4,325 research outputs found

    On-Chip Noise Sensor for Integrated Circuit Susceptibility Investigations

    Get PDF
    page number: 12International audienceWith the growing concerns about electromagnetic compatibility of integrated circuits, the need for accurate prediction tools and models to reduce risks of non-compliance becomes critical for circuit designers. However, on-chip characterization of noise is still necessary for model validation and design optimization. Although different on-chip measurement solutions have been proposed for emission issue characterization, no on-chip measurement methods have been proposed to address the susceptibility issues. This paper presents an on-chip noise sensor dedicated to the study of circuit susceptibility to electromagnetic interferences. A demonstration of the sensor measurement performances and benefits is proposed through a study of the susceptibility of a digital core to conducted interferences. Sensor measurements ensure a better characterization of actual coupling of interferences within the circuit and a diagnosis of failure origins

    Investigations on electromagnetic noises and interactions in electronic architectures : a tutorial case on a mobile system

    Get PDF
    Electromagnetic interactions become critic in embedded and smart electronic structures. The increase of electronic performances confined in a finite volume or support for mobile applications defines new electromagnetic environment and compatibility configurations (EMC). With canonical demonstrators developed for tutorials and EMC experiences, this paper present basic principles and experimental techniques to investigate and control these severe interferences. Some issues are reviewed to present actual and future scientific challenges for EMC at electronic circuit level

    In situ monitoring of environmental water quality using an autonomous microfluidic sensor

    Get PDF
    An autonomous microfluidic sensor for phosphate in environmental waters has been developed and assessed in laboratory and field trials. The sensor is based on the molybdenum yellow method for phosphate detection in which a phosphate-containing sample is mixed with a reagent containing ammonium molybdate and ammonium metavanadate in an acidic medium. The yellow-colored compound which is formed absorbs strongly below 400nm and its absorbance is proportional to the concentration of phosphate in the original sample. The sensor utilizes a microfluidic manifold where mixing, reaction and detection take place. Optical detection is performed using a LED (light emitting diode) light source and a photodiode detector. The sensor also combines pumping system, power supply, reagent and waste storage, and wireless communications into a compact and portable device. Here we report the successful use of the sensor to monitor phosphate levels in an estuarine environment

    HIGH FREQUENCY FERROMAGNETIC INDUCTIVE ELEMENTS FOR ON-CHIP INTEGRATION AND THEIR MAGNETIZATION DYNAMICS

    Get PDF
    The dissertation focuses on the broadband characterization of magnetization dynamics of submicron (200-550 nm wide, 10 ”m long, 100 nm thick) and micron (2-10 ”m wide, 100 ”m long, 100 nm thick) size patterned ferromagnetic material (Permalloy, Py) with low frequency and microwave measurement methods. Particularly the ferromagnetic resonance (FMR), damping process, magnetization reversal, mag-noise, and 1/f noise in different pattern geometry, DC current and external magnetic field bias situations are investigated. In addition to simple microwave transmission line measurements, a sensitive on-chip microwave interferometer is proposed and fabricated by means of nano-fabrication techniques. The FMR properties of an individual nanoscale Py pattern were measure with the interferometer

    Integrated 2-D Optical Flow Sensor

    Get PDF
    I present a new focal-plane analog VLSI sensor that estimates optical flow in two visual dimensions. The chip significantly improves previous approaches both with respect to the applied model of optical flow estimation as well as the actual hardware implementation. Its distributed computational architecture consists of an array of locally connected motion units that collectively solve for the unique optimal optical flow estimate. The novel gradient-based motion model assumes visual motion to be translational, smooth and biased. The model guarantees that the estimation problem is computationally well-posed regardless of the visual input. Model parameters can be globally adjusted, leading to a rich output behavior. Varying the smoothness strength, for example, can provide a continuous spectrum of motion estimates, ranging from normal to global optical flow. Unlike approaches that rely on the explicit matching of brightness edges in space or time, the applied gradient-based model assures spatiotemporal continuity on visual information. The non-linear coupling of the individual motion units improves the resulting optical flow estimate because it reduces spatial smoothing across large velocity differences. Extended measurements of a 30x30 array prototype sensor under real-world conditions demonstrate the validity of the model and the robustness and functionality of the implementation

    Toward the assessment of the susceptibility of a digital system to lightning upset

    Get PDF
    Accomplishments and directions for further research aimed at developing methods for assessing a candidate design of an avionic computer with respect to susceptability to lightning upset are reported. Emphasis is on fault tolerant computers. Both lightning stress and shielding are covered in a review of the electromagnetic environment. Stress characterization, system characterization, upset detection, and positive and negative design features are considered. A first cut theory of comparing candidate designs is presented including tests of comparative susceptability as well as its analysis and simulation. An approach to lightning induced transient fault effects is included

    Development and deployment of a microfluidic platform for water quality monitoring

    Get PDF
    There is an increasing demand for autonomous sensor devices which can provide reliable data on key water quality parameters at a higher temporal and geographical resolution than is achievable using current approaches to sampling and monitoring. Microfluidic technology, in combination with rapid and on-going developments in the area of wireless communications, has significant potential to address this demand due to a number of advantageous features which allow the development of compact, low-cost and low-powered analytical devices. Here we report on the development of a microfluidic platform for water quality monitoring. This system has been successfully applied to in-situ monitoring of phosphate in environmental and wastewater monitoring applications. We describe a number of the technical and practical issues encountered and addressed during these deployments and summarise the current status of the technology

    On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors

    Get PDF
    In this paper, we present an in-depth analysis of a voltage-controlled oscillator (VCO)-based sensing method for electron spin resonance (ESR) spectroscopy, which greatly simplifies the experimental setup compared to conventional detection schemes. In contrast to our previous oscillator-based ESR detectors, where the ESR signal was encoded in the oscillation frequency, in the amplitude-sensitive method, the ESR signal is sensed as a change of the oscillation amplitude of the VCO. Therefore, using VCO architecture with a built-in amplitude demodulation scheme, the experimental setup reduces to a single permanent magnet in combination with a few inexpensive electronic components. We present a theoretical analysis of the achievable limit of detection, which uses perturbation-theory-based VCO modeling for the signal and applies a stochastic averaging approach to obtain a closed-form expression for the noise floor. Additionally, the paper also introduces a numerical model suitable for simulating oscillator-based ESR experiments in a conventional circuit simulator environment. This model can be used to optimize sensor performance early on in the design phase. Finally, all presented models are verified against measured results from a prototype VCO operating at 14 GHz inside a 0.5 T magnetic field
    • 

    corecore