
ORIGINAL ARTICLE

Architecture and applications of the FingerMouse: a smart stereo
camera for wearable computing HCI

Patrick de la Hamette Æ Gerhard Tröster

Received: 17 May 2006 / Accepted: 21 July 2006 / Published online: 9 January 2007
� Springer-Verlag London Limited 2006

Abstract In this paper we present a visual input HCI

system for wearable computers, the FingerMouse. It is

a fully integrated stereo camera and vision processing

system, with a specifically designed ASIC performing

stereo block matching at 5 Mpixel/s (e.g. QVGA

320 · 240 at 30 fps) and a disparity range of 47,

consuming 187 mW (78 mW in the ASIC). It is button-

sized (43 mm · 18 mm) and can be worn on the

body, capturing the user’s hand and processing in real-

time its coordinates as well as a 1-bit image of the hand

segmented from the background. Alternatively, the

system serves as a smart depth camera, delivering

foreground segmentation and tracking, depth maps

and standard images, with a processing latency smaller

than 1 ms. This paper describes the FingerMouse

functionality and its applications, and how the specific

architecture outperforms other systems in size, latency

and power consumption.

Keywords Wearable computing � Stereo vision �
Mobile embedded vision � Hand tracking � Foreground

segmentation � HCI

1 Introduction

As a new generation of computers, wearable comput-

ers are worn on the user’s body or are even integrated

in his textiles. This allows for new application scenar-

ios: the computer becomes a digital assistant helping

the user perform certain tasks. The system shall not

obstruct the user in any way, his hands should be free.

Ideally the digital assistant provides useful information

(e.g. via a head-up display, or sound) without requiring

explicit user interaction. In many situations though,

user input to the system will be necessary. Obviously

the classic input devices like a keyboard or a mouse do

not fit into the wearable computing scenario. A new

class of human–computer interaction (HCI) devices is

required.

This paper describes such a new wearable device,

the FingerMouse. Its primary use is to capture the

movement and shape of the user’s hand when moving

in front of the device’s cameras, enabling him to

interact with the wearable computer using his bare

hands (hence the name FingerMouse). This, and fur-

ther applications scenarios are described in Sect. 6.

The FingerMouse uses two cameras and its own

processing power to run vision algorithms, to capture a

scene and transmit the following outputs:

1. Hand shape: the hand shape is computed as a 1-bit

bitmap. This bitmap defines the segmentation of

pixels in the scene into either hand/foreground or

background.

In a more general sense, the FingerMouse is a

binary depth sensing camera, classifying pixels into

foreground, when they belong to objects with a

distance Z 2[Zmin, Zmax]. Zmin and Zmax can be

configured to values from Zprox to +¥. Objects

closer than the maximal proximity Zprox produce

noise. All other pixels are set to the background

class (drawn in black in Fig. 1). The FingerMouse

P. de la Hamette (&) � G. Tröster
Wearable Computing Lab, ETH Zurich, Switzerland
e-mail: pdelaham@ife.ee.ethz.ch
URL: http://www.wearable.ethz.ch

G. Tröster
e-mail: troester@ife.ee.ethz.ch

123

Pers Ubiquit Comput (2008) 12:97–110

DOI 10.1007/s00779-006-0109-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159145023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

transmits this image to a (wearable) computer,

acting as a segmenting smart camera. On the

computer, a higher level algorithm could use this

images for further processing (c.f. Sect. 6).

2. Hand movement: the hand position (absolute

coordinates) in the captured images is computed.

This allows the user to control an X–Y pointer,

similar as a PC-mouse does. For more simple

interactions, hand movements (up, down, etc.) are

also useful, since they do not require visual feed-

back as a pointer does.

3. Scene depth image (disparity map): instead of the

segmented output, the FingerMouse can also de-

liver a measurement of the depth of all the pixels.

The depth information is the raw disparity mea-

surement from a stereo block matching algorithm

(SAD result, L fi R or R fi L), described in

Sect. 2.

4. Standard images: the images from the system’s two

cameras can also be read. This allows to combine

the foreground segmentation result (‘‘hand shape’’

of the scene with standard camera images yielding

the same perspective.

The following features characterize the Finger-

Mouse:

1. Full integration: the embedded system includes all

the parts used for image capturing, image pro-

cessing and power regulation off a battery voltage.

It computes the results mentioned above auto-

nomously and transmits them to a (wearable)

computer.

2. Real-time operation: as a HCI device, the com-

putation has to be done online. The FingerMouse

operates in real-time, processing several frames

per second.

3. Low latency/high usability: when using the system

with visual feedback (e.g. X–Y pointer on a

screen), the user and the machine become a closed-

loop system. The smaller the tracking latency (or

lag) is, the higher the usability. HCI research

suggests that values under 50 ms are acceptable

and that latency is more important to usability than

the measurement accuracy [1, 2].

4. No calibration: the device immediately works after

power-up. This allows it to be turned on shortly

(e.g. when user-interaction is needed), and it in-

creases usability because it does not interrupt the

user’s work flow.

5. High computation performance: the FingerMouse

processes images with a throughput of 5–6 Mpixel/s,

e.g. 320 · 240 images at 30–37 fps. We developed

a specific ASIC for the image computation,

which computes at 20–25 G Operations per second

(at 80/100 MHz clock rate).

6. Small size: the current implementation is sized

43 mm · 18 mm.

7. Low power: the current implementation consumes

less than 200 mW at full operating speed (ASIC

78 mW). This value has to be seen in conjunction

with the possibility to switch the system on and off

very quickly.

The vision processing applied to the images is de-

scribed in Sect. 2. The system architecture which en-

abled the FingerMouse to be built with the features

mentioned above is described in Sect. 3. The resulting

hardware system is shown in Sect. 4, and its perfor-

mance compared to other systems in Sect. 5. Finally we

present application scenarios for the FingerMouse in

Sect. 6. An earlier version of this article was presented

at the 19th international conference on architecture of

computing systems (ARCS ’06) in Frankfurt am Main,

Germany [3].

2 Image processing

2.1 Segmentation techniques

To achieve the hand/foreground segmentation, we

evaluated several methods. Table 1 gives an overview

Zmin Zmax

FingerMouse

Field of view

Output: segmented foreground
image & foreground coordinates
(& raw depth maps)

Stereo images captured by the
system (can also be output)

(X=282 ; Y = 34)

Fig. 1 FingerMouse
functionality: scene capture,
outputs

98 Pers Ubiquit Comput (2008) 12:97–110

123

of applicable vision methods and algorithms. It

describes the disadvantages of each one, in the context

of our wearable computing scenario. This scenario

implies indoor and outdoor lighting conditions, a

non-static camera position and a limited power

consumption budget.

In the FingerMouse system, we use stereo vision

depth mapping because of its good segmentation,

outdoor applicability and the absence of calibration. It

is combined with a color segmentation filtering step

(optional), which is auto-calibrated by the stereo out-

put. The problem of the high computation amount is

addressed by a FingerMouse ASIC, specifically devel-

oped for the task (c.f. Sect. 3).

The computation techniques and mathematical

models behind stereo vision depth mapping have been

investigated and covered in literature since more than

three decades (e.g. [11, 12]). While the principles of

projective geometry on which the technique is founded

have been described since the sixteenth century [13],

real-time hardware implementations with TV-like

resolution and frame rate became feasible and are

described since the 1990s ([14–18], c.f. Sect. 5.2). The

FingerMouse contains an implementation of a pixel

based stereo correspondence analysis with block

matching. The next subsection describes how it was

implemented, adopted and extended to fulfill our

wearable computing specific design goals.

2.2 FingerMouse vision algorithm brief

Two cameras with parallel viewing axes, offset by b

(baseline), synchronously capture an image of the

scene. For each pixel, a depth Z (also called range) can

be computed, by comparing the two images. Objects in

the two stereo image are horizontally translated by the

so called disparity d (pixels) (c.f. Fig. 2). The disparity

d of an object is inversely proportional to its distance Z

from the cameras:

d ¼ bf
1

Z

xr

xs
ðpixelsÞ ð1Þ

(f is the focal length of the lenses; xs is the image sensor

width [light sensitive area); xr is the horizontal image

resolution (pixels)].

The disparity is calculated for each pixel and then

classified into foreground or background. To compute

a disparity, a reference window, a block (3 · 5 pixels)

around the pixel, is compared to blocks in the other

stereo image, along a horizontal search window. The

block with the highest correlation to the reference

block gives the disparity (c.f. Fig. 2). Pixels with a

disparity contained between the definable thresholds

dnear_thresh (corresponding to Zmin) and dfar_thresh (cor-

responding to Zmax) are classified as hand/foreground,

the other as background.

Table 1 Comparison between hand recognition algorithms

Method Description, disadvantages

Static background
subtraction

Two subsequently captured images are subtracted. Moving objects can be retrieved. Disadvantages: if the
device is worn on the body, the whole scene is always in motion. The method is not applicable.

Color segmentation The image is segmented by using a skin color tone reference. If a pixel is similar to the reference, it is
classified to the hand [4]. Disadvantages: needs calibration to calculate the color reference. Changing
lighting requires new calibration.

Active lighting The foreground is illuminated by a light source of a specific spectrum. The image is captured through a
spectral filter. Close objects should show a higher brightness [5]. Disadvantages: lighting requires a lot of
power. Outdoors, the sunlight outperforms lighting over most of the spectrum.

Structured lighting The scene is projected with a pattern, e.g. a dot grid. Captured images allow to determine the position of
the reflected dots on the hand/foreground in 3D. Using a laser as a monochromatic light source, a
narrowband capture filter, and a small lit area (the dots), we showed the feasibility of such a system
against sun light with little power consumption [6]. Disadvantages: the resulting data is sparse, since
limited to the number of projected dots.

Time of flight camera A new type of camera sends out light, modulated over time. In the captured image, the phase of the
modulation in the reflected light is determined, and leads to the distance of the captured object.
Disadvantages: requires an active light source.

Contour tracking A geometrical contour of the hand is tracked over time. In new images the tracker adjust the contourto
follow the hand [7–9]. Disadvantages: needs calibration to initially put the contour on the hand. If the
tracking is lost, new calibration is required.

Stereo vision image
substraction

The image from two parallel cameras is subtracted. Since the background coincides, it disappears. This
algorithm was implemented in older FingerMouse platforms (c.f. Sect. 5.1) [10]. Disadvantages: the
foreground is badly retrieved as an overlay of two subtracted hands. Medium distanced objects produce a
lot of noise.

Stereo vision depth
mapping

Using two cameras, the depth of a scene can be computed. The hand is classified by its proximity to the
cameras. This algorithm is integrated in the FingerMouse. Disadvantages: high computational effort.

Pers Ubiquit Comput (2008) 12:97–110 99

123

The width of the horizontal search window is dmax

and determines the highest disparity that can be mea-

sured. dmax also represents the amount of discrete

values for the depth measurement and is often called

disparity search depth. (dmax = 47 pixels for the Fin-

gerMouse). The hand must not be closer than Zprox,

the distance corresponding to dmax.

The correlation between blocks is calculated with

two different similarity functions operating on the pixel

intensity (brightness): the sum of absolute differences

(SAD) and the census function. The census function

maps a 3 · 3 block to eight bits, each bit indicating

whether a border pixel is brighter than the center pixel.

A 5 · 3 block is mapped to 3 · 8 bits, the combination

of the results from the three 3 · 3 blocks inside the

5 · 3 block. Blocks are compared by the hamming

distance of their census function. The SAD and census

block comparisons have different noise characteristics

when dealing with different kinds of area structure

(from homogeneous to highly structured), and the

census function is oblivious to absolute brightness.

The resulting measurements from a single correla-

tion method yield noise. Figure 4 shows the distribu-

tion of measured disparities from a single matching

run, and gives a hint on the noise level (e.g. all disparity

measurements of 10 < d < 25 are false, since no parts

of the scene have the corresponding depth). This noise

results from different sources, which are described in

Sect. 2.3. It should be clear, that applying two distance

thresholds reduces noise (noise 2 in Fig. 4), compared

to only using Zmin.

To deal with perspective occlusions, the correspon-

dence analysis is performed both from left to right

(L fi R search) and from right to left (R fi L

search). Using the measured disparity information, the

L fi R search result is transformed to the right

camera perspective, to be combined with the R fi L

results.

By combining the four redundant search runs (SAD

and census, both R fi L and L fi R), noise is re-

duced. Remaining noise is filtered by a median filter.

The resulting picture is output-1. The hand coordi-

nates, output-2, are derived from a center-of-gravity

computation. Figure 3 shows all the intermediary

processed images and the final outputs.

Since the noise countermeasures focus on reducing

noise in the background rather than noise in the hand/

foreground, a color step helps to ‘‘fill up’’ the hand: the

output-1 image is enhanced using color segmentation.

A reference color tone (hue) is computed on-the-fly

using the output-1 image (which shows parts of the

hand and noise) and the buffered color tones. Pixels

that have a similar color and are close to foreground

pixels in output-1 are classified as foreground in the

output-3 image. The corresponding hand coordinates

are called output-4 (also see Fig. 9). Since the color

segmentation is done on-the-fly, the color reference is

always taken from the previous image. The use of the

color fill-up step is optional.

Many other stereo vision algorithms perform a

perspective rectification of the images, before running

the correspondence analysis, to correct the effect of the

two different camera perspectives onto the hand.

Alternatively, the effect can be reduced by choosing a

small camera baseline b, as in the FingerMouse. A

rectification step was omitted since we prefer concur-

rent measures to consecutive ones. This reduces la-

tency and is also necessary to free the system of a

frame buffer (c.f. Sect. 3). Potentially, it could be ad-

ded easily to the system.

Search window

Reference window

dmax

Disparity d

Right image
sensor
picture

Left image
sensor
picture

Fig. 2 Stereo input images
and block matching scheme

100 Pers Ubiquit Comput (2008) 12:97–110

123

2.3 Robustness considerations

With the term robustness, we describe how the sys-

tem’s output quality is related to different challenges

the FingerMouse faces in a wearable computing envi-

ronment, a higher robustness meaning a better output

quality for a specific scene.

A measure for output quality is to count the number

of incorrectly classified pixels (noise). This noise can be

divided into background noise (background pixels

wrongfully detected as foreground) and foreground

noise. To quantify the quality, the outputs are com-

pared to ground truth values, e.g. a manually seg-

mented bitmap.

When dealing with a specific application, the output

quality of a post-processing stage (e.g. the tracking

precision of the hand movement) is more relevant, and

the quality measure has to be adopted. For example, in

some applications, the correct detection of pixels along

the contour of the foreground object is more important

than of the pixels inside the object (which are harder to

detect when the object has a uniform texture).

The factors that influence the FingerMouse’s

robustness all depend on the scene and its image

acquisition. After the images have been digitally

transmitted from the cameras, the rest of the system is

deterministic, and can be simulated down to gate level.

Background

disparity

nu
m

be
r

of
 p

ix
el

s

Noise 1 Hand Noise 2

dmaxdnear_threshdfar_thresh

Fig. 4 Disparity distribution in a sample image containing hand
and background

thresholdingthresholding thresholding thresholding

Disparity:
0

47

Depth map computation:
SAD L>R census L>R SAD R<L census R<L

OR

AND

median filter

colo r
tone
filte r

OR

Output-1 Output-3

Fig. 3 Image processing flow

Pers Ubiquit Comput (2008) 12:97–110 101

123

The scene specific factors are:

• foreground objects occlude different background

areas, respectively, in the two camera perspectives

[19]

• close objects are projected in a different perspective

onto the two image sensors

• homogenous areas lead to ambiguities, horizontally

periodic structures confuse the block matching.

The image acquisition specific factors are:

• image capture can differ in the two cameras (e.g.

global brightness)

• the image sensor limitations in extreme (low/high)

lighting conditions

• the geometrical precision of the stereo camera

setup.

In order to have the cameras produce images in an

equal fashion, we synchronize their complete timing on

clock cycle level. This reduces effects caused by dif-

ferent exposure moments, e.g. with artificial lighting,

the scene brightness often slightly oscillates at 50/

60 Hz. Remaining brightness differences are dealt with

the bias independent census block comparison. In

some scenes, the brightness of the light causes prob-

lems: if it is too high or too low, a limit in the sensor’s

dynamic range is reached, and structure is lost in un-

der/overexposed image areas. In low lighting condi-

tions, the sensors increase their signal amplification

(gain) and/or apply higher exposure times, which leads

to a decay in the signal/noise ratio and/or motion blur.

When building the stereo setup, the cameras will never

be exactly in parallel: while small translational errors

have little effect, rotational errors in the three possible

axes (horizontal pan, vertical pan, rotation in the image

plane) affect the image processing. This rotational

error can be minimized with a high precision manu-

facturing process or by later mechanical calibration,

e.g. mounting the cameras on daughter boards with

screws. Many image sensors also offer the possibility to

transmit only a rectangular subset of the image (win-

dowing). This permits to approximately correct small

rotational errors in two axes (pan).

The system’s robustness can be measured by simu-

lating with different sets of input images and measure

the resulting output quality. This also allows to evalu-

ate candidate image sensors or to test different system

parameters (e.g. camera baseline, focal length, etc.)

with scenario specific test images before implementing

the embedded device. The robustness against specific

problems (e.g. angular geometry flaws, under/overex-

posure, noise, dynamic range) can be simulated by

artificially modifying existing images of higher quality,

or with artificially produced (e.g. by ray-tracing a 3D

model) images.

Figures 5, 6 and 7 show the relative performance of

the system under different scenarios, where the camera

images have been artificially deteriorated (the curve

legend in Fig. 5 is valid for all three figures). The input

images are of VGA resolution, processed at half-VGA

(320 · 480). The images are the same as in Fig. 2,

containing a hand in the foreground. As a measure for

output quality, we plotted the foreground recognition

rate ð]foreground pixels recognized/]foreground pixels

in ground truth image) and background recognition

rate for both the output with and without the optional

color fill-up stage (output-3 and output-1). The track-

ing distance error is the distance in pixels between the

measured center of gravity and the ground truth center

of gravity. It is measured for both the filled and unfilled

image (output-4 and output-2). The mean error

distance for guessing the position is 277 pixels (in

50 45 40 35 30 25 20 15 10 5
0

10

20

30

40

50 99.5

100

60

70

80

90

99

100

foreground recognition rate
background recognition rate
tracking error distance

input image SNR [dB]

from output-1 from output-3 (color fill)

tr
ac

ki
ng

er
ro

r
di

st
an

ce
[p

ix
el

s]
/f

or
eg

ro
un

d
re

co
gn

iti
on

ra
te

[%
]

ba
ck

g r
ou

n
dr

ec
o g

ni
tio

n
ra

te
 [

%
]

Fig. 5 Robustness against
SNR decay (image sensor
noise)

102 Pers Ubiquit Comput (2008) 12:97–110

123

half-VGA) (please note that its scaling is different in

the three plots).

Figure 5 shows the system’s reaction to more noise

(lower SNR) in the sensor images. The artificial noise

is uniformly distributed in both stereo images. In

practice, noise occurs when lighting is low and the gain

in the sensor is increased. The amount of noise also

depends on the quality of the optics and the image

sensor sensitivity. The input noise creates a linear de-

cay in the (unfilled) hand recognition, which is caught

up by the fill-up stage, until the latter breaks down

after SNR < 35 dB.

Figure 6 shows how the system deals with a de-

creased dynamic range. The images were artificially

decreased in contrast (over the whole image). This

decay occurs when the image contrast is low or when

the area of interest (e.g. hand, foreground object) has a

low contrast (e.g. in the shade) within a high contrast

scene (e.g. sun-lit). This time the unfilled foreground

‘‘disappears’’ much slower in the sample stereo set, and

the filled output remains good until 28 dB of dynamic

range.

Figure 7 shows what happens, when the left image

is globally brighter than the right sensor image

(a value of n% means, that an area of the same object

is n% brighter). The system reacts very badly to the

bias, but maintains some foreground recognition

without generating background noise. In the synch-

ronous camera system of the FingerMouse, the

brightness bias is insignificant, but could occur when

the used optics have different apertures, e.g. through

manufacturing tolerances. Care has to be taken to

avoid this.

The three figures show that the background stays

mainly noise free (less than 0.5% noise pixels), even

when the input images are flawed and when the hand

area is not recognized any more. This makes it easier to

determine the foreground area, even when the latter is

noisy and is an effect of the filtering and depth map

combinations. The foreground (output-1) is always

partially captured, and allows to be used for post-pro-

cessing, e.g. the center of gravity tracking, even under

heavy constraints. Its filled version (output-3, and its

position tracking, output-4) allows even a higher

quality output (both segmented image and tracking),

but its robustness is more limited compared to output-1

(and output-2) and falls behind after a certain amount

of input image decay.

The actual input and output images of the presented

figures can be found at http://www.fingermouse.ethz.c.

50 45 40 35 30 25 20 15 10 5
0

10

20

30

40

50

60

70

80

90

100

99.5

99

100

input image contrast ratio/dynamic range [dB]

tr
ac

ki
ng

 e
rr

or
 d

is
ta

nc
e

[p
ix

el
s

x5
]

/f
or

eg
ro

un
d

re
co

gn
iti

on
 r

at
e

[%
]

ba
ck

gr
ou

nd
 r

ec
og

ni
tio

n
ra

te
 [

%
]

Fig. 6 Robustness against
dynamic range decay (image
constrast decrease)

99.5

99

100

brightness bias [%]

tr
ac

ki
ng

 e
rr

or
 d

is
ta

nc
e

[p
ix

el
s

x2
]

/f
or

eg
ro

un
d

re
co

gn
iti

on
 r

at
e

[%
]

ba
ck

gr
ou

nd
 r

ec
og

ni
tio

n
ra

te
 [

%
]

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100Fig. 7 Robustness against
brightness bias (left image
brighter)

Pers Ubiquit Comput (2008) 12:97–110 103

123

http://www.fingermouse.ethz.c

3 Hardware architecture

The architecture of the system and its components are

shown in Fig. 8. The two cameras are arranged in

parallel and they work synchronously with the ASIC

and with each other. This is possible by clocking them

through the FingerMouse-ASIC and by setting a syn-

chronous operation start and identical timing through

the microcontroller.

The images are not stored in a frame buffer, elimi-

nating the need for an image-RAM. Instead, a window

of only four (stereo-)lines from each stereo image is

buffered inside the ASIC. The segmentation process-

ing is done on-the-fly on the first three lines, while a

new line is stored in the buffer. The segmented output

is available concurrently with the image transmission

from the cameras. The hand-tracking is also done on

the fly, and the result is ready directly after the image

transmission is done. This way, the result computation

has a very small latency (the time between the trans-

mission of a pixel and its computed output) of merely

two row transmission times. The delay between a hand

movement and the transmission of the hand pixels by

the camera depends on the speed of the image sensor:

the movement is integrated over the exposure time and

then transmitted immediately (rolling shutter camera)

or at a delay up to a full image transmission time,

depending on its position in the image (global shutter

camera).

To handle a pixel throughput of 5 M stereopixels

per second and do online stereo matching, the ASIC

has to perform over 20 G Operations per second [this

value is based only the on stereo matching part, and

only counting operations (subtract, accumulate, com-

pare, fetch value) inside the loops, without any over-

head. The complete figure on a RISC based

implementation is much higher]. The disparity com-

putation of one stereo pixel pair, which includes 188

block comparison operations (dmax · 4), is done within

16 ASIC clock cycles. This is possible through a high

speed ring buffer, which stores the reference block and

parts of the search window in a ring buffer, consisting

of registers. During the 16 clock cycles, the ring buffer

slides over the complete search window, fetching new

pixels from the row-buffer RAM. At each clock cycle,

16 parallel units, directly wired to the ring buffer, do a

block comparison. With some overhead and additional

computations, this allows for a disparity search depth

of dmax = 47. The data and processing flow can be seen

in Fig. 9.

The microcontroller controls the cameras, config-

ures the ASIC and transports the tracking results via a

RS232 interface. The segmented images (or optionally

the SAD disparity maps) are directly output by the

ASIC, over a 16-bit parallel/serial interface. The design

could also be extended, so that the microcontroller

could handle some or all post-processing of the images

or could provide USB connectivity.

4 System implementation and results

The architecture is implemented on a four-layer PCB

(size 43 mm · 18 mm). The FingerMouse ASIC die is

directly bonded onto the PCB, without a package. Two

image sensors (Omnivision OV7649, low voltage color

CMOS VGA imager) in chip-scale package were used,

together with small board-lenses. The system further

camera 1
&

camera 2

FingerMouse
ASIC

microcontroller

image data

clock

camera control

results ASIC
config.

segmentation
result

tracking
result

clock generationpower supply

Fig. 8 System architecture

stereo camera interface

4x2 row intensity
buffer (RAM)

SAD L-R
stereo
matching

SAD R-L
stereo
matching

census
L-R stereo
matching

census
R-L stereo
matching

combine matching results

noise filtering

position
tracking

optional 2:1/4:1
downsampling

4 row color
buffer (RAM)

ring buffer (registers) ring buffer (registers)

area filtering with
color segmentation

perspective shift

disparity thresholding

output-1
output-2 output-4

output-3

Fig. 9 Data path and processing inside the ASIC

104 Pers Ubiquit Comput (2008) 12:97–110

123

includes an MSP430F1611 in a standard package

(backside), and interfaces for communication. A bat-

tery voltage of 2.7–5.5 V is regulated to the different

voltages needed onboard, using a single micro-power-

management integrated circuit (MAX8620Y).

The (rolling shutter) cameras are arranged with with

a baseline of 25 mm and deliver pictures of 640 · 480

resolution (processed as 320 · 480 in the Finger-

Mouse) at a frame rate of 15 fps or 320 · 240 at 30 fps

(at 80 MHz ASIC clock). The cameras can also output

subset windows of the images. For example, when a

horizontal position of an object in front of the Fin-

gerMouse needs to be determined, images of 320 · 3

pixels could be processed at several hundred fps. The

delay between input and output pixels from the ASIC,

running at 80 MHz, is smaller than 200 ls. The optics

seen in Fig. 10 (left) are provided by Sekonix. With a

focal length of f = 3.6 mm, the horizontal field of view

of the FingerMouse has an opening angle of 53� (this

corresponds to the viewing angle of a 35 mm film

camera with a f = 30 mm lens). In this optical setup,

the relation between the disparity d and the depth Z is

as follows:

Z ¼ 8
1

d
½m�ðZprox ¼ 0:17 mÞ:

The ASIC was manufactured in May 2005, by UMC.

Table 2 shows some figures of the FingerMouse ASIC.

Table 3 gives an overview of the components’ power

consumptions. Figure 10(left) shows the FingerMouse

PCB with the optics, no electronics mounted.

5 System performance comparison and discussion

5.1 Performance of the different FingerMouse

implementations/architectures

To give a notion of the system’s performance, we

provide an overview over three other prototypes that

have been implemented at our lab. They all use stereo

vision to segment and track the hand, but the under-

lying processing architecture is different.

1. The first prototype system was built in 2001/2002.

It uses a DSP and a very rudimentary algorithm:

for the background/foreground segmentation, two

corresponding stereo-vision pixels were compared

(image subtraction) and classified via a threshold.

In a second step, the resulting segmentation is fil-

tered with morphological operations. This results

in a ‘‘dirty’’ segmentation of the background and

the overlay of the hands (translated in the stereo

images) which was nevertheless usable for track-

ing. Image processing is done after complete image

transmission, resulting in some latency (13.5 ms)

[10].

2. The second prototype was developed in 2003/2004.

It uses the same algorithm as the first prototype,

with some further refinements. It uses an FPGA

for the computation, which allowed zero latency

and a much higher data rate than the first proto-

type, thanks to parallel processing and concurrent

image transmission.

3. Implementation of the new algorithm on a desktop

PC with additional optimizations. It uses two USB

cameras and does not use the color segmentation

processing step.

Even though the DSP/FPGA based FingerMouse

prototypes run a much more rudimentary algorithm

requiring less calculations per pixel, the efficiency

comparison shows that the architecture based on our

ASIC clearly outperforms the other architectures

(Table 4).

5.2 Other real-time stereo systems

While stereo correspondence algorithms have been

described earlier, real-time systems emerged in the

1990s. The following embedded hardware system have

been implemented using FPGAs and DSPs:

Fig. 10 FingerMouse
prototype PCB (next to 2
Euro coin) (left). ASIC layout
(right)

Pers Ubiquit Comput (2008) 12:97–110 105

123

1. The ‘‘stereo machine for video-rate dense depth

mapping’’ ([17], 1996) performs 30 M block com-

parisons per second. (FingerMouse: 470–587 M)

e.g. 200 · 200 images at 30 fps and a disparity

range of 32. It features image rectification and can

use 2–6 input cameras. The system uses an array of

TMS320C40 DSP processors.

2. The ‘‘PARTS reconfigurable computer’’ ([15],

1997) is a general-purpose reconfigurable machine

with wide I/O memory, consisting of 16 Xilinx 4025

FPGA’s and 16 one-megabyte SRAMs. It runs

stereo vision at 2.3 GOp/s, resulting in a perfor-

mance of 42 fps at 320 · 240 resolution and 24

disparity computations (15M block comparisons

per second, 22 W power consumption).

3. An implementation on a hardware of several Xi-

linx 4013 FPGAs is described in [16] (1999). It

achieves 30 256 · 256 frames per second, of a

maximal disparity 32.

More embedded system can be found in [20–22].

Since a few years, real-time implementations are

achieved on standard PCs. This has become possible

through the increase of the PCs performance, the use

of new processor technologies like MMX and SSE (on

·86 platforms), better cache and multi-core processors.

The main performance increase results from algorithm

optimizations though: since coherent objects in a a

scene are coherently projected onto the image sensors,

it is clear that the depth of a pixel is strongly correlated

to its neighboring pixels. This is exploited in the cor-

respondence analysis: the image is treated in different

hierarchal steps, using a priori information from the

previous step to decrease to amount of necessary block

comparisons and thus increase speed. Some of those

techniques are described in [23, 24].

Many different software implementations exist, e.g.:

1. Triclops SDK is a software by the company Point

Grey Research (http://www.ptgrey.com). It does

real-time stereo block matching in high quality on

Table 2 FingerMouse ASIC specifications

Supply voltage 2.5/3.3 V (core/ I/O)
Chip size 2,227 lm · 2,227 lm (excluding sealring and bonding areas)
Chip technology umcL250, 250 nm
Pin count 28 input; 22 output; 20 power; 14 empty
On-chip RAM 4 KB (3.432 KB used)
Transistor count (without RAM) approx. 380,000
Pixel input format B/W 8 bit/pixel or YUV 4:2:2 16 bit/pixel
Input image size and format Any aspect ratio, any resolution up to the maximal image width:

max. 1,360 (internal: max 340, after factor 1, 2 or 4 downsampling)
Image processing rate 5 Mpixel/s at 80 MHz /6 Mpixel/s at 100 MHz
Power dissipation at full processing rate 78 mW at 80 MHz and 96 mW at 100 MHz clock speed
Interfaces Configuration, tracking results: RS232/segmented image output:

16-bit parallel/serial interface

Table 3 FingerMouse system power budget

Component Power

FingerMouse ASIC 78 mW
Cameras 2 · 30 mW
MSP430 5 mW
Clock generator 23 mW
Total internal dissipation 166 mW
Power regulation effiency 89%
Total input power from battery 187 mW

Table 4 Comparison between the different systems

DSP based
FingerMouse

FPGA based
FingerMouse

Desktop PC based
implementation

ASIC based
FingerMouse

Processing architecture DSP (TI TMS320 VC33) FPGA (Xlinix Spartan II) PC (Intel Pentium 4) FingerMouse-ASIC
Internal image res. 128 · 128 640 · 480 640 · 480 320 · 480
Clock 75 MHz 20 MHz 2.8 GHz 80 MHz
Power (only processing) 130 mW 1,000 mW > 50 W 78 mW
PCB size 4,672 mm2

73 mm · 64 mm
3,381 mm2

69 mm · 49 mm
– 774 mm2

43 mm · 18 mm
Thickness PCB and optics 35 mm 45 mm – 8 mm
Segmentation quality Low Low High High
Output latency (ms) 13.5 < 1 1,000 < 1
Image data rate 0.5 Mpixels/s 10 Mpixels/s 0.6 Mpixels/s 5 Mpixels/s
Efficiency (E/pixel) (lJ) 0.26 0.1 > 83 0.016

106 Pers Ubiquit Comput (2008) 12:97–110

123

http://www.ptgrey.com

a PC and can be used with Bumblebee, a stereo

camera head by the same company. These pre-

calibrated products allow fast prototyping of depth

computing applications. According to the manu-

facturer’s website (1 May 2006), the software

achieves a frame rate of 31 fps, at 320 · 240

resolution and a disparity depth of 48 (similar than

the FingerMouse running at 80 MHz), running on

a Pentium IV, 2.4 GHz.

2. E-stereo is a ‘‘C++ library for real-time disparity

estimation. The library contains various functions

for dense stereo matching from 2 to 3 rectified

images and 3D scene reconstruction’’, by David

Demirdjian [25]. On a Pentium IV, 1.7 GHz, with

320 · 240 input images, a disparity depth of 32, it

processes 14–18 fps, according to the author.

3. GPU based stereo vision. Some projects use the

processing power of a PCs graphical processor to

run stereo block matching algorithms, e.g. in [26]

(2003), a NVIDIA GeForce4 graphics card in a PC

achieves 50–70 M block comparisons per second

(FingerMouse 470–587 M).

5.3 Discussion

The six described systems perform similar stereo block

matching than the FingerMouse, and could also be

used for foreground segmentation. Since their original

task is to deliver depth maps, the systems have been

optimized for depth output quality, while the refine-

ments in the FingerMouse are more focused on the

segmentation of a hand.

The software based PC solutions offer a higher level

of flexibility in system design and implementation. The

image throughput performance of the PC solutions is

equalling the FingerMouse, when using today’s state-

of-the-art desktop or notebook processors.

Their disadvantages are:

• Higher latency: the images have to be transmitted

from the cameras first, passing through an interface

chip, a driver software and a video API. The full

image has to be stored in RAM before an

optimized algorithm can process it. Due to the

algorithmic complexity, the latency is not deter-

ministic any more. While latencies over 100 ms are

tolerable for some applications, they decrease

usability in human–computer interaction with

real-time visual interaction (like moving a mouse

pointer on a screen).

• Little mobility: a notebook solution is somehow

portable, but truly mobile platforms like wearable

computers (e.g. the QBIC [27]) remain a few years

behind when it comes to processing speed, due to

their lower power budgets.

• Less power efficiency: the general purpose archi-

tecture of the computers results in a lower process-

ing efficiency (throughput/energy consumption).

Additionally, the vision processing has to share

the cpu performance with other applications run-

ning concurrently.

The other embedded implementations also achieve

low latencies, but the FingerMouse has the advantage

of its tightly coupled parallel computation and memory

architecture inside the ASIC, and thus performs better.

Although the described systems are far from iden-

tical, the numbers should give an impression of the

performance of the FingerMouse compared to other

systems:

The FingerMouse outperforms its competitors on the

performance/power ratio, the latency, total system

power consumption and size.

The FingerMouse falls back when it comes to flexibility

and depth map quality (depth maps are not used in our

application scenarios).

6 Application scenarios

In most vision processing that analyzes an object in a

scene, the segmentation of the object in the image is a

crucial step. It is a standard task and is trivial when the

camera position is static. When the system is in motion,

and power consumption, size or latency are crucial, a

device like the FingerMouse is useful. The following

scenario examples describe what the mobile segmen-

tation could serve for.

Section 6.1 shows the driving scenario and nomen-

clature origin of the FingerMouse. Sections 6.2 and 6.3

show further theoretical application scenarios for the

FingerMouse smart camera system, including actually

processed images.

6.1 Wearable computing HCI

Worn on the body, the FingerMouse allows the user to

control a wearable computer with his hands.

The segmented output can be used to recognize

gestures (c.f. [28]) or extract other information (e.g.

orientation of the hand, position of the fingertip, sil-

houette generation, etc.). A basic position tracking of

the foreground area is already performed inside the

FingerMouse.

Thanks to its size, the FingerMouse could also be

attached to the head-up display, in order to allow the

Pers Ubiquit Comput (2008) 12:97–110 107

123

user to point directly into the virtual screen in front of

him. A drawback is, that current head-up displays have

a smaller field-of view, that would only cover a subset

of the FingerMouse field of view, and thus reduce the

usable pointing resolution. A countermeasure is to

increase the focal length of the optics in the Finger-

Mouse, but this also increases the minimum distance of

the hand Zprox, unless the baseline b is also reduced

(which cannot be changed for a given system, in con-

trast to the lenses) (Fig. 11).

6.2 Mobile video telephony with background

removal

In mobile video telephony, the FingerMouse could re-

place the camera, and offer the possibility to remove or

blur the background in an image. To cover the user in

the image, a silhouette around the detected foreground

(output-1) is computed and slightly enlarged, and then

combined with the original right camera image.

The background removal improves user’s privacy

(hiding his current environment and location) and the

privacy of other persons, since otherwise those could

be filmed in the background during the video com-

munication (c.f. Fig. 12). Furthermore, the bit rate of

the video stream is reduced (or its quality improved for

a given bit rate).

6.3 Visual augmentation and hazard detection

The FingerMouse could help provide simple vision

augmentation. Figure 13 shows, how a FingerMouse

mounted on a shoe segments objects in front of the

user. Triggered by the foot stepping down, the system

could give an audio cue to warn the user, if any object

lies in his trajectory or even hint to the relative position

(left/right/straight ahead) and distance of the object to

the shoe. The object distance can be measured

by averaging (for sub-pixel disparity precision) the

disparity values of the detected foreground. Since the

foot is not moving for a short period of time, several

images can be taken, e.g. with different distance

thresholds, to gain more information about the object.

The necessary post-processing of the 1-bit output

images (only 9,600 bytes, in QVGA) could be handled

by a microcontroller (or by a wearable computer).

Such a system and its battery can be fitted into a shoe

and could operate non-stop for a whole day.

The system in the shoe could provide walking haz-

ard detection to visually impaired people or to wear-

able computing users, walking while focusing on a

head-up display. In a similar fashion, the FingerMouse

could help a robot avoid or follow objects.

7 Conclusion and outlook

We proposed an architecture for a fully integrated real-

time vision capturing and processing system that

achieves a high performance although working under

strict constraints. The small size and low power con-

sumption of the implementation qualifies for use

within a wearable system. With its figures of size,

power consumption, performance and latency, the

FingerMouse system is unrivaled today.

7.1 Outlook

The size of such a system could certainly be further

reduced, when resorting to more complex construction

techniques, like multi-chip modules. On the other

hand, the size reduction is limited by the need of an

offset between the two stereo cameras. Reducing this

offset would influence the vision processing, altering

the depth measuring range.

A further reduction in power consumption is still

possible. Switching from 250 to sub 100 nm CMOS

technology allows for a decrease of the ASIC’s power

yes
no

FingerMouse

Field of view
(FingerMouse)

Field of view
(display)

Head-up display

Input images from right & left camera

Wearable
Computer

(QBIC)

Output images, without and with color
filter stage

Fig. 11 The FingerMouse as
an input device to wearable
computers

108 Pers Ubiquit Comput (2008) 12:97–110

123

dissipation by a factor of five without degradation of

the computing performance. The trend in CMOS

camera development also shows dropping power con-

sumption while sensor performance is increasing.

The current size indicates that autonomous vision

processing devices could already be used in wearable

systems, and could even be integrated into mobile

phones or PDA’s, as described in the application

scenarios.

Ongoing information and test images can be found

at the FingerMouse project homepage (http://www.

fingermouse.ethz.ch).

Acknowledgments We would like to thank Andreas Burg and
Marc Wegmüller for their assistance in the ASIC design process.
Most of the hardware implementations of the new prototype
were done within student projects. Therefore, we thank the
students Roman Gmünder, Julian Heeb, Thomas Koch and Sven
Kuonen for their hard work. We also thank Martin Lanz, for his
assistance with the die-bonding. For her help in the scenario
photography, we thank Claire Muller.

References

1. Crowley JL, Coutaz J, Bérard F (2000) Perceptual user
interfaces: things that see. Commun ACM 43:54–ff

2. Card SK, Newell A, Moran TP (1983) The psychology of
human–computer interaction. Lawrence Erlbaum, Mahwah

3. de la Hamette P, Tröster G (2006) Fingermouse—a button
size visual hand tracking and segmentation device. In: Pro-
ceedings of the 19th international conference on architec-
ture of computing systems-ARCS 2006, pp 31–41

4. Habili N, Lim CC, Moini A (2004) Segmentation of the face
and hands in sign language video sequences using color and
motion cues. IEEE Trans Circ Syst Video Technol

5. Gandy M, Starner T, Auxier J, Ashbrook D (2000) The
gesture pendant: a self-illuminating, wearable, infrared
computer vision system for home automation control and
medical monitoring. In: ISWC ’00—Proceedings of the 4th
IEEE international symposium on wearable computers.
IEEE Computer Society, Washington DC, pp 87

6. de la Hamette P, von Waldkirch M, Tröster G (2004) Laser
triangulation as a means of robust visual input for wearable
computers. In: ISWC ’04—Proceedings of the 4th IEEE
international symposium on wearable computers, Doctoral
Colloquium. IEEE Computer Society, Washington DC, pp
18–20

7. Blake A, Isard M (1998) Active contours, 1st edn. Springer
Berlin Heidelberg, New York, ISBN: 3-540-76217-5

8. Grewal, MS, Andrews AS (1993) Kalman filtering: theory
and practice. Prentice-Hall, Englewood Cliffs

9. Blake A, Curwen R, Andrew Z (1993) A framework for
spatio-temporal control in the tracking of visual contours.
Int J Comput Vis

10. de la Hamette P, Lukowicz P, Tröster G, Svoboda T (2002)
Fingermouse: awearable hand tracking system. In: Adjunct

FingerMouse

Field of view

Output images: background blurred / removed

post-processing: silhouette computation,
combination with original camera image

Original image,
disclosing person
in background

Zmin

Zmax

Mobile video
phone
Audio

Fig. 12 Mobile video
telephony scenario

FingerMouse

Right camera image

Segmented output

Field of view

Zmin

Zmax

Fig. 13 Hazard detection
scenario

Pers Ubiquit Comput (2008) 12:97–110 109

123

http://www.fingermouse.ethz.ch
http://www.fingermouse.ethz.ch

proceedings of the 4th international conference on ubiqui-
tous computing

11. Hartley RI, Zisserman A (2004) Multiple view geometry in
computer vision, 2nd edn. Cambridge University Press,
London, ISBN: 0521540518

12. Faugeras O (1999) Three-dimensional computer vision: a
geometric viewpoint, 3rd edn. MIT Press, Cambridge.
ISBN: 0-262-06158-9

13. Frisius G (1544) Camera obscura. Historic publication on
projective camera geometry

14. Porter RB, Bergmann NW (1997) A generic implementation
framework for fpga based stereo matching. IEEE TENCON

15. Woodfill J, Herzen BV (1997) Real-time stereo vision on the
parts reconfigurable computer. The 5th annual IEEE sym-
posium on FPGAs for custom computing machines

16. Corke P, Dunn P (1999) Frame-rate stereopsis using non-
parametric transforms and programmable logic. In: IEEE
international conference on robotics and automation

17. Kanade T, Yoshida A, Oda K, Kano H, Tanaka M (1996) A
stereo machine for video-rate dense depth mapping and its
new applications. In: IEEE computer society conference on
computer vision and pattern recognition

18. Konolige K (1997) Small vision systems: hardware and
implementation. Eighth international symposium on
robotics

19. Egnal G, Wildes RP (2002) Detecting binocular half-
occlusions: empirical comparisons of five approaches. IEEE
Trans Pattern Anal Mach Intell

20. Ayache N, Lustman F (1991) Trinocular stereo vision for
robotics. IEEE Trans Pattern Anal Mach Intell

21. Fua P (1991) A parallel stereo algorithm that produces
dense depth maps and preserves image features. Technical
report 1369, Unite de Recherche, INRIA-Sophia Antipolis

22. Faugeras O, Hotz B, Mathieu H et al (1993) Real time
correlation-based stereo: algorithm, implementations and
applications. Technical report 2013, INRIA

23. Anandan P (1989) A computational framework and an
algorithm for the measurement of visual motion. Int J
Comput Vis 283–310

24. Ohm JR, Grüneberg K, Izquierdo E, Karl M Real time
hardware system for stereoscopic videoconference with
viewpoint adaptation. Image Commun 14, special issue on
3D technology

25. Demirdjian D Estereo: a c++ library for real-time stereo
estimation. (http://www.sourceforge.net/projects/estereo/)

26. Yang R, Pollefeys M (2003) Multi-resolution real-time ste-
reo on commodity graphics hardware. In: Proceedings of the
IEEE computer society conference on computer vision and
pattern recognition, 2003

27. Amft O, Lauffer M, Ossevoort S, Macaluso F, Lukowicz P,
Tröster G (2004) Design of the qbic wearable computing
platform. In: ASAP 2004—Proceedings of the 15th IEEE
international conference on application-specific systems,
architectures and processors

28. Starner T, Weaver J, Pentland A (1997) A wearable com-
puter based american sign language recognizer. In: Digest of
papers, first international symposium on wearable comput-
ers

110 Pers Ubiquit Comput (2008) 12:97–110

123

http://www.sourceforge.net/projects/estereo/

	Architecture and applications of the FingerMouse: a smart stereo camera for wearable computing HCI
	Abstract
	Introduction
	Image processing
	Segmentation techniques
	FingerMouse vision algorithm brief
	Robustness considerations

	Hardware architecture
	System implementation and results
	System performance comparison and discussion
	Performance of the different FingerMouse implementations/architectures
	Other real-time stereo systems
	Discussion

	Application scenarios
	Wearable computing HCI
	Mobile video telephony with background removal
	Visual augmentation and hazard detection

	Conclusion and outlook
	Outlook

	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

