154 research outputs found

    Medida e análise de atividade espetral

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesThe dissertation deals with measuring and analyzing spectrum occupancy of a GSM900 band, DCS1800 band and all UMTS bandwidth. A modelization for analog power and binary quantized power is given. In the case of analog power, histograms of the power distribution during one working day are presented. In the case of quantized power the two time statistics, the time period of opportunities distribution and the time between opportunities distribution are presented, described and modeled. The measurement setup is standing in line of sight with the base station. Also, in terms of maximum sensitivity the measurement setup is described and analyzed. Spectrum non occupancy in terms of total time for the GSM900 band and the DCS1800 band is given, for a working day.Nesta dissertação são feitas medidas e a análise de ocupação de espectro em uma banda de GSM900, uma banda de DCS1800 e toda a largura de banda do UMTS. É apresentada uma modelização para potência analógica e para a potência binária quantizada. No caso da potência analógica são apresentados histogramas da distribuição de potência ao longo de um dia útil. No caso da potência quantizada as duas estatísticas, distribuição do período de tempo de oportunidades e distribuição do tempo entre oportunidades, são apresentadas, descritas e modeladas. O setup de medida encontra-se em linha de vista com a estação base. O setup é descrito e analisado em termos de máxima sensibilidade. A desocupação de espectro em termos de tempo total para a banda de GSM900 e para a banda DCS1800 é fornecida, para um dia de útil

    Modelling and performances assessment of OFDM and fast-OFDM wireless communication systems.

    Get PDF
    This thesis is mainly concerned with the design, modelling and performance assessment of modulation techniques for use in wireless communication systems. The work is divided, broadly in three areas; a multimode system proposal, an assessment of a new modulation scheme and a system optimisation technique. A multimode system architecture employing GSM and EDGE systems and an Orthogonal Frequency Division Multiplexing (OFDM) system is proposed. The OFDM system is designed to have similar frame structure, channel allocation and spectrum shape to those of the GSM and EDGE systems. The multimode system is evaluated under typical multipath fading environments specified for GSM/EDGE and adjacent-channel and co-channel interference. The results indicated that the proposed OFDM system can be perfectly integrated within the GSM/EDGE network core. Furthermore, a novel modulation technique is investigated. Fast-OFDM (FOFDM) is a variation of OFDM, which offers twice the bandwidth efficiency when compared to OFDM. However, the bandwidth efficiency only applies to one dimensional modulation schemes (BPSK or M-ASK). The suitability of FOFDM for wireless communications is assessed by studying its performance under receiver front-end distortions and multipath fading environments. The performance of the FOFDM system is compared with the performance of a similar OFDM system. The results indicated that under small distortion conditions, the performance of FOFDM and OFDM is comparable. Finally, the effect of interpolation filtering on OFDM systems in noise limited and interference limited environments is investigated. The aim of this study is to highlight that interference should be taken into consideration when designing systems for wireless communications. In addition, this study can be utilised in software defined radio schemes, offering optimised performance. Overall, this thesis presents work over a range of research areas, providing system proposals, modulation comparisons and system optimisation techniques that can be used by developers of future mobile systems

    Optical performance monitoring in optical packet-switched networks

    Full text link
    Para poder satisfacer la demanda de mayores anchos de banda y los requisitos de los nuevos servicios, se espera que se produzca una evolución de las redes ópticas hacia arquitecturas reconfigurables dinámicamente. Esta evolución subraya la importancia de ofrecer soluciones en la que la escalabilidad y la flexibilidad sean las principales directrices. De acuerdo a estas características, las redes ópticas de conmutación de paquetes (OPS) proporcionan altas capacidades de transmisión, eficiencia en ancho de banda y excelente flexibilidad, además de permitir el procesado de los paquetes directamente en la capa óptica. En este escenario, la solución all-optical label switching (AOLS) resuelve el cuello de botella impuesto por los nodos que realizan el procesado en el dominio eléctrico. A pesar de los progresos en el campo del networking óptico, las redes totalmente ópticas todavía se consideran una solución lejana . Por tanto, es importante desarrollar un escenario de migración factible y gradual desde las actuales redes ópticas basadas en la conmutación de circuitos (OCS). Uno de los objetivos de esta tesis se centra en la propuesta de escenarios de migración basados en redes híbridas que combinan diferentes tecnologías de conmutación. Además, se analiza la arquitectura de una red OPS compuesta de nodos que incorporan nuevas funcionalidades relacionadas con labores de monitorización y esquemas de recuperación. Las redes ópticas permiten mejorar la transparencia de la red, pero a costa de aumentar la complejidad de las tareas de gesión. En este escenario, la monitorización óptica de prestaciones (OPM) surge como una tecnología capaz de facilitar la administración de las redes OPS, en las que cada paquete sigue su propia ruta en la red y sufre un diferente nivel de degradación al llegar a su destino. Aquí reside la importancia de OPM para garantizar los requisitos de calidad de cada paquete.Vilar Mateo, R. (2010). Optical performance monitoring in optical packet-switched networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8926Palanci

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    UWB implementation and utilization in mPOS device

    Get PDF
    Abstract. This thesis investigates the possible implementation and utilization of ultra-wideband (UWB) technology in a handheld device that serves as a sales system. The basic information of UWB technology based on theory is introduced, such as history, benefits and challenges, current standards, and the most common use cases. The general requirements and the planned use cases for UWB technology are presented to narrow the scope of the thesis. The thesis covers status of the current suppliers of UWB components and reasonings of the selection of a UWB chip and antennas for this thesis. Measurements are performed with the UWB chip, the UWB antennas and the entire UWB system implementation to verify that the requirements are met, and the technology works as designed. Based on theory and measurement results, it is demonstrated that both the implementation and utilization of UWB in the handheld device with the desired characteristics can be done

    Ultra Low Power Communication Protocols for UWB Impulse Radio Wireless Sensor Networks

    Get PDF
    This thesis evaluates the potential of Ultra Wideband Impulse Radio for wireless sensor network applications. Wireless sensor networks are collections of small electronic devices composed of one or more sensors to acquire information on their environment, an energy source (typically a battery), a microcontroller to control the measurements, process the information and communicate with its peers, and a radio transceiver to enable these communications. They are used to regularly collect information within their deployment area, often for very long periods of time (up to several years). The large number of devices often considered, as well as the long deployment durations, makes any manual intervention complex and costly. Therefore, these networks must self-configure, and automatically adapt to changes in their electromagnetic environment (channel variations, interferers) and network topology modifications: some nodes may run out of energy, or suffer from a hardware failure. Ultra Wideband Impulse Radio is a novel wireless technology that, thanks to its extremely large bandwidth, is more robust to frequency dependent propagation effects. Its impulsional nature makes it robust to multipath fading, as the short duration of the pulses leads most multipath components to arrive isolated. This technology should also enable high precision ranging through time of flight measurements, and operate at ultra low power levels. The main challenge is to design a system that reaches the same or higher degree of energy savings as existing narrowband systems considering all the protocol layers. As these radios are not yet widely available, the first part of this thesis presents Maximum Pulse Amplitude Estimation, a novel approach to symbol-level modeling of UWB-IR systems that enabled us to implement the first network simulator of devices compatible with the UWB physical layer of the IEEE 802.15.4A standard for wireless sensor networks. In the second part of this thesis, WideMac, a novel ultra low power MAC protocol specifically designed for UWB-IR devices is presented. It uses asynchronous duty cycling of the radio transceiver to minimize the power consumption, combined with periodic beacon emissions so that devices can learn each other's wake-up patterns and exchange packets. After an analytical study of the protocol, the network simulation tool presented in the first part of the thesis is used to evaluate the performance of WideMac in a medical body area network application. It is compared to two narrowband and an FM-UWB solutions. The protocol stack parameters are optimized for each solution, and it is observed that WideMac combined to UWB-IR is a credible technology for such applications. Similar simulations, considering this time a static multi-hop network are performed. It is found that WideMac and UWB-IR perform as well as a mature and highly optimized narrowband solution (based on the WiseMAC ULP MAC protocol), despite the lack of clear channel assessment functionality on the UWB radio. The last part of this thesis studies analytically a dual mode MAC protocol named WideMac-High Availability. It combines the Ultra Low PowerWideMac with the higher performance Aloha protocol, so that ultra low power consumption and hence long deployment times can be combined with high performance low latency communications when required by the application. The potential of this scheme is quantified, and it is proposed to adapt it to narrowband radio transceivers by combining WiseMAC and CSMA under the name WiseMAC-HA

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Resilient Peer-to-Peer Ranging using Narrowband High-Performance Software-Defined Radios for Mission-Critical Applications

    Get PDF
    There has been a growing need for resilient positioning for numerous applications of the military and emergency services that routinely conduct operations that require an uninterrupted positioning service. However, the level of resilience required for these applications is difficult to achieve using the popular navigation and positioning systems available at the time of this writing. Most of these systems are dependent on existing infrastructure to function or have certain vulnerabilities that can be too easily exploited by hostile forces. Mobile ad-hoc networks can bypass some of these prevalent issues making them an auspicious topic for positioning and navigation research and development. Such networks consist of portable devices that collaborate to form wireless communication links with one another and collectively carry out vital network functions independent of any fixed centralized infrastructure. The purpose of the research presented in this thesis is to adapt the protocols of an existing narrowband mobile ad-hoc communications system provided by Terrafix to enable range measuring for positioning. This is done by extracting transmission and reception timestamps of signals exchanged between neighbouring radios in the network with the highest precision possible. However, many aspects of the radios forming this network are generally not conducive to precise ranging, so the ranging protocols implemented need to either maneuver around these shortcomings or compensate for loss of precision caused. In particular, the narrow bandwidth of the signals that drastically reduces the resolution of symbol timing. The objective is to determine what level of accuracy and precision is possible using this radio network and whether one can justify investment for further development. Early experiments have provided a simple ranging demonstration in a benign environment, using the existing synchronization protocols, by extracting time data. The experiments have then advanced to the radio’s signal processing to adjust the synchronization protocols for maximize symbol timing precision and correct for clock drift. By implementing innovative synchronization techniques to the radio network, ranging data collected under benign conditions can exhibit a standard deviation of less than 3m. The lowest standard deviation achieved using only the existing methods of synchronization was over two orders of magnitude greater. All this is achieved in spite of the very narrow 10−20kHz bandwidth of the radio signals, which makes producing range estimates with an error less than 10−100m much more challenging compared to wider bandwidth systems. However, this figure is beholden to the relative motion of neighbouring radios in the network and how frequently range estimates need to be made. This thesis demonstrates how such a precision may be obtained and how this figure is likely to hold up when applied in conditions that are not ideal

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalámbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portátiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalámbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalámbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemáticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes más adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMárquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17869Palanci

    Adaptive multilevel quadrature amplitude radio implementation in programmable logic

    Get PDF
    Emerging broadband wireless packet data networks are increasingly employing spectrally efficient modulation methods like Quadrature Amplitude Modulation (QAM) to increase the channel efficiency and maximize data throughput. Unfortunately, the performance of high level QAM modulations in the wireless channel is sensitive to channel imperfections and throughput is degraded significantly at low signal-to-noise ratios due to bit errors and packet retransmission. To obtain a more “robust” physical layer, broadband systems are employing multilevel QAM (M-QAM) to mitigate this reduction in throughput by adapting the QAM modulation level to maintain acceptable packet error rate (PER) performance in changing channel conditions. This thesis presents an adaptive M-QAM modem hardware architecture, suitable for use as a modem core for programmable software defined radios (SDRs) and broadband wireless applications. The modem operates in “burst” mode, and can reliably synchronize to different QAM constellations “burst-by-burst”. Two main improvements exploit commonality in the M-QAM constellations to minimize the redundant hardware required. First, the burst synchronization functions (carrier, clock, amplitude, and modulation level) operate reliably without prior knowledge of the QAM modulation level used in the burst. Second, a unique bit stuffing and shifting technique is employed which supports variable bit rate operation, while reducing the core signal processing functions to common hardware for all constellations. These features make this architecture especially attractive for implementation with Field Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs); both of which are becoming popular for highly integrated, cost-effective wireless transceivers
    corecore