException

Figure 5.21: JML assertions for the server’s state machine

been corrected and we improved also the JML assertions to be as shown in 5.20 and 5.21.

One way of checking the correctness of JML specifications is by runtime assertion checking,
i.e., simply running the Java code and testing for violations of JML assertions. Such runtime
assertion checks are accomplished by using the JML compiler jmlc. Unfortunately, we could
not use the jmlc to compile the Java code of SSL-Handshake protocol in JESSIE because the
jmlc can not compile a Java code that references a class outside of the current file. Thus if any
variable calls a method with a parameter outside the allowed bounds, the jmlc shows an error
and stop the process of compiling the Java code with the JML assertions.

We decided to write again a new assertions in BSL (Bandera Specification Language) to use the
Bandera tool for verifying the desired behavior of the protocol. The next section illustrates the
using of BSL assertions for verifying the SSL-Handshake protocol.

139

5 Secure System Transformations

5.7 Verifying SSL-Handshake via Bandera

The Bandera Tool Set is an integrated collection of program analysis, transformation, and vi-
sualization components designed to facilitate experimentation with model-checking Java source
code. Bandera takes as input Java source code and a software requirement formalized in Ban-
dera’s temporal specification language, and it generates a program model and specification in the
input language of one of several existing model-checking tools (including Spin, dSpin, SMV, and
JPF)

Property specification Source code properties to be checked are written in the Bandera Spec-
ification Language (BSL). BSL is based on a collection of field-tested temporal specification
pattern [DAC99b] that allow users to write specifications in a stylized English format. These
patterns essentially are parameterized macros that can be instantiated to one or more temporal
logics such as LTL and CTL.

To verify our SSL-Handshake protocol via Bandera we write the BSL (Bandera Specification
Language) assertions inside the Java code of the SSL-Handshake protocols. For example to
verify if the client indeed sends the ClientHellomessage to the server, first of all, we have to
define a new boolean variable indside the Java code which indicates sending the HelloServer
message as the following:

private boolean SendClientHello = false;

if the variable SendClientHello has the value true, it means that the client sends the mes-
sage HalloServer to the server. Secondly we assign to the added varibale the appropriate
value inside the part which implements sending the HelloServer message as following:

:

:

//create and send Client Hello

//set ProtocolVersion

gotProtocolVersion=1;

//create random ...

gotClientRandom=1;

//create session ID

gotSessionID=1;

//available CipherSuites

gotCipherSuitesList=1;

140

5.7 Verifying SSL-Handshake via Bandera

writeToChannel(Channel.CLIENTHELLO);

SendClientHello = true;

:

:

finally, we write the pre- and postconditions that verify the process of sending ClientHello
message to the server. The pre- and postconditions must be added before the procedure header
of the ServerHelloRequest() procedures as shown in the specification below:

/**

* @assert

* PRE SendClientHello: (SendClientHello == false);

* POST SendClientHelloTrue: (SendClientHello==true);

*/

private void ServerHelloRequest()

{

//create and send Client Hello message

//set ProtocolVersion

gotProtocolVersion=1;

//create random ...

gotClientRandom=1;

//create session ID

gotSessionID=1;

//available CipherSuites

gotCipherSuitesList=1;

writeToChannel(Channel.CLIENTHELLO);

SendClientHello = true;

}

The role of the tag @assert is to indicate that an assertion is being defined. The label PRE
indicates that the following is the precondition assertion that needs to hold right befor entering
the constructor code. The SendClientHello refers to the name of the assertion. This asser-
tions means that before entering the constructor of the code, the variable SendClientHello
is assigned to the value false.

The second post-condition which indicates by the name SendClientHelloTrue checks
if after executing the constructor code the inserted boolean variable SendClientHello is
assigned to the value true. If this varibale is assigned to the true value during the execution

141

5 Secure System Transformations

of the Java code, it means that the client did his process and sent the ClientHello message
to the server.

5.7.1 Verifying BSL via Spin

Invoking Bandera brinds up the main window of the Bandera User Interface (BUI). The Session
button invokes the Session Manager View which is used to load, configure, and save sessions
and session files. The Checker button is provided to enable and disable model checking in
the currently active session. first, we create a new session by the Session Manager and load
the appropriate Java files with the BSL assertions to be checked. In the Session Manager we
choosed the Spin model checker to be active in this session. Secondly, we activate the Checker
Button and we execute the session by clicking the run button in the Toolbar, to see if the desired
properties which specified as BSL are verified in the Java code of the SSL-Handshake protocol.
The result of the SPIN model checker is as following:

pan.exe -n -m1000000 -w18 -e

(Spin Version 4.1.3 -- 24 April 2004)

Full statespace search for:

never claim - (not selected)

assertion violations +

cycle checks - (disabled by -DSAFETY)

invalid end states +

State-vector 888 byte, depth reached 21963, errors: 0

75524 states, stored

139406 states, matched

214930 transitions (= stored+matched)

548201 atomic steps

hash conflicts: 19397 (resolved)

(max size 2ˆ18 states)

97.145 memory usage (Mbyte)

*** END ***

This result of SPIN shows that the BSL assertions in the Java code which specify the properties
of SSL-Handshake protocol are verified. That is, the implementation of the SSL-Handshake in

142

5.7 Verifying SSL-Handshake via Bandera

Java Code is well-specified in JESSIE and satisfies the properties of SSL-Handshake protocol.

In appendix C we discuss all of the BSL assertions that we need to verify the SSL-Handshake
protocol and We summarize results of using Bandera to verify properties of SSL-Handshake
protocol via SPIN model checker. The actual time that we need to verify the SSL-Handshake
protocol with BSL assertions vis SPIN model checker is about 32 seconds.

143

5 Secure System Transformations

5.8 Graph Transformation of Handshake Protocol

In this section we explain how we design the SSL Handshake protocol as graph model. we define
for every state machine in the protocol the appropriate graph model. Type and Host graphs are
defined also for using them to any transformation rules.

5.8.1 Designing Graph Models

Modeling can be described as an abstraction processes. The most important process in the mod-
eling is how to build the models as representations of reality. Another process in the modeling
is to extract the concepts from concrete objects, or rules from observed behavior.

Send, Receive, Check, Encrypt ... etc, are concepts of the scenario of Handshake protocol. So
we illustrate the forms of Scenario by means of Handshake Protocol. We remember that we
present the protocol as UML state machines in section 5.5, we notice that this figure represents
the scenario of the protocol. In this case, we can use our experience in creating the graph model
of UML state machine, so it is now easy to create the graph models of SSL Handshake protocol
which represented as UML state machines.

5.8.2 Type and Instance Graph

Graphs can represent States by modeling concrete entities as vertices and relations between
theses entities as edges. In our model, The type of vertices; c : Client, s : Server represent the
corresponding concepts in the Scenario. In other words c is a vertex from type Client, s is a also
a vertex from type Server.

The relation between concepts and their occurrences in the Scenario is formally captured by
the notion of typed graphs: TG which represents the type (concept) part of the Scenario and its
instance graphs the individual states in the Scenario. Figure 5.22 illustrates this relation between
types and concepts.

5.8.3 Graph Model of Client State Machine

We have already illustrated in our case study the state machines of ATM how we represent every
state as a node in the graph model. The transitions between the state in the client’s state machine
are represented as nodes in the graph model. Every node in the graph model is connected with
their attributes, it means that the state node is connected with three nodes (represent doActivity,
exit activity and entry activity). The transition node is also connected with three nodes (represent

144

5.8 Graph Transformation of Handshake Protocol

c: Client

s: Server

Server
name: "s"name: "c"

Client

transition

transition

source .. outgoing
target .. incoming

source .. outgoing
target .. incoming

represented as

transition

Client
string name

Server
string name

source .. outgoing

target .. incoming

source .. outgoing

target .. incom
ing

Type Graph

Instance Graphrepresented as

Figure 5.22: Type and Instance Graph from Scenario

trigger, event and guard). In this case, we can represent the client’s state machine as shown in
figure 5.23.

source..outgoing target..incoming

Pseudostate

Ps_kind=Initial"
Ps_name="InitialState"

Activity

AC_name="no"
Activity

AC_name="no"

Activity

AC_name="no"

AC_name="no"

Trigger

AC_name="no"

Constraint

Activity

AC_name="no"

Activity

AC_name="no"

Activity

AC_name="no"

Transition

T_name="sendToSer"

State

St_name="Client_Read"

State

St_name="ServerHello"

Activity

AC_name="no"
Activity

AC_name="no"

Activity

AC_name="no"

entry
exit

doActivity

Trigger

n="severHello" Effect

AC_name="no"AC_name="no"

Constraint
Effect

AC_name="no"
Constraint

AC_name="no"

Trigger

n="Certificate()"
Activity

AC_name="no"

Activity

AC_name="no" Activity

AC_name="no"

Transition

T_name="HelloToCer"

Trigger

n="Certificate()"
Constraint

AC_name="Ver[]"

Activity

AC_name="no"

Activity

AC_name="no"

Transition

T_name="CerToFinis"

Activity

AC_name="no"
Constraint

AC_name="Ver[]"

Effect

AC_name="no"

Transition

T_name="FinToReFin"

Activity

AC_name="no"
Activity

AC_name="no"

Activity

AC_name="no"

entry
exit

doActivity

State

St_name="ReFinished"

Constraint

AC_name="Ver[]"

Trigger

n=md5=..

Effect

ExchangeData

Activity

AC_name="no"
Activity

AC_name="no"

Activity

AC_name="no"

Transition

T_name="ExchageToFi"

Effect

e_n="no"Trigger Constraint

AC_name="Ver[]"An="no"

effect

trigger quard

Pseudostate

Ps_name="FinalState"
Ps_kind=Final"

doActivity

target..incomingsource..outgoing State
Transition

T_name="InToClient"

Transition

T_name="ClientToSen"

entry
exit

trigger
quard

effect

Effect

Sever_ClientHello()

St_name="sended"

doActivity

entry

exit

source..outgoing

target..incoming

trigger

trigger
quard

quard

effect

effect

target..incoming source..outgoing

entry

doActivity

exit

State

St_name="Certificate"

source..outgoing

target..incoming

exit
doActivity

State

St_name="Finished"

source..outgoing

AC_name="ClientKeyExchange; Finished()

Effect
entry

trigger

quard

effect
trigger

quard

effect

Trigger

n="Finished()"

target..incoming

source..outgoing

trigger

quard

effect

Transition

T_name="ReToExchDa"

entry
exit

doActivity

State

target..incoming

St_name="ExchangeD"

source..outgoing
target..incoming

Figure 5.23: Graph Model of Client State Machine

145

5 Secure System Transformations

5.8.4 Graph Model of Server State Machine

We use the same strategy to create the graph model of the server state machine. Figure 5.23
illustrates the host graph model of server state machine. Usually every state in the state machine
is represented as four nodes (the node itself and the three connections node, they represent
the entry, do and exit activities) in the host graph, and every transition between two states is
represented also as four nodes (the transition itself as a new node, and three other node for
trigger and quard and effect properties) in the host graph.

source..outgoing target..incoming

Pseudostate

Ps_kind=Initial"
Ps_name="InitialState"

Activity

AC_name="no"
Activity

AC_name="no"

Activity

AC_name="no"
AC_name="no"

Constraint

Activity

AC_name="no"

Activity

AC_name="no"

Activity

AC_name="no"

Trigger

n="severHello"

AC_name="no"

Constraint

Constraint

AC_name="no"Activity

AC_name="no"

Activity

AC_name="no" Activity

AC_name="no"

Constraint

AC_name="Ver[]"

Activity

AC_name="no"

Activity

AC_name="no"

Activity

AC_name="no"

Constraint

AC_name="Ver[]"

Trigger

n=md5=..

Effect

ExchangeData

Activity

AC_name="no"
Activity

AC_name="no"

Activity

AC_name="no"

Transition

T_name="ExchageToFi"

Effect

e_n="no"Trigger Constraint

AC_name="Ver[]"An="no"

effect

trigger quard

Pseudostate

Ps_name="FinalState"
Ps_kind=Final"

Activity

AC_name="no"
Activity

AC_name="no"

Activity

AC_name="no"

Trigger

"ClientKeyExc"

Activity

AC_name="no"
Activity

AC_name="no"

Activity

AC_name="no"

doActivity

target..incomingsource..outgoing State
Transition

Transition

entry
exit

trigger
quard

effect

doActivity

entry

exit

source..outgoing

target..incoming

trigger

trigger
quard

quard

effect

effect

target..incoming source..outgoing

entry

doActivity

exit

State

source..outgoing

target..incoming

exit
doActivity

State

St_name="Finished"

source..outgoing

entry

trigger

quard

effect
trigger

quard

effect

Trigger

n="Finished()"

target..incoming

source..outgoing

trigger

quard

effect

Transition

entry
exit

doActivity

State

target..incoming

St_name="ExchangeD"

source..outgoing
target..incoming

T_name="InToServert"

State

St_name="Server_Read" T_name="ServerToger"

ClientHello()

Trigger Effect

AC_name="no"

St_name="getHello"

Transition

T_name="HelloToCer"

SErverHello; Certificate

Effect

entry
exit

doActivity

State

St_name="getCertifica"

Transition

T_name="CerToClient"
St_name="ClientKeyEx"

Transition

T_name="ClientToFin"

AC_name="Finishedd()"

Trigger

Effect

Effect

AC_name="no"

Transition

T_name="FinToClieFi"

Constraint

md5 ...

Effect

ClientFinished

entry
exit

doActivity

State

St_name="ClientFinished

T_name="ClToExchDa"

Figure 5.24: Graph Model of Server State Machine

146

5.9 Predicate Diagrams

5.9 Predicate Diagrams

A predicate diagram is a finite graph whose nodes are labeled with sets of (possibly negated)
predicates, and whose edges are labeled with action names as well as optional annotations that
assert certain expressions to decrease with respect to an ordering inO= [CMMag]. Intuitively, a
node of a predicate diagram represents the set of system states that satisfy the formulas contained
in the node. (We indifferently write n for the set and the conjunction of its elements.) An edge
(n,m) is labeled with action A if the action may cause a transition from a state represented by
n to a state represented by m. An action A may have an associated fairness condition; it applies
to all transitions labeled by A rather than to individual edges. We let edges be labeled with
action names instead of action formulas because, in a top-down development, the precise action
formula that defines an action is not known until the final specification has been derived.

Formally, the definition of predicate diagrams is relative to finite sets P and A that contain
the state predicates and the (names of) actions. We write P to denote the set containing the
predicates in P and their negations.

Definition A predicate diagram G = (N, I, δ, o, ζ) over P and A consists of

• a finite set N ⊆ 2P of nodes,

• a finite set I ⊆ N of initial nodes,

• a family δ = (δA)A∈A of relations δA ⊆ N ×N (by δ= we denote the reflexive closure of
the union of these relations),

• an edge labeling o that associates finite sets f(t1,≺1), ..., (tk,≺k) of terms ti paired with
a relation ≺i∈ O= with the edges (n,m) ∈ δ, and

• a mapping ζ : A → {NF,WF, SF} that associates a fairness condition with every action
in A; the possible values represent no fairness, weak fairness, and strong fairness.

We say that the action A ∈ A can be taken at node n ∈ N iff (n,m) ∈ δ holds for some m ∈ N ,
and denote by En(A) ⊆ N the set of nodes where A can be taken.

5.9.1 Dining Philosophers Example

We specify the TLA+ specification of the ’Dining Philosophers’ problem which is introduced in
[oP] as following:

147

5 Secure System Transformations

Init ≡ n ∈ Nat ∧ n 6= 0 ∧ c0 = "t" ∧ c1 = "t"

Eat0 ≡ c0 = "t" ∧ even(n) ∧ ć0 = "e" ∧ ć1 = c1 ∧ ń = n

Thk0 ≡ c0 = "e" ∧ ć0 = "t" ∧ ń = n/2 ∧ ć1 = c1
Eat1 ≡ c1 = "t" ∧ ¬even(n) ∧ ć1 = "e" ∧ ć0 = c0 ∧ ń = n

Thk1 ≡ c1 = "e" ∧ ć1 = "t" ∧ ń = 3 ∗ n+ 1 ∧ ć0 = c0
Next = Eat0 ∨ Thk0 ∨ Eat1 ∨ Thk1

v ≡< v0, c1, n >

DM ≡ Init ∧�[Next]v ∧WFv(Next)

The TLA+ specification consists of two processes (whose control states are represented by the
variables c0 and c1) that communicate via a shared integer variable n. Each process can be
in either thinking (′t′) or eating (′e′) state. The variable n, initialized to some positive integer,
controls access to the eating states: process 0 may eat when n is even and divides n by 2 when
returning to state ′t′. Conversely, process 1 may eat when n is odd and assigns 3n+ 1 to n when
it stops eating. The purpose of the protocol is to ensure mutual exclusion of the ′e′ states without
introducing starvation for either process. A predicate diagram for this system appears in Fig.

(n, <)(n, <)

Figure 5.25: Predicate Diagram of Dining Philosophers Problem

5.25. It consists of four nodes, each labeled with a set of literals. The two top nodes are initial;
in fact, while the control states are fixed and n is known to be a non-zero natural number, it can
be even or odd. Considering the top left-hand node, it is easy to see that only possible successor
state is represented by the lower left-hand node, corresponding to the occurrence of action Eat0,
which sets c0 to ′e′ without changing c1 or n. In particular, n is still positive and even. From
there, only the action Thk0 is possible, and will lead back to a state where both processes are in
their ′t′ states. Moreover, since n must be at least 2 in the source state, n = 2 is at least 1, so n
is still a positive integer. However, it could be even or odd, as represented by the two abstract
transitions of the diagram. The justification of the remaining transitions is similar.

148

5.9 Predicate Diagrams

A predicate diagram represents every possible behavior of the system, and properties (over the
predicates represented in the abstraction) can therefore be verified by model checking. For
example, it is easy to prove mutual exclusion (�¬(c0 =′ e′ ∧ c1 =′ e′)) just by looking at
the states of the diagram. Similarly, weak fairness of the next state relation Next ensures that
process 0 will eat infinitely often (�♦(c0 =′ e′)), since no trace through the diagram can forever
avoid visiting the lower left-hand node.

5.9.2 Predicate Diagram of SSL−Handshake Protocol

In this section we illustrate the representations of SSL−Handshake Protocol as a predicate dia-
gram to prove some secure system properties which must hold in the protocol.

As we can see in figure 5.2), we define five attributes. Client Hello which is positive when
the Client sends his message to the server. Server Hello is also an attribute refers to the server
when it sends his message to the client. Certificate is an attribute that hold when the server
sends his certificate to the client. ClientKeyExchange is a an attribute, it is active when the
client sends his message to the server. Finished is an attribute refers to the end of the connection
between the server and the client. Finally, the attribute ExchangeData refers to beginning an
safety connection between the client and the server. Figure 5.26 shows TLA specification of
SSL−Handshake protocol. We mean by ClientHello = "no" that the client did not send
Hello message until now. When the ClientHello = "yes", it means that the client has
already sent his message to the sever. The property Prep1 means that there is a probably for
changing Data when the client sent first his message. The predicate Diagram for SSL-Handshake
protocol appears in Fig. 5.27. It consists of five nodes, the middle node is initial; it consists of
six attributes. The Client Hello attribute is positive, it’s means that the client sends now the
message to the server. The other attributes in this initial node are negative and they mean; they
did not receive or sent any message. On the right top node the Server Hello and Certificate
attributes are positive whereas the other attributes are negative. It means that the server received
the message from the client and sent his Certificate and message Server Hello to the client.
The third node on the left top side, the attributes finished and ClientKeyExchage are positive
whereas the other are negative, it means that the client sent the message ClientKeyExchange and
the message Finished to refers to finishing the connection with the server. The lower two nodes
are to represent the finish process of sending the protocol’s message between the client and the
server, and begin with the next task to transform the data between the client and the server safety.

149

5 Secure System Transformations

VARIABLE ClientHello, ServerHello, Certificate, ClientKeyExchange,
Finished, ExchangeData

Client == ClientHello = “no“ ^ ClientHello' = “yes“ ^ UNCHENGED <<ServerHello,
Certificate, ClientKeyExchange, Finished, ExchangeData>>

Server == ServerHello = “no“ ^ ServerHello' = “yes“ ^
Certificate = “no“ ^ Certificate' = “yes“ ^ UNCHANGED <<ClientHello,
ClientKeyExchange, Finished, ExchangeData>>

Client_1 == ClientKeyExchnge = “no“ ^ ClientKeyExchange' = “yes“ ^
Finished = “no“ ^ Finished' =“yes“ ^ UNCHANGED << ClientHello,
ServerHello, Certificate, ExchangeData >>

Server_1 == ExchangeData = “no“ ^ ExchangeData' = “yes“ ^
UNCHANGED << ClientHello, ServerHello, Certificate, Finished,
ClientKeyExchange >>

Init == ClientHello = “no“ ^ ServerHello = “no“ ^ Certificate =
“no“ ^ ClientKeyExchange = “no“ ^ Finished = “no“ ^ ExchangeData = “no“

Next == Client V Server V Client_1 V Server_1
v == << ClientHello, ServerHello, Certificate,
ClientKeyExchange, Finished, ExchangeData >>

Spec == Init ^ [][Next]v ^ WF_v(Next)

* Proerties
Prop_1 == []((ClientHello = “yes“) -> <> (ExchangeData = “yes“))
===

Figure 5.26: TLA Specification of Handshake Protocol

5.10 Rules Transformations of SSL−Handshake
Protocol

In this section we propose to use graph transformation rules to describe our strategy for graph
transformation of our case study. These rules provide precise specifications needed for an au-
tomated transformation for graph model of UML state machine to a graph model of predicate
diagrams. To transform the state machine into predicate diagram, we have to follow the follow-
ing tasks:

1. First of all, we define the type graph of client and server state machines, we can do this
step easily because we have already defined the type graph of the state machine in chapter
4.

2. We represent the client or server state machine as Host-graph models. We use the trans-

150

5.10 Rules Transformations of SSL−Handshake Protocol

~ClientHello
~ServerHello
~Certificate

~ExchangeData

 Finished
ClientKeyExchange

~ClientHello

~ExchangeData

~Finished

 ServerHello

~ClientKeyExchange

 Certificate

~ClientHello

~Finished
~ClientKeyExchange
 ExchangeData

~Certificate
~ServerHello

~ClientHello

~Finished
~ClientKeyExchange
 ExchangeData

~Certificate
~ServerHello

~ClientHello

~ClientKeyExchange
 ExchangeData

~Certificate
~ServerHello

 Finished

Node 2Node 3

Node 1

Node 4 Node 5

Figure 5.27: Predicate Diagram of SSL−Handshake Protocol

formation tool AGG to represent the host graph of the client state machine. Figure 5.28
shows a part of the host graph model of the client state machine using AGG.

3. We define the transformation rules. They are about fourteen grammars as shown in the
left side of figure 5.28. We will not discuss here all the rules that we defined in AGG. For
example, figure 5.29 shows how we create the initial node from the given host graph.

As shown in this figure, at the right hand side of this rule we create a new node called
”Initial” represents the initial node of the predicate diagram.

Another rule is shown in figure 5.30 that defines the variable of the node in predicate
diagram. As we can see in this figure we have in this rule the NAC to guarantee not to
create the variable one more time if it is already created.

4. We run the rules that we define to transform the graph model of client state machine to a
graph model of predicate diagram, after the transformation is done we get the final graph
which represents the predicate diagram of the Handshake Protocol 4

Figure 5.31 shows a part of graph model of SSL-Handshake protocol. Every node has six at-
tributes, When the attribute dosn’t has any negative symbol, it means that this attribute sends his
message to the client or to the server. For example the attribute serverHello in Node1 hasn’t

4We do not have to worry about the server state machine, just one of them in the graph model format is enough to
define the predicate diagram of the SSL-Handshake protocol.

151

5 Secure System Transformations

Figure 5.28: Part of Host-graph of SSL-Handshake in AGG

any negative symbol, it means in this case that the client sent the message HalloServer to
the server.

5.11 Properties verification via DIXIT

The DIXIT toolkit is intended to assist a user in performing the kind of defining the predicate
diagrams. Predicate diagrams can be drawn in a graphical editor, either from scratch or as a
structural refinement of an existing diagram. In the latter case, the node mapping is defined
implicitly, as no new nodes may be added, but existing nodes may be split [FMM05]. DIXIT
can also generate proof obligations that ensure that a diagram conforms to a TLA+ system
specification associated with the diagram. Verification steps can be initiated from a hierarchical

152

5.11 Properties verification via DIXIT

Figure 5.29: Graph Grammar to define the Initial Node

Figure 5.30: Graph Grammar to define the Attribute

project view in a separate window. The kernel interacts with external verification tools through
well-defined interfaces. It generates proof obligations for theorem provers, model checkers, as
well as structural conditions that can be verified at the diagram level itself. Currently, DIXIT is
oriented towards the analysis of TLA+ models, and therefore it interacts with the TLA+ parser
TLASANY. Externally, a DIXIT project is stored in XML format; it may also include (pointers
to) files that are not processed by the kernel, such as TLA+ modules. Diagrams can be exported
in Postscript, GIF, and SVG formats.

In the next section we discuss how we represent our case study SSL-Handshake protocol in the
DIXIT model checker.

5.11.1 SSL-Handshake in DIXIT

First of all we have to translate the final graph Fig. 5.31 of SSL-Handshake protocol into pred-
icate diagram 5 where the nodes in the graph model are represented as states with six attributes
in the predicate diagram. The edges in the graph model are represented as actions between the
states in the predicate diagram. Figure 5.32 shows the predicate diagram of SSL-Handshake
protocol using DIXIT interface.

5We do this step either manually or automatically using DAMAS. DAMAS is declared in chapter 6.

153

5 Secure System Transformations

Figure 5.31: Predicate Diagram as Graph Grammar

Figure 5.32: Predicate Diagram of Handshake in DIXIT

154

5.12 Result and Discussion

The nodes of the diagram in Fig. 5.32 reflects the different phases of the SSL-Handshake proto-
col, and the edges represent the possible transitions. For example, the actions is enabled from the
initial node Node_1 to the node Node_2 when the client sends the message ServerHello
to the server.

Satisfying Properties We check whether the desired properties are valid in the predicate
diagram or not. The verification can be done by using the model checker SPIN or TLA model
checker. To verify the properties using DIXIT we have to write them as a temporal logic prop-
erties. For example, to verify that the protocol satisfy the property:

If the client sends the Message HelloServer,

it must be a data exchange between the client and the server.

We can write such this property in temporal logic as following:
�(Client⇒<> ExchangeData)

This property is valid in the predicate diagram which shown in Fig. 5.32

5.12 Result and Discussion

In Chapter 5 we indicated a strategy to verify security protocols using the approach of graph
grammars and graph transformation systems. First we introduced basic concepts about the SSL
security protocols and investigated the mechanism of the SSL-Handshake protocol. Second, we
determined in the JESSIE software the Java code which implements the SSL-Handshake pro-
tocol. JML assertions are used to verify the SSL-Handshake protocol in JESSIE, whereas the
Bandera model checker is also used to verify the desired security properties in JESSIE software.
In the third step we compiled the SSL-Handshake protocol into a graph model to use the ap-
proach of graph grammars and graph transformation systems. In this case, we could transform
the protocol into new graph model that is compilable into predicate diagram form.

Finally, we verified the created predicate diagram using the DIXIT model checker and checked
whether the security properties in our case study are indeed valid.

155

5 Secure System Transformations

156

6 DAMAS

In order to make our theoretical results applicable to larger examples and practical case studies,
we design our prototyping tool DAMAS . DAMAS supports an automatic translation of UML
state machines into graph models and to create the required files for the software model checking
systems. Figure 6.1 illustrates a simple view of DAMAS. DAMAS is designed to bridge the gab
between UML software design and model checking system. In applying model checking to
software design, in particular of UML, we find that software design usually involves infinite
state spaces, this is not directly suited for model checking, since model checker accept only
designs where the sate space is finite. On the other hand, the semantic definitions of model
checking systems are different from UML software semantic. Using DAMAS provides us to
reduce the state space of the required model using our pre-defined rules about 10 percent, and
to define a new semantic of the models using graph transformation techniques. As we can see
in the left side of figure 6.1, DAMAS reads the model as UML state machines, then it compiles
the model into graph language and use the transformation engine for transforming the compiled
model using pre-defined rules into final graph. The second aim of DAMAS is to compile the
final graph model into an specification language that is suitable for model checker tools like
HUGO and SPIN.

Graph

Transformation

Engine Software
Checking

Model UML
Software
Design

DAMAS

Figure 6.1: Prototype DAMAS Tool

We describe in this section our prototype tool DAMAS. Several tools provide verification sup-
port for the state machine view as UML model via transition into the input languages of model
checkers [LMM99,LP99]. Our tool is different because it is completely depend on graph trans-
formations approach to create new graph models. We will discuss our tool and implement some

157

6 DAMAS

case studies in the next four sections as following:

The first section illustrates using DAMAS to now how to compile UML state machine designs
into Host-graph models. The second section discusses how we use our prototype DAMAS to
translate the host graph into new graph model via our pre-defined rules. Section 3 illustrates
compiling the final graph into output language for model checker HUGO and DIXIT. Finally,
section 4 verifies some insurance properties using our tool DAMAS. We intend to carry out our
case study ATM as running example in this chapter. The implementation of SSL-Handshake
protocol via DAMAS is illustrated in Appendix B.

6.1 DAMAS and UML Software Design

DAMAS accepts the software design as UML state machine diagrams, so first of all we imple-
ment our case study as UML state machine diagrams, let’s consider again our case study ATM in
chapter 2 (see figure 2.13 and 2.14), we use usually MagicDraw which is a visual UML mod-
eling and CASE tool with teamwork support to model our examples. MagicDraw provides full
support for UML 2.0 metamodel, including class, use case, communication, sequence, state, ac-
tivity, implementation, package, component, composite structure, and deployment diagrams. In
addition, MagicDraw provides explicit support for UML profiles and custom diagrams. Figure
6.4 shows the screenshot of MagicDraw.

We design the case study ATM using MagicDraw as shown in figure 6.3, which describes the
interaction of an automatic teller machine (ATM), a bank computer, and a single user. The
interaction focuses on the validation of the Card and the PIN-Code. These two state machines
specify the dynamic behavior of our case study ATM. As an input file to DAMAS we take the
XMI file that which produces from the UML-Editor MagicDraw and compiles it into new file
represents the host-Graph of ATM case study.

To compile the UML state machine file into Host-graph file using DAMAS, we have to write the
following command:

DAMAS Graph "Inputfile" "Outputfile"

the inputfile is an XMI file which produces using any UML-Editor, whereas the ouputfile
is an gxx file which created to use the graph transformation engine AGG.

For example to translate the ATM state machine into graph models we have to write the following
command:

DAMAS Graph ATM.xmi ATM.gxx

158

6.1 DAMAS and UML Software Design

Figure 6.2: The Screenshot of MagicDraw

ATM.xmi is the input XMI file for DAMAS which represents the ATM state machine, whereas
ATM.gxx is the output file represents the Host-graph model of the ATM state machine.

DAMAS creates the appropriate file with the extension gxx. The following shows part of the
created file:

<?xml version="1.0" encoding="UTF-8"?>

<Document version="1.0">

<GraphTransformationSystem ID="I1" name="GraGra">

<TaggedValue Tag="AttrHandler" TagValue="Java Expr">

<TaggedValue Tag="Package" TagValue="java.lang"/>

<TaggedValue Tag="Package" TagValue="java.util"/>

<TaggedValue Tag="Package" TagValue="com.objectspace.jgl"/>

159

6 DAMAS

(a) State Machine of Bank with MagicDraw

(b) State Machine of ATM with MagicDraw

Figure 6.3: Designing of ATM with MagicDraw

<TaggedValue Tag="Package" TagValue=

"genged.alphabet.datatypes"/>

</TaggedValue>

<TaggedValue Tag="CSP" TagValue="true"/>

<TaggedValue Tag="injective" TagValue="true"/>

<TaggedValue Tag="dangling" TagValue="true"/>

160

6.2 DAMAS and Graph Transformation Engine

<TaggedValue Tag="NACs" TagValue="true"/>

<TaggedValue Tag="showGraphAfterStep" TagValue="true"/>

<TaggedValue Tag="TypeGraphLevel" TagValue="DISABLED"/>

<Types>

<NodeType ID="I2" name="State%:ROUNDRECT:

java.awt.Color[r=0,g=0,b=0]::[NODE]:">

<AttrType ID="I4" attrname="name"

typename="String" visible="true"/>

6.2 DAMAS and Graph Transformation Engine

We use usually AGG transformation tool [AGG] to see the created file via DAMAS. We have
already explained in chapter 3 how we define the state machines as graph models with nodes
and edges. Some nodes represent the state in the UML state machine and other nodes represent
the actions between the states. Figure 6.4 shows the created graph model of the ATM case study
with the AGG tool.

We have already determined the graph model of our case study, so we can choose the pre-defined
rules to transform the host-Graph to new appropriate graph model which must be suitable to
software model checking design. Suppose we want to transform the host-Graph into new model
represents the predicate diagram. In this case, we have to add the transformation rules for
predicate diagrams. Figure 6.5 shows the transformation rules that must be added to our host-
Graph model.

We have now the required grammar to transform the host-Graph model into predicate graph
model. The rule is actually executed by clicking the ”S” button in the toolbar of AGG. We can
now save the created graph (the one which represents the predicate diagram) as gxx file, let’s
call it for example predicate.gxx. The following is a part of predicate.gxx file:

<?xml version="1.0" encoding="UTF-8"?>

<Document version="1.0">

<GraphTransformationSystem ID="I1" name="GraGra">

<TaggedValue Tag="AttrHandler" TagValue="Java Expr">

<TaggedValue Tag="Package" TagValue="java.lang"/>

<TaggedValue Tag="Package" TagValue="java.util"/>

<TaggedValue Tag="Package" TagValue="com.objectspace.jgl"/>

<TaggedValue Tag="Package" TagValue=

"genged.alphabet.datatypes"/>

161

6 DAMAS

Figure 6.4: The Graph Model of ATM

<TaggedValue Tag="Package" TagValue=""/>

<TaggedValue Tag="Package" TagValue=

"agg.attribute.handler.impl.javaExpr"/>

</TaggedValue>

<TaggedValue Tag="CSP" TagValue="true"/>

<TaggedValue Tag="injective" TagValue="true"/>

<TaggedValue Tag="dangling" TagValue="true"/>

<TaggedValue Tag="NACs" TagValue="true"/>

<TaggedValue Tag="showGraphAfterStep" TagValue="true"/>

<TaggedValue Tag="TypeGraphLevel" TagValue="DISABLED"/>

<Types>

<NodeType ID="I2" name="State%:ROUNDRECT:

162

6.3 DAMAS and Model Checking

Adding The Transformation Rules

Figure 6.5: The Transformation Rules to Predicate Diagram

java.awt.Color[r=0,g=0,b=0]::[NODE]:">

<AttrType ID="I4" attrname="S_name"

typename="String" visible="true"/>

</NodeType>

<NodeType ID="I5" name="Pseudo%:ROUNDRECT:

java.awt.Color[r=0,g=0,b=0]::[NODE]:">

6.3 DAMAS and Model Checking

We use usually the model checker DIXIT [FMM05] to verify the required properties. The
DIXIT toolkit provides support for the verification of systems using Boolean abstractions in the

163

6 DAMAS

form of predicate diagrams. It is organized around a visual editor that allows a user to draw a
predicate diagram and enter node and edge annotations. Properties expressed in temporal logic
can be verified from the interface by calling the SPIN model checkers, The specification of
predicate diagrams are written with TLA+ (temporal logic of action). If we want to compile our
final graph model into predicate diagram, we have to write the specification of our case study
ATM. The following is the specification of ATM in TLA+:

-------------MODULE ATM ---------

EXTENDS Naturals

VARIABLE Amount, Card, Pin

EnterCard == Card ="no" /\ Card’ ="yes"

/\ Pin’ =Pin /\ Amount’ =Amount

VerifyCard == Card = "yes" /\ Card’ =Card

/\ Pin="no" /\ Pin’ ="yes"

/\ Amount’ =Amount

EnterAmount == Pin ="yes" /\ Card ="yes"

/\ Amount =0 /\ Amount’ =Amount +1

/\ Card’ =Card /\ Pin’ =Pin

GiveMoney ==Amount # 0 /\ Amount =0 /\ Card="yes"

/\ Card’ = Card /\ Pin = "yes" /\

Pin’ = Pin

ReturnCard == Card ="yes" /\ Card’ ="no" /\

Pin ="yes" /\ Pin’ ="no"

/\ Amount # 0 /\ Amount’=0

Init == Card ="no" /\ Pin ="no" /\ Amount =0

Next == EnterCard \/ VerifyCard \/

EnterAmount \/ GiveMoney \/ ReturnCard

v == <<Amount, Card, Pin >>

Spec == Init /\ [][Next]_v /\ WF_v(Next)

DAMAS has a special rule to add the specification in the graph model, in this case, we have to
execute the rule given in figure 6.6.

After executing the TLA rule, a small dialog called Al-Dehni is opened to write the required
TLA specification. Let’s save the TLA file under the same name predicate.gxx. Our case
study ATM is ready now to translate it into new file represents the input file of DIXIT. The

164

6.3 DAMAS and Model Checking

Figure 6.6: Rule for Adding TLA+ Specification

following is the command to compile the graph model to DIXIT:

DAMAS Predicate "predicate.gxx" "dixit.xml"

The new file dixit.xml is an input ”XML” file for DIXIT model checker. Part of this file is
shown as following:

<project base="file:/lfe/pst/home/users/

aldehni/dixit/dixit/shadi/ATM/"

xsi:schemaLocation="http://www.loria.fr

/equipes/mosel/dixit/ dixit.xsd">

<name>Untitled Project</name>

<diagram id="Diagram1">

<name>ATM</name>

<node height="97" id="Node2"

width="146" x="56" y="32">

<name>Node1</name>

<initial>true</initial>

165

6 DAMAS

<predicate>Card="no"</predicate>

<predicate>Pin="no"</predicate>

<predicate>Amount=0</predicate>

</node>

<node height="109" id="Node3"

width="164" x="57" y="325">

<name>Node2</name>

<initial>false</initial>

<predicate>Card="yes"</predicate>

<predicate>Pin="no"</predicate>

<predicate>Amount = 0</predicate>

<predicate/>

</node>

<node height="93" id="Node4"

width="146" x="448" y="336">

We have now the required file for verifying the predicate diagram using DIXIT. Figure 6.7 shows
the predicate via the DIXIT model checker.

6.4 Verifying Properties using DAMAS

To verify some properties which must hold in ATM design, we write the properties as temporal
logic in DIXIT. For example, to verify that the ATM model is indeed give the required money
to the customer, if he/she give the right card with the right PIN-number. Such this property is
written in temporal logic as following:

[] <> (Card = "yes" && Pin = "yes" => Amount # 0)

The result of DIXIT using SPIN model checker is: verified.

Another example:

[] (Card = "yes" && Pin = "no" => Amount = 0)

The result of DIXIT using SPIN model checker is: not verified.

166

6.5 Result and Discussion

Figure 6.7: Predicate Diagram of ATM

6.5 Result and Discussion

In the current chapter, we proposed our prototype tool DAMAS. DAMAS is used to compile
the UML state machines into graph models and to verify the desired features automatically. In
particular, we use DAMAS to generate the executable UML state machines and the predicate
diagrams of UML software designs.

We illustrated how we apply our prototype DAMAS to use our pre-defined rules for transform-
ing the graph models of the software designs into new models that represent the approach of
predicate diagrams. We used DAMAS to compile the graph models into the standard XMI file
for DIXIT model checker. In this case, we can use the DIXIT model checker to verify the desired
properties against the diagrams.

We have introduced how we reduce the state space of the software model checking by using

167

6 DAMAS

the approach of executable state machines. DAMAS is used here to transform automatically the
graph models of UML state machines into executable state machines models and to create the
UML state machines to be checked using HUGO model checker.

In Appendix B we give a short introduction to the use of DAMAS by presenting the SSL-
Handshake protocol verification with DAMAS.

168

7 Conclusion

The work presented in my thesis focuses on model transformations of UML software designs
and verifying properties of software designs by using the software model checking designs.

A fundamental discussion about temporal logic and model checking theories is presented in the
second chapter. In this chapter we introduce two case studies: the state machine of ATM and
the state machine of two-phase commit protocol. We use the HUGO model checker to verify
whether the desired properties are indeed valid against the model.

The third chapter illustrates basic principles of graph grammar and graph transformation system.
We discuss in this chapter how we create the graph models from the observed scenario. A
general theory of graph formalism and semantic definitions of graph models (host-graph, final-
graph, left hand side, ... etc) are also presented in this chapter. The transformation rules are used
here to transform the host−graph into final one by adding or removing vertices as specified in
the pre-defined rules. We introduced several useful tools and choose the tool AGG to run our
case studies.

The fourth chapter contains an overview in the Unified Modeling Language (UML topics). So
far, we have covered the basics principles of UML diagrams, we tried to research in the semantic
definitions of UML state machines. We presented in this chapter the concepts of executable
state machines to flat the UML state machines into simple states and actions with guards. We
compiled then both of UML state machines and executable state machines to graph models and
used the HUGO model checker to get a very useful result. We reduced the state space of model
checking software using our transformation strategy about 10 percent. We used also in this
chapter HUGO to see whether the functional properties, expressed in a formal logic like LTL
(linear temporal logic), do hold in our case studies.

In chapter 5 we provided the reader with an overview of the security protocols especially SSL-
record protocol, which is world wide used protocol to assure the connection between the server
and client. As a case study we choose the SSL-Handshake protocol and verify this protocol
in JESSIE software, we used JML (Java Modeling Language) assertions which must inserted
inside the Java code of JESSIE. The Bandera tool are also used here to verify special security
properties. Our transformation techniques are implemented on SSL−Handshake protocol to
transform it into new designs that are suitable for software model checking. We compiled the

169

7 Conclusion

created graph models to the input language of the DIXIT model checker. The DIXIT model
checker shows us if the desired security properties are verified.

The last chapter presented our prototype tool DAMAS. We designed DAMAS to compile and
to transform the model (case study) into the desired graph automatically. DAMAS provides the
user the ability to transform automatically the UML state machine diagram either into executable
state machines or into new models suitable for software model checkers like HUGO and DIXIT.

7.1 Further Work

The results presented in my thesis indicate that the future for applying the approach of graph
grammar and graph transformation systems on UML state machine and model checking systems
is extremely promising. The integration of graph transformation techniques with software model
checking designs allows to make use of the variety of verification concepts. Near future work
in UML state machines is to add more transformation rules to manipulate the graph model of
UML state machines into other model like Petri nets or others.

There is much further work that should be done in the graph transformation strategies. We point
out a possible direction for further research in the abstraction techniques to create a new UML
state machine models that guarantee to reduce the state space of the software model checking
more than 30 percent.

For our practical implementation, the tool that we developed is a prototype tool and needs to
be improved. We could extend our tool to manipulate the graph model using directly imple-
mentation of graph with model checker Spin, we could also design a user friendly interface for
DAMAS to show directly the result of transformations and the result of the model checker.

170

7.1 Further Work

171

Appendix A

172

Appendix A

Textual UML format(UTE) We introduce in appendix A the UTE text format of the case
study state machines of ATM. UTE reflects the UML features in a text format, it is required as
an input file to the HUGO model checker.

The UTE textual format for the state machines of ATM case study is shown as following:

model untitledModel {

class Bank{

signature{

attr atm : ATM;

attr cardValid : boolean = true;

attr numIncorrect : int = 0;

attr maxNumIncorrect : int = 2;

operation verifyPIN();

reception done();

}

behaviour {

states {

simple Idle;

initial top_initial0;

final top_final0;

concurrent Verifying {

composite Verifying_region0{

simple VerifyingPIN;

simple PINCorrect{

entry numIncorrect = 0;

}

173

Appendix A

simple PINIncorrect;

junction Verifying_region0_junction0;

}

composite Verifying_region1{

simple VerifyingCard;

simple CardValid;

junction Verifying_region1_junction1;

}

}

join top_join0;

join top_join1;

junction top_junction2;

fork top_fork0;

}

transitions{

Verifying.Verifying_region0.VerifyingPIN ->

Verifying.Verifying_region0

Verifying_region0_junction0{

guard true;

effect ;

}

Idle -> top_final0{

trigger done;

guard true;

effect;

}

Idle -> top_fork0{

trigger verifyPIN;

guard true;

effect ;

}

top_join1 -> Idle{

guard true;

effect atm.pinVerified();

}

Verifying.Verifying_region1

Verifying_region1_junction1 ->

174

UTE Format

Idle {

guard !(cardValid);

effect atm.abort();

}

Verifying.Verifying_region1

Verifying_region1_junction1 ->

Verifying.Verifying_region1.CardValid{

guard cardValid;

effect;

}

Verifying.Verifying_region0

Verifying_region0_junction0 ->

Verifying.Verifying_region0.PINCorrect{

guard true;

effect;

}

top_junction2 -> Idle{

guard numIncorrect < maxNumIncorrect;

effect numIncorrect++; atm.reenterPIN();

}

top_junction2 -> Idle{

guard !(numIncorrect < maxNumIncorrect);

effect cardValid = false; atm.abort();

}

Verifying.Verifying_region1.CardValid ->

top_join1{

guard true;

effect;

}

top_fork0 -> Verifying.Verifying_region0.

VerifyingPIN{

guard true;

effect;

}

Verifying.Verifying_region1.CardValid ->

top_join0{

guard true;

175

Appendix A

effect;

}

Verifying.Verifying_region1.VerifyingCard ->

Verifying.Verifying_region1

Verifying_region1_junction1{

guard true;

effect;

}

top_join0 -> top_junction2{

guard true;

effect;

}

Verifying.Verifying_region0.PINCorrect ->

top_join1{

guard true;

effect;

}

top_fork0 -> Verifying.Verifying_region1.

VerifyingCard{

guard true;

effect;

}

Verifying.Verifying_region0.PINIncorrect ->

top_join0{

guard true;

effect;

}

Verifying.Verifying_region0

Verifying_region0_junction0 ->

Verifying.Verifying_region0.PINIncorrect{

guard true;

effect;

}

top_initial0 -> Idle{

guard true;

effect;

}

176

UTE Format

}

}

}

class ATM {

signature {

attr bank : Bank;

reception abort();

reception reenterPIN();

reception pinVerified();

}

behaviour{

states{

initial top_initial0;

simple Idle;

simple Verifying;

simple ReturningCard;

composite GivingMoney{

initial GivingMoney_initial1;

simple Counting;

simple Dispensing;

final GivingMoney_final0;

}

final top_final1;

simple AmountEntry;

simple PINEntry;

}

transitions {

GivingMoney -> ReturningCard {

guard true;

effect;

}

GivingMoney.Counting ->

GivingMoney.Dispensing{

guard true;

effect;

}

GivingMoney.GivingMoney_initial1 ->

177

Appendix A

GivingMoney.Counting{

guard true;

effect;

}

Verifying -> AmountEntry{

trigger pinVerified;

guard true;

effect ;

}

GivingMoney.Dispensing ->

GivingMoney.GivingMoney_final0{

guard true;

effect ;

}

Verifying -> ReturningCard{

trigger abort;

guard true;

effect;

}

ReturningCard -> top_final1{

guard true;

effect bank.done();

}

Idle -> PINEntry {

guard true;

effect ;

}

Verifying -> PINEntry {

trigger reenterPIN;

guard true;

effect ;

}

PINEntry -> Verifying {

guard true;

effect bank.verifyPIN();

}

AmountEntry -> GivingMoney {

178

UTE Format

guard true;

effect ;

}

ReturningCard -> Idle {

guard true;

effect ;

}

top_initial0 -> Idle {

guard true;

effect ;

}

}

}

}

}

179

Appendix B

180

Appendix B

Model checking SSL-Handshake protocol via DAMAS In Appendix B we present the
verification of the SSL-Handshake protocol via our tool DAMAS. As we explained in chapter
4 we first have to represent the protocol as UML state machine. Usually we use MagicDraw to
design our case studies. Figure 7.1 shows the UML state machines of SSL-Handshake protocol.
The left side of figure 7.1 shows the client’s state machine, whereas the right side shows the
server’s state machine. Let’s save these state machines as XMI file using MagicDraw and name

ServerHello

sended

Client_Ready

Certificate

Finished

ExchangeData

ReturnFinished

ServerReady

getHello

getCertificate

Finished

ClientFinished

ClientKeyExchange

ExchangeData

/Server_ClientHello(Pver, Rc, Sid, Ciph[], Comp[])

Server_Hello(Pver, Rs, Sid, Cip, Comp)

Certificate(X509Certs)

[Ver(certs)] / Server.ClientKeyExchange(encks, PMS);

Server.Finished (symenck, symencks(sha))

Finished(symenck(md5), symenck(sha))

[md5s’ = md5 && shas’ = sha] /

Echange Data()

ClientHello (Pver, Rc, Sid, Ciph[], Comp[])

/Client.ServerHello (Pver, Rs, Ciph, Comp[]);

Client.Certificate (X509Certs)

ClientKeyExchange(encks, PMS)

Finished(symenck(md5), symenck(sha))

[md5c’ = md5 && shac’ = sh] /

ClientFinished(symenck(md5), symenck(sha))

/ ExchangeData

Figure 7.1: SSL Handshake protocol as UML State Machines

181

Appendix B

the file SSL.xmi. To compile SSL.xmi into graph model using our prototype tool DAMAS,
we have to write the following command:

DAMAS Graph "SSL.xmi" "SSL.gxx"

The new created file "SSL.gxx" represents the Host-Graph model of SSL-Handshake proto-
col. We can open the file using AGG Editor to show the Host-Graph model. Figure 7.2 shows the
Host-Graph via AGG. We must now choose the appropriate rules to transform the Host-Graph

Figure 7.2: SSL Handshake protocol as Graph Model

into predicate graph model. The transformation rules are executed by clicking the ”S” button in
the Toolbar of AGG. Figure 7.3 shows the final graph which represents the predicate diagram in
AGG. To compile the final graph to new xmi file that specifies the predicate diagram and open

182

Model Checking SSL-Handshake via DAMAS

Figure 7.3: SSL Handshake protocol as Graph Model

it with DIXIT model checker, we have first to add TLA specification file. We use usually our
pre-defined rule to add the required TLA specification.

To compile the final graph into new input file for DIXIT, we have to write the following com-
mand:

DAMAS Predicate SSL.gxx SSLPredicate.xmi

Figure 7.4 shows the predicate diagram of SSL Handshake protocol after opening the file
SSLPredicate.xmi using DIXIT Editor.

We can now use the tool DIXIT to verify the security properties. For example, to verify if
the client sends the message HelloServer, and the next step is to receives the message
HelloClient, this property is written in temporal logic as follows:

[] (ClientHello => ServerHello)

183

Appendix B

Figure 7.4: SSL Handshake protocol as Predicate Diagram

The result of DIXIT to verify the previous property using SPIN is :verified.

Another example is the property:

[] (ClientHello && Finished => ExchangeData)

The DIXIT model checker shows the result: verified.

184

Verifying SSL-Handshake via Bandera

185

Appendix C

186

Appendix C

Verifying SSL-Handshake via Bandera Bandera [BA00,CDH+00] is a tool-set for trans-
lating Java programs to the input of existing model checkers, such as SMV and SPIN to test and
verify the concurrent system. We use Bandera in our specification to check if the required prop-
erties are verified in SSL-Handshake protocol or not.

Bandera takes as input Java source code and a software requirement formalized in Bandera’s
temporal specification language, and it generates a program model and specification in the in-
put language of one of several existing model-checking tools. Both program slicing and user
extensible abstract interpretation components are applied to customize the program model to
the property being checked. When a model-checker produces an error trail, Bandera renders the
error trail at the source code level and allows the user to step through the code along the path of
the trail while displaying values of variables and internal states of Java lock objects.

We introduce the abstracted Java code of SSL-Handshake protocol and insert some Bandera
assertion to check if the Handshake protocol is indeed implemented in the software or not.

Bandera Interface Figure 7.5 displays the main window of the BUI (Bandera User Inter-
face) with some example code loaded. The main window contains two panels: the left panel is
the project panel and the right panel is the code panel. The Project panel contains a tree that or-
ganizes the packages, classes, fields and methods of the Java software being analyzed. Selecting
a node in the project panel brings up a detailed view of the selected object in the code panel. For
instance, in the example display in figure 7.5, selecting the HandshakeClient class from the left
hand side displays the class and his code structure in the code panel (right hand side).

Bandera Specification Language Source code properties to be checked are written in the
Bandera Specification Language (BSL). BSL is based on a collection of fieldtested temporal
specification patterns [DAC99a] that allow users to write specifications in a stylized English
format. These patterns essentially are parameterized macros that can be instantiated to one or
more temporal logics such as LTL or CTL.

187

Appendix C

Figure 7.5: The Interface of Bandera Tool

Sessions Runs of Bandera are configured using sessions. A session is a record holding in-
formation about the file name(s) of the source code to be checked during the run, the property to
be checked, the tool components that are to be enabled during the run, options and settings for
the selected components, the particular back-end model checker to be used, and other miscella-
neous information such as location of working directories into which temporary output should
be dumped.

Multiple session records are held in a sessions file. When performing a new run of Bandera,
the session record can be saved in a session file and loaded at a later time. This allows the
user to avoid restating all option information, etc. Session records in a session file can also be
processed in batch mode using a command line flag. This is useful for performing regression
tests on software under development. For example, you might consider creating a session file
holding all the checks that you usually run on a piece of software, then using the batch mode

188

Verifying SSL-Handshake via Bandera

facility to run all of the model-checker specified in the session file overnight.

Implementing SSL-Handshake with Bandera Figure 7.5 shows the implementation of
the SSL-Handshake protocol in Java code. The implementation consists of four classes, Hand-
shakeClient, HandshakeServer,EasySSL and Channel class. The HandshakeClient class im-
plements sending and receiving the messages of the Client. The HandshakeServer Class im-
plements sending and receiving the Server’s messages. We use the class channel to save the
message between the client and the server whereas the class EasySSL responsible for running
the protocol.

We write the Bandera assertions BSL inside the Java Code of the SSL-Handshake protocol to
verify sending and receiving messages between the server and the client.

The following shows the BSL assertions in the Java classes:

• To verify if the client indeed sends the message ServerHello, we define the boolean vari-
able SendClientHello as the following.

private boolean SendClientHello = false;

if the variable has the value true, it means that the client sent the Message HalloServer
to the server. We add the following pre and post BSL conditions before the
ServerHalloRequest procedure to verify the previous feature as follows:

/**

* @assert

* PRE SendClientHello: (SendClientHello == false);

* POST SendClientHelloTrue: (SendClientHello==true);

*/

private void ServerHelloRequest()

{

//create and send Client Hello

//set ProtocolVersion

gotProtocolVersion=1;

//create random ...

gotClientRandom=1;

//create session ID

gotSessionID=1;

//available CipherSuites

189

Appendix C

gotCipherSuitesList=1;

writeToChannel(Channel.CLIENTHELLO);

SendClientHello = true;

}

• To verify if the server indeed receive the message ServerHello from the client, we define
the boolean variable:

private boolean ReceiveServerHello = false;

if ReceiveServerHello has the value true, it means that the server receive the message
HalloServer from the client. We add the following pre and post Bandera condition
before the ServerHello() procedure to verify the previous feature as follows:

/**

* @assert

* PRE ReceiveServerHello: (ReceiveServerHello == false);

* POST ReceiveServerHello: (ReceiveServerHello==true);

*/

private void ServerHello()

{

if (gotProtocolVersion==1)

{

gotProtocolVersion=2;

}

else

{

//Protocol failure

channel.cancel();

}

if (gotClientRandom==1)

{

gotServerRandom=1;

}

else

{

//Random failure

channel.cancel();

190

Verifying SSL-Handshake via Bandera

}

if (gotSessionID==1)

{

gotSessionID=2;

}

else

{

//Session failure

channel.cancel();

}

if (gotCipherSuitesList==1)

{

gotCipherSuite=1;

ReceiveServerHello=true;

}

else

{

//Cipher failure

channel.cancel();

}

}

• To verify that the client receives the server’s certificate, we define the boolean variable:

private boolean ReceiveCertificate = false;

if ReceiveCertificate has the value true, it means that the client receive the the server’s
certificate. We add the following pre and post Bandera condition before theCertificate()
procedure to verify receiving the server’s certificate as follows:

/**

* @assert

* PRE ReceiveCertificate: (ReceiveCertificate == false);

* POST SendClientHelloTrue: (ReceiveCertificate == true);

*/

private void Certificate()

{

gotServerCertificate=1;

191

Appendix C

ReceiveCertificate = true;

}

• To verify that the server receives the client’s KeyExchange message from the client, we
define the boolean variable:

ReceiveServerKeyExchange = false;

if ReceiveServerKeyExchange has the value true, it means that the server receives the
client’s KeyExchange message. We add the following pre and post Bandera condition be-
fore the ServerKeyExchange() procedure to verify receiving the client’s KeyExchange
as follows:

/**

* @assert

* PRE ReceiveServerKeyExchange:

(ReceiveServerKeyExchange == false);

* POST ReceiveServerKeyExchange:

(ReceiveServerKeyExchange == true);

*/

private void ServerKeyExchange()

{

if (needSKC==1)

{

needSKC=2;

ReceiveServerKeyExchange = true;

}

else

{

//The Message was not requested

channel.cancel();

}

}

• To verify that the server receives the client’s Finished message, we define the boolean
variable:

ReceiveFinished = false;

192

Verifying SSL-Handshake via Bandera

if ReceiveF inished has the value true, it means that the server receives the client’s
Finished message. We add the following pre and post Bandera condition before the
Finished() procedure to verify receiving the Finished message as follows:

/**

* @assert

* PRE ReceiveFinished: (ReceiveFinished == false);

* POST ReceiveFinished: (ReceiveFinished == true);

*/

private void Finished()

{

encryptionstartet=2;

ReceiveFinished = true;

//ServerFinished verarbeiten

}

We define also inside the HandshakeServer Java class the following Bandera assertion to verify
some properties of the server actions:

• To verify that the server receives the clientHello message and send the ServerHello mes-
sage and his Certificate, we define the boolean variables inside the HandshakeServer class;

ReceiveClientHello = false; SendServerHello = false;

SendCertificate = false;

if ReceiveClientHello or SendServerHello or SendCertificate has the value true, it
means that the server receives the clientHello message from the client or the server sends
ServerHello message to the client or the server sends the Certificate message to the clients.
We add the following pre and post Bandera condition before the ClientHello() procedure
to verify the previous properties:

/**

* @assert

* PRE ReceiveClientHello: (ReceiveClientHello == false)

* && (SendServerHello == false)

* && (SendCertificate == false);

* POST ReceiveClientHello: (ReceiveClientHello == true)

* && (SendServerHello == true)

193

Appendix C

* && (SendCertificate == true);

*

*/

private void ClientHello()

{

//check ClientHello

gotClientRandom=1;

gotProtocolVersion=1;

gotSessionID=1;

gotCipherSuitesList=1;

//create and send Server Hello

gotServerRandom=1;

if (gotProtocolVersion==1)

{

gotProtocolVersion=2;

}

else

{

//SSL-Protocol-Version not supplied

channel.cancel();

}

if (gotSessionID==1)

{

gotSessionID=2;

}

else

{

//Session failure

channel.cancel();

}

if (gotCipherSuitesList==1)

{

gotCipherSuite=1;

}

else

{

//CipherSuite failure

194

Verifying SSL-Handshake via Bandera

channel.cancel();

}

if (gotCipherSuite==0)

{

//No CipherSuite

channel.cancel();

ReceiveClientHello = true;

}

if (ServerHellowithKeyExchange==0)

{

writeToChannel(Channel.SERVERHELLO);

SendServerHello = true;

}

else

{

writeToChannel(Channel.SERVERHELLOWITHSKC);

}

//create ServerCertificate message

writeToChannel(Channel.CERTIFICATE);

//create ServerKeyExchange message

if (ServerHellowithKeyExchange==1)

{

writeToChannel(Channel.SERVERKEYEXCHANGE);

ServerHellowithKeyExchange=2;

}

//create ServerCertificate message

if (ClientCertificateRequest==1)

{

writeToChannel(Channel.SERVERCERTIFICATEDEMANDCLIENT);

ClientCertificateRequest=2;

SendCertificate = true;

}

//create ServerHelloDone message

writeToChannel(Channel.SERVERHELLODONE);

}

• To verify that the server receives the client certificate’s message, we define the boolean
variable ReceiveClientCertificate inside the HandshakeServer class;

195

Appendix C

ReceiveClientCertificate = false;

if ReceiveClientCertificate has the value true, it means that the server receives the
client’s certificate. We add the following pre and post Bandera condition before the
Certificate() procedure for receiving the client’s certificate:

/**

* @assert

* PRE ReceiveClientCertificate:

(ReceiveClientCertificate == false);

* POST ReceiveClientCertificate:

(ReceiveClientCertificate == true);

*/

private void Certificate()

{

if (ClientCertificateRequest==0)

{

//not requested

channel.cancel();

}

if (ClientCertificateRequest==1)

{

//no request sent yet

channel.cancel();

}

if (ClientCertificateRequest==2)

{

ClientCertificateRequest=3;

ReceiveClientCertificate = true;

}

}

• To verify that the server receives the client KeyExchange message from the client, we
define the boolean variable ReceiveClientKeyExchange inside the HandshakeServer
class;

ReceiveClientKeyExchange = false;

196

Verifying SSL-Handshake via Bandera

if ReceiveClientKeyExchange has the value true, it means that the server receives the
client’s KeyExchange message. We add the following pre and post Bandera conditions be-
fore the ClientKeyExchange() procedure to verify receiving the client’s KeyExchange
message:

/**

* @assert

* PRE ReceiveClientKeyExchange:

(ReceiveClientKeyExchange == false);

* POST ReceiveClientKeyExchange:

(ReceiveClientKeyExchange == true);

*/

private void ClientKeyExchange()

{

if ((gotClientRandom==1)&&(gotServerRandom==1))

{

gotPreMasterSecret=1;

ReceiveClientKeyExchange = true;

}

else

{

//missing random for PMS-Create

channel.cancel();

}

}

• To verify that the server sends the Finished message to the client, we define the boolean
variable SendFinished inside the HandshakeServer class;

SendFinished = false;

if SendFinished has the value true, it means that the server sends the Finished message
to the client. We add the following pre and post Bandera conditions before the Finished()
procedure to verify sending the Finished message to the client.

/**

* @assert

* PRE SendFinished: (SendFinished == false);

197

Appendix C

* POST ServerHashPost: (SendFinished == true);

*/

private void Finished()

{

//ClientFinished verarbeiten

if (gotPreMasterSecret==1)

{

encryptionstartet=1;

writeToChannel(Channel.FINISHED);

SendFinished = true;

}

else

{

//Cannot change to encryption because of missing PMS

channel.cancel();

}

}

Verifying BSL via Spin Bandera generates a program model and specification in the input
language of one of several existing model-checking tools including SPIN. We use the model
checker SPIN to verify our Bandera specification assertions, the result of the model checker
SPIN is shown as following:

pan.exe -n -m1000000 -w18 -e

(Spin Version 4.1.3 -- 24 April 2004)

Full statespace search for:

never claim - (not selected)

assertion violations +

cycle checks - (disabled by -DSAFETY)

invalid end states +

State-vector 888 byte, depth reached 21963, errors: 0

75524 states, stored

139406 states, matched

214930 transitions (= stored+matched)

548201 atomic steps

198

Verifying SSL-Handshake via Bandera

hash conflicts: 19397 (resolved)

(max size 2ˆ18 states)

97.145 memory usage (Mbyte)

*** END ***

Bandera shows us also a small window that written inside is verified, it’s means that our BSL
assertions in the Java code of the protocol are valid. That is, the Java code specifies the properties
of SSL-Handshake protocol.

199

Appendix C

200

List of Tables

4.1 Reducing State Space about 10 Percent . 118

5.1 Data for Handshake message . 125
5.2 JML Syntax . 127
5.3 JML Quantifiers . 128

201

List of Tables

202

List of Figures

1.1 Model Checker Tool Mechanism . 18
1.2 Graph Grammar Production . 19

2.1 ATM model using Kripke Structure . 31
2.2 Linear Temporal Logic Semantics . 35
2.3 Computation Trees . 37
2.4 Some CTL operators . 39
2.5 Model Checking Strategy . 41
2.6 Microwave oven example . 46
2.7 Truth Table and Binary Decision Tree for the Formula f 48
2.8 OBDD for two-bit comparator . 49
2.9 PPROMELA body . 52
2.10 Two-Phase Commit Protocol . 55
2.11 HUGO model checker . 58
2.12 Two-Phase Commit Protocol . 58
2.13 State Machine of the Bank in ATM . 59
2.14 State Machine of the atm in ATM . 60

3.1 The graph grammar production . 66
3.2 Implementing the production at the network graph 67
3.3 Example of graph with edges and vertices . 67
3.4 The scenario of PacMan video game . 69
3.5 The scenario of PacMan video game . 70
3.6 Type and instance graphs from the scenario 71
3.7 Type graph morphism . 72
3.8 The E graph . 73
3.9 Part of ATM state machines as attributed graph 74
3.10 Part of ATM state machines as attributed type graph 75
3.11 Representing the behavioral part as graph transformation 75
3.12 Creating graph transformation from behavioral scenario 76

203

List of Figures

3.13 The total behavior of PacMan game . 77
3.14 Productions and graph grammars of dinning philosopher problem 78
3.15 Mechanism to find a match . 80
3.16 building the temporary graph . 80
3.17 construction of the final graph . 80
3.18 building the temporary graph . 81
3.19 The constraint as forbidden subgraph . 83
3.20 AGG Tool Interface . 87

4.1 The Class Icon . 91
4.2 Package Diagrams . 91
4.3 Object Diagram . 92
4.4 Use Case Diagram . 92
4.5 Sequence Diagram . 93
4.6 collaboration Diagram . 93
4.7 State Machine Diagram . 94
4.8 Component Diagram . 94
4.9 Deployment Diagram . 95
4.10 Properties of the State in UML State Machine 96
4.11 Initial and final States in UML State Machine 97
4.12 The Transition in UML State Machine . 97
4.13 UML State Machines for Two-Phase Commit Protocol 98
4.14 Executable State Machine (ESM) Model . 100
4.15 Initial Substate . 101
4.16 Move outgoing Superstate Transitions to Substates 102
4.17 Move Transition Effect to new State . 103
4.18 The Original Form of UML State Machine . 103
4.19 Removing Initial, Final, and Transition from Composite State 104
4.20 Removing Initial, Final, and Transition from Composite State 104
4.21 Creating New State for every Incoming Transition 105
4.22 Type Graph of the State Machine . 105
4.23 Type Graph of the State Machine . 106
4.24 The Graph Model of ATM State Machine . 107
4.25 Executable Graph Model of ATM State Machine 109
4.26 Executable Graph Model of ATM State Machine 110
4.27 Removing Initial State from Composite State 110
4.28 Removing the Exit Activity from State . 111
4.29 Removing Transition between States . 111

204

List of Figures

4.30 Model Graph of ESMs in AGG . 112
4.31 Graph Model of 2PC Protocol . 113
4.32 Graph Model of Executable 2PC Protocol . 115
4.33 Graph Model of Executable 2PC Protocol . 116

5.1 SSL Protocols . 121
5.2 SSL−Handshake Protocol . 123
5.3 Sending and Receiving Data in JESSIE . 124
5.4 Initializing and sending the ClientHello message 125
5.5 SSL State Machines . 131
5.6 Sending the Message ClientHello to the Server 132
5.7 Receiving ServerHello message from the Server in JESSIE 133
5.8 The Server’s Certificate which sent to the Client 133
5.9 SendClientKeyExchange . 133
5.10 Sending the message Finished . 134
5.11 Receiving the message Finished . 134
5.12 Receiving the ClientHello message from the Client 135
5.13 Sending the message ServerHello to the Client 135
5.14 Sending the Certificate Message . 135
5.15 Receiving ClientKeyExchnge message . 136
5.16 Receiving the message Finished . 136
5.17 Sending the message Finished to the client . 136
5.18 JML specifications for Message ClientHello 137
5.19 JML specifications for Message ClientHello 137
5.20 JML assertions for client’s state machine . 138
5.21 JML assertions for the server’s state machine 139
5.22 Type and Instance Graph from Scenario . 145
5.23 Graph Model of Client State Machine . 145
5.24 Graph Model of Server State Machine . 146
5.25 Predicate Diagram of Dining Philosophers Problem 148
5.26 TLA Specification of Handshake Protocol . 150
5.27 Predicate Diagram of SSL−Handshake Protocol 151
5.28 Part of Host-graph of SSL-Handshake in AGG 152
5.29 Graph Grammar to define the Initial Node . 153
5.30 Graph Grammar to define the Attribute . 153
5.31 Predicate Diagram as Graph Grammar . 154
5.32 Predicate Diagram of Handshake in DIXIT 154

205

List of Figures

6.1 Prototype DAMAS Tool . 157
6.2 The Screenshot of MagicDraw . 159
6.3 Designing of ATM with MagicDraw . 160
6.4 The Graph Model of ATM . 162
6.5 The Transformation Rules to Predicate Diagram 163
6.6 Rule for Adding TLA+ Specification . 165
6.7 Predicate Diagram of ATM . 167

7.1 SSL Handshake protocol as UML State Machines 181
7.2 SSL Handshake protocol as Graph Model . 182
7.3 SSL Handshake protocol as Graph Model . 183
7.4 SSL Handshake protocol as Predicate Diagram 184
7.5 The Interface of Bandera Tool . 188

206

Index

E−Graph, 72
E−Graph Morphism, 72

AGG, 85
Always Operator, 33
Application Condition, 84
Asynchronous Execution, 30
ATM, 58
AToM3, 85
Attributed Graph, 73
Attributed Graph Morphism, 73

Binary Decision Diagram, 47
BUI, 189

Certificate, 134
Class Diagram, 90
ClientHello, 134
ClientKeyExchange, 135
Collaboration, 60
Collaboration Diagram, 93
Component Diagram, 94
Computation Tree Logic, 37, 39
Concurrent Systems, 30
Connective, 26
Constraint, 82
Counter Example, 42
CTL Model Checking, 43

DAMAS, 159
Dining Philosophers, 149

DIXIT, 154
Double-Pushout Approach, 79

Eventually Operator, 34
ExchangData, 138
Executable State Machine ESM, 99

Fairness, 40
Finished, 135
Formal Definition of PL, 27

Gluing Condition, 79
GNU Crypto, 124
Graph, 67
Graph Constraint, 83
Graph Grammar, 77
Graph Language, 82
Graph Morphism, 68
Graph Production, 77
Graph Transformation, 79

HUGO, 42

Initial and Final State, 96
Interpretation, 28
Invariants, 130

Java Modeling Language, 127
JESSIE, 123
JML Annotations, 129
JML Quantifiers, 130
JMLrac, 132

207

Index

Kripke Structures, 30

Linear Temporal Logic, 33

MAC, 123
MagicDraw, 160
Model Checking, 41

Negative Application Condition, 84
Next Operator, 33
NuSMV, 50

Object Diagram, 91

Package Diagram, 91
Path, 32
Path Formulas, 32
Positive Application Condition, 84
Predicate Diagrams, 149
PROMELA, 52
Proposition, 25
Propositional Logic, 26
Propositional Model, 28

Scenario, 68
Sequence Diagram, 92
ServerHello, 134
Single-Pushout Approach SPO, 81
Spin, 42
SSL Protocol, 123
SSL-Handshake Protocol, 124
State Formulas, 32
Statechart or State machine Diagram, 93
Statement, 25
Statement Letter, 26
States in State Machine, 96
Strongly Connected Component, 44
Super State Transition, 100
Symbolic Model Checking, 47
Synchronous Execution, 30

Temporal Logic, 29
TLA Specification, 150
Transfer Control Protocol (TCP), 123
Transition in State Machine, 97
Truth Table, 27
Two-Phase Commit, 54
Typed Attributed Graph, 74
Typed Attributed Graph Morphism, 74
Typed Graph, 71
Typed Graph Morphism, 72

UML, 90
UML 2.0, 95
Unless Operator, 35
Until Operator, 34
UTE Specification, 60

Validation Relation, 28
VIATRA2, 86
VMTS, 86

Well-Formed Formula, 26

208

209

Index

210

Bibliography

[ABKS] M. Ankerst, M.M. Breunig, H.-P. Kriegel, and J. Sander. The internet encyclopedia
of philosophy. In http://www.iep.utm.edu/.

[AGG] Agg homepage. In http://tfs.cs.tu-berlin.de/agg.

[arg] In http://argouml.tigris.org.

[BA00] Bandera. In Extracting safe finite-state models from source code. URL:
www.cis.ksu.edu/santos/bandera/, 2000.

[BAMP83] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In
Acta Informatica 20, pages 207–226, 1983.

[BJ08] A. Bauer and J. Juerjens. Security protocols, properties, and their monitoring. In The
4th International Workshop on Software Engineering for Secure Systems (SESS’08
@ ICSE), 2008.

[BLPY97] J. Bengtsson, K.G. Larsen, P. Pettersson, and Wang. Yi. Uppaal - a tool suite for
automatic verification of real-time systems. In R. Alur, T.A. Henzinger, and E.D.
Sonntag, editors, Hybrid Systems III - Verification and control, volume 1066 of
LNCS, pages 232–243, Springer, 1997.

[BRJ99] Grady. Booch, James. Rumbaugh, and Ivar. Jacobson. The unified modeling lan-
guage user guide. In Addison Wesley Longman, Inc, Springer-Verlag, 1999.

[Bry] R. E. Bryant. Graph-based algorithms for boolean function manipulation. In IEEE
Transactions on Computers -35(8), pages 677–691.

[CDH+00] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, S. Robby, and
H. Zheng. Bandera: Extracting finite-state models from java source code. In
Proceedings of the 22nd International Conference on Software Engineering. IEEE
Computer Society Press, 2000.

211

Bibliography

[CE81] E. M. Clarle and A. Emerson. Design and synthesis of synchronisation skeletons us-
ing branching time temporal logic. In Logic of Programs. Proceedings of Workshop,
volume 131 of Lecture Notes in Computer Science, pages 52–71, 1981.

[CER79] V. Claus, H. Ehrig, and G. Rozenberg. Proc. int. workshop on graph grammars and
their application to computer science and biology. In LNCS 73, Springer Verlag,
1979.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications. In ACM Transactions op
Programming Languages and Systems, pages 244–263, 1986.

[Cho56] Noam. Chomsky. Three models for the description of language. In IRE Transactions
on Information Theory (2), pages 113–124, 1956.

[CL] Yoonsik. Cheon and Gary.T. Leavens. Extended static checker for java version 2.
In http://secure.ucd.ie/products/opensource/ESCJava2/.

[CL02] Yoonsik. Cheon and Gary.T. Leavens. A runtime assertion checker for the java
modeling language (jml). In Hamid R. Arabnia and Youngsong Mun, editors, Pro-
ceedings of the International Conference on Software Engineering Research and
Practice (SERP ’02), Las Vegas, Nevada, USA, pages 322–328, June 24-27, 2002.

[CMMag] Dominique. Cansell, Dominique. Me’ry, and Stephan. Merz. Predicate diagrams
for the verification of reactive systems. In 2nd Intl. Conf. on Integrated Formal
Methods (IFM 2000), volume 1945 of Lecture Notes in Computer Science, Dagstuhl,
Germany, pages 40–51, November 2000. Springer-Verlag.

[CRY99] In http://www.gnu.org/software/gnu-crypto/, 1999.

[DAC99a] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering, 1999.

[DAC99b] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Pattern in property specifications
for finite-state verification. In Proceedings of teh 21st International Conference on
Software Engineering, May, 1999.

[dLV02] J. de Lara and H Vangheluwe. Atom3: A tool for multi-formalism modelling and
meta-modelling. In LNCS 2306, Springer. See: http://atom3.cs.mcgill.ca, pages
174–188, 2002.

212

Bibliography

[EE05] H. Ehrig and K. Ehrig. Overview of formal concepts for model transformations
based on typed attributed graph transformation. In Proceedings of GraMoT 2005,
Electronic Notes in Theoretical Computer Science. Elsevier, 2005.

[EEHP04] H. Ehrig, K. Ehrig, A. Habel, and K.H. Pennemann. Constraints and application
conditions: From graphs to high-level structures. In F. Parisi- Presicce, P. Bot-
toni, and G. Engels, editors, Proc. 2nd Int. Conference on Graph Transformation
(ICGT’04), LNCS 3256, Rome, Italy, pages 287–303, October 2004.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G Rozenberg. Handbook of graph gram-
mars and computing by graph transformation. In . Vol 1. Foundations. World Scien-
tific., 1999.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of algebraic graph
transformation. In (Monographs in Theoretical Computer Science. An EATCS Se-
ries), Springer-Verlag New York, Inc., Secaucus, NJ, 2006.

[EKRR91] H. Ehrig, H.J. Kreowski, G. Rozenberg, and A. Rosenfeld. Proc. 4th int. work-
shop on graph grammars and their application to computer science. In LNCS 532,
Springer Verlag, 1991.

[FKK96] A.O. Freier, P.P. Karlton, and C. Kocher. The ssl protocol ver-
sion 3.0. In Internet-draft, draft-freier-ssl-version03-02.txt, Nov. 1996.
http://wp.netscape.com/eng/ssl3/draft302.txt.

[FMM05] Loic. Fejoz, Dominique. M’ery, and Stephan. Merz. a graphical toolkit for predi-
cate abstractions. In Fourth International Workshop on Automated Verification of
Infinite-State Systems-AVIS’05, pages 39–48, 2005.

[GJM91a] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of software engineering.
In Prentice Hall Int., 1991.

[GJM91b] M. Ghezzi, Jazayeri., and D. Mandrioli. Fundamentals of software engineering. In
Prentice Hall Int., 1991.

[Gro03a] Object Management Group. Omg meta object facility (mof), version 1.4. In
URL: http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf access: 2004-06-
28, 12th June 2003.

[Gro03b] Object Management Group. Omg idl syntax and sematics. In defined in
the Common Object Request Broker: Architecture and Specification, version 2,

213

Bibliography

The latest version of CORBA version 2.0 is available at https://www.omg.org/
technology/documents/ formal/ corba 2.htm, March 2003.

[HDR02] J. Hatcliff, M. Dwyer, and Robby. Specification and verification of reactive systems
(cis 842). In Lecture notes,” https://www.cis.ksu.edu/ hatcliff/842”, 2002.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. In Communications
of the ACM 12(10), pages 576–583, October 1969.

[Hol] G. Holzmann. Basic spin manual. In SPIN Online Documentation,
http://spinroot.com/spin/Man/Manual.html.

[Hol93] G.J. Holzmann. Design and validation of protocols: A tutorial. In Computer Net-
works and ISDN Systems, vol. 25, no. 9, pages 981–1017, 1993.

[Hol04a] G. J. Holzmann. The spin model checker: Primer and reference manual. In Addison-
Wesley, 2004. ISBN 0-321-22862-6.

[Hol04b] Gerad J. Holzmann. The spin model checker. In Lucent Technology Inc, Bell Labo-
ratories, pages http://netlib.bell–labs.com/netlib/spin/whatispin.html, 2004.

[Hom02] Fujaba Homepage. Universität paderborn. In http://www.fujaba.de, 2002.

[Itl] In http://nusmv.irst.itc.it.

[JES] In http://www.nongnu.org/jessie/.

[JML] In http://en.wikipedia.org/wiki/Java Modeling Language.

[Jue04] Jan. Juerjens. Secure systems development with uml. In Springer-Verlag, Heidel-
berg,, 2004.

[Jue06] Jan. Juerjens. Security analysis of crypto-based java programs using automated
theorem provers. In 21st International Conference on Automated Software Engi-
neering, IEEE/ACM, pages 167–176, ASE 2006.

[Jue07] Jan. Juerjens. Automated security verification for crypto protocol implementations:
Verifying the jessie project. In Seventh International Workshop on Automated Veri-
fication of Critical Systems, Oxford, Sep. 10-12, 2007.

[KAF] In http://www.kaffe.org/.

[Kir06] David Kirscheneder. Methode zum vergleich von java-programmen und uml-
modellen. In Diplomarbeit, TUM, April, 2006.

214

Bibliography

[KIV86] KIV. Karlsruhe interactive verifier. In http://i11www.ira.uka.de/ kiv/, 1986.

[KKHK] H.J. Kreowski, R. Klempien-Hinrichs, and S. Kuske. In Some Essentials of Graph
Transformation. University of Bremen, Department of Computer Science. Bremen.

[KM11] Alexander. Knapp and Stephan. Merz. Model checking and code generation for
uml state machines and collaborations. In Dominik Haneberg. Gerhard Schellhorn,
and Wolfgang Reif, editor Proc. 5th Wsh. Tools for System Design and Verification,
Institut für Informatik, Universität Augsburg, pages 59–64, Technical Report 2002-
11.

[Kwo00] G. Kwon. Rewrite rules and operational semantics for model checking uml state-
charts. In : A. Evans, S. Kent and B. Selic, editors, Proc. 3nd Int. Conf. UML, Lect.
Notes Comp. Sci. 1939, pages 528–440, 2000.

[KZDS] Jun. Kong, Kang. Zhang, Jing. Dong, and Guanglei. Song. A graph grammar ap-
proach to software architecture verification and transformation. In the university of
Texas at Dallas. Richardson, Texas 75080-0688, USA.

[Lam94] L. Lamport. The temporal logic of actions. In ACM Transactions on Programming
Languages and Systems, pages 16(3): 872–923, 1994.

[LLMC04] T. Levendovszky, L. Lengyel, G. Mezei, and H. Charaf. A systematic approach
to metamodeling environments and model transformation systems in vmts. In 2nd
International Workshop on Graph Based Tools (GraBaTs); workshop at ICGT 2004,
Rome, Italy, 2004.

[LMM99] D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioural
subset of uml statechart diagrams using the spin model-checker. In Formal Aspects
Comp. 11, pages 637–664, 1999.

[LP99] J. Lilius and I. P. Paltor. Formalising uml state machines for model checking. In :
R. B. France and B. Rumpe, editors, Proc. 2nd Int. Conf. UML, Lect. Notes Comp.
Sci. 1723, pages 430–445, 1999.

[(Lt] F.S.E. (Ltd). Fdr 2.0. failure divergence refinement. In User Manuel 2003.

[Mag04] Magicdraw. In http://www.magicdraw.com, 2004.

[Mey92] Betrand. Meyer. Applying design by contract. In Computer, 25(10), pages 40–51,
1992.

215

Bibliography

[MLS97] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for state-
charts. In : R. K. Shyamasundar and K. Ueda, editors, Proc. 3nd Asian Computing
Science Conf., Lect. Notes Comp. Sci. 1345, pages 181–196, 1997.

[MLSH99] E. Mikk, Y. Lakhnech, M. Siegel, and G.J. Holzmann. Implementing statecharts in
promela/spin. In Proc. Wsh. Industrial-Strength Formal Specification Techniques,
1999.

[MP92] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems. In
Springer-Verlag, 1992.

[MQR95] M.X. Moriconi, L. Qian, and R. A. Riemenschneider. Correct architecture refine-
ment. In IEEE Trans. Software Eng., 21(4), pages 356–372, 1995.

[NSN99] F. Norman, Schneidewind., and Allen.P. Nikora. Issues and methods for assessing
cots reliability, maintainability, and availability. In Proceedings of the First Work-
shop on Ensuring Successful COTS Development, 2 1 st International Conference
on Software Engineering, Los Angeles, California, May 22nd, 1999. 4 pages.

[Nus02] Nusmv. In http://nusmv.irst.itc.it/, 2002.

[oP] The Internet Encyclopedia of Philosophy. In http://www.iep.utm.edu/.

[ORG] In http://gcc.gnu.org/.

[PA69] J.L. Pfaltz and Rosenfeld A. Web grammars. In Int. Joint Conference on Artificial
Intelligence, pages 609–619, 1969.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sym-
posium on Foundations of Computer Science, pages 46–57, 1977.

[Poe04] Poseidonuml. In http://www.gentelware.com/product/index.php3, 2004.

[Pra71] T.W. Pratt. Pair grammars: graph languages and string-to-graph translations. In
Journal of Computer and System Sciences, pages 5:560–595, 1971.

[Qua98] Terry. Quatrani. Visual modeling with rose and uml. In Addison-Wesley. Reading,
MA, 1998.

[Rat] In http://www.rational.com.

[Roz97] Grzegorz. Rozenberg. Handbook of graph grammars and computing by graph trans-
formation. In World Scientific Publishing Co. Pte. Ltd, LNCS. Springer-Verlag,
pages 5:560–595, 1997.

216

Bibliography

[RU71] N. Rescher and A. Urquhart. Temporal logic- springer-verlag. 1971.

[RVR+99] Alejandro. Ramirez, Philippe. Vanpeperstraete, Andreas. Rueckert, Kunle. Odu-
tola, Jeremy. Bennett, and Linus. Tolke. Argouml. In A tutorial and
reference description, 1999. The last version is presently available at
http://www.opencontent.org/openpub/.

[Sch] A Schürr. Specification of graph translators with triple graph grammars. In LNCS
903, pages 151–163.

[SG95] M. Shaw and D. Garlan. Software architectur: Persepectives on an emerging disci-
pline. In Prentice Hall, 1995.

[SKM01] Tim Schaefer, Alexander Knapp, and Stephan. Merz. Model checking uml state
machines and collaborations. In Scott D. Stoller and Willem Visser, editors, Proc.
Wsh. Software Model Checking, volume 55(3) of Electr. Notes Theo. Comp. Sci.,
2001. 13 pages.

[SM05] T. Schattkowsky and W. Müller. Transformation of uml statemachines for direct ex-
ecution. In Proc. 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’05), Dallas, TX, USA, September 2005.

[SP] In http://spinroot.com/spin/whatispin.html.

[SS99] H. Saidi and N. Shankar. Abstraction and model checking while you prove. In
Computer-Aided Verification, Volume 1633 of LNCS, pages 443–454, 1999.

[TER99] G. Taentzer, Ermel, and C. Rudolf. Agg-approach. In Language and Tool Envi-
ronment, Graph Grammar Handbook 2: Specifications and Programming, World
Scientific, LNCS, 1999.

[Tog04] Borland Together. Togethersoft. In Integrated and Agile Design Solutions. Borland,
2004.

[VMT] Vmts web site. In http://avalon.aut.bme.hu/tihamer/research/vmts.

[VP04] D. Varro and A. Pataricza. Generic and meta-transformations for model transfor-
mation engineering. In Baar, T., Strohmeier, A., Moreira, A., Mellor, S., eds.: Proc.
UML 2004: 7th International Conference on the Unified Modeling Language. Vol-
ume 3273 of LNCS., Lisbon, Portugal, pages 290–304, Springer 2004.

[VVP02] D. Varro, G. Varro, and A. Pataricza. Designing the automatic transformation of
visual languages. In Volume 44(2) of LNCS, pages 205–227, 2002.

217

	Abstract
	Zusammenfassung
	Acknowledgement
	Introduction
	UML Software Design
	Software Model Checking
	Graph Grammars Approach
	Abstraction Techniques
	Security Model Transformation
	Case Studies and Tool Design
	Thesis Structure

	Logical Foundations and Tools
	Introduction
	Temporal Logic
	Introduction
	Concurrent Systems
	Kripke Structures
	Linear Temporal Logic LTL
	Computation Tree Logic CTL
	The Computation Tree Logic CTL*
	Fairness

	Model Checking
	Software Model Checking
	CTL Model Checking
	Symbolic Model Checking
	Binary Decision Diagram

	Model Checking Tools
	SPIN Model Checker
	Specification Language PROMELA
	PROMELA Specification of Two-Phase Commit Protocol

	HUGO Model Checker

	Result and Discussion

	Graph Language
	Introduction
	From Scenario to Graph Language
	The Scenario
	Type and Instance Graph

	From Scenario to Rules and Transformations
	Graph Transformation
	Gluing Condition
	Double-Pushout Approach DPO
	Single-Pushout Approach SPO

	Constraint
	Graph Transformation Tools
	Attributed Graph Grammar (AGG)

	Result and Discussion

	Graph Transformation for UML Software Design
	Introduction
	Unified Modeling Language
	UML State Machines
	States
	Transitions
	State Machines of 2PC-Protocol

	Executable State Machine
	Executable state machines

	Graph Models of UML State Machines
	Type Graph of UML State Machine
	Graph Model of UML State Machine

	Graph Model of ATM state machines
	Graph Transformation of Executable State Machines
	Executable State Machine of ATM
	Transformation Rules

	Two-Phase Commit Protocol (2PC)
	Graph Model of 2PC
	Executable State Machines of 2PC

	Verifying Results using HUGO
	Result and Discussion

	Secure System Transformations
	Introduction
	JAVA Secure Sockets Extension (JESSIE)
	SSL-Handshake Protocol
	Send and Receive Data in JESSIE

	Specification Language JML
	Informal Specifications
	JML Annotations
	Example ATM
	JML Checker

	SSL Protocol in JESSIE
	Client State Machine in JESSIE
	Server State Machine in JESSIE

	JML Assertions in JESSIE
	Verifying Client State Machine in JESSIE
	Verifying Server State Machine in JESSIE

	Verifying SSL-Handshake via Bandera
	Verifying BSL via Spin

	Graph Transformation of Handshake Protocol
	Designing Graph Models
	Type and Instance Graph
	Graph Model of Client State Machine
	Graph Model of Server State Machine

	Predicate Diagrams
	Dining Philosophers Example
	Predicate Diagram of SSL-Handshake Protocol

	Rules Transformations of SSL-Handshake Protocol
	Properties verification via DIXIT
	SSL-Handshake in DIXIT

	Result and Discussion

	DAMAS
	DAMAS and UML Software Design
	DAMAS and Graph Transformation Engine
	DAMAS and Model Checking
	Verifying Properties using DAMAS
	Result and Discussion

	Conclusion
	Further Work

	Appendix A
	Textual UML format (UTE)

	Appendix B
	Model checking SSL-Handshake protocol via DAMAS

	Appendix C
	Verifying SSL-Handshake via Bandera

	List of Tables
	List of Figures
	Index
	Bibliography

