767 research outputs found

    Use of the Wavelet Transform for Interference Detection and Mitigation in Global Navigation Satellite Systems

    Get PDF
    Radio frequency interference detection and mitigation are becoming of paramount importance due to the increasing number of services and applications based on the position obtained by means of Global Navigation Satellite Systems. A way to cope with such threats is the implementation in the receiver of advanced signal processing algorithm able to raise proper warning or improve the receiver performance. In this paper, we propose a method based on the Wavelet Transform able to split the useful signal from the interfering component in a transformed domain. The wavelet packet decomposition and proper statistical thresholds allow the algorithm to show very good performance in case of multiple pulse interference as well as in the case of narrowband interference, two scenarios in which traditional countermeasures might not be effective

    Performance Evaluation of Adaptive Continuous Wavelet Transform based Rake Receiver for UWB Systems

    Get PDF
    This paper proposes an adaptive continuous wavelet transform (ACWT) based Rake receiver to mitigate interference for high speed ultra wideband (UWB) transmission. The major parts of the receiver are least mean square (LMS) adaptive equalizer and N-selective maximum ratio combiner (MRC). The main advantage of using continuous wavelet rake receiver is that it utilizes the maximum bandwidth (7.5GHz) of the UWB transmitted signal, as announced by the Federal Communication Commission (FCC). In the proposed ACWT Rake receiver, the weights and the finger positions are updated depending upon the convergence error over a period in which training data is transmitted. Line of sight (LOS) channel model (CM1 from 0 to 4 meters) and the Non line of sight (NLOS) channel models (CM, CM3 and CM4) are the indoor channel models selected for investigating in this research . The performance of the proposed adaptive system   is evaluated by comparing with conventional rake and continuous wavelet transform (CWT) based rake. It showed an improved performance in all the different UWB channels (CM1 to CM4) for rake fingers of 2, 4 and 8. Simulations showed that for 8 rake fingers, the proposed adaptive CWT rake receiver has shown an SNR improvement of 2dB, 3dB, 10dB and 2dB respectively over CWT rake receiver in different UWB channels CM1, CM2, CM3 and CM4

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Glottal-synchronous speech processing

    No full text
    Glottal-synchronous speech processing is a field of speech science where the pseudoperiodicity of voiced speech is exploited. Traditionally, speech processing involves segmenting and processing short speech frames of predefined length; this may fail to exploit the inherent periodic structure of voiced speech which glottal-synchronous speech frames have the potential to harness. Glottal-synchronous frames are often derived from the glottal closure instants (GCIs) and glottal opening instants (GOIs). The SIGMA algorithm was developed for the detection of GCIs and GOIs from the Electroglottograph signal with a measured accuracy of up to 99.59%. For GCI and GOI detection from speech signals, the YAGA algorithm provides a measured accuracy of up to 99.84%. Multichannel speech-based approaches are shown to be more robust to reverberation than single-channel algorithms. The GCIs are applied to real-world applications including speech dereverberation, where SNR is improved by up to 5 dB, and to prosodic manipulation where the importance of voicing detection in glottal-synchronous algorithms is demonstrated by subjective testing. The GCIs are further exploited in a new area of data-driven speech modelling, providing new insights into speech production and a set of tools to aid deployment into real-world applications. The technique is shown to be applicable in areas of speech coding, identification and artificial bandwidth extension of telephone speec

    Tracking and Mitigation of Chirp-Type Interference in GPS Receivers Using Adaptive Notch Filters

    Get PDF
    A Global Positioning System (GPS) receiver is extremely prone to intentional and unintentional interference due to weak signal power experienced on the surface of the earth, which severely affects the navigation functionality and occasionally avoids the receivers from acquiring the GPS signal. This work presents a comparative performance analysis of two different types of Adaptive Notch Filtering (ANF) algorithms for GPS specific applications that are (1) Direct form 2nd Order ANF and (2) Lattice-based ANF for tracking and mitigation of Chirp-type Interference. Three classes of chirp-type interference signals, studied in this paper, are linear chirp, quadratic chirp and cubic chirp. Performance of each ANF algorithm is evaluated at the output of the acquisition module in terms of search-grid SNR and Peak metric

    Radio frequency interference detection and mitigation techniques for navigation and Earth observation

    Get PDF
    Radio-Frequency Interference (RFI) signals are undesired signals that degrade or disrupt the performance of a wireless receiver. RFI signals can be troublesome for any receiver, but they are especially threatening for applications that use very low power signals. This is the case of applications that rely on the Global Navigation Satellite Systems (GNSS), or passive microwave remote sensing applications such as Microwave Radiometry (MWR) and GNSS-Reflectometry (GNSS-R). In order to solve the problem of RFI, RFI-countermeasures are under development. This PhD thesis is devoted to the design, implementation and test of innovative RFI-countermeasures in the fields of MWR and GNSS. In the part devoted to RFI-countermeasures for MWR applications, first, this PhD thesis completes the development of the MERITXELL instrument. The MERITXELL is a multi-frequency total-power radiometer conceived to be an outstanding platform to perform detection, characterization, and localization of RFI signals at the most common MWR imaging bands up to 92 GHz. Moreover, a novel RFI mitigation technique is proposed for MWR: the Multiresolution Fourier Transform (MFT). An assessment of the performance of the MFT has been carried out by comparison with other time-frequency mitigation techniques. According to the results, the MFT technique is a good trade-off solution among all other techniques since it can mitigate efficiently all kinds of RFI signals under evaluation. In the part devoted to RFI-countermeasures for GNSS and GNSS-R applications, first, a system for RFI detection and localization at GNSS bands is proposed. This system is able to detect RFI signals at the L1 band with a sensitivity of -108 dBm at full-band, and of -135 dBm for continuous wave and chirp-like signals when using the averaged spectrum technique. Besides, the Generalized Spectral Separation Coefficient (GSSC) is proposed as a figure of merit to evaluate the Signal-to-Noise Ratio (SNR) degradation in the Delay-Doppler Maps (DDMs) due to the external RFI effect. Furthermore, the FENIX system has been conceived as an innovative system for RFI detection and mitigation and anti-jamming for GNSS and GNSS-R applications. FENIX uses the MFT blanking as a pre-correlation excision tool to perform the mitigation. In addition, FENIX has been designed to be cross-GNSS compatible and RFI-independent. The principles of operation of the MFT blanking algorithm are assessed and compared with other techniques for GNSS signals. Its performance as a mitigation tool is proven using GNSS-R data samples from a real airborne campaign. After that, the main building blocks of the patented architecture of FENIX have been described. The FENIX architecture has been implemented in three real-time prototypes. Moreover, a simulator named FENIX-Sim allows for testing its performance under different jamming scenarios. The real-time performance of FENIX prototype has been tested using different setups. First, a customized VNA has been built in order to measure the transfer function of FENIX in the presence of several representative RFI/jamming signals. The results show how the power transfer function adapts itself to mitigate the RFI/jamming signal. Moreover, several real-time tests with GNSS receivers have been performed using GPS L1 C/A, GPS L2C, and Galileo E1OS. The results show that FENIX provides an extra resilience against RFI and jamming signals up to 30 dB. Furthermore, FENIX is tested using a real GNSS timing setup. Under nominal conditions, when no RFI/jamming signal is present, a small additional jitter on the order of 2-4 ns is introduced in the system. Besides, a maximum bias of 45 ns has been measured under strong jamming conditions (-30 dBm), which is acceptable for current timing systems requiring accuracy levels of 100 ns. Finally, the design of a backup system for GNSS in tracking applications that require high reliability against RFI and jamming attacks is proposed.Les interferències de radiofreqüència (RFI) són senyals no desitjades que degraden o interrompen el funcionament dels receptors sense fils. Les RFI poden suposar un problema per qualsevol receptor, però són especialment amenaçadores per les a aplicacions que fan servir senyals de molt baixa potència. Aquest és el cas de les aplicacions que depenen dels sistemes mundials de navegació per satèl·lit (GNSS) o de les aplicacions de teledetecció passiva de microones, com la radiometria de microones (MWR) i la reflectometria GNSS (GNSS-R). Per combatre aquest problema, sistemes anti-RFI s'estan desenvolupament actualment. Aquesta tesi doctoral està dedicada al disseny, la implementació i el test de sistemes anti-RFI innovadors en els camps de MWR i GNSS. A la part dedicada als sistemes anti-RFI en MWR, aquesta tesi doctoral completa el desenvolupament de l'instrument MERITXELL. El MERITXELL és un radiòmetre multifreqüència concebut com una plataforma excepcional per la detecció, caracterització i localització de RFI a les bandes de MWR més utilitzades per sota dels 92 GHz. A més a més, es proposa una nova tècnica de mitigació de RFI per MWR: la Transformada de Fourier amb Multiresolució (MFT). El funcionament de la MFT s'ha comparat amb el d'altres tècniques de mitigació en els dominis del temps i la freqüència. D'acord amb els resultats obtinguts, la MFT és una bona solució de compromís entre les altres tècniques, ja que pot mitigar de manera eficient tots els tipus de senyals RFI considerats. A la part dedicada als sistemes anti-RFI en GNSS i GNSS-R, primer es proposa un sistema per a la detecció i localització de RFI a les bandes GNSS. Aquest sistema és capaç de detectar senyals RFI a la banda L1 amb una sensibilitat de -108 dBm a tota la banda, i de -135 dBm per a senyals d'ona contínua i chirp fen un mitjana de l'espectre. A més a més, el Coeficient de Separació Espectral Generalitzada (GSSC) es proposa com una mesura per avaluar la degradació de la relació senyal a soroll (SNR) en els Mapes de Delay-Doppler (DDM) a causa del impacte de les RFI. La major contribució d'aquesta tesi doctoral és el sistema FENIX. FENIX és un sistema innovador de detecció i mitigació de RFI i inhibidors de freqüència per aplicacions GNSS i GNSS-R. FENIX utilitza la MFT per eliminar la interferència abans del procés de correlació amb el codi GNSS independentment del tipus de RFI. L'algoritme de mitigació de FENIX s'ha avaluat i comparat amb altres tècniques i els principals components de la seva arquitectura patentada es descriuen. Finalment, un simulador anomenat FENIX-Sim permet avaluar el seu rendiment en diferents escenaris d'interferència. El funcionament en temps real del prototip FENIX ha estat provat utilitzant diferents mètodes. En primer lloc, s'ha creat un analitzador de xarxes per a mesurar la funció de transferència del FENIX en presència de diverses RFI representatives. Els resultats mostren com la funció de transferència s'adapta per mitigar el senyal interferent. A més a més, s'han realitzat diferents proves en temps real amb receptors GNSS compatibles amb els senyals GPS L1 C/A, GPS L2C i Galileo E1OS. Els resultats mostren que FENIX proporciona una resistència addicional contra les RFI i els senyals dels inhibidors de freqüència de fins a 30 dB. A més a més, FENIX s'ha provat amb un sistema comercial de temporització basat en GNSS. En condicions nominals, sense RFI, FENIX introdueix un petit error addicional de tan sols 2-4 ns. Per contra, el biaix màxim mesurat en condicions d'alta interferència (-30 dBm) és de 45 ns, el qual és acceptable per als sistemes de temporització actuals que requereixen nivells de precisió d'uns 100 ns. Finalment, es proposa el disseny d'un sistema robust de seguiment, complementari als GNSS, per a aplicacions que requereixen alta fiabilitat contra RFI.Postprint (published version

    Load Estimation, Structural Identification and Human Comfort Assessment of Flexible Structures

    Get PDF
    Stadiums, pedestrian bridges, dance floors, and concert halls are distinct from other civil engineering structures due to several challenges in their design and dynamic behavior. These challenges originate from the flexible inherent nature of these structures coupled with human interactions in the form of loading. The investigations in past literature on this topic clearly state that the design of flexible structures can be improved with better load modeling strategies acquired with reliable load quantification, a deeper understanding of structural response, generation of simple and efficient human-structure interaction models and new measurement and assessment criteria for acceptable vibration levels. In contribution to these possible improvements, this dissertation taps into three specific areas: the load quantification of lively individuals or crowds, the structural identification under non-stationary and narrowband disturbances and the measurement of excessive vibration levels for human comfort. For load quantification, a computer vision based approach capable of tracking both individual and crowd motion is used. For structural identification, a noise-assisted Multivariate Empirical Mode Decomposition (MEMD) algorithm is incorporated into the operational modal analysis. The measurement of excessive vibration levels and the assessment of human comfort are accomplished through computer vision based human and object tracking, which provides a more convenient means for measurement and computation. All the proposed methods are tested in the laboratory environment utilizing a grandstand simulator and in the field on a pedestrian bridge and on a football stadium. Findings and interpretations from the experimental results are presented. The dissertation is concluded by highlighting the critical findings and the possible future work that may be conducted

    ARRAY PROCESSING TECHNIQUES FOR ESTIMATION AND TRACKING OF AN ICE-SHEET BOTTOM

    Get PDF
    Ice bottom topography layers are an important boundary condition required to model the flow dynamics of an ice sheet. In this work, using low frequency multichannel radar data, we locate the ice bottom using two types of automatic trackers. First, we use the multiple signal classification (MUSIC) beamformer to determine the pseudo-spectrum of the targets at each range-bin. The result is passed into a sequential tree-reweighted message passing belief-propagation algorithm to track the bottom of the ice in the 3D image. This technique is successfully applied to process data collected over the Canadian Arctic Archipelago ice caps in 2014, and produce digital elevation models (DEMs) for 102 data frames. We perform crossover analysis to self-assess the generated DEMs, where flight paths cross over each other and two measurements are made at the same location. Also, the tracked results are compared before and after manual corrections. We found that there is a good match between the overlapping DEMs, where the mean error of the crossover DEMs is 38±7 m, which is small relative to the average ice-thickness, while the average absolute mean error of the automatically tracked ice-bottom, relative to the manually corrected ice-bottom, is 10 range-bins. Second, a direction of arrival (DOA)-based tracker is used to estimate the DOA of the backscatter signals sequentially from range bin to range bin using two methods: a sequential maximum a posterior probability (S-MAP) estimator and one based on the particle filter (PF). A dynamic flat earth transition model is used to model the flow of information between range bins. A simulation study is performed to evaluate the performance of these two DOA trackers. The results show that the PF-based tracker can handle low-quality data better than S-MAP, but, unlike S-MAP, it saturates quickly with increasing numbers of snapshots. Also, S-MAP is successfully applied to track the ice-bottom of several data frames collected from over Russell glacier in 2011, and the results are compared against those generated by the beamformer-based tracker. The results of the DOA-based techniques are the final tracked surfaces, so there is no need for an additional tracking stage as there is with the beamformer technique

    Enhancing the performance of spread spectrum techniques in different applications

    Get PDF
    Spread spectrum, Automotive Radar, Indoor Positioning Systems, Ultrasonic and Microwave Imaging, super resolution technique and wavelet transformMagdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2006von Omar Abdel-Gaber Mohamed Al
    • …
    corecore