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ABSTRACT 

Stadiums, pedestrian bridges, dance floors, and concert halls are distinct from other civil 

engineering structures due to several challenges in their design and dynamic behavior. These 

challenges originate from the flexible inherent nature of these structures coupled with human 

interactions in the form of loading. The investigations in past literature on this topic clearly state 

that the design of flexible structures can be improved with better load modeling strategies acquired 

with reliable load quantification, a deeper understanding of structural response, generation of 

simple and efficient human-structure interaction models and new measurement and assessment 

criteria for acceptable vibration levels. In contribution to these possible improvements, this 

dissertation taps into three specific areas: the load quantification of lively individuals or crowds, 

the structural identification under non-stationary and narrowband disturbances and the 

measurement of excessive vibration levels for human comfort. For load quantification, a computer 

vision based approach capable of tracking both individual and crowd motion is used. For structural 

identification, a noise assisted Multivariate Empirical Mode Decomposition (MEMD) algorithm 

is incorporated into the operational modal analysis. The measurement of excessive vibration levels 

and the assessment of human comfort are accomplished through computer vision based human and 

object tracking, which provides a more convenient means for measurement and computation. All 

the proposed methods are tested in the laboratory environment utilizing a grandstand simulator 

and in the field on a pedestrian bridge and on a football stadium. Findings and interpretations from 

the experimental results are presented. The dissertation is concluded by highlighting the critical 

findings and the possible future work that may be conducted.  
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CHAPTER ONE: INTRODUCTION 

Structures such as footbridges, dance floors, concert venues and especially stadia are 

usually designed with the intent to hold large numbers of people. The recent population growth 

and expansion of the entertainment industry, demand for such structures has increased dramatically, 

resulting in the need for new designs capable of accommodating even larger crowds (Figure 1). 

On the other hand, these new designs must also satisfy the architectural and aesthetic 

considerations such as long cantilevers to provide better lines of sight than typical structures, for 

instance in stadia, or long-distance spans with rather complicated geometries in footbridges. Being 

constructed as such and being in service under human excitation with large occupant-structure 

mass ratios, the structural components might be stressed to their limits as to serviceability and in 

some critical cases, even safety.  

 

 

Figure 1 Architectural and structural details of a stadium 
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Current Practices 

Sensing/monitoring of individuals and crowd for load estimation 

Accurate determination of design loads is an important step to create an optimum 

serviceability design. Almost all different sorts of loads that can be encountered in human structure 

interaction problems are explained therein [1]. Of all different types of human loading, bouncing 

and jumping with their variable and long period applicability are viewed to be the most critical 

cases [2], [3] and are the focus of this dissertation. The dynamic effects of these two loadings on 

the structures, as it is pointed out by design guidelines[4]–[6], need to be assessed to determine if 

the vertical resonant frequencies of the structures fall below 8.5 Hz. This limit is based on the 

observation that higher Fourier harmonics of jumping load between the jumping and bobbing 

frequencies of 1.5-3.5 Hz can generate critical structural response. Nevertheless, these guidelines 

lack providing explicit and reliable methods for crowd loading (inter-subject variation). Besides, 

recreating realistic measured individual force time histories is still an issue due to the variations of 

motion within a subject’s (intra-subject variability) body. The need for clarification of these 

uncertainties has been the motivation of this research on load quantification and modeling. Recent 

research is concentrated mainly on the improvement of conventionally recreated force-time history 

measurements and relatively new image-based techniques. 

Load-time history measurements 

In general, dynamic force measurements are made by utilizing load cells or force plates 

that can generate force signals during the ‘contact phase’ and ‘aerial phase’ of jumping or bobbing. 

A unique and novel example of this measurement technique can be seen in a laboratory raked 
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grandstand model which is used to capture full force time histories via embedded force plates 

within the structure [7], [8]. The grandstand can accommodate 15 test subjects. The stand is 

supported by air springs and driven using linear actuators. This setup allows the structure to behave 

in two different modes namely “rigid” and “floating” which allows the dynamic response to vary 

between 2.8 - 23Hz. The real-time control techniques allow the researchers to test a variety of 

structure conditions and understand human-structure interaction, group coordination levels and 

acceptability limits of vibrations. 

However, use of force plates brings some concerns such as (1) having small dimensions 

(~0.6x0.4m) that require controlled jumping which is quite tough when the subject is to jump at 

higher frequencies, therefore having distorted ground reaction force (GRF) patterns and (2) giving 

inaccurate results when mounted on a flexibly moving structure such as grandstand for the reason 

that additional inertial forces contribute to the measurements [9]. 

To remedy these problems regarding conventional methods, a preliminary novel load 

(bouncing/jumping, walking and running) - GRF estimation study based on motion tracking is 

proposed [10] rendering ‘free field’ measurements possible without the necessity of traditional 

laboratory restricted tests. The body of a test subject is subdivided into 15 major body segments 

which are then instrumented with markers at their connection points modeled as spherical hinges. 

Position of the markers are tracked down by video-based optoelectronic technology at 200Hz and 

accelerations are derived to be used in the estimation of GRF. Calculated GRFs are then validated 

by the direct measurements using an instrumented treadmill that is embedded in the ground. The 

results seem quite promising in capturing three harmonics of jumping records in frequency domain 
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(up to 15 Hz) especially for extreme loads (bouncing/jumping) commonly encountered in crowd 

dynamics. 

The same method is validated in other studies by the same researchers [9], [11]. The test 

subjects perform the same test (without force plate measurements) both separately and together at 

three frequencies: 2, 2.2, 2.5 Hz but with identical conditions on a simply supported floor stripe 

whose modal characteristics are known from previous modal analysis. Generated force histories 

via tracking of visual data marker during jumping phase of subjects are input into the computer 

model and are compared with those acquired through direct acceleration measurements from the 

floor stripe. The results show a good match between the measured vibration responses and those 

calculated from the corresponding SDOF model using the recreated forces. The proposed method, 

is suggested to be applied on many different applications of human induced vibrations such as 

grandstands, footbridges, etc. to be explored in more depth in terms of practicality and accuracy 

especially in the existence of a large number of time dependent force records. As shown in the 

previous study, a database of different loadings can be generated to further create stochastic load 

models. However, the real-life applications of data markers require the test subjects to stand in a 

prescribed certain line to fully capture the three dimensional motion. Therefore, for field 

measurements where exists a high density of crowd, this method does not seem to be really feasible. 

This problem is remedied by contactless sensing via the use of computer vision techniques. 

The earliest works of this kind include tracking the prominent body parts (mainly the face) of 

people by segmentation and looking at their correlation in consecutive images to estimate the loads 

applied to grandstands by large crowds. Inspired by some early works on contour detection and 

Bayesian clustering methods for crowd tracking, researchers use an easier method specifying each 
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tracked segment with a rectangle for estimating jumping and bobbing pattern on a laboratory 

grandstand. The results are not quite satisfying for the following reasons: (1) run time for the 

tracking algorithm being too long since the amount of data is large and (2) method not being 

sensitive enough to rapid changes in tracking the objects. Similarly, other trials focus on motion 

measurement of people and the patterns of their behavior in terms of velocity amplitude and 

frequency through either simulation in a computer controlled environment [12], [13] or utilizing 

off the shelf regular or thermal imaging cameras on a portion of a real grandstand [14], [15]. A 

well-known family of algorithms called as digital image correlation (DIC) commonly referred to 

as particle image velocimetry (PIV) is used in these studies. The application includes dividing the 

image into different fixed sized rectangular areas called Regions of Interest (ROI) and tracking the 

displacement of the most similar regions in the consecutive images. Since the elapsed time between 

consecutive images is known, the displacement and average velocity field as well as acceleration 

time histories could be acquired. Detailed analyses on some uncertainties regarding the technique 

such as the size of the ROIs and the resolution of the images are carried out via 2D and 3D image 

processing. In conclusion, a minimum limit for a successful image based study in terms of 

acquisition and analysis for grandstands is proposed. Utilization of the technique and 

recommendations for uncertainties are validated with scaled down images of a real stadium having 

shaker controlled dummies and a real small crowd jumping [12] in another study. A promising 

contactless measurements method captures the displacement and acceleration information from a 

real-life event where a group of people in various sizes demonstrates jumping activities. The 

novelty of the study lies within the adaptive nature of the algorithm to non-stationary changes as 
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illumination changes, object deformation. The results are compared with data marker tracking 

system and wireless accelerometers that can be attached on the human body [16]. 

After several preliminary trials of DIC algorithm applications, a promising step-up towards 

the load estimation is achieved relying on the experiments done at a section of an instrumented 

real life grandstand [17]. The aim is to generate loading functions based on the developed 

acceleration time histories. Regarding the large number of occupants, poor image resolution and 

perspective issues, it is chosen to work only on a small portion of the grandstand and with root 

mean square (RMS) of what values thereby mitigating the noise problem. The application, as 

before, includes dividing the image into different fixed sized rectangular ROIs and tracking the 

displacement of the most similar region in the consecutive images. Multiplying the accelerations 

with the apparent estimated mass of the crowd, force histories are obtained. Generated forcing 

functions are then used in a FE model of the real stadium with modal space approximation 

approach. The acquired responses come out much more similar to measured responses than those 

of calculated by utilizing the forcing functions given in current codes and guidance. 

Another vision based approach renders measurement of jumping and bobbing loads on a 

crowd and on the field by making use of the same family of DIC algorithms [18]. Despite the idea 

of expanding an individual forcing to the entire crowd, the proposed method uses the motion of 

the crowd directly for generating forcing functions. The preliminary verifications for the method 

is performed by comparing the measured DIC data with the data coming from both accelerometers 

installed on a single test subject and dynamometric platform where the subject is jumping and 

bobbing within the frequency range of 1.5-3.5 Hz (0.1Hz intervals). The estimation of vertical 

induced loads is obtained by the sum of acceleration and body mass multiplication of body parts 
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and they show a reasonable match with high correlation compared to measured quantities. The 

level of discrepancy is also evaluated based on the difference between the experimental results 

from the method and the directly measured values by looking at the spectrums. The real-life 

experiments involve small groups at a stadium, varying in number (1, 4, 8 people) and mass (65, 

260 and 600 kg), that are required to jump at frequencies: 2.1, 2.3 and 2.5 Hz. An experimental 

modal analysis (EMA) is carried out utilizing a moving mass to extract frequency response 

functions (FRFs) of the system. The structural vibrations are found by multiplying the force 

spectrum extracted via digital image correlation (DIC) with the frequency response functions 

(FRFs) acquired from previous experimental modal analysis (EMA) test.  

The disadvantages of the computer vision and image processing based approaches are: (1) 

it generates large amounts of data that are not feasible to be stored and analyzed for the long term, 

(2) cameras used to capture crowd motion cannot be placed in front of the crowd, (3) the lighting 

conditions and extraneous camera flashes may affect the results, (4) cameras do not account for 

extraneous vibrations when recording. These problems are the motivation for further research on 

generating more efficient algorithms and on classification criteria for data to be stored based on 

the significance of the event. Creation of algorithms that are capable of counting and tracking 

multiple subjects through face recognition, might lead to more accurate response estimations and 

could assist with identification and isolation of passive and active members within the crowd. 

The use of image processing and computer vision techniques allow for completely 

contactless measurement of loads and has the following advantages: it is inexpensive, can track 

large numbers of people, and can be utilized in virtually every environment. This approach 

completely removes the need for laboratory measurements and implementation of mathematical 
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function fittings. It is also suitable for assessing both an individual’s induction on a system as well 

as a crowd’s. This is a huge improvement considering the expansion problem of individual load 

measurements to crowds.  

Although it is claimed that the visual marker tracking method can make free field 

measurements without utilizing force plates, it still has some significant obstacles. Visual tracking 

methods are quite expensive to instrument large numbers of subjects with data markers in the field 

and it necessitates that the subjects remain in a prescribed line. This method is currently unable to 

track the motion of overlapping subjects.  

Regeneration of Force Recordings 

The common mathematical function fitting approaches based on the load measurements 

via force plates or load cells at higher sampling rates either in time or frequency domain have now 

proven to be inaccurate and deficient for the following reasons: (1) real forcing functions are non-

identical and not perfectly periodic, (2) fitting functions or Fourier series are incapable of 

representing the original forcing signals and (3) it suggests overly conservative designs due to 

excessive level of vibrations calculated in return. It has been shown by various researchers [19], 

[20] that walking and jumping loads are not perfectly periodic and are narrow-band phenomenon 

(intra-subject variation) by evincing the leakage around higher harmonics and frequently varying 

phase lags. 

This knowledge necessitates a more advanced modelling strategy considering the altered 

morphology, variability of both peak to peak intervals and amplitudes of real jumping records. 

Although there has been studies towards the solution of the problem by utilizing probability 
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distributions to model frequency and Fourier coefficients of jumping pulses [21], [22], these are 

insufficient to reflect the true random nature of the problem. In [2], the consideration of peak to 

peak timing and amplitude variations are mainly observed through an auto-regression model. 

Recognizing that the preceding jumps are dependent on each other with an addition of normally 

distributed error each time, an auto-regression model is constructed upon two statistics namely 

mean delay (between the beat and the corresponding jump) and phase scatter (deviation about the 

mean). However, measured and generated force recordings do not closely match along the full 

frequency band except for the first two dominant harmonics. This is due to the reason that cosine-

squared functions could only fit smooth shaped jumping pulses which are not always the case for 

different jumping frequencies. It should be noted that the consecutive pulses belonging to the same 

jumping frequency also change their shape. 

In a series of recent studies by the same researchers, all these variations in peak to peak 

timing and amplitude and inadequate modelling issues seem to be mostly resolved with a novel 

approach [23]–[25]. Through stochastic processes, researchers can create a model that considers 

the lack of symmetry of the single peaked shapes by fitting Gaussian functions. They also achieve 

in representing local irregularities by increasing the number of Gaussians in the sum covering high 

frequency content of Fourier amplitude spectra. They expand their findings by developing a 

stochastic jumping load database. 825 measured force signals for the rates between 1.7 and 2.5 Hz 

are synthetically regenerated utilizing the new method. Considering that each synthetic recording 

is unity scaled, a vast majority of amplitudes for each recording can be acquired simply 

incorporating mass distributions for any human population of concern. This novel method seems 
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to reflect the true nature of jumping loading more closely than any other proposed method as well 

as showing promising indices for the expansion to crowds. 

The stochastic load modeling approach is superior to the conventional half sine or Fourier 

series fitting methods because of its abilities to replicate intra-personal variations and to reproduce 

force-time histories of variable length. Acquisition of every harmonics as in the original recordings 

with their spread over the spectral energy are factors that would prevent overestimations of 

responses. Stochastic load modeling has not been expanded from individual load modeling to 

crowd modeling. The next step is to generate synthetic histories by using data from a large variety 

of jumpers, bobbers at varying frequencies. These histories could then be condensed into a 

database that would later on let these excitations to be treated as a spectrum as in earthquake 

resistant design. Such a spectrum might easily be adopted in current guidance and used by 

designers. 

Structural Identification 

There are several studies that address the performance of conventional identification 

methods for in-service data [26]–[28]. In these studies, different powerful operational modal 

analysis methods, such as Enhanced Frequency Domain Decomposition (EFDD), Least Square 

Complex Exponential (LSCE), Stochastic Subspace Identification (SSI-CVA, SSI-UPC, SSI-PC), 

Natural Excitation Technique (NExT) and Eigensystem Realization Algorithm (ERA) are used to 

analyze the data from common stadium conditions observed during a football game [27], [28]. The 

different conditions observed are, empty, crowd entering in, crowd seated, half-time, crowd 

leaving and celebration due to a successful play. Two notable observations from the study are that 
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dominant changes occur in the frequency and damping values, and that the magnitude of the 

changes depend on the crowd configuration. The first observation is consistent with the findings 

from other literature. The study also reveals that the estimated parameters for each method are 

different although the same data is used to estimate them. Based on the results from the study, it is 

suggested to use all possible different methods for creating reliable intervals and to complete a 

comprehensive identification study. 

While it is suggested to use all possible methods to study a structure, not all methods may 

be applicable for flexible structures. For instance, an OMA method may only be applied if several 

requirements are met, such as the whole frequency band must be excited, the structural system 

must be linear and time invariant, and most importantly, the excitation must be in the form of 

Gaussian random white noise. These requirements can be prohibitive for the analysis of flexible 

structures, since individual or crowd motion can introduce dominant harmonic components into 

the system which transform the excitation into colored noise. Additionally, the dynamic response 

parameters of the structure are not time invariant. In a finite element modeling and updating study, 

it is observed that structural systems are possibly non-linear systems because of the large 

variability in measured damping values [29]. 

OMA identification techniques that have been used so far give fairly approximate results 

but it a huge question remains whether the existing OMA methods are suitable to use for flexible 

structures under human motion. The efficiency of the numerous identification methods still needs 

to be assessed. Newly developed methods should be introduced. 
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In future research, possible nonlinearities of slender nature of flexible structures, time-

variant characteristics of the excitation and existence of possible harmonics need serious 

investigation. 

Human Comfort 

In light of research from 2008, it has been proven difficult to assess the extreme vibration 

levels on humans with the prescribed methods, current standards and guidance for several reasons: 

(1) vibration levels are perceived differently from person to person and also from one location to 

another in the same structure, (2) spectators react differently depending on the type of the event, 

even though the same discomfort parameters are found for each event and (3) each structure 

responds uniquely to group/crowd excitation. The current well known and widely used assessment 

methodologies for vibration level measurements are [30]–[32]. These standards were originally 

developed to evaluate human exposure to vibrations caused by operation of machinery and 

vehicles, but the same procedures were thought to be applicable to flexible structures as well. The 

assessment measures used in these standards, such as root mean square (RMS), running RMS, 

maximum transient vibration value (MTVV), fourth power vibration dose value (VDV) or root 

mean quad (RMQ), have slight differences in their calculations of measurement directions, 

subjects’ posture, application of frequency weightings, etc. Detailed information on the application 

of these measures have already been given in the review study by [1] mentioned above.   

The research in the last decade has mainly focused on the application of health, perception, 

motion sickness and comfort classification measures for sporting events [33], [33]–[35], concerts 

[36], [37] or a combination of both; and for a long term monitoring [38]–[41]. The following 
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section intends to discuss some of the significant findings of this recent research and to indicate 

all critical research areas with somewhat consistent findings related to grandstands. 

A psychophysical experimental method, called subjective scaling, was used to study an 

occupants’ comfort and perception levels, while either sitting or standing [42]. [43] studied the 

often-confused relationship between human vibration-perception and comfort levels through the 

use of a controlled occupied grandstand. Subjects were asked to stay on the grandstand as it was 

gradually excited with different RMS powered sine wave vibrations from 2-6 Hz. The subjects 

were then asked to choose their subjective vibration-perception and comfort levels from a bank of 

provided text descriptors. Their responses were compared with frequency weighted acceleration 

of two particular standards namely [32], [44]. Extreme perception levels seemed to be occurring 

before the actual discomfort was felt, thus making perception levels more important in 

serviceability assessments. Also, the serviceability data for grandstands are found to be below the 

limits given for transportation structures (BS6841) but significantly above the limits for buildings 

(BS 6472).   

Following the same experimental psychophysical methodology, [42] proposed a new 

approach for perception assessment that considered the relation between human comfort and either 

the root mean square (RMS) of the normalized ground reaction forces (GRF) time history, or the 

normalized foot point acceleration time history [45]. The study was originally motivated by the 

idea that the GRFs obtained with stationary measurements are different from those of a perceptibly 

moving structure [3]. The study consisted of ten subjects of varying weight, who were asked to 

stand on force plates that were mounted on a grandstand’s floor while it was being excited.  Then 

their subjective responses were recorded. For frequencies of excitation lower than 2 Hz, GRF 
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oscillations displayed the same characteristics as the grandstand oscillations. However, for 

frequencies greater than 2 Hz, GRF wave forms became inconsistent and almost nonlinear in trend. 

This pattern indicates that the subjects were trying to adapt themselves to the new state of motion. 

At a frequency of 4 Hz, the subjects began to experience acute levels of discomfort. The study 

concluded with normalizing the GRF histories by gravity (meaning foot point acceleration), which 

revealed that the RMS values of normalized GRFs are more reliable for the assessment of human 

discomfort levels. GRF and RMS values were found to increase proportionally, but were not 

necessarily proportional with increasing RMS values of the grandstand vibrations.       

Although the weighting of acceleration record seemed to favor the calculation of primary 

assessment measure (RMS), the method’s outcomes are not drastically different from those of 

other methods. Reported RMS values are likely to vary within the time window that they are 

calculated; unfortunately, it is still unknown how long the duration should be. Although the 

evaluation via MTVV (derived from running RMS) is independent from duration and is mostly 

the case for grandstands considering the excessive vibration exceeding crest factor (CF) threshold, 

the information on the event causing the extreme values cannot be extracted. VDV and RMQ 

calculations experience the same problems. These alternative measures have not been given 

specific limits in the standards. However, VDV measures of perception can be made referring to a 

scale given in previous studies, which has proven to be the most reliable method among the others 

so far. In most cases, measures of perception or human discomfort levels from the measurement 

scale do not match with the actual, observed behavior of the occupants; raising questions of its 

appropriateness for application on flexible structures.     
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Of all the preceding research, the main point of discussion is on the applicability and 

compatibility of the operating machinery based standards for the grandstand serviceability 

problem; as the excitation type have different inherence compared to machinery based vibrations.  

The idea of forming new type vibration serviceability limits, or the revision of existing 

ones to include human induced excitation and building characteristics, is widely agreed upon, since 

the ones currently in use are incapable of accurately reflecting the true state. In the future, 

incorporation of more structure or event based case studies can assist with the creation of a 

database and of more robust limit state measures.  

Another possible area for investigation is the generation of a new assessment measure 

based on displacements of the structure that consider that vibration based measures vary from 

person to person, are event dependent and they are equally likely to create panic by visual 

inspection of the audience  

Objective and Scope 

A widely accepted procedure for vibration serviceability problem is to evaluate the system 

as a three-step framework (input/excitation/source – system/path/structure – 

output/response/receiver) [1], [5]. The problems that are addressed along this dissertation are being 

handled with a similar analogy but with a different approach (Figure 2). 

The first objective of the study is to introduce alternative load time history measurement 

techniques for singular individuals and crowds using advanced computer vision algorithms along 

with their applications in both laboratory and real life. The algorithms are briefly explained, and 

their applications are presented starting from singular individuals on a simple beam going up to 
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groups in different sizes on a modular grandstand simulator that is instrumented with different 

types of conventional sensors. The results of a sample field study at a stadium hosting a fairly large 

crowd is provided. The study makes a valuable contribution in terms of providing contactless 

vision based load measurement techniques that are verified with both direct and indirect 

comparisons between estimated results and conventional sensor measurements. Additionally, 

applying the method on a real crowd, building a simulator that can be adjusted to flexible and stiff 

configurations thereby accommodating experiments for groups of different sizes are other 

contributions. In this sense, the study is taking one more step in support of creating a database for 

crowd loading that is strongly needed as it is pointed out by other researchers dealing with the 

same problem. 

The second objective is to investigate the applicability of an alternative method that can 

track instantaneous changes of the dynamic behavior and possible nonlinearities over time for 

human-structure interaction problem. In addition, the identification is also conducted by making 

use of so called intrinsic mode functions (IMFs). In this regard, the study aims to contribute to the 

understanding of such structures’ (especially stadiums [46]) behavior under operational effects 

with more informative and enriched findings so that better design guidelines could be prepared or 

possible serviceability issues could be remedied. The method is based on noise assisted and 

adaptively transformed multivariate empirical mode decomposition. First, the improved version of 

multivariate empirical mode decomposition and its expansion to operational modal analysis are 

introduced. Second, the proposed algorithm is applied on the response measurements of a flexible 

laboratory grandstand simulator, a stadium subjected to group jumping and a footbridge under 

pedestrian walking. In this regard, to the best of the authors’ knowledge, the study also 
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demonstrates the first application of the method on real-life examples. Finally, the results and 

interpretations are presented. 

The last objective delves into finding an alternative measurement and monitoring technique 

for human comfort levels on flexible structures. Flexible structures are generally prone to 

excessive vibration levels. Therefore, structural elements as well as crowd monitoring may become 

essential to prevent tragic events. However, current monitoring and surveillance techniques can be 

tedious to apply. In response to this, a novel, easy and useful method that can be adopted for the 

monitoring of such structures as well as spectators by making use of computer vision discipline is 

proposed. First, the current comfort measures are briefly described and then their computation by 

tracking structural elements and audience occupying the structure is carried out.   
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Figure 2 Objective and scope of the dissertation 
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Organization of the Dissertation 

The organization of the dissertation is as follows.  

In Chapter 2, a computer vision based human motion tracking system is proposed to 

estimate human induced loadings of lively individuals and crowds. The well-established computer 

vision algorithms based on optical flow are presented and their integration into load time history 

estimation are explained. The findings from the tests conducted on a unique laboratory grandstand 

simulator and on a real-life stadium are presented along with discussions. 

Chapter 3 presents a hybrid, data-driven and adaptive signal processing algorithm and how 

it is incorporated into operational modal analysis. The differences and shortcomings of 

conventional methods compared to the proposed method are explained and the theory behind the 

proposed method is explained. Some of the tests conducted for Chapter 2 are processed to validate 

the efficiency of the method. Then, two different field studies when in service are presented.  

Chapter 4 is dedicated to the assessment of comfort levels in flexible structures. The 

motion tracking algorithms explained in Chapter 2 are used to monitor both structural members 

and occupants as an alternative way of measuring displacement and acceleration levels.  

Finally, Chapter 5 provides the summary and presents the conclusions after theoretical and 

applied studies are given in the dissertation. General comments about the methodologies described 

in this study are reviewed along with recommendations and possible directions for future research.  
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CHAPTER TWO: A COMPUTER VISION APPROACH FOR THE LOAD 

TIME HISTORY MEASUREMENT OF LIVELY INDIVIDUALS AND 

CROWDS 

General Remarks 

A widely accepted vibration serviceability criterion is to evaluate the system as a three-step 

framework namely excitation, path and response [1], [47], [48]. The excitation, which is the focus 

of this study, requires correct characterization of loads caused by humans. A great deal of research 

that has been done on human induced load measurement and modeling in civil engineering 

indicates that the estimation of jumping type loads (jumping/bouncing/bobbing/etc.) of both 

individuals and crowds are critical since these may create extreme vibration responses [2], [3], 

[49]. In case these loads are acted upon flexible structures such as stadiums, concert venues, dance 

floors, which have low frequency behavior by design requirements, vibration and displacement 

levels could be exacerbated to the point where catastrophic damages may occur [1]. On the other 

hand, when the motion of the crowd is in question, the severity of loading may vary significantly 

and may not be as strong depending on the level of synchronization between individuals. Some 

guidelines adopt conservative approaches in which individuals are thought to be generating the 

same type of force and crowds are simulated as a combination whereas other guidelines take the 

variability of force pulses and their expansion to crowd with a slightly probabilistic approach. The 

consensus is that the assumptions so far are still simplistic, and they ignore the sophisticated nature 

of the actual behavior, such as time lags between each loading sequences or peak to peak variations. 

As a result, an accurate expansion of these simplified models to crowd motion has not been 

achieved yet. Either for singular subjects or crowds, there are two widely applied methods for 

representing human induced loads.  
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A common method is the direct mathematical representation which makes use of 

trigonometric functions and their Fourier series representations. Early attempts of this kind are 

now known to be incorrect for they assume the loading being perfectly periodic and ignore the 

non-stationary variations. In return, they engender overly conservative designs due to excessive 

vibration and displacement responses. More reliable techniques take the jumping pulse variability 

of real jumping records into consideration and use the probability of their periodicity and 

amplitude changes for the reconstruction of force records [21], [22]. A similar probabilistic 

information on mean delay and phase scatter may also be fed into an auto-regression model [2] for 

improved results. However, measured, and generated force recordings do not closely match along 

the full frequency band due to the reason that cosine-squared functions could only fit smooth 

shaped jumping pulses. In the last decade, some promising research has been done to advance this 

approach with stochastic process based load generators in which sum of Gaussian functions are 

fitted to the measurements from real subjects to reconstruct accurate mathematical models [10], 

[23]–[25], [50]. 

Unfortunately, such applications are still limited to individual subjects and similar 

measurements or load generation models for crowds almost do not exist except a few [7], [8]. 

Besides, whether the case is utilizing the reconstructed simulations or directly using the measured 

forcing functions, accurate measurements for both individuals and crowds especially when on 

flexible structures are necessary. The conventional apparatus for dynamic force measurements of 

singular subjects are force plates. However, use of force plates brings some concerns such as (1) 

having small dimensions (~0.6x0.4m) that require controlled jumping which is quite tough when 

the subject is to jump at higher frequencies, therefore having distorted ground reaction force (GRF) 
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patterns and (2) giving inaccurate results when mounted on a flexibly moving structure such as 

grandstand for the reason that additional inertial forces contribute to the measurements. In search 

of solutions to such problems, some novel techniques are proposed. 

A GRF estimation study, in which the body of a test subject is subdivided into fifteen major 

body segments and then instrumented with physical markers and tracked with video-based 

optoelectronic technology [9], [11], shows good alignment when compared with direct or indirect 

load measurements. The proposed method seems applicable in the field for sparsely distributed 

groups that remain in sight. As to the field measurements where exists a high density of crowd, 

this method does not seem to be feasible as the tracking device requires the subject to be visible at 

all times. 

Some other alternatives exploit digital image processing and computer vision techniques. 

Several applications of computer vision based health monitoring studies may be found therein [51], 

[52]. The earliest works of this kind are carried out mostly using a well-known family of algorithms 

called digital image correlation (DIC). One study includes tracking the prominent body parts of 

people by segmentation and looking at their correlation in consecutive images to estimate the loads 

applied to grandstands by large crowds. Inspired by some early works on contour detection and 

Bayesian clustering methods for crowd tracking, researchers use an easier method specifying each 

tracked segment with a rectangle for estimating jumping and bobbing pattern on a laboratory 

grandstand. Similarly, other trials focus on motion measurement of people and the patterns of their 

behavior in terms of velocity amplitude and frequency through either simulation in a computer 

controlled environment [12], [13] or utilizing off the shelf regular or thermal imaging cameras on 

a portion of a real grandstand [14], [15]. Particle image velocimetry (PIV) is used in these studies. 
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The application includes tracking the displacement of the most similar regions in the consecutive 

images and eventually acquiring acceleration time histories [12], [53]. Another study estimates the 

load generated by a crowd at a section of an actively monitored real-life grandstand [17]. The aim 

is to generate loading functions based on the developed acceleration time histories. Another vision 

based approach renders measurement of jumping and bobbing loads on a crowd and on the field 

by making use of DIC algorithms [18]. The efficiency of the proposed method is verified in the 

laboratory and at the field with a small group of people. The aforementioned methods require 

improvements for the fact that they assume the motion of the crowd in the same direction and may 

perform poorly under changing environmental conditions.  

Apart from DIC based studies, couple of more advanced methods capture the displacement 

and acceleration information where a group of people in various sizes demonstrates jumping 

activities. The novelty of these studies lie within the adaptive nature of the algorithm to non-

stationary changes as illumination changes, object deformation. The results are compared with 

data marker tracking system and wireless accelerometers that can be attached on the human body 

and on a flexible laboratory slab floor with indirect acceleration responses [16], [54]. 

Force Measurement Using Computer Vision 

Utilization of computer vision allows the body motion of individuals or crowds to be 

measured with a camera from a long distance, without any contact and on any structure regardless 

of their flexibility. In case each body part is tracked individually, according to Newton’s second 

law of motion the ground reaction force is estimated as follows: 

 
1

n

GR i i

i

F m a g


    ( 1 ) 
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where 
im  and 

ia  are mass and acceleration of the center of the mass of the i-th body 

segment, g  is the standard gravity and n is the total number of body segments. The first step for 

force estimation is to find the displacement of the body. Once the displacement time history is 

known, acceleration record can be determined by taking either the second numerical derivative or 

the numerical gradient of the record. For the measurement of ground reaction forces, the mass is 

assumed to be concentrated at the head of a subject since this is a realistic assumption for the head 

is almost only visible part of the body regarding especialy densely populated crowds. Besides, the 

motion of the head is more stable and it is easier to avoid abrupt mechanical motions when 

compared to other limbs of the body. Two algorithms based on the well-known optical flow 

estimation called sparse flow (Lucas-Kanade) and dense flow are explained along with their 

mathematical background to find the subject displacement.  

Sparse Flow 

Optical flow is an image registration technique where the surface motion in three-

dimensional environment is approximated onto approximate two-dimensional motion field by 

making use of spatiotemporal patterns of image intensity [55], [56]. The optical flow measurement 

along with its improved different versions have been accepted as a reasonable and fairly accurate 

estimation of displacement and velocity and has had numerous applications such as recognition, 

tracking, motion modeling, segmentation, etc. in different engineering fields. In the scope of this 

study, two well-established variations proposed by [57] and [58], [59] for sparse and dense motion 

estimation respectively are applied.  
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Determining optical flow requires the assumption of constant brightness in spatial and 

temporal space of consecutive frames by  

   , , , ,f x y t f x dx y dy t dt      ( 2 ) 

where f  represents the image frame with the parameters x  , y  and t  indicating pixel 

locations and time respectively. Expanding Equation (2) into Taylor series gives 

         , , , ,
f f f

f x y t f x y t x dx x y dy y t dt t
x y t

  
         

  
  ( 3 ) 

Canceling the same terms on both sides and simplifying Equation (3) result in 

x y tf u f v f     ( 4 ) 

Equation (4) is the so called optical flow equation indicating a line having a slope of 

/x yf f  with the two unknowns u and v corresponding to motion in x and y . The solution of 

Equation (4) necessitates one more assumption which eventually gives name to different variations 

on the computation of optical flow. Lucas-Kanade method assumes that the motion within the 

small neighborhood of the pixel of interest is the same and small thereby generating more 

equations than unknowns: 

1 1 1
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f f f

   
   

    
    

    
     

  ( 5 ) 

Equation (5) can be written in matrix form as follows: 


t

Au f   ( 6 ) 

Since the matrix A is not a square matrix and the system is overdetermined, the solution 

is found utilizing the least squares method: 
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 
2
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i

f u f v f    ( 7 ) 

which leads to: 
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It is now possible to solve this system of two equations with the two unknowns. By 

rearranging Equation (8) and (9) the solution is found: 
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  ( 10 ) 

Equation (10) constitutes a useful specialty. The second term on the right-hand side of the 

equation corresponds to what is known as a corner detector in image processing. This simply 

means that the locations of points to be tracked can be selected from good features [60]–[67] which 

are more reliable for tracking and then optical flow computation can be executed around that 

neighborhood. Once a reliable feature is extracted and their flow is computed, a translation model 

is introduced to link the estimated locations and build up their trajectory: 

   1 2; ,W x b y b  x p   ( 11 ) 

where W is the spatially varying motion model (translation here) or correspondence map 

with 1b and 2b  coefficients to be determined and parametrized by a low dimensional vector p . 

The parametric incremental motion update now boils down to the minimization of the following 

residual function implementing iteratively reweighted least squares technique: 

    
2

;f W T    
x

x p p x   ( 12 ) 
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where  T x   is the template image. Expanding Equation (12) to Taylor series, 

differentiating with respect to p and rearranging gives the update term for: 

    1 ;
W

H f T f W  
        


x

p x x p
p

   ( 13 ) 
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    


x p p
  ( 14 ) 

Equation (14) is what is known as Hessian matrix. An iterative updating of  p p p  

leads to the translation alignment of tracked features and this last step concludes the tracking 

procedure. 

The accuracy of the displacement measurement can further be increased by two additional 

methods. The first method is to fine tune the residual errors caused by large motions that violate 

the Lucas-Kanade assumption. The resolution of the original image is subsampled by a factor of 

two as to create a multi-layer image pyramid. The iterative tracking starts at the lowest resolution 

and ends until a reasonable convergence is achieved. Consecutive layers take the previous result 

as their first estimation propagating the same procedure towards the final layer. The latter method 

is to compensate for the unreliable features that may be lost during tracking. The optical flow is 

computed forward and backward expecting the return of the same location. However, this is not 

always the case as it is seen at point B in Figure 3-B. This difference is named as the bidirectional 

error and removed by imposing a threshold leaving only the reliable and features to track within 

that acceptable threshold. 
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Figure 3 A: Gaussian Image pyramid; B: Bidirectional error 

Dense Flow 

Implementing Lucas-Kanade tracking is fast and accurate as it only focuses on the tracking 

of the small neighborhood of extracted reliable features. On the other hand, as to dense motion 

estimation, which in our case is the motion of a lively crowd, the processing of the entire frame is 

required. Towards the solution of this problem, a second algorithm widely known as dense is 

introduced [58], [59], [68]. In brief, the idea is to approximate each small neighborhood of the 

frame by quadratic polynomials and observing the translation of that polynomial in consecutive 

frames. The polynomial model can be described as: 

  ~ T Tf c x x Ax b x   ( 15 ) 

Where A  is a symmetric matrix, b  a vector and c  a scalar that are determined by 

weighted least squares fitting. Considering that the neighborhood undergoes into a global 

translation d , a new signal can be constructed as: 

   2 1 2 2 2- = T Tf f c  x x d x A x b x   ( 16 ) 

where 2 1A A , 2 1 12 b b A d , 
2 1 1 1

T Tc c  d A d b d . As long as the condition of 1A

being non-singular holds, the displacement vector can be found as follows: 
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 1

1 2 1

1

2

  d A b b   ( 17 ) 

In practice, the accuracy of the results can be increased by introducing several 

improvements. First, with the assumption of motion slowly varying, integration can be made 

within the same small neighborhood and the errors in results can be minimized. Then finding d

of Equation (17) comes down to minimizing the following expression: 

       
2

I

w
 

    
x

x A x x d x b x x   ( 18 ) 

where I is the neighborhood of interest and  w x is a weight function for the points in 

I . Finally, the displacement vector is found as: 

   
1

T Tw w


  d x A A A b   ( 19 ) 

Secondly, a further improvement can be achieved implementing the same iterative and 

multiscale approach in Figure 3-A so as to handle larger displacements. 

Conversion of displacement units from image space to real world 

Vision based estimation of displacements returns pixel units. To get the real-world 

displacement values in SI units requires a conversion by using a scale ratio which is acquired by 

calibrating the camera: 

1

Z D
r

f d
    ( 20 ) 

Where Z is the distance from the lens to the object motion plane, f is the focal length, D is 

the physical length of the object on the motion plane and d is the length in pixel of its corresponding 

image part. Figure 4 shows the scheme for scale ratio calibration. In most practical applications, it 
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is difficult to accurately estimate the f for zoom lens. In this case, it makes more sense to use the 

physical length of the object D and the length in pixels d to calculate the scale ratio r1. D is found 

by following a procedure as shown in Figure 4-A. If the distances between points A, B and C (l1 

and l2 in Figure 4-A), are measured utilizing a laser distance measurer and the angle α using a 

protractor, then D is calculated as follows: 

2 2

1 2 1 22 cosD l l l l      ( 21 ) 

The actual displacement V is then: 

1V rv    ( 22 ) 

where v is the displacement in pixels of the image. 

 

Figure 4 A: Scheme showing the measurements to acquire scale ratio; B: Scheme for scale ratio 

calibration in case of inclined camera 

In many field applications, site-specific constraints prevent the optical axis from being 

oriented perpendicular to the plane of motion of the object. As shown in Figure 4-B, the 

measurement point moves in the direction of V (vertically) and there is an angle θ between the 

optical axis and the horizontal plane. The corresponding motion direction v in the image is parallel 

to V’, which is the projection of V in the image plane. The scale ratio will then be: 

2

'D
r

d
   ( 23 ) 
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where D’ is the projection of the D. Usually it is easier to take a physical measurement of 

D’ than D in practical application. In this case, the displacement is: 

2

cos

r v
V


   ( 24 ) 

Laboratory Verification 

The idea behind the controlled experiments conducted is to first assess the efficiency of 

explained tracking algorithms and to create a database of jumping type load time histories starting 

from the singular individuals going up to groups of different sizes. As it is very well stated in the 

literature, jumping and other loads of similar nature (bobbing, bouncing, etc.) may vary 

approximately between 1-3 Hz in their frequency band. For this reason, the subjects are asked to 

jump synchronously with the metronome beat corresponding to the same range. Subjects are also 

asked to accompany a certain song that is played during the football games at the real-life stadium 

within their campus so as to make a comparison between the findings from the laboratory studies 

and the real-life stadium which is also subjected to research within the context of this study.   

Experimental Setup 

The first set of tests are conducted on a force platform which is put together as an 

alternative to a force plate and to accommodate more than only one person. Two thick plates are 

placed on the ground in a way to completely prevent their movement and four load cells are fixed 

on the plates (Figure 5-A). A steel beam of U channel type (Figure 5-C) that is 4 feet long with 

welded plates (Figure 5-B) at four ends are placed on the load cells by making sure a full contact 

surface is provided.  
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Figure 5 Force platform and its constituents 

Free vibration tests of the force platform show that the first fundamental frequency falls 

around 80 Hz range which makes it a rigid-like structure that would not be heavily influenced by 

jumping type loads. 

 

Figure 6 The grandstand simulator along with the details of its elements 

The upper and lower end of the structure are tilted with a 20o angle and placed on inclined 

columns. The tilted structure is stabilized with 5X5X2” angles that are bolted to the columns. 

2X2X3/16” angles are welded on the cross braces and aluminum bleacher planks are attached on 

these angles with bolts and washers to provide seating and footing for the spectators 

 

Figure 7 The sensors installed on the simulator 
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A grandstand simulator is constructed and used for further series of tests Figure 6-C. The 

simulator is the modified version of the test grid which has served as a multipurpose specimen for 

researchers to try different technologies, sensors, algorithms prior to real life implementations. The 

grandstand Figure 6-B can be adjusted to have one or two clear spans with continuous beams across 

the middle supports. It has two 18 ft girders (S3x5.7 steel section) in the longitudinal direction. 

The 3 ft transverse beam members are used for lateral stability (Figure 6-A). The simulator can be 

modified to reveal different structural stiffness and damage cases by altering specially designed 

intermediate and boundary conditions (e.g., pin supports, rollers, fixed support, and semi-fixed 

support) (Figure 6-D, E, F) 

 

Figure 8 Plan view showing the locations of sensors placed on the structure 

Figure 7 shows the type of sensors that are used in the experiments. High sensitivity 

piezoelectric accelerometers are placed on beam-beam connection nodes to ensure the required 

low and high frequency ranges are covered (Figure 7-C; Figure 8). An off the shelf camera that 

can capture 60 frames per second is used to record the entire tests series focusing specifically on 

human subjects and crowd and structural motion.  
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Dynamic Characterization of The Grandstand Simulator 

Table 1 Modal parameters of the grandstand simulator within 0-100 Hz frequency band 

 

The grandstand simulator is designed to provide two different stiffness conditions by 

placing/removing the intermediate columns seen in Figure 6-B. The columns are fixed to the strong 

ground and two different conditions could be simulated being single/ two-span simple/semi-
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fixed/fixed supported for observing lower and higher frequency behavior respectively. Table 1 

shows the results of experimental modal analysis conducted on the structure. Modal parameters 

that belong to the two different setups are extracted using Complex Mode Indicator Function 

(CMIF) and Enhanced Frequency And Spatial Domain Decomposition (EFDD) [69]–[71]. The 

setup without intermediate columns is a reasonable approximation of a real-life flexible grandstand 

resembling of their behavior that stems from long cantilevers which are mostly the concern for 

vibration serviceability. The first two frequencies found are around the second and third harmonics 

of jumping type loads. The structure resembles of a simple beam but the mode shapes are not as 

simply observed. The geometry of the structure and the boundary conditions cause the structure to 

have intermediate global and local like modes between the main sinusoidal expected mode shapes. 

Also, the inclined shape of the structure results in forward – backward swaying modes coupled 

with torsion. Only the first five modes are provided in Table 1 

Finite Element Model 

The finite element model (FEM) of the structure is created as a supportive indirect 

comparison tool as seen in Figure 9. 

 

Figure 9 Frontal and side view of the grandstand finite element model 
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The supports are made of ASTM36 steel and modeled as thick shell plate members. The 

beams are connected to the supports by means of bolts (A307 – ϕ1/4”) which are modeled as links 

in the FEM. Beams and cross members are of the same kind (AISC S3X5.7; ASTM36) and are 

picked out from AISC section library with the original specifications. The beam-beam connections 

are assumed to be transferring moment and are simulated with appropriate connections. The 

connection between the seating-footing planks and the beams are made by using several different 

sizes of L beams. They are selected from SAP2000 AISC section library. The connections from 

angle to angle and angle to cross beams are assumed to be rigid and the connection with cross 

braces are simulated as rigid links since they are welded.  The planks are made of aluminum and 

of prefabricated unique shapes and modeled as area sections. The bolts between the angles and the 

aluminum planks are simulated as links as well. 

Table 2 Comparison of dynamic properties of the one-span simply supported structure with EMA 

parameters 

Mode FEM - f (Hz) EMA - f (Hz) MAC 

1 5.25 5.94 0.98 

2 7.61 7.97 0.94 

3 13.02 10.73 0.78 

4 17.7 19.42 0.84 

5 19.05 20.72 0.92 

 

Table 2 and Table 3 show the relation between the experimental results (Table 1) and the 

characteristics of the finite element model that is going to be used as an indirect comparison tool. 

Tabulated results confirm that the correlation is at a reasonable level to make that comparison. 
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Table 3 Comparison of dynamic properties of the two-span simply supported structure with EMA 

parameters 

Mode FEM - f (Hz) EMA - f (Hz) MAC 

1 20.14 20.66 0.92 

2 23.03 23.02 0.89 

3 26.06 24.09 0.81 

4 29.70 27.44 0.72 

5 33.68 29.35 0.64 

Tests Conducted 

The motivation behind the construction of the grandstand simulator is to build a model that 

can serve for the solution of various vibration serviceability problems alongside with the scope of 

this work. Footbridges, floor vibrations, narrowband non-stationary disturbances can all be tested. 

In scope of this study, laboratory tests can be summarized into three groups. The first tests involve 

one and two subjects jumping on the force platform shown in Figure 10-A,B. This set is designed 

to show the applicability and efficiency of the Lucas-Kanade method in tracking the subjects and 

on an almost rigid platform as an alternative to force plates.  

The second group of tests is an expansion of the first group with more subjects and on the 

flexible grandstand (Figure 10-C). These tests are designed to further investigate the Lucas-Kanade 

algorithm and to show the performance on flexible structures that may influence the balance of 

subjects and alter jumping histories recorded by force plates mounted on structures. This 

comparison is valuable since the load cells are installed under the supports of the simulator and 

are expected to experience the effects of the structural flexibility.  

The last group of tests are carried out on the stiff setup of the grandstand to prove the 

feasibility on larger groups (Figure 10-D). Unfortunately, the flexible setup must be switched to 

stiff due to the structure not being able to accommodate such a large group and the overall integrity 
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that might be risked. On this last group, the computer vision algorithm is changed to dense flow 

for it is a more appropriate way of tracking larger crowds (Figure 10-E). For each test, subjects are 

asked to accompany the metronome beats of 1, 2 and 3 Hz which is the common way of controlled 

jumping tests in the literature. In addition to that, subjects also jump to a commonly played song 

that they are familiar with especially from the football games that are hosted in local games. This 

study is focused mainly on this last specific beat to compliment the field implementation in section 

4 and for the general consistency.    

 

Figure 10 A: Single subject on the rigid beam (Lucas-Kanade method); B: Two subjects on the 

rigid beam (Lucas-Kanade method); C: Four subjects on the flexible grandstand simulator (Lucas-

Kanade method); D: Eight subjects on the stiff grandstand simulator (Lucas-Kanade method); E: 

Eleven subjects on the stiff grandstand simulator (Dense flow method) 

Results and Discussion 

Figure 11 shows the results of a single jumper on the rigid beam. The dominant beat 

frequency of the song played is known to be around 2.3 Hz that can clearly be observed looking 
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at the frequency domain representations of the force records. Figure 11-A is the displacement time 

history after post processing. The raw data before processing is in the unit of pixels which is then 

converted to unit of meters as described earlier. The second step is taking the gradient of the 

displacement to find the acceleration record as in Figure 11-B.  

 

Figure 11 A: Displacement history of a single subject on the rigid beam; B: Acceleration time 

history; C: Comparison of estimated and measured forces; D: Close-up view of the comparison; 

E: Comparison of estimated and measured forces in the frequency domain 
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It is evident that the acceleration results have a base at around 10 m/s2 that indicate the 

gravitational acceleration at the time the jumper starts falling freely. The next step is to find the 

GRF according to Newton’s law of motion. The sampling frequency of the camera is 60 Hz 

whereas all data from other sensors are sampled at 2000 Hz. The target frequency to compare force 

measurement is chosen to be 100 Hz which results in the measurements from camera to be up 

sampled using cubic spline interpolation and the load cell to be smoothed with a fifth order 

Butterworth low pass filter. 

The signals from the camera are already synchronized since they are coming from once 

single source. When total force records from load cells and camera are to be synchronized, their 

cross correlation is calculated first: 
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Where 1

nu  and 2

nu  are two signals from different sources, N is the number of samples 

and ˆ
xyR  is their cross correlation. The asterisk stands for the complex conjugation. The cross-

correlation of the two measurements is maximum at a lag equal to the delay. Based on the delay 

information in terms of number of samples, two signals are aligned. In this manner, correlation is 

used for both as a way of synchronization and as a measure of similarity. 

Figure 11-C, D compare the estimated and measured forces with an overall and then a 

close-up view. Morphology of the force time histories almost perfectly match with an accurate 

representation of peak to peak as well as subtle period differences in jumping pulses. Their cross-

correlation is 99.1%. Figure 11-E shows the amplitude spectrum of this comparison. The main 
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beating frequency of the song along with its first and second harmonics are observed in both 

histories with a reasonable match. 

The second and all the other subsequent test results follow the same exact procedure. Vision 

based displacement records of multiple subjects are captured via multi-point tracking. Although 

the subjects are asked to jump to a certain beat, the inherent nature of the human body does not 

always allow to keep up with it. As a result, the phase differences between subjects which are often 

referred as the inter subject variability in the literature reveals itself as an alteration in amplitude 

and pulse timing. This phenomenon is easily observed at the beginning of the test results in Figure 

12-A that belong to the two subjects. One of the subjects has difficulty to keep up with the beat at 

the beginning that reveals itself as an amplitude reduction.  

 

Figure 12 A: Comparison of estimated and measured forces of the two subjects on the rigid beam; 

B: Close-up view of the comparison; C: Comparison of estimated and measured forces in the 

frequency domain 
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Figure 12-B is the close-up view of that specific segment. It is clearly seen that the pulse 

peaks show a distorted trend due to different time of their arrival. This result is quite good for the 

fact that the estimation method works almost as precisely as the conventional sensors. Figure 12-

C again shows the main beating frequency of the song along with its first and second harmonics 

are observed in both histories with a reasonable match having 98.8% correlation. 

After rigid beam tests, the subjects jumping on the flexible grandstand are monitored with 

the same routine. Figure 13-A shows the force time history of each individual breaking down the 

time of arrival differences of each pulse along with their sum. The second harmonic of the force 

pattern is close to the first fundamental frequency of the simulator which creates extreme 

deflections that sometimes cause the subject to lose balance and even stop. The time frames that 

the jumpers are in and out of phase because of this imbalance are seen in Figure 13-B and are 

captured by the proposed method. The general morphology is almost an exact match with except 

for the amplitudes. The cross correlation is 92.3%. Total force history captured by the sensors are 

higher in amplitudes than the vision based methods (Figure 13-C). This observation is only made 

when the structure is in flexible setup with visible deflections. This difference stems from two 

sources. The first is the magnification of the dynamic displacements as the jumping harmonics are 

close to the resonant frequencies of the structure. The second is that when the subjects jump off of 

the structure and when in phase, an uplift force is sometimes generated. Both sources thereby cause 

the inertial forces of the structure to be involved and measured by the load cells. Figure 13-B shows 

that this effect is severe when the jumpers are in phase but ceases to be so as the subjects lose 

coordination. The frequency domain representation in Figure 13-D smears over the other bands 

indicating the imbalance and out-of-phase jumping trend.  
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Figure 13 A: Force time histories of each individual (four subjects) and their sum B: Comparison 

of estimated and measured forces of the four subjects on the flexible grandstand; C: Close-up 

view of the comparison; D: Comparison of estimated and measured forces in the frequency 

domain. 

The estimated individual forces using computer vision from Figure 13-A are exerted upon 

the FE model with respect to their exact locations so as to compare the responses with that of the 

conventional sensors. Figure 14-A compares the displacement at node 4 seen in Figure 8. As it is 

indicated earlier, the flexible structure shows visible large deflections that is also observed here. 

The results overlap well with each other. Alike displacement measurements, accelerations seem to 
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relate at an acceptable level. For a clearer observation, the acceleration values from the sensors are 

sketched as an envelope. Figure 14-B indicates that there are instances that the acceleration reaches 

1g which feels as if floating in the air with zero gravity in case the subjects that are intact with the 

structure. These time periods concur with where the sensor measured force records are higher than 

vision based measurements. 

 

Figure 14 A: Comparison of displacements between FEM and LVDT generated by four subjects 

on the flexible grandstand; B: Comparison of acceleration for the same case 

The flexible grandstand tests can allow up to four subjects. The setup is switched to stiff 

mode to observe the feasibility of the method on more subjects. Since the resonant frequencies lie 

in a higher band, the response is nearly static and dynamic magnification seems to be not a problem 

anymore. Consequently, force recordings are not affected by inertial effects. Figure 15-A shows 

the force time history of each individual breaking down the time of arrival differences of each 

pulse along with their sum. In Figure 15-B, C comparison of the total force is shown. Unlike the 
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previous flexible setup, both histories match well with a correlation of 98.6%. It can also be 

inferred that the eight subjects jump at a reasonable synchronization. Figure 15-D again shows a 

good match in the frequency domain.  

 

Figure 15 A: Force time histories of each individual and their sum B: Comparison of estimated 

and measured forces of the eight subjects on the stiff grandstand; C: Close-up view of the 

comparison; D: Comparison of estimated and measured forces in the frequency domain. 
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Once again, the responses from FE model with loading from computer vision are compared 

with that of the conventional sensors. Figure 16-A compares the accelerations at node 2 seen in 

Figure 8. The envelope seen in Figure 16-B is the close-up view of a certain time frame in the 

acceleration record. The results seem to correlate well with each other. In the stiff simulator setup, 

comparison of displacement measurements is replaced with strain measurements at node 2. Figure 

16-C shows that the correlation between two responses are at an acceptable range. 

 

Figure 16 A: Comparison of accelerations generated by eight subjects on the stiff grandstand 

between FEM result and accelerometer; B: Close-up view of the same comparison, C: 

Comparison of strain values between FEM and strain gage 
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Figure 17 A: Force time histories of each individual and their sum B: Comparison of estimated 

and measured forces of the eleven subjects on the stiff grandstand with dense flow; C: Close-up 

view of the comparison; D: Comparison of estimated and measured forces in the frequency 

domain 

The last set of tests are conducted using eleven subjects on the stiff grandstand (Figure 10-

E). These tests are the closest approximation to the real-life events in terms of number of 

participants. Post processing of this data is done by using dense flow algorithm instead of sparse 
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flow to track the motion of every small neighborhood of a pixel. (Figure 10-E) shows the directions 

of vector flow around the subjects. The areas with small or no motion have short length vectors 

indicating low magnitude whereas the areas with larger motion have long vectors corresponding 

to higher magnitudes. Several recordings are taken but the results shown in Figure 17 are 

specifically selected as they show how much the real force histories generated by a crowd may 

differ from a purely mathematically defined pulse functions. Figure 17-A shows the force time 

history of each individual, their different times of arrival and sum. The estimated and measured 

forces are in a reasonable alignment with a cross correlation of 98%. However, the subjects are out 

of phase at almost every time step and there is always more than one individual interacting with 

the structure along the entire record. The time frames that the subjects are at different phases are 

seen better in Figure 17-C in time domain  and also in Figure 17-D and they are correctly 

estimated by the proposed method.  

Real Life Implementation 

A real-life experimental study is conducted to investigate the efficiency of the approach. 

The second algorithm, dense flow, is applied as it is more convenient to track large groups and 

crowds. Unfortunately, the constraints such as the scale of the structure, infeasibility of placing 

force sensors beneath audience because of the size of the crowd necessitate an indirect comparison 

approach for the field study. The approach applied here is to estimate the crowd force exerted upon 

the structure followed by creating a computer model. The estimated loads are applied on the model 

and the generated responses are compared with the acceleration recordings captured during the 

real event.  
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Monitoring and Modeling of the Structure 

 

Figure 18 A: Overlook of the stadium showing the monitored section and the location of the 

camera; B: Experiment setup; C: The computer controlled industrial camera; D: One sample 

frame from the camera record 

The stadium is constructed as a steel structure which has a typical inclined architecture to 

provide the best line of sight for the audience. It hosts football games with the capacity of 45,000 

seating for spectators on 25 acres of land since 2007. In scope of this study, a small portion of the 

stadium is investigated as seen in Figure 18-A. The reason for this choice is that this certain section 

is allocated to the audience who are known to create the highest excitation, hence the vibration 

values, in response to any event during the game. Additionally, the official marching band for the 

motivation of the crowd is also located close to the monitored section. Monitoring is carried out 

during the entire game with accelerometers and a camera during the time sequences when 

spectators jump to the same song in laboratory experiments. The number of accelerometers used 

in the study are twenty-five, two of which are placed in horizontal direction, whereas others are in 

vertical. Figure 19 gives a detailed overview of the accelerometer locations along with their 

pictures.  
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Simultaneously with the accelerometers, the crowd over the monitored section is recorded 

using a frequency controlled (~60Hz max.) industrial camera that is connected to a computer 

(Figure 18-B,C,D). The time stamps that correspond to the same song that was played during the 

laboratory studies are specifically targeted and extracted from both video and acceleration time 

histories so as to make a reasonable comparison. The plan view distance between the measurement 

location and the monitored section is approximately 120 meters. 

An FEM is constructed using the blueprints and on-site inspections (Figure 20). The 

structure is purely made of well-known AISC steel frame sections, which are modeled as such, 

with complexly detailed connections. The structure comprises eight different grandstands that 

might work independently if not connected with aluminum seatings, footings and concrete decking. 

They may partly restrain the independent motion and add rigidity to the structure and are found to 

have considerable effect on the general behavior as it is pointed out in several studies in the 

literature. These members are modeled with links, springs and constraints to the point that they are 

thought to fit best to the dynamic results. Cross members for stability act as truss members and are 

modeled accordingly.  

Structural identification is conducted under ambient conditions as an alternative to shaker 

testing as this method excites mostly the local modes in case of large structures. Complex nature 

of the structure such as steel connections, seatings, footings, their connections with rakers and the 

overall size also contribute to many local modes to occur. Due to the limited instrumentation means, 

several monitoring surveys on two specific locations of the upper and lower portion of the whole 

section are carried out at separate times and are combined to capture the global motion of the 
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structure. The CMIF function shown in Figure 21 indicates only the first five singular lines that 

the modes are picked out from.  

 

Figure 19 A: Accelerometer locations marked on the structure plan; B,D: Picture from the 

stadium corresponding to accelerometer locations; C: Sample detailed views of sensor-element 

attachments 

 

Figure 20 Finite element model of the monitored section 

FE model update is done manually by a systematic procedure. First, global modes and 

frequencies are made sure to be in the same order as in experimental results by altering the 
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boundary and continuity conditions. After acquiring a reasonable proximity between analysis and 

experiments, a further calibration is carried out in the modal and flexibility space by changing the 

stiffness levels and connection details of individual members. As the next step, the correlation 

between the measurement points and their counterparts in the computer model are calculated and 

differences are fine tuned. It is always possible to carry out a more comprehensive model 

calibration by exploiting sensitivity analysis and probabilistic models, however, this procedure is 

not within the scope of this work. The model is assumed to be fairly close as long as it reflects the 

common global dynamic characteristic of the actual behavior.  

 

Figure 21 CMIF plot of a sample data taken from stadium under ambient vibration 

Unlike many examples in the literature, the structure does not have cantilever tiers with 

low vertical vibration modes. When cantilever sections are of question, it is more convenient to 

make a calibration as they behave as an isolated component. As to the structure in this study, it is 

rather difficult to do so due to the lack of full scale information and the motion being more complex. 

That’s why, the modes that are included in the calibration process and presented here are those 

which are thought to represent the global motion the best (Figure 22).  
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The low resonant frequencies concentrated under 15 Hz frequency band belong to the 

vicinity of the edge of the upper section in form of swaying with a slight bending in two different 

directions. The first vertical motion observed underneath the lower portion where the monitored 

crowd resides is seen after 20 Hz range. This means that the monitored section does not 

considerably magnify the effects caused by the crowd in the lower monitored section. Although it 

would have been more desirable to work on a flexible structure to reflect the reality as close as 

possible, this does not necessarily pose a restriction to the experimental work. 

Unlike controlled laboratory conditions, field studies constitute uncertainties that may be 

hard to predict and incorporate. Some known uncertainties are the number of people in the 

monitored section, their mass, the distance between the camera and the spectators to make the 

pixel-to-meter unit conversion, the ratio of the active/passive spectators and their exact locations. 

In addition, more uncertainties regarding video processing such as alteration of illumination, 

occlusion in densely crowded scene may introduce additional errors to the results.  

 

Figure 22 Mode shapes of the monitored grandstand 
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Analysis and Results 

 

Figure 23 Overview of force estimation approach for the field study 

An automated people counting algorithm and an average mass may be applied to estimate 

the number of people and their total mass. However, for this study, the use of such an algorithm is 

avoided as this is not the objective and is the scope of a future work. People are manually counted 

since the section is small enough and the number of people is within a countable range Figure 23-

A. The distance problem between the camera and the audience is solved by building a surface of 

calibration ratios. As it is described before, one practical way of finding the calibration ratio is to 

divide the actual dimension of the elements in the field to their pixel values in the image frame. 

Some structural members that stand out such as walkway posts, seating planks, etc. covering the 

region occupied by the crowd are measured in the field and their scale ratios are computed. A three-

dimensional surface is then constructed via surface interpolation for the entire image frame (Figure 

23-B). Once the dense flow vector field is multiplied with the calibration surface, approximate real 

displacements are found followed by finding acceleration time histories (Figure 23-C).  



 

55 

 

Before deriving acceleration time histories, displacement signals are up sampled to 200 Hz 

with cubic spline interpolation to match the sampling rate of the accelerometers. Since the 

spectators’ GRF frequency response to the song played is known a priori, a fifth order Butterwoth 

filter that falls within [1,16] Hz is applied on the signals. The quality of displacement trajectories 

is not always of high quality. Because of the uncertainties regarding video processing mentioned 

earlier, some trajectories may show erratic behavior. One solution is to eliminate the low-quality 

displacement records by a rejection threshold which is obtained based on the distribution of the 

areas of each trajectory. The loss of the eliminated trajectories can be compensated by replacing 

them with another in the closest neighborhood of their location in the frame. Another option is to 

apply a principal component analysis (PCA) to the entire family of trajectories. By selecting the 

first two principal components and projecting the position time series onto corresponding 

eigenvectors, one dimensional position signals can be found. 

As to application of the load, the best way is to apply each load time history with respect 

to their exact locations similar to distributed mass-spring elements. However, this needs a further 

integration between a counting algorithm and the model, thus, is not utilized at this stage. As an 

alternative, the total force is converted into a distributed load and applied on the area surfaces of 

FEM. The passive members show a flatline in their time histories and taken as a static load. Since 

the magnitude of the load is unknown, an incremental average mass multiplied by the number of 

people is considered.  

Figure 24 shows the comparison of acceleration responses between accelerometer at 

location 17 in Figure 19 and the corresponding node in FEM. This result is generated under 435 

people counted with an average mass of 70kg. Acceleration response of the sensor is sketched as 
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an envelope for a better visualization. An exact overlap of acceleration records is not expected 

between the field and computer simulation as too many uncertainties are involved. However, 

general morphology and amplitude values fall within an acceptable range. Peak accelerations 

reached in sensor readings are almost always higher than of FEM responses. Figure 25 makes the 

same comparison in the frequency domain. For the first beat pulse, there seems to be a good match. 

Unfortunately, the second and the third harmonics are lost for the vision based approach.  

 

Figure 24 Comparison of accelerations generated by the crowd on the monitored portion of the 

stadium between FEM result and accelerometer at 17 in Figure 19. 

 

Figure 25 Frequency comparison of accelerations generated by the crowd on the monitored 

portion of the stadium between FEM result and accelerometer at 17 in Figure 19. 
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The difference in results generally stem from the uncertainties involved in computer vision 

approach. The first thing to consider is the sensitivity of the equipment. For large distance 

measurements, the accuracy is expected to decline. A higher resolution camera with a long fixed 

focal length can increase the measurement sensitivity at subpixel levels. However, with today’s 

technology, there is generally an indirect proportion between the increased sensitivity and speed. 

That’s why there needs to be a reasonable balance between the two. Another problem is the 

occlusion of the densely crowded scene. Displacement trajectories often get affected by the 

subjects blocking each other’s visible and trackable features. The spectators waving their hands, 

the interference of the image frame with the natural or artificial effects such as smoke, rain, confetti, 

etc. may cause erratic trajectories to occur. When several of these uncertainties are involved in the 

real-life measurements, the efficiency of the methods may decrease such in the case herein. 

Concluding Remarks 

A computer vision approach for the load time history measurement of individuals and 

crowds when jumping, bobbing and its feasibility are investigated. The method comprises of 

tracking the displacement trajectories of individuals and crowds using optical flow based 

algorithms followed by generating force time histories. Laboratory experiments, in which 

individuals and groups perform jumping at regular beats and songs on a force platform and on a 

grandstand simulator, are conducted. The estimated trajectories are compared directly with 

conventional sensors as well as indirectly with responses acquired from finite element models and 

results are presented. The method is further validated via a field demonstration. Limitations of the 

method and future work for improvement are discussed. The proposed methods along with their 
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applications on a real crowd, building a grandstand simulator that can be adjusted to flexible and 

stiff configurations thereby accommodating experiments for groups of different sizes are some of 

the contributions. In this sense, the study is taking an important step in support of creating a 

database for crowd loading that is needed as it is pointed out by other researchers dealing with the 

same problem. 
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CHAPTER THREE: MODAL ANALYSIS UNDER HUMAN INDUCED 

EXCITATIONS USING NOISE ASSISTED AND ADAPTIVELY 

TRANSFORMED MULTIVARIATE EMPIRICAL MODE 

DECOMPOSITION 

Introduction 

Structural identification under human induced excitations is a special case that constitutes 

several challenges in one place. The nature of human excitation may be in the form of walking, 

jumping, dancing, etc. which are non-stationary and they contain most of their energy at low-

narrow bands and as consecutive harmonics in their frequency spectrum. Traditional methods to 

identify such systems work under the assumption that the disturbance is Gaussian white noise 

assuring that the output spectrum constitutes poles belonging only to the structure. In spite, when 

the external excitation is in the form of non-stationary human induced loads, white noise 

assumption does not hold anymore, and a desirable flat excitation spectrum ceases to exist. This 

may cause the output response spectrum to be significantly different than normal and to not show 

some of the fundamental modes as they are weakly excited or do not fall in the high-power 

excitation range. In addition, harmonic narrowband excitations are possibly mixed into the output 

spectrum as operational modes and may be confused with structural modes. The problem becomes 

more complicated considering the fact that the structures that are subjected to human interaction 

such as stadiums and footbridges are almost always of flexible nature and their fundamental 

frequencies are also condensed within low frequency bands. This phenomenon increases the 

probability of having ambiguous mixtures of closely spaced operational-structural modes and 

undermines the estimation of frequency and damping parameters. Therefore, the identification of 

flexible structures under human-structure interaction necessitates more specific approaches. 
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As it is indicated in [46], [72]–[74], structural health monitoring and identification of 

flexible structures -especially stadiums- are vastly untouched. They need improved approaches 

that consider the intrinsic changes of the system over time and indicate possible nonlinearities, yet 

the number of studies are scarce. The existing studies [75]–[81] hover around the application of 

traditional algorithms on the data taken from certain portions of structures. Obviously, operational 

modal analysis (OMA) is the most effective way that is used in these studies [82]–[84]. The 

procedure is convenient because large structures as stadiums can be tested without the need of 

artificial excitation devices and under operating/in-service conditions. There are now many well-

established OMA algorithms in time [85]–[90], frequency [91]–[95] and frequency-spatial [96]–

[99] domains. In brief, time domain methods exploit the correlation or covariance of the response 

time histories or auto-regression moving average vector (ARMAV) models. Frequency and spatial 

domain algorithms follow a similar technique but in frequency space. In the end, modal parameters 

are extracted by feeding the information to estimators such as orthogonal triangular (QR) 

decomposition, singular value decomposition (SVD) or least squares. There are also relatively new 

methods that have been applied to identification, fault detection and denoising by adopting blind 

source separation and/or wavelet analysis. The first provides a practical solution by representing 

the entire structural system in the form of non-parametric linear system of algebraic equations 

[100]. The solution of the equation system results in a sequence of single degree of freedom 

components from which the dynamic parameters are extracted. The latter is superior when the 

response is non-stationary that vary in both amplitude and frequency over long periods of time. 

The procedure follows as finding the correlation between a wave (packet) of a certain period and 

finite extent by sliding over the response output and generating new projected time series. As the 
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scale (width) of the wave packet is changed, different simpler oscillatory time series are generated 

and parameter extraction is carried out from there [84], [101]–[104]. These algorithms may 

outperform one another and may or may not be ideal or provide the same results when implemented 

for the same case due to several issues that are often common in almost all of them. Lately, the 

methods that make use of wavelet packet decompositions and their hybrid versions with BSS have 

been the most suitable candidates to handle these issues. Some other recent examples implement 

blind source separation [105], [106] under sparsely distributed sensors with decentralized 

deployment whereas others make use of wavelet decomposition techniques [107], [108]. Overall, 

the need for improvement on mitigating the user intervention such as model order selection, peak 

picking, distinguishing of structural operational and spurious modes, selection of appropriate 

wavelets still stands.        

The implementation of previously mentioned traditional methods on the problem of 

stadium structures do not go further than a collective statistical comparison of findings. General 

inference derived from the results is that the dynamic parameters are significantly affected based 

on the occupancy ratio of the structure. In that, resonant frequencies tend to decrease and damping 

ratios to increase as the mass ratio of crowd to structure increases. However, since the dynamic 

parameters are altered because of the non-stationary narrowband excitations and occupant-

structure mass ratios, their instantaneous change needs to be realized over time to see the real 

nature of the behavior and possible nonlinearities. As to footbridges, the studies in the literature 

are more focused on the improvements of vibration serviceability design [109]–[115]. Some of 

these studies take advantage of performance assessment of real bridges and incorporate the 

findings into the design.  
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To sum up, the human excitation effects on the dynamic response of flexible structures and 

the realization of those changes on the system over time still need to be understood better yet the 

number of studies focusing on the issue is limited. 

Empirical Mode Decomposition (EMD) Algorithm and Its Improved Variations 

The empirical mode decomposition (EMD) is a non-parametric signal processing technique 

which breaks down a signal into its simple oscillatory components named as intrinsic mode 

functions (IMFs) [116].  

           
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
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x t c t r t a t t r t  ( 26 ) 

where  mc t  is the IMF,  ma t  is the amplitude,  m t  is the oscillation and  r t  is the 

residual term. The method is powerful as to handling non-stationary data by representing riding 

complex waves and uneven amplitudes through mono-component intrinsic temporal modes. To get 

the IMFs from a given time series  x t , local minimum and maximum points of the entire signal 

are found and interpolated using cubic spline interpolation. This interpolation provides the upper 

 maxe t and lower envelopes  mine t  of the signal and their local mean: 

      min max / 2 m t e t e t  ( 27 ) 

By subtracting the local mean from the original signal, the modulated oscillation [117] is 

found: 

      d t x t m t  ( 28 ) 

At this stage  d t is expected to show two properties. The first is to have zero mean with 

both upper and lower envelopes to be symmetric and the second is to have either same number of 
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zero crossings and extrema or to differ with only one [116], [118], [119]. These criteria are two 

mandatory conditions for a signal to be classified as an IMF. In case the stopping criteria are not 

met, the same procedure is applied to  d t until the first IMF is acquired. Once the first IMF is 

found then the same procedure is repeated for the residual: 

     ,  m mr t x t IMF IMF d t  ( 29 ) 

This iterative routine is named after sifting process and it stops when the residual  r t  

has no more meaningful component.  

Following its first proposal and early applications, EMD is found to suffer from either 

mode mixing where an IMF may have more than one oscillatory mode or mode splitting where a 

single mode may appear in multiple IMFs. In some cases, aliasing may also occur due to the 

sampling of extrema. These problems are realized when cubic spline interpolation ceases to fit 

ideally to the signal that is intermittent; has relatively flat spectrum or when it doesn’t have proper 

extrema at the ends (end effect artefacts). This issue is remedied by an improved version called 

ensemble empirical mode decomposition (EEMD) [120]. The procedure includes creating an 

ensemble of the same signal with the addition of independent Gaussian white noise realizations: 

            2
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Each noise contaminated signal is passed through the same sifting algorithm and the 

resultant IMF is obtained by taking the ensemble average of the multiple IMFs with the same 

index: 
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The ensemble EMD significantly reduces the effect of mode mixing. However, the 

conditions for IMF is violated resulting in the estimation of only the modes instead of the local 

means. Independent processing of each realization may create additional spurious modes due to 

the noise on different ensembles being added to the signal when they are to be averaged. Besides, 

the final extracted modes may contain high-power noise which may cause the weak modes to be 

buried in. To overcome these problems, and to incorporate into this study a method called complete 

EMD with adaptive noise (CEEMDAN) is utilized. The following steps need to be taken for the 

application [121], [122]; 

i. Calculate the local means of l realizations     0 1

i i
x x E w   for the first residue 

  1

i
r M x  where  E and  M  are the operators that produce the kth mode of EMD and 

produce the local mean;  i
w is the white noise 

ii. Calculate the first mode 
1 1d x r  at the first stage (k=1) 

iii. Obtain the second residue as the average of local means of the realizations  1 1 2

ir E w  

iv. Determine the second mode    2 1 2 1 1 1 2

i
d r r r M r E w      

v. For k=3,…, K calculate the kth residue    1 1

i

k k k kr M r E w    

vi. Find the kth mode 1k k kd r r   

CEEMDAN is incorporated as a complementary method in the identification process 

incase modal mixing occurs even after the application of the main algorithm that is explained in 

the next sub-section. 

Multivariate Empirical Mode Decomposition (MEMD) 

When multiple data channels are of concern, channel-by-channel application of EMD 

algorithms could result in issues such as having different number of IMFs per channel. Also, mode 

misalignment where IMFs with same index have different mode information may occur. In general, 
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multivariate signal analyses require the simultaneous processing of the entire channel sequence so 

that mode alignment and uniqueness of findings could be preserved. In this case, the previous 

computation method of local mean and thus single component IMFs need to change to account for 

the multiple joint oscillations. The early works on the extension of EMD cover the processing of 

bivariate [123]–[125] and trivariate [126] signals that eventually pave way for the extension to 

multivariate empirical decomposition [127].  

The MEMD application starts with forming an (n-1)-dimensional unit sphere which 

comprises K Hammersely sequence points (quasi-Monte Carlo sampling) [117], [127], [128]. Each 

generated Hammersely point is the direction of a unit vector given by angels  1 2 ( 1), ,...,k k k k

n    

and form the entire set of projection vectors:  

   1 2, ,..., , 1, 2,...,


 x k k k k

nt x x x k K  ( 32 ) 

Projecting multivariate signal         1 2, ,..., nt s t s t s ts  on the direction vectors, set of 

projected signals are acquired. 
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The time instants  k

it
  that correspond to the local minima and maxima of the projected 

signals are connected via cubic spline interpolation and the multivariate envelope curves 
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e  are obtained. Then the k-dimensional mean is found: 
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As in the original EMD algorithm, the mean is extracted from the original signal set: 

      d s mt t t  ( 35 ) 
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Based on whether  td  satisfies the stoppage criteria, the sifting is either applied to 

   t ts d  or repeated for   td . In its last shape, the MEMD becomes a method to separate joint 

rotational modes in k-dimensional space instead of separating oscillations as in basic EMD 

algorithm. Thus, the previous definition of EMD is extended to its vector form: 

     
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t t t  ( 36 ) 

where  
1

M

m m
c  are k-variate IMFs and r is the residual. The extracted IMFs are aligned, 

and they indicate the same modes.  

Noise Assisted Adaptive Projection Intrinsically Transformed Multivariate Empirical Mode 

Decomposition (NA-APIT-MEMD) 

The MEMD is an important improvement as to processing of multichannel signals with 

sufficient alignment between same index IMFs and it can be used to conduct intrinsic multiscale 

analysis such as entropy, correlation and intra or inter component dependencies [129]. On the other 

hand, research shows that the method can be further improved by mitigating several weak points. 

The first point to be improved is the existence of mode mixing and mode splitting as encountered 

in standard EMD. It is shown that the MEMD algorithms have a quasi-dyadic filterbank structure 

for broadband noise [130]. When the initial algorithm is modified by adding extra uncorrelated 

Gaussian white noise realizations to the original set of signals, the broadband filterbank acts a 

series of bandpass filters so that the IMFs with the same frequency content could align themselves 

(Figure 26). It should be noted that unlike the EEMD, the noise channels are not added directly 

onto the signal but added as separate noise channels and the resultant set of channels are fed into 

MEMD algorithm.   
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Figure 26 Illustration of dyadic filterbank property of MEMD after averaging the IMF spectrums 

of multiple channel 500 Gaussian white noise realizations 

In many practical applications including modal analysis, multichannel signals contain 

intrinsic inter-channel correlations from which useful information is obtained. However, the 

MEMD may suffer from loss of this information unless a considerably high number of projection 

vectors is used. The use of such high number of vectors drastically increases the computation time. 

Additionally, power inequalities between the channels may make the recognition of these 

similarities even more difficult. Therefore, in addition to noise assisted version of the MEMD, 

another improvement with an adaptive method that relocates the randomly distributed projection 

directions on hyper dimensional sphere is used [131]. The method is based on finding the first 

principal component of the covariance matrix of the input signal pointing in the direction of the 

highest power inequality. 

     C s s VΛV
T TE t t  ( 37 ) 

where  1 2, ,..., nV v v v  is the eigenvector and  1 2 ndiag , ,...,  Λ  eigenvalue matrix. 

Once the direction of the highest power inequality is known, another vector in the opposite pole 
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1 1o  v v  is generated. The previously generated points are reorganized concentrated around the 

new directions based on their Euclidian distance: 
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where is a factor to arrange the condensation of these points around the new directions. 

The last step is to obtain the local mean as in original MEMD algorithm. The relocation of 

projection vectors lets intrinsic inter-channel correlations be captured much easier and with less 

computational effort. 

Time-Frequency Representation via Hilbert-Huang Transform 

The most exceptional aspect of working with EMD based methods is to track the intrinsic 

changes of the mono-component IMFs. Since IMFs are represented based on an amplitude-phase 

modulation     cos m m mc a t t  , time varying nature of both amplitude and phase can be 

observed. If an IMF is represented with its analytic representation: 
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where the so called Hilbert transform is defined as 
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then the instantaneous frequency is     / m mt d t dt  . Thus, when time varying 

frequency is to be plotted with respect to time, Hilbert-Huang spectrum (HHS) is achieved from 

the related IMFs. HHS is powerful as it shows intra-wave modulations or drifts of the signal which 

is a sign of nonlinearity. It will be used as a tool to keep track on the changes of dynamic parameters. 
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Adaptation to Operational Modal Analysis (OMA) 

The first known study on the application of multivariate empirical mode decomposition to 

operational modal analysis is carried out by [132] in which the modal parameters of a simulated 

system and a laboratory frame are successfully identified. Following up the first successful 

implementation, the new noise assisted adaptive approach is adopted with a specific interest on 

the response of structures exposed to human induced vibrations. In its most fundamental form, a 

multi degree of freedom (MDOF) system under the assumption of discretized lumped mass and 

proportional damping may be represented as follows: 

         Mx Cx Kx Ft t t t  ( 41 ) 

where M  , C  , K   are the mass, damping, stiffness matrices respectively.  tx   and 

 tF are the nodal displacement and input force vectors. Due to the unique orthogonality properties 

of the modal vectors Eq. 41 can be rephrased as follows: 

x ψq  ( 42 ) 

where ψ   is the transformation matrix whose columns are the modal vectors of the 

original system and q  represents the modal coordinates. Considering the relation between the 

nodal displacement vector in Eq. 41 and the IMFs of Eq. 36, modal vector representation of Eq. 

41 can be written in the form of: 
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where i indicates the measurement location whereas j is the relevant IMF index or the 

corresponding modal response. If the index i is switched to p and r to represent two different 
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simultaneous response/measurement locations, partially normalized mode shape coefficients are 

obtained: 
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If the expected value of Eq. (44) is taken after reorganizing and pre-multiplying with T

pjc , 

the following expression is acquired: 

      
T T

pj pj pj pr rjE Ec c c c  ( 45 ) 

Eq. 45 leads to the expression of mode shape coefficients by the standard deviations of 

IMFs: 
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Eq. 46 is incorporated into the computation of cross correlation coefficient between pjc

and rjc . 
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and is an indicator of both having mono-component content and the sign of a modal 

displacement. Therefore, the partial modal coefficient can be described with its final shape: 
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Separation of operational modes and applications steps 

As previously mentioned, the harmonic nature of excitation that is generated by humans 

yield to several challenges such as mixed identification of harmonics as structural modes, poor 
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damping estimation due to structural modes being affected by closely located harmonics and 

harmonics inhibiting the identification of structural modes. In scope of this study, the issue is 

remedied by applying statistics driven techniques [105], [133]. The first method is to utilize 

probability density function (PDF) over IMFs. It is known that when sufficient signal to noise ratio 

(SNR) values are achieved, the shape of the PDF of a harmonic has two peaks allowing it to be 

isolated from the structural modes. Another measure to complement the use of PDF is kurtosis: 
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The kurtosis is the fourth central moment of x  , a stochastic variable normalized with 

respect to the standard deviation   and it is used as a measure to indicate the sharpness of the 

PDF peak and its severity. The kurtosis values that are close to 3 is an indicator for structural 

modes whereas the lower values are the signs for harmonic excitation modes. Once these two 

measures are applied on the mono-component signals, operational modes are easily determined. 

As a finally step, the implementation of the method is summarized below: 

i. Select a suitable set of output channels         1 2, ,..., nt s t s t s ts  for identification 

ii. Perform intrinsically adaptive ensemble NA-MEMD algorithm by setting a proper value for 

condensation factor and extract mono-component IMFs  
1

M

m m
c  

iii. If mode mixing is present or a closely spaced mode is failed to be separated, perform 

CEEMDAN algorithm and finalize the IMF extraction process 

iv. Compute probability density function and kurtosis to isolate operational modes from structural 

modes 

v. Estimate the modal frequencies and damping ratios from the mono-component IMFs  

vi. Find modal matrix  1 2 3... n   ψ  
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Experimental Studies 

Laboratory structure and tests conducted 

The performance of the method is assessed through a controlled experiment on a 

grandstand simulator (Figure 27-A). The grandstand simulator is constructed as a multipurpose 

structure for researchers to investigate different SHM related technologies and algorithms such as 

sensors, parametric or non-parametric damage detection or identification methods prior to real life 

implementations. The structure is simply a steel grid that resembles of a simple supported beam 

with a 20o angle inclination. It is placed on columns where connections in between are made with 

supports that may be adjusted to represent a variety of support conditions (Figure 27-E). The 

grandstand can also be adjusted to have one or two clear spans with continuous beams across the 

middle supports. In this sense, the simulator can be modified to reveal different structural stiffness 

and damage cases by altering specially designed intermediate and boundary conditions. Dynamic 

response of the simulator is captured utilizing high sensitivity piezoelectric accelerometers that are 

placed on beam-beam connection nodes located at the front and at the back of the structure to 

ensure that the sufficient spatial resolution is achieved (Figure 27-A, B). PCB 054114 force 

washers are installed beneath the supports to record force time-histories generated under human 

excitation (Figure 27-C, D, E).   

In scope of this study, the flexible grandstand is tested within a specific scenario in which 

four subjects exert synchronous jumping loads upon. During the test, the subjects are asked to 

accompany the popular song called ‘Zombie Nation’ that is played during the state Football gamers 

(Figure 28). Before the test, the subjects are put through a training phase in which they get familiar 

with the song and adjust themselves to the main beat accordingly.  
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Figure 27 A, B: The grandstand simulator with accelerometers mounted at the front and at the 

back side of the structure; C, D: The placement of force washers between the steel grid and the 

support columns; E: The view of connections after the placement 

 

Figure 28 An instant from the test as the subjects jump to the song on play and the locations of 

sensors 
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Results and Discussion 

In Figure 29, the blue line shows the amplitude spectrum of the total force record that is 

captured by the load cells placed beneath the supports. From the previous sound wave analysis, it 

is known that the main beat frequency of the song is 2.34Hz which is clearly observed in the 

jumping record. The following peaks are the second and the third harmonics of the main beat. The 

power of the signal is concentrated heavily around the first harmonic and slowly attenuated over 

higher frequency band. The second flat line is the frequency response of the Gaussian white noise 

having the same variance as the recorded force time history.  

The visualization of the two different excitation levels is important as to what to expect 

from the structural response. The flat spectral response is very well suited to satisfy the general 

assumption of all the linear time invariant system theory and is expected to stimulate all the 

resonant frequencies. On the other hand, a non-stationary narrowband excitation is expected to 

have a similar performance in the narrowband where its energy is concentrated but also to 

introduce new information that may easily be mixed with the actual modal response especially 

when there are modes residing in the same range. The higher frequency modal information is not 

possible to observe as the excitation energy quickly drops out after the third harmonic. This is not 

a serious problem due to the fact that civil engineering structures that are exposed to narrowband 

excitations preserve their highly participated modes within the first several modes.   
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Figure 29 Amplitude spectrum of the recorded force and the white Gaussian noise of the same 

variance 

Figure 30 shows the CMIF plot of two tests regarding the excitations in Figure 29. The first 

line corresponds to the first singular value line extracted from the impact hammer test where 

several nodes are excited and a relatively flat input spectrum covering a wide frequency band is 

achieved. The second singular value line corresponds to the jumping test previously introduced. 

There are significant differences between the two response spectrums. It is evident that the 

excitation effects completely leak into the response altering the output spectrum within the low 0-

10Hz frequency band. Compared to the response spectrum of the impact test, there are now 

operational modes that are hard to distinguish from the structural modes. In some cases, peaks 

become distorted and some modes can even be lost when averaging of the record which is a 

preprocessing routine. Due to the reasons that the structure is flexible and the jumping excitation 

can create very high levels of vibration (especially when it is close to being coupled with the 
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structure resonant frequency), the amplitudes are much higher compared to the impact test. This 

scale difference prevents the amplitudes of the impact test from being clearly seen in Figure 30. 

There also seems to exist several peaks in 10-20 Hz band that are not normally present on the 

impact test spectrum.  

 

Figure 30 The CMIF plot of the first singular value line under ambient testing and jumping 

excitation 

As another example, Figure 32 shows the stability diagram of extracted parameters from 

SSI-COV [134], [135] for the grandstand under an ambient excitation. In SSI-COV, based on the 

prescribed time lags during the formation of the covariance matrix, model order can be increased 

or decreased. As it is quite difficult to initially estimate the real order of the modal model, general 

application is over-modeling and then select the proper order from there. In Figure 32 the system 

poles are drawn with respect to the model order and the identification is carried out from a clear 

stability diagram. 
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Figure 31 SSI-COV stability diagram for the grandstand under ambient excitation 

Conversely, Figure 32 shows a significantly altered diagram. Several studies in literature 

state that the subspace methods can handle non-stationary excitations as long as the data is long 

enough and a higher model order is used. However, over modeling may also create spurious modes 

that are not physically meaningful. Although certain thresholds are applied on the extracted 

parameters based on the difference of frequency, damping and modal assurance criterion (MAC) 

values, when non-stationary excitation and its harmonics are involved the stability diagram may 

get corrupted. From Figure 32, it can be concurred that both the structural and operational 

frequencies are successfully extracted but it is hard to distinguish whether they are operational, 

spurious or real structural modes. 
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Figure 32 SSI-COV stability diagram for in-service data. 

For a typical operational modal analysis study, the quality of the data is in direct proportion 

with the time window selected. Generally, longer data sequences are required to mitigate the 

excessive noise through averaging. Short data sequences may result in poor estimation of system 

poles, a lower frequency resolution and loss of temporal information. This is one of the drawbacks 

of Fourier spectrum based approaches. From this point of view, the time for the grandstand test 

data is quite short as being approximately 30 seconds. Thanks to the adaptive property of the EMD 

based methods, data length is not an issue to extract meaningful information from IMFs but it 

should be noted that it is better to apply some sort of filtering to mitigate the noise content as 

several studies show susceptibility of EMD to input noise. Before the application of the NA-

MEMD, the data is decimated from the original 2kHz sampling rate down to 200Hz. A low pass 

Butterworth filter with a 50 Hz cutoff frequency is applied to get rid of the high frequency noise 

content and then the data is passed onto the algorithm. The condensation factor   is chosen as 
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0.5 and the same number of independent noise channels varying 2-5% of the processed signal are 

added as additional channels. Figure 33 shows the successfully extracted IMFs after the method is 

applied on the sensors that are attached to node 1, 2, 4 and 5 (Figure 28). Each row in the group 

corresponds to the IMFs that are of the same index whereas each column indicates the IMF 

sequence that belongs to the same sensor location. From the shape of the time varying signals, it 

is evident that the noise assisted MEMD with adaptive transformation can align the same scale 

modes across multiple channels.  

This property is observed much clearly in the frequency representation in Figure 34 and is 

quite important for the processing of multiple channel data as it might get difficult to visualize and 

reorder the same index IMFs when the number of channels increases. Also, when the same IMFs 

are aligned across different channels, it is more convenient to apply CEEMDAN in case mode 

mixing is present.   

 

Figure 33 IMFs that belong to the grandstand jumping test 
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Figure 34 Power spectra of each IMF from four different locations on the grandstand 

During the processing of the grandstand data, several observations have been made. 

Although the noise content in the processed signal may initially reduce the performance of the 

MEMD, the noise assisted version significantly increases the performance especially mitigating 

mode mixing and providing scale alignment. The power of the added noise channels has a direct 

influence on the extracted IMFs. As the power of the noise increases, the concentrated Fourier 

amplitudes indicating the signal power are also increased and the mixing is either reduced or 

eliminated. However, as the power of additional noise channels go higher, leakages in the IMF 

spectrum are observed bringing about unnecessary mode mixing. As a rule of thumb, the power of 

noise channels is selected between the %2-5 of the variance of the input signal. Number of noise 

channels doesn’t seem to have a drastic effect on the results [117], [136]. 
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Table 4 A summary of the identification results for the laboratory grandstand simulator 

 Mode shapes Probability Density Function 
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ω= 2.34     ζ= 0.07     κ=1.64 
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ω= 4.66     ζ=0.4     κ=1.95 
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ω= 5.75     ζ= 0.62     σ=0.0028     

κ=2.56 
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ω= 7.03    ζ= 4.1     κ=1.82 
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ω= 7.81    ζ= 3.7    σ=0.0031    

κ=2.52 
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ω= 20.64     ζ= 1.5     σ=0.0015     

κ=2.91 

 
 

 

As the next step, the PDF and kurtosis of the extracted IMFs are obtained. The PDFs of 

Mode 1 and Mode 2 fit to that of harmonic excitation with their two-peaked bath-tub shape. 

Additionally, the Kurtosis values are also quite low for a structural mode. Also, it is known that 
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the mode shape vectors that belong to the operational modes have high correlation. By using the 

partial cross correlation coefficients of the mono-component IMFs, the modal matrix and hence 

the mode shapes are determined as in Table 4. The similarity between the first three is another 

indicator for a mode to be determined as operational mode. Therefore, mode 1 (2.34 Hz) and mode 

2 (4.67) Hz are marked as the operational modes. From the excitation spectrum of the grandstand 

simulator test, it is evident these same frequencies overlap with each other and are deemed to be 

harmonics. 

 

Figure 35 Estimation of damping from the auto correlation function of IMFs 

Figure 35 shows the calculation of damping using IMFs. As it is explained before, damping 

estimation under non-stationary excitations are unreliable and sometimes not possible especially 

when frequency domain curve fitting methods are used. IMFs present a convenient way of solving 

this issue. Once the IMF of a certain mode is extracted, the auto-correlation of that IMF can be 

computed. The resultant function reveals itself as a typical decaying vibration signal. An envelope 
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over the local maxima of the function is extracted and an exponential decaying window is fitted 

over the entire envelope. After this point, the logarithmic decrement method can easily be applied 

to find the damping ratio corresponding to that mode. 

 

Figure 36 Hilbert-Huang spectrum showing the variation of frequency over time 

Figure 36 is the illustration of the Hilbert-Huang transform out of extracted IMFs. The 

information derived from the computation and visualization of HHT is superior to the information 

derived from the Fourier transform. The first couple of average frequencies 2.34, 4.66 Hz extracted 

and identified are the instances of this phenomenon and they preserve the highest power. Their 

duration also continues until the end whereas the structural frequencies that lie above this range 

tend to have a transient trend that are likely to die out. Another observation is that the third 

harmonic in Figure 29 (7.03 Hz) is not seen in the Fourier spectrum of extracted 2ic  IMFs. On 

the other hand, HHT realization shows a large drift around the fourth mode of the structure. These 

large drifts stem from several reasons that need attention when a signal is observed with HHT. 

When there are drastic amplitude changes within an IMF as can be seen in c22 c23, the Fourier 
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spectrum for the envelope and carrier are not separable violating the Bedrosian theorem. Because 

of this problem, the signal through Hilbert transform doesn’t give the phase function of the carrier 

alone without the influence of the variation from the envelope [137], [138]. Since vibration data is 

strongly intermittent by nature, extreme spikes in the HHT are more likely to be observed.    

Real Life Applications 

Monitoring of a stadium during a football event 

A small portion of a football stadium is also investigated as seen in Figure 37. The whole 

stadium is constructed as a steel structure which has a typical inclined architecture to provide the 

best line of sight for the audience. The reason as to the choice of the monitored section is that this 

certain section is allocated to students who are expected to create the highest excitation, hence the 

vibration values, in response to the events that take place within the game. Additionally, the 

marching band for the motivation of the crowd is also located close to the monitored section. In 

light of this information, the instrumentation plan is prepared.12 accelerometers are installed at 

mainly two portions from the top to the bottom, namely upper and lower deck and in different 

positions where vibration level is observed to be higher than other sections of the stadium.  

Figure 38 is an illustration of the sensor locations at the upper and lower deck of the section. 

As it is seen, motion of the main girder, floor beam, and stringer are measured in both vertical and 

horizontal direction. For the upper and lower stringers, channels 3, 4, 11 and 12 are placed in the 

middle. Upper and lower floor beam, together with the upper main frame girder are monitored 

through channels 1, 2, 5, 6, 9, 10. Finally, channels 7 and 8 are installed at the connections of main 

beams and stringers of upper deck Figure 38.  
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Figure 37 A: Monitored portion of the stadium; B: An overview of the crowd over the section 

 

 

Figure 38 The high sensitivity seismic sensors along with their locations on the structure 
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The transducers used in this monitoring study are PCB 393C general purpose seismic type 

accelerometers with the sensitivity of 1000mV/g. VXI data acquisition system with Agilent 

Technologies module is used to record the vibration data. The sampling frequency is chosen to be 

100 Hz and for each game recording is taken for 10 minutes and several recordings are saved 

throughout the game. As the recording is put in progress, notes and video footages are taken to 

make sure none of the significant movements are missed. 

Findings 

For the separation of the modes, the same number of independent noise channel as the 

number of the output signal are added. The power of the noise, the condensation factor α and the 

number of projection vectors are all consecutively changed to see their effects on the final result. 

Since the objective of the study is not to demonstrate a statistical study on the performance of the 

extraction, illustrations in regards to those different results are not given here. As a brief 

explanation, when the real-life signals are to be processed, the consecutive IMFs almost always 

present some sort of mode mixing but the alignment is never lost. When the signal is exposed to 

some sort of preprocessing so as to increase SNR or to get rid of high frequency noise, the 

performance seems to be increased. It is hard to estimate an optimum power level for the extra 

noise channels because even with the same noise, the same results may not be achieved. On the 

other hand, it is a fact that the results get corrupted with excessive noise once the noise power goes 

over 15-20% range of the output signal. In scope of this study, for the mixed modes, previously 

told CEEMDAN is utilized with a sufficient accuracy. However, considering the fact that the 

modes preserve their alignment, NA-MEMD method can also be iteratively applied for the mixed 
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channels instead of focusing on individual IMFs. Figure 39 shows the extracted IMFs for the 

channels 3, 4, 7 and 8. The monitored portion of the stadium is a retrofitted version of its original 

design. The lower seating section behaves almost as static whereas upper seating section has 

several low frequency swaying motions. Although the mono-component rotational modes are 

extracted, the results are hard to see from the Fourier representation as the added noise induce 

some amount of leakage which Fourier approach is susceptible to. 

 

Figure 39 Extracted IMFs from the stadium field implementation 

Table 5 is a summary of the findings from the stadium test. The data set that belong to this 

identification study is captured when the audience jump accompanying the same song played in 

the laboratory experiments. Because of that same disturbance on the system as in grandstand 

simulator case, the first three modes are identified as excitation harmonics. This observation is 

confirmed also by looking at the PDF and kurtosis realization of the IMFs. After the third harmonic 

excitation.    



 

88 

 

Table 5 A summary of the identification results for the stadium structure 

 Mode shapes Probability Density Function 
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ω= 2.37    ζ= 1.88    σ=0.00     
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ω= 6.69   ζ= 6.36   σ=0.0032     
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ω= 12.81  ζ= 0.01   σ=0.0012    

κ=3.85 
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ω= 34.72  ζ= 0.01  σ=0.0011     

κ=3.19 
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Figure 40 Hilbert-Huang spectrum showing the variation of frequency over time 

Figure 40 shows the dynamically changing fashion of frequencies over the entire time 

through HHS. The power of the signal is concentrated mainly in the low frequency range and they 

are constantly drifting which is known as the intra-wave modulation in the literature. Intra-wave 

modulations are the distorted harmonic vibrations of systems with nonlinearities in response to 

harmonic excitations[139], [140]. Such systems are mono-component, however they have an intra-

wave element that may cause sudden amplitude changes. This observation is also the proof that 

humans have intra and inter changes as they are imposing jumping, walking etc. loads on the 

structures. They cannot keep the phase/frequency of the motion as the same throughout the entire 

duration of excitation. Based on the same amplitude intermittency of the signal and violation of 

Bedrosian theorem in Figure 36, frequency looks scattered over the spectrum. However, human 

induced excitations can clearly be seen and in this condition, the spectrum can be used as a 
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complimentary tool to delineate the operational modes in support of the statistic measures 

described previously. 

Monitoring of a Footbridge 

Another real-life implementation is conducted on a footbridge where non-stationary human 

induced loads are prominent (Figure 41). The bridge comprises of 19.5m long vertical truss frames 

that are connected via post-tensioning in the middle and spans an entire length of 39m over a pond. 

The vertical truss members on the left and the right side are made of C type vertical and F type 

diagonal steel members. The lateral stability is provided by another truss frame that is 3.65m wide 

which is constructed with G type diagonal cross braces, H type lateral box members and F type 

longitudinal members. This frame holds the entire thin layered aluminum-concrete composite deck. 

The bridge is located at a university campus and is under a light pedestrian traffic.       

 

 

Figure 41 A: The side view of the footbridge and locations of accelerometers; B: Name tags for 

accelerometers on both sides of the bridge 
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The dynamic response of the study is captured via ten high sensitivity piezoelectric 

accelerometers mounted in vertical directions (Figure 41-A). The sensor locations are shown in 

Figure 41-B where A1-A5 are installed on one side and A6-A10 on the other. Several experiments 

are conducted with a sampling rate of 200Hz as this range is suitable to observe the sufficient 

number of modes within the expected narrowband low frequency range and as the amount of data, 

which needs to be as long as possible in case of OMA, is reasonable to store (Figure 42-A). The 

bridge is tested under operational conditions where a group of people walk over with a certain pace 

of their preference. This way, multiple harmonics are introduced to the system within the same 

band. 

 

 

Figure 42 A: A perspective view from the footbridge and the data collection setup; B: The 

footbridge under the uncoordinated walking excitation of a group 

Findings 

In Figure 43, the decomposition of signal for the channels 1, 5, 6 and 9 are given. As in the 

stadium example, the first extraction presents two mode mixing issues. Application of CEEMDAN 

eliminates this problem and provides mono-component signals. It is observed that, even though 
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the required mode is extracted successfully, sometimes it may still have the remaining artefacts of 

the signal that it is separated from. For instance, 
6ic  set of IMFs has small peaks around the main 

lobe of the frequency signal which has not been efficiently separated by any means. However, 

intrinsic correlation relation between channels is at an acceptable level which makes it a mono-

component source. Taking both the laboratory and field applications into consideration, from all 

the experiments, it can be said that the separation gets harder in the high frequency band. Especially 

when the power of the signal is low in the high frequency band, or when there are two peaks with 

distinctive amplitudes. 

 

Figure 43 Extracted IMFs from the footbridge experiment 

Table 6 is a summary of the findings from the footbridge test. The data set that belong to 

this identification study is captured under a random walk of a group of people. From the 

observations of PDF and kurtosis, the modes related to operational walking modes are successfully 

identified.   
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Table 6 A summary of the identification results for the footbridge 

 Mode shapes Probability Density Function 
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ω= 25.88    ζ= 0.01    σ=0.0011     
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Concluding Remarks 

Flexible structures such as stadiums and footbridges are prone to narrowband excitations 

generated by occupants. Since the frequency response of the excitation and the fundamental 

dynamic response of the structure lie within the same band, there is a probability that their coupling 

may generate excessive vibration levels that may undermine the serviceability limits. Both the 

excitation and the response are of non-stationary nature that is not suitable for conventional time 

and frequency based analyses. In this regard, an investigation on the use of multivariate empirical 

mode decomposition (MEMD) for human-structure interaction problem is presented. The method 

uses a noise assisted version of the MEMD along with an adaptive projection algorithm to extract 

mono-component intrinsic mode functions (IMFs); to reduce mode misalignment and mixing and 

to account for power imbalances among channels as well as benefiting from correlations at an 

intrinsic level. The time-frequency representation of the response is provided by incorporating 

Hilbert-Huang spectrum (HHS). By utilizing HHS, the instantaneous changes in the energy, 

frequency, phase, and amplitude are realized as well as nonlinearities. The method is then 

expanded to structural identification relying on operational data. The performance of the 

application along with its limitations are reported in light of several examples conducted on a 

laboratory grandstand as well as on a real-life stadium and a footbridge. 
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CHAPTER FOUR: COMPUTER VISION BASED HUMAN COMFORT 

ASSESSMENT OF STADIA 

Introduction 

 

The current well known and widely used assessment methodologies for vibration level 

measurements are [30]–[32]. These standards were originally developed to evaluate human 

exposure to vibrations caused by operation of machinery and vehicles, but the same procedures 

are accepted to be applicable to civil engineering structures as well. The assessment measures used 

in these standards, such as root mean square (RMS), running RMS, maximum transient vibration 

value (MTVV), fourth power vibration dose value (VDV) or root mean quad (RMQ), have slight 

differences in their calculations of measurement directions, subjects’ posture, application of 

frequency weightings, etc. Detailed information on the application of these measures have already 

been given in the review study by [1] mentioned above.   

The research in the last decade focuses on the application of health, perception, motion 

sickness and comfort classification measures for sporting events [33], [33]–[35], concerts [36], 

[37] or for a long term monitoring [38]–[41]. [42] utilizes a psychophysical experimental method, 

called subjective scaling to study occupants’ comfort and perception levels, while either sitting or 

standing. [43] studied the often-confused relationship between human vibration-perception and 

comfort levels using a controlled occupied grandstand that is gradually excited with different RMS 

powered sine wave vibrations from 2-6 Hz. The subjects are asked to choose their subjective 

vibration-perception and comfort levels from a bank of provided text descriptors. Their responses 

are compared with frequency weighted acceleration of two particular standards [32], [44]. 

Following the same experimental psychophysical methodology, [42] proposes a new approach for 
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perception assessment that considers the relation between human comfort and either the root mean 

square (RMS) of the normalized ground reaction forces (GRF) time history, or the normalized foot 

point acceleration time history [45]. The idea is that the GRFs obtained with stationary 

measurements are different from those of a moving grandstand [3].  

Although the weighting of acceleration record seemed to favor the calculation of primary 

assessment measure (RMS), the method’s outcomes are not drastically different from those of 

other methods. Reported RMS values are likely to vary within the time window that they are 

calculated; unfortunately, it is still unknown how long the duration should be. Although the 

evaluation via MTVV (derived from running RMS) is independent from duration and is mostly 

the case for grandstands considering the excessive vibration exceeding crest factor (CF) threshold, 

the information on the event causing the extreme values cannot be extracted. VDV and RMQ 

calculations experience the same problems. These alternative measures have not been given 

specific limits in the standards. However, VDV measures of perception can be made referring to a 

scale given in previous studies, which has proven to be the most reliable method among the others 

so far. In most cases, measures of perception or human discomfort levels from the measurement 

scale do not match with the actual, observed behavior of the occupants; raising questions of its 

appropriateness for application on grandstands.     

Of all the preceding research, the main point of discussion is on the applicability and 

compatibility of the operating machinery based standards for the grandstand serviceability 

problem; as the excitation type have different inherence compared to machinery based vibrations.  
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Calculation of Human Comfort Indices 

In scope of this part of the dissertation, the procedures given in ISO 2631-1 are followed 

for the assessment of comfort levels. Although there are other standards for obtaining human 

comfort levels in literature, based on the reasonable results of previous studies, ISO 2631-1 is 

chosen. For this standard to be applicable, vibration should be measured in compliance with 

basicentric coordinate systems and placement of transducers should be orthogonal to each other. 

Vibration levels measured in this study are in “z” (vertical axes) direction as comfort levels along 

this direction are often more dominant and easy to measure for stadia.  

Prior to the calculation of comfort indices, vibration records are filtered in the frequency 

domain with prescribed filtering weights categorized under different clauses as health, human 

comfort and perception and motion sickness Table 7.  

Table 7 Guide for the application of frequency-weighting curves for principal weightings 

Frequency 

weighting 

Health Comfort Perception Motion sickness 

Wk z-axis, seat surface z-axis, seat surface 

z-axis,standing 

vertical recumbent (except 

head) 

x-, y-, z-axes, feet (sitting) 

 

z-axis,seat surface 

z-axis,standing 

vertical recumbent 

(except head) 

 

- 

Wd x-axis, seat surface 

y-axis, seat surface 

x-axis,seat surface 

y-axis, seat surface 

x-, y- axes, standing 

horizontal recumbent 

y-, z-axes, seat-back 

 

x-axis,seat surface 

y-axis, seat surface 

x-, y- axes, standing 

horizontal recumbent  

 

- 

Wf - - - vertical 

 

Once the decision is made on the type of weighting -Wk in this study-, frequency filter is 

designed with respect to the parameters shown in Table 8. Multiplication of each applied filtering 

gives the total weighting function to be applied on the frequency domain data: 
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          h l t sH p H p H p H p H p  ( 50 ) 

Table 8 Parameters of the transfer functions of the principal frequency weightings 

Weighting Band-Limiting Acceleration-velocity transition Upward step 

 
f1 f2 f3 f4 Q4 f5 Q5 f6 Q6 

Wk 0.40 100 12.50 12.50 0.63 2.37 0.91 3.35 0.91 

Wd 0.40 100 2 2 0.63 ∞ - ∞ - 

Wf 0.08 0.63 ∞ 0.25 0.86 0.0625 0.80 0.10 0.80 

 

Equation 50 shows a hybrid design comprised of high, low, bandpass filters and its 

illustration can be seen in Figure 44, along with its counterpart shown in ISO. This weighting is 

incorporated to account for the 5-8 Hz frequency range that the human body is deemed to be more 

susceptible.  

 

Figure 44 Architectural and structural details of a stadium as a demonstration of their slender nature 

The next step is the computation of comfort indices. Two most commonly used and well-

known indices namely RMS and VDV are incorporated. For a discrete time signal, RMS is 

calculated over the weighted time domain as follows: 
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where 
ia  is the discrete magnitude of the vibration and N is the number of samples. VDV 

is deemed to be more sensitive to transient accelerations since it is calculated over the fourth power 

if the vibration record: 

1/4

4
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N

i
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VDV a
f
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where 
sf  is the sampling rate of the vibration record and N is the number of samples. 

Calculated RMS values can be compared with the comfort scale in ISO guidance (Table 9). As to 

VDV, there is no comfort scale pointed out in the guideline but several previously suggested scales 

in the literature can be used. The justification on the comfort levels that are given in ISO guidance 

is unclear whereas VDV scale is based on limited number of studies. However, these measure are 

just going to be used to be used as a means of comparison.  

Table 9 RMS Values and corresponding comfort levels (ISO 1997) 

RMS Level (m/s2) RMS Level (%g) Comfort Level 

<0.315 <3.2 Not Uncomfortable 

0.315-0.63 3.2-6.4 A little Uncomfortable 

0.5-1 5.1-10.2 Fairly Uncomfortable 

0.8-1.6 8.2-16.3 Uncomfortable 

1.25-2.5 12.7-25.5 Very Uncomfortable 

>2 >20.4 Extremely Uncomfortable 

 

Table 10 RMS Values and corresponding comfort levels [141] 

RMS Level (m/s2) RMS Level (%g) Comfort Level 

<0.315 <5 Reasonable for passive 

person 
0.315-0.63 5-18 Disturbing 

0.5-1 18-35 Unacceptable 

0.8-1.6 >35 Probably causing panic 
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Table 10 is an improved version of the comfort levels after the observation of [141]. The 

improvements should be continuously made so as to create a statistical and more accurate 

perception judgement.  

Similarly, Table 11 shows and improved assessment levels that is put forward by [142]. 

This scale makes a distinction between concert and football events as the psychological state of 

the humans regarding the environment may heavily influence their judgement. 

Table 11 VDV Values and corresponding comfort levels [142] 

VDV (m/s1.75) - Concert VDV (m/s1.75) - 

Football 

Comfort Level 

<0.66 <0.37 Reasonable for passive 

person 
0.66-2.38 0.37-1.32 Disturbing 

2.38-4.64 1.32-2.58 Unacceptable 

>4.64 >2.58 Probably causing panic 

 

The most recent study that was carried out by [41] suggesting modified comfort levels. 

Modification is established based on the linear relationship between the peak acceleration and the 

VDV. According to the real events presented in the paper, the modified comfort assessment chart 

seems to yield better results. Comfort assessments made within this study are based upon this 

modified scale in Table 12. 

Table 12 RMS & VDV Values and corresponding comfort levels [41] 

RMS (m/s2)  VDV (m/s1.75)  Comfort Level 

<0.49 <1.4 Reasonable for passive 

person 
0.49-1.77 1.4-4.8 Disturbing 

1.77-3.43 4.8-9.3 Unacceptable 

>3.43 >9.3 Probably causing panic 
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Computer Vision Based Displacement Measurement 

Displacement is a critical indicator to evaluate the structural response under human load 

and also it can be convert to load index to assess the structural loading condition. In this study, a 

computer vision based displacement measurement method is used as an alternative to 

accelerometer based comfort measurements. Figure 45 illustrates the procedure for the proposed 

method. The first step is camera calibration, which calculates the relationship between the image 

and the real world, and obtain the scale ratio between the actual spatial coordinates and the image 

pixel coordinates.  

 

Figure 45 Procedure for vision-based displacement measurement 

There are many different methods to carry out camera calibration for the application of 

vision-based displacement measurements [51], [143]–[152]. In this study the scale ratio introduced 

in [144] is used to convert the motion in image to the real world. The second step is to capture an 

initial image of the regions monitored on the structure, from which the initial pixel coordinates of 

these regions are obtained. Generally, such regions encompass areas of the structure with visible 

surface textures to establish a vibration measurement point. In this study, Speeded-Up Robust 

Features (SURF) [153] are chosen to be the visual trackers, as illustrated in Figure 46a.  
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Initial image 
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Scale transformation 
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Figure 46 SURF feature and Lucas-Kanade tracking: a) extracted SURF features; b) Feature 

tracking using Lucas-Kanade tracking algorithm 

In the third step, the original image and succeeding images captured by the camera are 

continuously tracked. The Lucas-Kanade algorithm [57] is used to calculate the optical flow and 

execute the visual tracking task. Through visual tracking, the virtual markers from the original 

image are located in each successive image (Figure 46b). Displacements are obtained in pixel 

coordinates by subtracting the location of the original coordinates in images from the coordinate 

locations of the most recent monitoring regions. The actual displacements of each selected region 

of the image which represents the measure target are obtained, by multiplying the average 

displacements at the feature points in each selected region in pixel coordinates with the scale ratio 

calculated during the first step. Lucas-Kanade algorithm calculates the sparse optical flow and 

assures that only the displacements at the feature points are obtained. The method is good for 

tracking small number of objects -in this study multi-point displacement measurement- and 

tracking sparsely distributed people. As the number of people increases towards forming a crowd, 

the full field dense optical flow calculation is needed where each pixel might represent one person. 

As a result, when crowd tracking is of concern, Farneback algorithm [58], [59], [68] is employed 
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to calculate the optical flow of each pixel in the image and finally the optical flow of each pixel is 

converted to the practical displacement in real world.  

 

Figure 47 A demonstration of full field dense optical flow using Farneback algorithm 

Experimental Studies 

To test the applicability of the proposed method, the flexible grandstand setup described in 

chapter 2 is used. Node number 2 that is seen in Figure 28 is selected to track. Five different cases 

are arranged to see the change in comfort levels. Table 13 summarizes the test scenarios. 

Table 13 Test scenarios for the measurement of comfort levels 

Test Case Frequency Win/Lose 

Case 1 1.5 Hz  Jump 
Case 2 2 Hz Jump 

Case 3 2.34 Hz Zombie Nation Song 

Case 4 2.5 Hz Jump 

Case 5 3 Hz Jump 

 

The motion of the structural node is tracked as seen in Figure 47 along with the subject 

standing on that node. Figure 48 shows the comparison between the two displacement 

measurements that are captured with the camera and the displacement sensor. Figure 49 is the 

acceleration record by taking the second numerical derivative of the same displacement record. 

Both figures show great correlation and almost an exact match. Even from this observation it can 
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be inferred that the same comfort measures are expected to be found. The comfort measures are 

firstly applied on the accelerometer records and subsequently the displacement acquired from the 

camera for the same node. Lastly, the same comfort measures are calculated using the normalized 

force record of the subject jumping over the node 2. The force record used here are also the same 

records presented in Chapter 2 for the same test. 

 

Figure 48 Comparison of the displacement records between the camera and the displacement 

sensor 

 

 

Figure 49 Comparison of the acceleration records between the camera and the displacement sensor 
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Table 14 and Table 15 show that except Case 1, comfort measures are increasingly 

disturbing as the jumping frequency increases. As it is pointed out earlier, the aim here is not to 

critique the accuracy of the levels but to be able to acquire the same levels by the use of computer 

vision. The direct acceleration records and camera recordings show almost the same levels. 

Besides, the use of computer vision based estimation also provides an additional information about 

displacement. Therefore, some displacement measures can also be defined and incorporated into 

the comfort assessment. The RMS and VDV values calculated from normalized ground reaction 

forces seem to indicate the comfort levels better because of the fact that these levels comply well 

with the statements of the jumping subject at node 2 as to how they feel.  

Table 14 Comparison of the Evaluation of Each Case Based on RMS Acceleration for the 

grandstand 

RMS (%g) 

 Mx. Disp. (mm) Sensor Perception Camera Perception Camera- 

Jumper 

Perception 

Case 1 9.80 2.34 Reasonable 2.47 Reasonable 0.46 Reasonable 

Case 2 15.10 3.78 Reasonable 3.82 Reasonable 0.59 Reasonable  

Case 3 16.02 3.86 Reasonable 3.92 Reasonable 0.63 Reasonable 

Case 4 20.00 7.24 Disturbing 7.20 Disturbing 1.23 Reasonable 

Case 5 21.05 7.27 Disturbing 7.54 Disturbing 0.74 Reasonable 

 

 

Table 15 Comparison of the Evaluation of Each Case Based on VDV Perception Ranges for the 

grandstand 

 VDV (m/s1.75) 

 Sensor Perception Camera Perception Camera- 

Jumper 

Perception 

Case 1 8.02 Panic 8.14 Panic 1.40 Reasonable 

Case 2 12.03 Panic 12.22 Panic 1.70 Disturbing 

Case 3 13.5 Panic 13.7 Panic 1.87 Disturbing 

Case 4 21.68 Panic 21.94 Panic 4.55 Disturbing 

Case 5 21.37 Panic 22.59 Panic 2.10 Disturbing 
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After acquiring successful results in laboratory, the stadium described in the previous 

sections is tested. Figure 50shows two beams with different stiffness and almost at the same 

location under the lively audience. Displacement gauges are placed with the help of tripods and 

camera recordings for both locations. In the closest possible vicinity of displacement sensors, 

accelerometers are attached to confirm and compare the results. 

 

Figure 50 Two structural members monitored for human comfort 

The abbreviation of event and location seen in Table 16 stands for song (S) and target (T). 

For instance, S1T1 indicates the results from target 1 as the “Zombie Nation” song is played. Table 

16 and Table 17 shows the results acquired from these measurements. There is a significant 

deflection difference between the members since they have different bending stiffness. This is an 

indication that the comfort measures can show different values even if they are taken from almost 

the same vicinity. On the other hand, RMS and VDV values are almost the same for both the 

camera and the physical sensor.   

Table 16 Comparison of the Evaluation of Each Case Based on RMS Acceleration for the 

stadium 

Event &Location Mx. Disp. (mm) Sensor Perception Camera Perception 

S1T1 2.08 0.02 Reasonable 0.01 Reasonable 

S1T2 3.83 0.02 Reasonable 0.02 Reasonable 

S2T1 2.86 0.03 Reasonable 0.03 Reasonable 

S2T2 8.6 0.08 Reasonable 0.08 Reasonable 
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Table 17 Comparison of the Evaluation of Each Case Based on VDV Perception Ranges for the 

stadium 

Event &Location 

S1T1 

S1T2 

S2T1 

S2T2 

Sensor Perception Camera Perception 

0.09 Reasonable 0.08 Reasonable 

0.09 Reasonable 0.08 Reasonable 

0.11 Reasonable 0.10 Reasonable 

0.29 Reasonable 0.29 Reasonable 

Concluding Remarks 

In this chapter, a new measurement method for human comfort assessment levels for stadia 

is proposed. The method is based on a specific computer vision and image processing algorithm 

called optical flow. The motion of both the structure and lively individuals can be tracked and well-

known human comfort indices as root mean square (RMS) and vibration dose value (VDV) can be 

computed accordingly. The implementation is carried out using simple off-the-shelf cameras and 

the results are compared with conventional accelerometers. The analyses from tracking structural 

elements return almost the same results as accelerometers. As to the implementation of the same 

method on the individuals, the same indices are applied on the normalized ground reaction forces 

(GRFs) generated by tracking the motion of individuals. The magnitude of indices turns out much 

less than that of structure and seem to be reflecting the comfort levels more realistic. Along with 

the comfort indices calculated, one additional information is also given in terms of contactless 

displacement. For reasons such as perception levels can change from person to person, they are 

dependent on the type of events and also their magnitudes may not reflect the real situation due to 

the stiffness differences of the members, this new evaluation can become quite useful as a possible 

replacement in place of comfort indices. Instead of human comfort levels, allowable displacement 

of individual critical members can be monitored. 
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CHAPTER FIVE: CONCLUSIONS 

For the load quantification of individuals and crowd, two alternative load time history 

measurement techniques using advanced computer vision algorithms along with their applications 

in both laboratory and real life are introduced. The laboratory tests are carried out on a stiff force 

platform along with a grandstand simulator that could be set up in flexible and stiff configurations. 

The force measurements from conventional sensors and camera show acceptable match with more 

than 95% correlation as long as the structures is stiff and dynamic effects are not significant. It is 

evident to state that vision based methods are quite a good alternative for conventional methods. 

As the structure goes into flexible state to the point where dynamic magnification becomes 

prominent, the harmonics of the loading may be coupled with the resonant frequencies of the 

structure and differences start to emerge especially in amplitude. However, correlation is still high 

and the overall morphology is reasonable. The literature states that the force patterns on flexible 

structures are distorted and may be unreliable. The measurement series conducted in this study 

may be a significant example of such cases. The structural shape and the interaction of the supports 

with the load cells are also thought to influence this distortion in flexible setup. The performance 

of the vision based methods on the stiff simulator setup and the comparison of FE results (utilizing 

forces from camera measurements) with conventional sensors indicate that computer vision 

methods could be as reliable of an alternative as to conventional methods and may be even more 

so for flexible structures. However, more research to eliminate other possibilities by taking an issue 

by issue approach are needed to fully support this claim. 

The results of a sample field study at a stadium hosting a fairly large crowd is also provided. 

The monitored section is not a typical flexible cantilever section and it resembles of the stiff setup 
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in the laboratory. The vibration level acquired by the comparison of FEM and accelerometers is a 

good match in the first narrowband frequency but not so much as to further harmonics. Although 

the accuracy is not quite as good as of the laboratory, it is evident that the same accuracy levels 

could be achieved if the methods are to be improved. More collaborative research needs to be 

conducted by taking advantage of computer vision discipline as crowd tracking stands as a 

challenging and active research interest therein. There are issues such as illumination changes, 

occlusion, etc. to be resolved. Besides, it should also be noted that each problem has its specific 

difficulties and these improvements on algorithms should be made with that specific problem 

oriented for better accuracy. 

In the era of computer vision and artificial intelligence, structural engineers start using 

more of the useful tools that computer and data science are to offer. There are now many 

applications of such methods for local and global monitoring. This study along with few others in 

literature start shifting that focus by reflecting the same idea on human structure interaction. There 

are now successful synthetic load time history creation methods for individuals. In order for those 

to be implemented on crowd load modeling, successful real measurements need to be done. The 

use of computer vision methods can free researchers from limited laboratory conditions and pave 

the way for creating accurate databases of real, large crowds to be used for robust serviceability 

design. Utilization of these algorithms can further be expanded to an integrated camera based full 

scale monitoring contactless framework that could monitor both crowd and structure. Such a 

framework can provide real time condition assessment of the structure along with the human 

comfort assessment which is another research area that is left vastly untouched. The future work 

of the authors includes making improvements in all these areas.   
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For a specific problem of structural engineering when human-structure interaction is 

present on flexible structures and significantly alters dynamic behavior, an adaptive data-driven 

time history analysis is presented with laboratory and field applications. The method consists of 

set of algorithms based on NA-APIT-MEMD and its expansion to structural identification under 

operational conditions.  

As to the utilization of the algorithm, in almost all the experiments, NA-APIT-MEMD 

algorithm is successful in aligning the modes of multivariate signals. On the other hand, although 

the mixing issue is reduced, it is not completely eliminated. When there are closely spaced modes 

(<1Hz), consecutive peaks with significant power difference and weakly excited modes within the 

higher frequency band where noise is more dominant, the mode mixing issue seems to be more 

prevalent. If the modes are mixed but aligned, NA-MEMD can iteratively be applied across 

multiple channels whereas for other cases such as separating closely spaced modes, the 

CEEMDAN algorithm can be implemented. It is seen that the convenient selection of power for 

additional independent Gaussian white noise channels is 2-5% of the processed signal as it is also 

indicated in the literature. The selection of condensation factor α is generally made between 0.3-

0.5. The results seem to be worse below or over this range mentioned here.    

As to the adoptation for modal analysis, the method is easy and extremely convenient for 

structures where the excitation is non-stationary, the wave forms deviate significantly from 

sinusoidal form and when the local nonlinearities are of concern. As long as the extracted IMFs 

comply with the rule of being mono-component, modal parameters can successfully be extracted 

as they are orthogonal vectors. By incorporating the HHT and its HHS representation, the 

identification can be made in terms of the modulated amplitude and the associated instantaneous 
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frequencies. This representation renders the realization of intra personal nature of the human 

excitation, frequency drifts of the structural modes and their interaction which are named after 

inter or intra wave modulations. These changes when realized over time, can give valuable 

information such as the detection of where the most of the energy resides, the condition and time 

when the amplitudes change, the existence of anomalies and either transient or steady state 

characteristics of the response. or shapes can be successful in understanding and tracking the 

temporal changes as well as identifying the system in question. 

For the human comfort assessment, visual tracking procedure explained in Chapter 2 is applied on 

both the structure and the jumping individuals. The comfort levels acquired from the camera 

measurements correlate well with accelerations records. Besides, in addition to the computation of 

vibration acceptability measures, the specific displacement information of critical members are 

also acquired which can be compared with allowable displacement levels as an alternative to 

comfort indices. On the other hand, a possible comfort measurement by tracking the passive or 

active audience is also proposed by means of gravity normalized reaction forces. When compared 

with current comfort scales, more reasonable perception levels are achieved. However, new and 

better scales can be defined by conducting more tests and surveys with groups varying in different 

age, demographics, etc. This sort of comfort level monitoring methodology can be implemented 

in stadiums to track both the crowd and the structure simultaneously so that events that are likely 

to create panic could be prevented. 
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