66 research outputs found

    Dual-Satellite Source Geolocation with Time and Frequency Offsets and Satellite Location Errors

    Get PDF
    This paper considers locating a static source on Earth using the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained by a dual-satellite geolocation system. The TDOA and FDOA from the source are subject to unknown time and frequency offsets because the two satellites are imperfectly time-synchronized or frequency-locked. The satellite locations are not known accurately as well. To make the source position identifiable and mitigate the effect of satellite location errors, calibration stations at known positions are used. Achieving the maximum likelihood (ML) geolocation performance usually requires jointly estimating the source position and extra variables (i.e., time and frequency offsets as well as satellite locations), which is computationally intensive. In this paper, a novel closed-form geolocation algorithm is proposed. It first fuses the TDOA and FDOA measurements from the source and calibration stations to produce a single pair of TDOA and FDOA for source geolocation. This measurement fusion step eliminates the time and frequency offsets while taking into account the presence of satellite location errors. The source position is then found via standard TDOA-FDOA geolocation. The developed algorithm has low complexity and performance analysis shows that it attains the Cramér-Rao lower bound (CRLB) under Gaussian noises and mild conditions. Simulations using a challenging scenario with a short-baseline dual-satellite system verify the theoretical developments and demonstrate the good performance of the proposed algorithm

    Emitter velocity estimation comparison for frequency difference of arrival measurement based single and multiple reference lateration algorithm

    Get PDF
    The accuracy at which the instantaneous velocity and position of a non-stationary emitting source estimated using a lateration algorithm depends on several factors such as the lateration algorithm approach, the number and choice of reference receiving station (RS) used in developing the lateration algorithm. In this paper, the use of multiple reference RSs was proposed to improve the velocity estimation accuracy of the frequency difference of arrival (FDOA) based lateration algorithm. The velocity estimation performance of the proposed multiple reference FDOA based lateration algorithm is compared with the conventional approach of using single reference RS at some selected emitter positions using Monte Carlo simulation. Simulation result based on an equilateral triangle RS configuration shows that the use of multiple reference RSs improved the velocity estimation accuracy of the lateration algorithm. Based on the selected emitter positions, a reduction in velocity estimation error of about 0.033m/s and 1.31 m/s for emitter positions at ranges 0.5 km and 5 km respectively was achieved using the multiple reference lateration algorithm

    On Passive Emitter Tracking in Sensor Networks

    Get PDF

    Geolocation of a Known Altitude Target Using TDOA and GROA in the Presence of Receiver Location Uncertainty

    Get PDF
    This paper considers the problem of geolocating a target on the Earth surface using the target signal time difference of arrival (TDOA) and gain ratio of arrival (GROA) measurements when the receiver positions are subject to random errors. The geolocation Cramer-Rao lower bound (CRLB) is derived and the performance improvement due to the use of target altitude information is quantified. An algebraic geolocation solution is developed and its approximate efficiency under small Gaussian noise is established analytically. Its sensitivity to the target altitude error is also studied. Simulations justify the validity of the theoretical developments and illustrate the good performance of the proposed geolocation method

    Radio Frequency Emitter Geolocation Using Cubesats

    Get PDF
    The ability to locate an RF transmitter is a topic of growing interest for civilian and military users alike. Geolocation can provide critical information for the intelligence community, search and rescue operators, and the warfighter. The technology required for geolocation has steadily improved over the past several decades, allowing better performance at longer baseline distances between transmitter and receiver. The expansion of geolocation missions from aircraft to spacecraft has necessitated research into how emerging geolocation methods perform as baseline distances are increased beyond what was previously considered. The CubeSat architecture is a relatively new satellite form which could enable small-scale, low-cost solutions to USAF geolocation needs. This research proposes to use CubeSats as a vehicle to perform geolocation missions in the space domain. The CubeSat form factor considered is a 6-unit architecture that allows for 6000 cm3 of space for hardware. There are a number of methods which have been developed for geolocation applications. This research compares four methods with various sensor configurations and signal properties. The four methods\u27 performance are assessed by simulating and modeling the environment, signals, and geolocation algorithms using MATLAB. The simulations created and run in this research show that the angle of arrival method outperforms the instantaneous received frequency method, especially at higher SNR values. These two methods are possible for single and dual satellite architectures. When three or more satellites are available, the direct position determination method outperforms the three other considered methods

    Exploiting Structural Signal Information in Passive Emitter Localization

    Get PDF
    The operational use of systems for passive geolocation of radio frequency emitters poses various challenges to single sensor systems or sensor networks depending on the measurement methods. Position estimation by means of direction finding systems often requires complex receiver and antenna technique. Time (Difference) of Arrival methods (TDOA, TOA) are based on measurements regarding the signal propagation duration and generally require broadband communication links to transmit raw signal data between spatially separated receivers of a sensor network. Such bandwidth requirements are particularly challenging for applications with moving sensor nodes. This issue is addressed in this thesis and techniques that use signal structure information of the considered signals are presented which allow a drastic reduction of the communication requirements. The advantages of using knowledge of the signal structure for TDOA based emitter localization are shown using two exemplary applications. The first case example deals with the passive surveillance of the civil airspace (Air Traffic Management, ATM) using a stationary sensor network. State of the art airspace surveillance is mainly based on active radar systems (Primary Surveillance Radar, PSR), cooperative secondary radar systems (Secondary Surveillance Radar, SSR) and automatic position reports from the aircraft itself (Automatic Dependent Surveillance-Broadcast, ADS-B). SSR as well as ADS-B relies on aircrafts sending transponder signals at a center frequency of 1090 MHz. The reliability and accuracy of the position reports sent by aircrafts using ADS-B are limited and not sufficient to ensure safe airspace separation for example of two aircrafts landing on parallel runways. In the worst case, the data may even be altered with malicious intent. Using passive emitter localization and tracking based on multilateration (TDOA/hyperbolic localization), a precise situational awareness can be given which is independent of the content of the emitted transponder signals. The high concentration of sending targets and the high number of signals require special signal processing and information fusion techniques to overcome the huge amount of data. It will be shown that a multilateration network that employs those techniques can be used to improve airspace security at reasonable costs. For the second case, a concept is introduced which allows TDOA based emitter localization with only one moving observer platform. Conventional TDOA measurements are obtained using spatially distributed sensor nodes which capture an emitted signal at the same time. From those signals, the time difference of arrival is estimated. Under certain conditions, the exploitation of signal structure information allows to transfer the otherwise only spatial into a spatial and temporal measurement problem. This way, it is possible to obtain TDOA estimates over multiple measurement time steps using a single moving observer and to thus localize the emitter of the signals. The concept of direct position determination is applied to the single sensor signal structure TDOA scheme and techniques for direct single sensor TDOA are introduced. The validity and performance of the presented methods is shown in theoretical analysis in terms of Cramér-Rao Lower Bounds, Monte-Carlo simulations and by evaluation of real data gained during field experiments

    The Complete Analytical Solution of the TDOA Localization Method

    Get PDF
    This article is focused on the analytical solution of a TDOA (Time Difference of Arrival) localization method, including analysis of accuracy and unambiguity of a target position estimation in 2D space. The method is processed under two conditions - sufficiently determined localization system and an overdetermined localization system. It is assumed that the TDOA localization system operates in a LOS (Line of Sight) situation and several time-synchronized sensors are placed arbitrarily across the area. The main contribution of the article is the complete description of the TDOA localization method in analytical form only. It means, this paper shows a geometric representation and an analytical solution of the TDOA localization technique model. In addition, analyses of unambiguity and solvability of the method algorithm are presented, together with accuracy analysis of this TDOA technique in analytical form. Finally, the description of this TDOA method is extended to an overdetermined TDOA system. This makes it possible to determine and subsequently optimize its computational complexity, for example increase its computational speed. It seems that such a description of the TDOA localization technique creates a simple and effective tool for technological implementation of this method into military localization systems

    RF signal sensing and source localisation systems using Software Defined Radios

    No full text
    Radio frequency (RF) source localisation is a critical technology in numerous location-based military and civilian applications. In this thesis, the problem of RF source localisation has been studied from the perspective of the system implementation for real-world applications. Commercial off-the-shelf Software Defined Radio (SDR) devices are used to demonstrate the practical RF source localisation systems. Compared to the conventional localisation systems, which rely on dedicated hardware, the SDR-based system is developed using general-purpose hardware and software-defined components, offering great flexibility and cost efficiency in system design and implementation. In this thesis, the theoretical results of source localisation are evaluated and put into practice. To be specific, the practical localisation systems using different measurement techniques, including received-signal-strength-indication (RSSI) measurements, time-difference-of-arrival (TDOA) measurements and joint TDOA and frequency-difference-of-arrival (FDOA) measurements, are demonstrated to localise the stationary RF signal sources using the SDRs. The RSSI-based localisation system is demonstrated in small indoor and outdoor areas with a range of several metres using the SDR-based transceivers. Furthermore, interests from the defence area motivated us to implement the time-based localisation systems. The TDOA-based source localisation system is implemented using multiple spatially distributed SDRs in a large outdoor area with the sensor-target range of several kilometres. Moreover, they are implemented in a fully passive way without prior knowledge of the signal emitter, so the solutions can be applied in the localisation of non-cooperative signal sources provided that emitters are distant. To further reduce the system cost, and more importantly, to deal with the situation when the deployment of multiple SDRs, due to geographical restrictions, is not feasible, a joint TDOA and FDOA-based localisation system is also demonstrated using only one stationary SDR and one mobile SDR. To improve the localisation accuracy, the methods that can reduce measurement error and obtain accurate location estimates are studied. Firstly, to obtain a better understanding of the measurement error, the error sources that affect the measurement accuracy are systematically analysed from three aspects: the hardware precision, the accuracy of signal processing methods, and the environmental impact. Furthermore, the approaches to reduce the measurement error are proposed and verified in the experiments. Secondly, during the process of the location estimation, the theoretical results on the pre-existing localisation algorithms which can achieve a good trade-off between the accuracy of location estimation and the computational cost are evaluated, including the weight least-squares (WLS)-based solution and the Extended Kalman Filter (EKF)-based solution. In order to use the pre-existing algorithms in the practical source localisation, the proper adjustments are implemented. Overall, the SDR-based platforms are able to achieve low-cost and universal localisation solutions in the real-world environment. The RSSI-based localisation system shows tens of centimetres of accuracy in a range of several metres, which provides a useful tool for the verification of the range-based localisation algorithms. The localisation accuracy of the TDOA-based localisation system and the joint TDOA and FDOA-based localisation system is several tens of metres in a range of several kilometres, which offers potential in the low-cost localisation solutions in the defence area
    corecore