321 research outputs found

    Parametric Dense Stereovision Implementation on a System-on Chip (SoC)

    Get PDF
    This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link® cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe

    Autonomous vehicle guidance in unknown environments

    Get PDF
    Gaining from significant advances in their performance granted by technological evolution, Autonomous Vehicles are rapidly increasing the number of fields of possible and effective applications. From operations in hostile, dangerous environments (military use in removing unexploded projectiles, survey of nuclear power and chemical industrial plants following accidents) to repetitive 24h tasks (border surveillance), from power-multipliers helping in production to less exotic commercial application in household activities (cleaning robots as consumer electronics products), the combination of autonomy and motion offers nowadays impressive options. In fact, an autonomous vehicle can be completed by a number of sensors, actuators, devices making it able to exploit a quite large number of tasks. However, in order to successfully attain these results, the vehicle should be capable to navigate its path in different, sometimes unknown environments. This is the goal of this dissertation: to analyze and - mainly - to propose a suitable solution for the guidance of autonomous vehicles. The frame in which this research takes its steps is the activity carried on at the Guidance and Navigation Lab of Sapienza – Università di Roma, hosted at the School of Aerospace Engineering. Indeed, the solution proposed has an intrinsic, while not limiting, bias towards possible space applications, that will become obvious in some of the following content. A second bias dictated by the Guidance and Navigation Lab activities is represented by the choice of a sample platform. In fact, it would be difficult to perform a meaningful study keeping it a very general level, independent on the characteristics of the targeted kind of vehicle: it is easy to see from the rough list of applications cited above that these characteristics are extremely varied. The Lab hosted – even before the beginning of this thesis activity – a simple, home-designed and manufactured model of a small, yet performing enough autonomous vehicle, called RAGNO (standing for Rover for Autonomous Guidance Navigation and Observation): it was an obvious choice to select that rover as the reference platform to identify solutions for guidance, and to use it, cooperating to its improvement, for the test activities which should be considered as mandatory in this kind of thesis work to validate the suggested approaches. The draft of the thesis includes four main chapters, plus introduction, final remarks and future perspectives, and the list of references. The first chapter (“Autonomous Guidance Exploiting Stereoscopic Vision”) investigates in detail the technique which has been deemed as the most interesting for small vehicles. The current availability of low cost, high performance cameras suggests the adoption of the stereoscopic vision as a quite effective technique, also capable to making available to remote crew a view of the scenario quite similar to the one humans would have. Several advanced image analysis techniques have been investigated for the extraction of the features from left- and right-eye images, with SURF and BRISK algorithm being selected as the most promising one. In short, SURF is a blob detector with an associated descriptor of 64 elements, where the generic feature is extracted by applying sequential box filters to the surrounding area. The features are then localized in the point of the image where the determinant of the Hessian matrix H(x,y) is maximum. The descriptor vector is than determined by calculating the Haar wavelet response in a sampling pattern centered in the feature. BRISK is instead a corner detector with an associated binary descriptor of 512 bit. The generic feature is identified as the brightest point in a sampling circular area of N pixels while the descriptor vector is calculated by computing the brightness gradient of each of the N(N-1)/2 pairs of sampling points. Once left and right features have been extracted, their descriptors are compared in order to determine the corresponding pairs. The matching criterion consists in seeking for the two descriptors for which their relative distance (Euclidean norm for SURF, Hamming distance for BRISK) is minimum. The matching process is computationally expensive: to reduce the required time the thesis successfully explored the theory of the epipolar geometry, based on the geometric constraint existing between the left and right projection of the scene point P, and indeed limiting the space to be searched. Overall, the selected techniques require between 200 and 300 ms on a 2.4GHz clock CPU for the feature extraction and matching in a single (left+right) capture, making it a feasible solution for slow motion vehicles. Once matching phase has been finalized, a disparity map can be prepared highlighting the position of the identified objects, and by means of a triangulation (the baseline between the two cameras is known, the size of the targeted object is measured in pixels in both images) the position and distance of the obstacles can be obtained. The second chapter (“A Vehicle Prototype and its Guidance System”) is devoted to the implementation of the stereoscopic vision onboard a small test vehicle, which is the previously cited RAGNO rover. Indeed, a description of the vehicle – the chassis, the propulsion system with four electric motors empowering the wheels, the good roadside performance attainable, the commanding options – either fully autonomous, partly autonomous with remote monitoring, or fully remotely controlled via TCP/IP on mobile networks - is included first, with a focus on different sensors that, depending on the scenario, can integrate the stereoscopic vision system. The intelligence-side of guidance subsystem, exploiting the navigation information provided by the camera, is then detailed. Two guidance techniques have been studied and implemented to identify the optimal trajectory in a field with scattered obstacles: the artificial potential guidance, based on the Lyapunov approach, and the A-star algorithm, looking for the minimum of a cost function built on graphs joining the cells of a mesh over-imposed to the scenario. Performance of the two techniques are assessed for two specific test-cases, and the possibility of unstable behavior of the artificial potential guidance, bouncing among local minima, has been highlighted. Overall, A-star guidance is the suggested solution in terms of time, cost and reliability. Notice that, withstanding the noise affecting information from sensors, an estimation process based on Kalman filtering has been also included in the process to improve the smoothness of the targeted trajectory. The third chapter (“Examples of Possible Missions and Applications”) reports two experimental campaigns adopting RAGNO for the detection of dangerous gases. In the first one, the rover accommodates a specific sensor, and autonomously moves in open fields, avoiding possible obstacles, to exploit measurements at given time intervals. The same configuration for RAGNO is also used in the second campaign: this time, however, the path of the rover is autonomously computed on the basis of the way points communicated by a drone which is flying above the area of measurements and identifies possible targets of interest. The fourth chapter (“Guidance of Fleet of Autonomous Vehicles ”) stresses this successful idea of fleet of vehicles, and numerically investigates by algorithms purposely written in Matlab the performance of a simple swarm of two rovers exploring an unknown scenario, pretending – as an example - to represent a case of planetary surface exploration. The awareness of the surrounding environment is dictated by the characteristics of the sensors accommodated onboard, which have been assumed on the basis of the experience gained with the material of previous chapter. Moreover, the communication issues that would likely affect real world cases are included in the scheme by the possibility to model the comm link, and by running the simulation in a multi-task configuration where the two rovers are assigned to two different computer processes, each of them having a different TCP/IP address with a behavior actually depending on the flow of information received form the other explorer. Even if at a simulation-level only, it is deemed that such a final step collects different aspects investigated during the PhD period, with feasible sensors’ characteristics (obviously focusing on stereoscopic vision), guidance technique, coordination among autonomous agents and possible interesting application cases

    R3^3SGM: Real-time Raster-Respecting Semi-Global Matching for Power-Constrained Systems

    Full text link
    Stereo depth estimation is used for many computer vision applications. Though many popular methods strive solely for depth quality, for real-time mobile applications (e.g. prosthetic glasses or micro-UAVs), speed and power efficiency are equally, if not more, important. Many real-world systems rely on Semi-Global Matching (SGM) to achieve a good accuracy vs. speed balance, but power efficiency is hard to achieve with conventional hardware, making the use of embedded devices such as FPGAs attractive for low-power applications. However, the full SGM algorithm is ill-suited to deployment on FPGAs, and so most FPGA variants of it are partial, at the expense of accuracy. In a non-FPGA context, the accuracy of SGM has been improved by More Global Matching (MGM), which also helps tackle the streaking artifacts that afflict SGM. In this paper, we propose a novel, resource-efficient method that is inspired by MGM's techniques for improving depth quality, but which can be implemented to run in real time on a low-power FPGA. Through evaluation on multiple datasets (KITTI and Middlebury), we show that in comparison to other real-time capable stereo approaches, we can achieve a state-of-the-art balance between accuracy, power efficiency and speed, making our approach highly desirable for use in real-time systems with limited power.Comment: Accepted in FPT 2018 as Oral presentation, 8 pages, 6 figures, 4 table

    A Future for Integrated Diagnostic Helping

    Get PDF
    International audienceMedical systems used for exploration or diagnostic helping impose high applicative constraints such as real time image acquisition and displaying. A large part of computing requirement of these systems is devoted to image processing. This chapter provides clues to transfer consumers computing architecture approaches to the benefit of medical applications. The goal is to obtain fully integrated devices from diagnostic helping to autonomous lab on chip while taking into account medical domain specific constraints.This expertise is structured as follows: the first part analyzes vision based medical applications in order to extract essentials processing blocks and to show the similarities between consumer’s and medical vision based applications. The second part is devoted to the determination of elementary operators which are mostly needed in both domains. Computing capacities that are required by these operators and applications are compared to the state-of-the-art architectures in order to define an efficient algorithm-architecture adequation. Finally this part demonstrates that it's possible to use highly constrained computing architectures designed for consumers handled devices in application to medical domain. This is based on the example of a high definition (HD) video processing architecture designed to be integrated into smart phone or highly embedded components. This expertise paves the way for the industrialisation of intergraded autonomous diagnostichelping devices, by showing the feasibility of such systems. Their future use would also free the medical staff from many logistical constraints due the deployment of today’s cumbersome systems

    Path following and obstacle avoidance for an autonomous UAV using a depth camera

    Get PDF
    The main focus of this work is the development of a software architecture to autonomously navigate a flying vehicle in an indoor environment in presence of obstacles. The hardware platform used to test the developed algorithms is the AscTec Firefly equipped with a RGB-D camera (Microsoft Kinect): the sensor output is used to incrementally build a map of the environment and generate a collision-free path. Specifically, we introduce a novel approach to analytically compute the path in an efficient and effective manner. An initial path, given by the intersection of two 3D surfaces, is shaped around the obstacles by adding to either of the two surfaces a radial function at every obstacle location. The intersection between the deformed surfaces is guaranteed not to intersect obstacles, hence it is a safe path for the robot to follow. The entire computation runs on-board and the path is computed in real-time. In this article we present the developed algorithms, the software architecture as well as the results of our experiments, showing that the method can adapt in real time the robot's path in order to avoid several types of obstacles, while producing a map of the surroundings

    Architecture and applications of the FingerMouse: a smart stereo camera for wearable computing HCI

    Get PDF
    In this paper we present a visual input HCI system for wearable computers, the FingerMouse. It is a fully integrated stereo camera and vision processing system, with a specifically designed ASIC performing stereo block matching at 5Mpixel/s (e.g. QVGA 320Ă—240at 30fps) and a disparity range of 47, consuming 187mW (78mW in the ASIC). It is button-sized (43mmĂ—18mm) and can be worn on the body, capturing the user's hand and processing in real-time its coordinates as well as a 1-bit image of the hand segmented from the background. Alternatively, the system serves as a smart depth camera, delivering foreground segmentation and tracking, depth maps and standard images, with a processing latency smaller than 1ms. This paper describes the FingerMouse functionality and its applications, and how the specific architecture outperforms other systems in size, latency and power consumptio

    Data exploration in evolutionary reconstruction of PET images

    Get PDF
    • …
    corecore