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This paper considers the problem of geolocating a target on the Earth surface using the target signal time difference of arrival
(TDOA) and gain ratio of arrival (GROA)measurements when the receiver positions are subject to random errors.The geolocation
Cramer-Rao lower bound (CRLB) is derived and the performance improvement due to the use of target altitude information is
quantified. An algebraic geolocation solution is developed and its approximate efficiency under small Gaussian noise is established
analytically. Its sensitivity to the target altitude error is also studied. Simulations justify the validity of the theoretical developments
and illustrate the good performance of the proposed geolocation method.

1. Introduction

Passive target localization is a classical problem which has
gained considerable attention in different application con-
texts, such as radar, sonar, navigation, tracking, and wireless
communications [1–3]. Localization techniques have been
extensively investigated for positioning parameters including
the angle of arrival (AOA) [4], time difference of arrival
(TDOA), and frequency difference of arrival (FDOA) of the
target signal captured at spatially distributed receivers [2–4].

More recently, the use of the received signal strength
(RSS) has been considered for target localization via, for
example, microphone arrays [5]. Under the free-space prop-
agation condition, the received signal energy is inversely pro-
portional to the distance squared between the target and
the receiver [5, 6]. This leads to the development of several
received signal strength indicator- (RSSI-) based localization
methods (see [5–10] and the references therein). But they
require that the target transmit power is known, which
renders them unsuitable for the passive localization of unco-
operative targets. On the other hand, noting that the signal
energies received at different receivers would be different,
the utilization of the gain difference of arrival (GROA)

measurement has been recognized to be useful for passive
localization [11–13]. It needs the reciprocal of the received
signal amplitude with respect to a reference receiver only to
locate a target.The requirement for knowing the target signal
transmit power is thus eliminated.

In the literature, several techniques have been proposed
for target localization using GROA. Specifically, Cui et al. [14]
considered using the signal TDOA and interaural level differ-
ence (ILD) obtained at twomicrophones for 2D sound source
localization. Ho and Sun [11] utilized TDOA and GROA
measurements jointly in 3D localization. They assumed the
use of more than four sensors and proposed a closed-form
two-step solution, which will be referred to as the two-step
weighted least-squares (TSWLS) technique.The contribution
of the GROA measurements to the improvement of target
localization accuracy was studied. Different from the study
in [11], Hao et al. [12, 13] considered the practical scenario
where the known sensor positions have errors.They proposed
in [12] a new closed-form algorithm that estimates both
the unknown source and the sensor positions from TDOA
and GROA measurements [12]. In [13], two bias mitigation
methods, called BiasSub and BiasRed, were developed to
reduce the estimation bias of the original TSWLSmethod [11].
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Figure 1: Target geolocation scenario.

In this work, we consider the passive geolocation of
a target on the Earth surface using TDOA and GROA
measurements in the presence of receiver position errors.The
target altitude information can come from, for example, an
altimeter [15, 16] or simply the prior information that the
target is on the ground.The study begins withmathematically
formulating the geolocation problem and deriving the geolo-
cationCramer-Rao lower bound (CRLB).The contribution of
the target altitude information to improving the geolocation
accuracy is investigated. The target geolocation problem is
then cast into an equality-constrained optimization problem,
where the equality constraint comes from the target altitude
information and the cost function takes into account the
presence of receiver position errors. An improved con-
strained weighted least-squares (ICWLS) solution is derived
by following a similar approach as in [15]. Its approximate
efficiency is established analytically. The sensitivity of the
geolocation accuracy to the error in the target altitude infor-
mation is quantitatively analyzed. Simulations corroborate
the theoretical developments and show better performance
of the proposed geolocation technique over a benchmark
method.

The rest of this paper is organized as follows. Section 2 for-
mulates the geolocation problem in consideration. Section 3
derives the geolocation CRLB. Section 4 presents the pro-
posed ICWLS geolocation technique and the performance
analysis with respect to the target position CRLB. Section 5
investigates the impact of the target altitude uncertainty
on the geolocation accuracy. Section 6 gives the simulation
results and Section 7 concludes the paper.

2. Problem Formulation

Consider the geolocation scenario shown in Figure 1. The
target is located on the surface of Earth modeled as an
oblate spheroid. The unknown target position vector in the
geocentric coordinate system is denoted by u𝑜 = [𝑥

𝑜

, 𝑦

𝑜

, 𝑧

𝑜

]

𝑇,

the elements of which are related to the geodetic coordinates
of the target [𝛼, 𝛽, ℎ]𝑇 via

𝑥

𝑜

= (𝑁 + ℎ) cos (𝛼) cos (𝛽) ,

𝑦

𝑜

= (𝑁 + ℎ) cos (𝛼) sin (𝛽) ,

𝑧

𝑜

= [𝑁 (1 − 𝑒

2

) + ℎ] sin (𝛼) .

(1)

Here, 𝛼 and 𝛽 denote the geodetic latitude and longitude of
the target. 𝑁 = 𝑟/√1 − 𝑒

2sin2(𝛼), where 𝑟 = 6378.137 km
is the equatorial radius of the spheroid Earth and 𝑒 =

0.081819190842 is the eccentricity. ℎ is the target altitude.
This work assumes that ℎ is known to the geolocation
algorithm. Under this assumption, eliminating 𝛼 and 𝛽 in (1)
yields an equality constraint on the target geocentric position
u𝑜, which is

𝑓 (u𝑜) = u𝑜𝑇Pu𝑜 = (𝑁 + ℎ)

2

,

P = diag{1, 1,

(𝑁 + ℎ)

2

[𝑁 (1 − 𝑒

2
) + ℎ]

2
} .

(2)

The signal emission of the target is captured by 𝑀

receivers. Signal TDOAs and GROAs are estimated for
target geolocation. The known geocentric coordinates of the
receivers are corrupted by additive random noises and they
are denoted by s

𝑖
= [𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
]

𝑇

= s𝑜
𝑖
+ Δs
𝑖
, where 𝑖 =

1, 2, . . . ,𝑀 and s𝑜
𝑖

= [𝑥

𝑜

𝑖
, 𝑦

𝑜

𝑖
, 𝑧

𝑜

𝑖
]

𝑇 are the unknown true
receiver positions.Δs

𝑖
is the position error in s

𝑖
. Collecting s

𝑖
,

we obtain s = [s𝑇
1
, s𝑇
2
, . . . , s𝑇

𝑀
]

𝑇, where the receiver position
error vector is Δs = s − s𝑜 = [Δs𝑇

1
, Δs𝑇
2
, . . . , Δs𝑇

𝑀
]

𝑇 and
s𝑜 = [s𝑜𝑇

1
, s𝑜𝑇
2

, . . . , s𝑜𝑇
𝑀

]

𝑇 is the true receiver position vector. In
this study, we assume Δs is a zero-mean Gaussian distributed
random vector with covariance matrixQs.

Suppose the target signal captured at receiver 1 is 𝑥
1
(𝑡) =

𝑠(𝑡) + 𝜉
1
(𝑡), where 𝑠(𝑡) is the true target signal and 𝜉

1
(𝑡) is the

additive noise. The target signals captured at other receivers
can then be expressed as [9, 10]

𝑥
𝑖
(𝑡) =

1

𝑔

𝑜

𝑖1

𝑠 (𝑡 − 𝜏

𝑜

𝑖1
) + 𝜉
𝑖
(𝑡) , (3)

where 𝑖 = 2, 3, . . . ,𝑀. It is assumed that 𝑠(𝑡) and 𝜉
𝑖
(𝑡) are

independent zero-mean Gaussian random signals [11–13]. 𝜏𝑜
𝑖1

and𝑔

𝑜

𝑖1
are the true signal TDOAandGROAbetween receiver

pair 𝑖 and 1.
Multiplying the true TDOA 𝜏

𝑜

𝑖1
by the signal propagation

speed 𝑐 gives the true range difference of arrival (RDOA) 𝑟𝑜
𝑖1
,

which is equal to

𝑟

𝑜

𝑖1
= 𝑐𝜏

𝑜

𝑖1
= 𝑟

𝑜

𝑖
− 𝑟

𝑜

1
. (4)

Here, 𝑟𝑜
𝑖

= ‖u𝑜 − s𝑜
𝑖
‖, 𝑖 = 1, 2, . . . ,𝑀, is the true distance

between the target and receiver 𝑖. Under the condition
that the signals 𝑥

𝑖
(𝑡) are received from line-of-sight (LOS)

transmissions [17, 18], the true GROA 𝑔

𝑜

𝑖1
in (3) is equal to

[11–13]

𝑔

𝑜

𝑖1
=

𝑟

𝑜

𝑖

𝑟

𝑜

1

. (5)
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It comes from the difference in the path loss from the target
to receivers 𝑖 and 1.

The target signal RDOA and GROA estimated from the
received signals 𝑥

𝑖
(𝑡) are denoted by 𝑟

𝑖1
= 𝑟

𝑜

𝑖1
+ Δ𝑟
𝑖1
and

𝑔
𝑖1

= 𝑔

𝑜

𝑖1
+Δ𝑔
𝑖1
, whereΔ𝑟

𝑖1
andΔ𝑔

𝑖1
aremeasurement noises.

Collecting the obtained RDOA and GROA measurements
gives

r = [𝑟
21
, 𝑟
31
, . . . , 𝑟

𝑀1
]

𝑇

= r𝑜 + Δr, (6a)

g = [𝑔
21
, 𝑔
31
, . . . , 𝑔

𝑀1
]

𝑇

= g𝑜 + Δg, (6b)

where r𝑜 = [𝑟

𝑜

21
, 𝑟

𝑜

31
, . . . , 𝑟

𝑜

𝑀1
]

𝑇 and g𝑜 = [𝑔

𝑜

21
, 𝑔

𝑜

31
, . . . , 𝑔

𝑜

𝑀1
]

𝑇.
The RDOA and GROA measurement noise vectors, Δr =

[Δ𝑟
21
, Δ𝑟
31
, . . . , Δ𝑟

𝑀1
]

𝑇 and Δg = [Δ𝑔
21
, Δ𝑔
31
, . . . , Δ𝑔

𝑀1
]

𝑇,
are assumed to be independent zero-mean Gaussian random
vectors [11–13].Their covariance matrices areQr andQg, and
they are independent of the receiver position error vector Δs
as well.

We are interested in identifying the target position u𝑜
using the noisy TDOA and GROA measurements in r and
g, the erroneous receiver positions s

𝑖
, and the equality

constraint on u𝑜 in (2).

3. Geolocation CRLB

The Cramer-Rao lower bound (CRLB) gives the lowest
possible estimation covariance matrix for any unbiased esti-
mator of deterministic parameters [19–21]. From the previous
section, we have that the unknowns include the geocentric
positions of the target and receivers. They can be collected
in the composite unknown vector Φ𝑜 = [u𝑜𝑇, s𝑜𝑇]𝑇. We are
interested in deriving the CRLB of u𝑜.

Note from (2) that u𝑜 is equality-constrained and its
CRLB is therefore a constrained one, which will thus be
denoted by CCRLB(u𝑜). According to [15, 16], we have

CCRLB (u𝑜) = J−1 − J−1F (F𝑇J−1F)
−1

F𝑇J−1. (7)

Here, F is the Jacobian of the constraint 𝑓(u𝑜) and, from (1),
we have

F = 2Pu𝑜 + u𝑜Puu
𝑜𝑇

− 2 (𝑁 + ℎ)

𝜕𝑁

𝜕u𝑜
, (8)

where the expression of Pu and 𝜕𝑁/𝜕u𝑜 can be found in the
Appendix.

J−1 is indeed the CRLB of the target position u𝑜 when
its altitude information is not available [11, 12]. Define J−1 =
CRLB(u𝑜) for the sake of clarity. As a result, we can observe
from (7) that the utilization of the target altitude information
via (3) can in effect lead to improved performance in terms of
reduced target geolocation CRLB.

We shall present the derivation of CRLB(u𝑜) to complete
the CRLB analysis. For this purpose, let m = [r𝑇, g𝑇, s𝑇]𝑇
be the measurement vector containing the noisy TDOAs and
GROAs as well as the erroneous receiver positions. Under the

Gaussian noise model specified in Section 2, the logarithm of
the probability density function (PDF) ofm is [21, 22]

ln𝑓 (m | Φ
𝑜

) = 𝑘
1
−

1

2

(r − r𝑜)𝑇Q−1r (r − r𝑜) + 𝑘
2

−

1

2

(g − g𝑜)𝑇Q−1g (g − g𝑜) + 𝑘
3

−

1

2

(s − s𝑜)𝑇Q−1s (s − s𝑜) ,

(9)

where 𝑘
1
, 𝑘
2
, and 𝑘

3
are independent of the unknowns Φ𝑜.

The Fisher information matrix (FIM) ofΦ𝑜 is [20]

FIM (Φ
𝑜

) = −𝐸[

𝜕

2 ln𝑓 (m | Φ
𝑜

)

𝜕Φ
𝑜

𝜕Φ
𝑜𝑇

] . (10)

It can be expressed in the following block matrix form:

FIM (Φ
𝑜

) = [

X Y

Y𝑇 Z
] , (11)

where

X = −𝐸[

𝜕

2 ln𝑓 (m | Φ
𝑜

)

𝜕u𝑜𝜕u𝑜𝑇
]

−1

= (

𝜕r𝑜

𝜕u𝑜
)

𝑇

Q−1r (

𝜕r𝑜

𝜕u𝑜
) + (

𝜕g𝑜

𝜕u𝑜
)

𝑇

Q−1g (

𝜕g𝑜

𝜕u𝑜
) ,

Y = −𝐸[

𝜕

2 ln𝑓 (m | Φ
𝑜

)

𝜕u𝑜𝜕s𝑜𝑇
]

−1

= (

𝜕r𝑜

𝜕u𝑜
)

𝑇

Q−1r (

𝜕r𝑜

𝜕s𝑜
) + (

𝜕g𝑜

𝜕u𝑜
)

𝑇

Q−1g (

𝜕g𝑜

𝜕s𝑜
) ,

Z = −𝐸[

𝜕

2 ln𝑓 (m | Φ
𝑜

)

𝜕s𝑜𝜕s𝑜𝑇
]

−1

= (

𝜕r𝑜

𝜕s𝑜
)

𝑇

Q−1r (

𝜕r𝑜

𝜕s𝑜
) + (

𝜕g𝑜

𝜕s𝑜
)

𝑇

Q−1g (

𝜕g𝑜

𝜕s𝑜
)

+Q−1s .

(12)

The partial derivatives in (12) can be shown to be equal to

𝜕r𝑜

𝜕u𝑜
=

[

[

[

[

[

[

[

[

𝜌
𝑇

u𝑜 ,s𝑜
2

− 𝜌
𝑇

u𝑜 ,s𝑜
1

𝜌
𝑇

u𝑜 ,s𝑜
3

− 𝜌
𝑇

u𝑜 ,s𝑜
1

.

.

.

𝜌
𝑇

u𝑜 ,s𝑜
𝑀

− 𝜌
𝑇

u𝑜 ,s𝑜
1

]

]

]

]

]

]

]

]

,
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𝜕r𝑜

𝜕s𝑜
=

[

[

[

[

[

[

[

𝜌
𝑇

u𝑜 ,s𝑜
1

−𝜌
𝑇

u𝑜,s𝑜
2

0𝑇 ⋅ ⋅ ⋅ 0𝑇

𝜌
𝑇

u𝑜 ,s𝑜
1

0𝑇 −𝜌
𝑇

u𝑜 ,s𝑜
3

⋅ ⋅ ⋅ 0𝑇

⋅ ⋅ ⋅

𝜌
𝑇

u𝑜 ,s𝑜
1

0𝑇 0𝑇 ⋅ ⋅ ⋅ −𝜌
𝑇

u𝑜 ,s𝑜
𝑀

]

]

]

]

]

]

]

,

𝜕g𝑜

𝜕u𝑜
=

1

𝑟

𝑜2

1

[

[

[

[

[

[

[

[

𝑟

𝑜

1
𝜌
𝑇

u𝑜 ,s𝑜
2

− 𝑟

𝑜

2
𝜌
𝑇

u𝑜 ,s𝑜
1

𝑟

𝑜

1
𝜌
𝑇

u𝑜 ,s𝑜
3

− 𝑟

𝑜

3
𝜌
𝑇

u𝑜 ,s𝑜
1

.

.

.

𝑟

𝑜

1
𝜌
𝑇

u𝑜,s𝑜
𝑀

− 𝑟

𝑜

𝑀
𝜌
𝑇

u𝑜 ,s𝑜
1

]

]

]

]

]

]

]

]

,

𝜕g𝑜

𝜕s𝑜
=

1

𝑟

𝑜2

1

⋅

[

[

[

[

[

[

[

𝑟

𝑜

2
𝜌
𝑇

u𝑜,s𝑜
1

−𝑟

𝑜

1
𝜌
𝑇

u𝑜 ,s𝑜
2

0𝑇 ⋅ ⋅ ⋅ 0𝑇

𝑟

𝑜

3
𝜌
𝑇

u𝑜,s𝑜
1

0𝑇 −𝑟

𝑜

1
𝜌
𝑇

u𝑜 ,s𝑜
3

⋅ ⋅ ⋅ 0𝑇

⋅ ⋅ ⋅

𝑟

𝑜

3
𝜌
𝑇

u𝑜,s𝑜
1

0𝑇 0𝑇 ⋅ ⋅ ⋅ −𝑟

𝑜

1
𝜌
𝑇

u𝑜 ,s𝑜
𝑀

]

]

]

]

]

]

]

,

(13)

where 0 is a 3 × 1 vector of zeros and 𝜌a,b = (a − b)/‖a − b‖
denotes a unit vector from b to a.

From (11) and the definition ofΦ𝑜 = [u𝑜𝑇, s𝑜𝑇]𝑇, we have
that J−1 = CRLB(u𝑜) = (X − YZ−1Y𝑇)−1. This completes the
geolocation CRLB derivation.

4. Algorithm

Geolocating the target with known altitude ℎ using TDOA
and GROA measurements, 𝑟

𝑖1
and 𝑔

𝑖1
, is nontrivial, mainly

because the unknown target position u𝑜 is nonlinearly related
to themeasurements (see (4) and (5)).The problem is further
complicated by the presence of receiver position errors and
the equality constraint on u𝑜 (see (2)). In [11, 23], with
the availability of accurate receiver positions and without
geometric constraints on the target position, closed-form
solutions for TDOA- and GROA-based localization were
developed by introducing extra variables to transform the
nonlinear equations into pseudolinear ones and invoke the
application of linear estimation techniques.They were shown
to outperform the iterative Taylor-Series based methods [16,
21, 23] that require good initial solution guesses to avoid local
convergence and may even have a divergence problem. Simi-
lar ideas have been applied to tackle, for example, the problem
of target localization using TDOA and FDOAmeasurements
[24]. Nevertheless, the aforementioned techniques either did
not take into account receiver position errors or cannot cope
with the equality constraint on the target position.

In this section, we shall propose a new solution for
the TDOA- and GROA-based target geolocation problem
described in Section 2. The algorithm development first fol-
lows the approach employed in [25, 26] to cast the geolocation
problem into a constrained weighted least-squares (CWLS)

optimization problem. It takes the presence of receiver posi-
tion errors into consideration via modifying the weighting
matrix appropriately and the target altitude information is
included as an additional equality constraint.

The obtained CWLS minimization problem is solved
using a technique developed on the basis of the method
originally proposed in [15] for geolocation of a known
altitude target using TDOA and FDOA measurements. The
geolocation method, also referred to as the improved CWLS
(ICWLS) solution, will be shown to have an estimation
covariance matrix approximately equal to the geolocation
CRLB in (7) when the receiver position errors and the
measurement noise are small.

In the following, Section 4.1 gives the CWLS formulation
of the TDOA- and GROA-based geolocation problem in
consideration. Section 4.2 presents the solution to the CWLS
optimization problem. Section 4.3 carries out the perfor-
mance analysis. To facilitate the algorithm development, we
convert the equality constraint on the target position u𝑜 given
in (2) into its equivalent form [16]

u𝑜𝑇u𝑜 = (𝑁 + ℎ)

2

+ {1 −

(𝑁 + ℎ)

2

[𝑁 (1 − 𝑒

2
) + ℎ]

2
}𝑧

𝑜2

. (14)

4.1. CWLS Formulation. Rearranging (4), we have

𝑟

𝑜

𝑖
= 𝑟

𝑜

𝑖1
+ 𝑟

𝑜

1
. (15)

Squaring both sides and replacing 𝑟

𝑜2

𝑖
with ‖u𝑜 − s𝑜

𝑖
‖

2 yield

𝑟

𝑜2

𝑖1
+ 2𝑟

𝑜

𝑖1
𝑟

𝑜

1
= s𝑜𝑇
𝑖
s𝑜
𝑖
− s𝑜𝑇
1
s𝑜
1
− 2 (s𝑜
𝑖
− s𝑜
1
)

𝑇 u𝑜. (16)

Expressing the true values in terms of their noisy quan-
tities 𝑟

𝑜

𝑖1
= 𝑟
𝑖1

− Δ𝑟
𝑖1
and s𝑜
𝑖
= s
𝑖
− Δs
𝑖
and substituting the

first-order approximation [20]

𝑟

𝑜

1
=

󵄩
󵄩
󵄩
󵄩

u𝑜 − s𝑜
1

󵄩
󵄩
󵄩
󵄩

≈

󵄩
󵄩
󵄩
󵄩

u𝑜 − s
1

󵄩
󵄩
󵄩
󵄩

+ 𝜌
𝑇

u𝑜,s
1

Δs
1
, (17)

we arrive at the TDOA equation, after ignoring second-order
error terms,

𝜀
𝑡,𝑖

≐ 2𝑟

𝑜

𝑖
Δ𝑟
𝑖1
+ 2 (u𝑜 − s

𝑖
)

𝑇

Δs
𝑖
− 2𝑟

𝑜

𝑖
𝜌
𝑇

u𝑜 ,s
1

Δs
1

= 𝑟

2

𝑖1
− s𝑇
𝑖
s
𝑖
+ s𝑇
1
s
1
+ 2 (s
𝑖
− s
1
)

𝑇 u𝑜 + 2𝑟̂

𝑜

1
𝑟
𝑖1
,

(18)

where 𝑖 = 2, 3, . . . ,𝑀 and 𝑟̂

𝑜

1
= ‖u𝑜 − s

1
‖. Similarly,

rearranging (5) gives

𝑔

𝑜

𝑖1
𝑟

𝑜

1
− 𝑟

𝑜

1
= 𝑟

𝑜

𝑖
− 𝑟

𝑜

1
. (19)

Putting 𝑟

𝑜

𝑖1
= 𝑟

𝑜

𝑖
− 𝑟

𝑜

1
yields

(𝑔

𝑜

𝑖1
− 1) 𝑟

𝑜

1
= 𝑟

𝑜

𝑖1
. (20)

Substituting 𝑔

𝑜

𝑖1
= 𝑔
𝑖1

− Δ𝑔
𝑖1
and s𝑜
𝑖
= s
𝑖
− Δs
𝑖
and using

(17), we have that the GROA equation is

𝜀
𝑔,𝑖

≐ Δ𝑟
𝑖1
− 𝑟̂

𝑜

1
Δ𝑔
𝑖1
+ (𝑔
𝑖1
− 1)𝜌

𝑇

u𝑜,s
1

Δs
1

= 𝑟
𝑖1
− (𝑔
𝑖1
− 1) 𝑟̂

𝑜

1
,

(21)
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where, again, the second-order error terms have been
neglected.

Collect 𝜀
𝑡,𝑖
into 𝜀t = [𝜀

𝑡,2
, 𝜀
𝑡,3
, . . . , 𝜀

𝑡,𝑀
]

𝑇. Similarly, define
𝜀g = [𝜀

𝑔,2
, 𝜀
𝑔,3

, . . . , 𝜀
𝑔,𝑀

]

𝑇. Stacking (18) and (21) for 𝑖 =

2, 3, . . . ,𝑀, respectively, and combining the results yield

𝜀tg = htg − Gtgu
𝑜

+ gtg𝑟̂
𝑜

1
, (22)

where

htg = [h𝑇t , h
𝑇

g ]
𝑇

,

ht =

[

[

[

[

[

[

[

[

𝑟

2

21
− s𝑇
2
s
2
+ s𝑇
1
s
1

𝑟

2

31
− s𝑇
3
s
3
+ s𝑇
1
s
1

.

.

.

𝑟

2

𝑀1
− s𝑇
𝑀
s
𝑀

+ s𝑇
1
s
1

]

]

]

]

]

]

]

]

,

hg =

[

[

[

[

[

[

[

𝑟
21

𝑟
31

.

.

.

𝑟
𝑀1

]

]

]

]

]

]

]

,

Gtg = −2

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(s
2
− s
1
)

𝑇

(s
3
− s
1
)

𝑇

.

.

.

(s
𝑀

− s
1
)

𝑇

0𝑇

0𝑇
.

.

.

0𝑇

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

gtg = −

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−2𝑟
21

−2𝑟
31

.

.

.

−2𝑟
𝑀1

𝑔
21

− 1

𝑔
31

− 1

.

.

.

𝑔
𝑀1

− 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(23)

From (18) and (21), the equation error vector 𝜀tg is

𝜀tg = BtgΔr + CtgΔg +DtgΔs,

Btg = [

B
11

B
12

] ,

Ctg = [

C
11

C
12

] ,

Dtg = [

D
11

D
12

] ,

(24)

where B
11
, B
12
, C
11
, C
12
,D
11
, andD

12
are equal to

B
11

= 2

[

[

[

[

[

[

𝑟

𝑜

2
0 ⋅ ⋅ ⋅ 0

0 𝑟

𝑜

3
⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 𝑟

𝑜

𝑀

]

]

]

]

]

]

,

C
11

= O
(𝑀−1)×(𝑀−1)

,

D
11

= 2

[

[

[

[

[

[

[

[

−𝑟

𝑜

2
𝜌
𝑇

u𝑜 ,s
1

(u𝑜 − s
2
)

𝑇 0𝑇 ⋅ ⋅ ⋅ 0𝑇

−𝑟

𝑜

3
𝜌
𝑇

u𝑜 ,s
1

0𝑇 (u𝑜 − s
3
)

𝑇

⋅ ⋅ ⋅ 0𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−𝑟

𝑜

𝑀
𝜌
𝑇

u𝑜 ,s
1

0𝑇 0𝑇 ⋅ ⋅ ⋅ (u𝑜 − s
𝑀
)

𝑇

]

]

]

]

]

]

]

]

,

B
12

= I
(𝑀−1)×(𝑀−1)

,

C
12

= −𝑟̂

𝑜

1
I
(𝑀−1)×(𝑀−1)

,

D
12

=

[

[

[

[

[

[

[

(𝑔
21

− 1)𝜌
𝑇

u𝑜,s
1

0𝑇 0𝑇 ⋅ ⋅ ⋅ 0𝑇

(𝑔
31

− 1)𝜌
𝑇

u𝑜,s
1

0𝑇 0𝑇 ⋅ ⋅ ⋅ 0𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(𝑔
𝑀1

− 1)𝜌
𝑇

u𝑜 ,s
1

0𝑇 0𝑇 ⋅ ⋅ ⋅ 0𝑇

]

]

]

]

]

]

]

,

(25)

where 0 denotes a 3×1 zero vector and I
(𝑀−1)×(𝑀−1)

represents
an (𝑀 − 1) × (𝑀 − 1) identity matrix.

The solution equation in (22) is nonlinear with respect
to the unknown target position u𝑜, because 𝑟̂

𝑜

1
= ‖u𝑜 − s

1
‖

is also dependent on u𝑜. Moreover, recall from Section 2
that the TDOA noise Δr, the GROA noise, and the receiver
position error Δs are all zero-mean Gaussian distributed. As
a result, the equation error vector 𝜀tg is a zero-meanGaussian
random vector. Therefore, the CWLS estimator for u𝑜 needs
to minimize the following cost function:

𝜁 = (htg − Gtgu
𝑜

+ gtg𝑟̂
𝑜

1
)

𝑇

W (htg − Gtgu
𝑜

+ gtg𝑟̂
𝑜

1
) , (26)

whereW is the weighting matrix equal to [15]

W = 𝐸 [𝜀tg𝜀
𝑇

tg]
−1

= (BtgQrB
𝑇

tg + CtgQgC
𝑇

tg +DtgQsD
𝑇

tg)
−1

.

(27)

The constraints come from the target altitude information
(see (14)) as well as the functional relationship 𝑟̂

𝑜

1
= ‖u𝑜 − s

1
‖.

In particular, we have

s𝑇
1
s
1
− 2s𝑇
1
u𝑜 + u𝑜𝑇u𝑜 − 𝑟̂

𝑜2

1
= 0. (28)
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In summary, the CWLS optimization problem for the
considered TDOA- and GROA-based target geolocation is

min
u𝑜 ,𝑟̂𝑜
1

𝜁

s𝑇
1
s
1
− 2s𝑇
1
u𝑜 + u𝑜𝑇u𝑜 − 𝑟̂

𝑜2

1
= 0

u𝑜𝑇u𝑜

= (𝑁 + ℎ)

2

+ {1 −

(𝑁 + ℎ)

2

[𝑁 (1 − 𝑒

2
) + ℎ]

2
}𝑧

𝑜2

.

(29)

4.2. ICWLS Solution. To find the solution to (29), we first
approximate the second constraint using u𝑜𝑇u𝑜 = (𝑟 + ℎ)

2 to
produce an initial geolocation result, where 𝑟 = 6378.137 km
is the equatorial radius of the spheroid Earth. The associated
Lagrangian is

𝐿 (u, 𝑟̂𝑜
1
, 𝜆
1
, 𝜆
2
)

= (htg − Gtgu
𝑜

+ gtg𝑟̂
𝑜

1
)

𝑇

W (htg − Gtgu
𝑜

+ gtg𝑟̂
𝑜

1
)

+ 𝜆
1
[𝑟̂

𝑜2

1
− s𝑇
1
s
1
+ 2s𝑇
1
u𝑜 − (𝑟 + ℎ)

2

]

+ 𝜆
2
[u𝑜𝑇u𝑜 − (𝑟 + ℎ)

2

] ,

(30)

where 𝜆
1
and 𝜆

2
are the Lagrange multipliers. Differentiating

𝐿(u, 𝑟̂𝑜
1
, 𝜆
1
, 𝜆
2
)with respect tou𝑜 and 𝑟̂

𝑜

1
and setting the results

to zeros, we obtain that the initial geolocation result u is equal
to

u = G
1
(G𝑇tgWG

2
r
1
− 𝜆
1
s
1
) , (31)

G
1
= (G𝑇tgWGtg + 𝜆

2
I)
−1

, (32)

r
1
= [1, 𝑟̂

𝑜

1
, 𝑟̂

𝑜2

1
]

𝑇

, (33)

G
2
= [htg, gtg, 0] , (34)

g𝑇tgW (G
2
r
1
− Gtgu) + 𝜆

1
𝑟̂

𝑜

1
= 0. (35)

Define g
1

= [s𝑇
1
s
1

+ (𝑟 + ℎ)

2

, 0, −1]

𝑇. The first equality
constraint in (29) now becomes

2s𝑇
1
u𝑜 = g𝑇

1
r
1
. (36)

Putting (36) into (31) gives

𝜆
1
= g𝑇
2
r
1
,

g𝑇
2
=

2s𝑇
1
G
1
G𝑇tgWG

2
− g𝑇
1

2s𝑇
1
G
1
s
1

.

(37)

Substituting (37) into (31), we have

u = G
3
r
1
,

G
3
= G
1
(G𝑇tgWG

2
− s
1
g𝑇
2
) .

(38)

Using (37) and (38) to simplify (35) yields

g
3
r
1
= 0,

g
3
= g𝑇
2
+ 2g𝑇tgW (G

2
− GtgG3) ,

(39)

which is a polynomial in terms of 𝑟̂𝑜
1
. For a given 𝜆

2
, one can

find two roots for 𝑟̂

𝑜

1
, and there is only one positive solution

for 𝑟̂

𝑜

1
in most cases. Putting the result back into (38), we

can obtain an initial estimate of the target position that is
dependent on the value of 𝜆

2
. In other words, the initial target

position estimate from the optimization problem (29) can
in fact be expressed as u(𝜆

2
). Applying it into the equality

constraint from the target altitude information u𝑜𝑇u𝑜 = (𝑟 +

ℎ)

2 produces an equation for 𝜆
2
, which may be solved using

Newton’s method with an initial solution guess 𝜆
2
= 0, as in

[15].
We can improve the geolocation result by first utilizing u

to find an estimate of the target geodetic latitude 𝛼 and 𝑁 =

𝑟/
√
1 − 𝑒

2sin2(𝛼) via

𝛼 = tan−1 [[

[

u (3)

√u (1)

2

+ u (2)

2

(1 − 𝑒

2
)

]

]

]

. (40)

Putting the estimated 𝑁 into (29) and repeating the proce-
dure that finds u yield an improved target position estimate.
The above process can be iterated several times until conver-
gence.

Another aspect that needs to be addressed is the evalu-
ation of the weighting matrix W that involves the unknown
true target position u𝑜. To bypass this difficulty, we can first
set W to (diag[Qr,Qg])

−1 and use (31) to (39) to obtain an
initial estimate of u𝑜. A better W can then be produced so
that a more precise estimation of u𝑜 can be found. These
steps are interleavedwith the iterations that refine the altitude
constraint in (29).

4.3. Performance Analysis. We shall derive the estimation
covariance matrix of the ICWLS solution and contrast it
with the target geolocation CRLB in (7) to establish the
approximate efficiency of the proposed TDOA- and GROA-
based geolocation technique. For this purpose, first express
the ICWLS solutions in terms of their true values and
estimation errors as u = u𝑜 +Δu and 𝑟̂

1
= 𝑟̂

𝑜

1
+Δ𝑟̂
1
. Similarly,

we may write the regressand and regressor in (22) as htg =

h𝑜tg + Δhtg and gtg = g𝑜tg + Δgtg. We have

𝜀tg = GtgΔu − g𝑜tgΔ𝑟̂

𝑜

1
. (41)

Applying (41), wemay rewrite (30) as, after neglecting the
second-order error terms,

𝐿 (Δu, Δ𝑟̂
1
, 𝜆
1
, 𝜆
2
) = (𝜀tg − GtgΔu + g𝑜tgΔ𝑟̂

1
)

𝑇

⋅W (𝜀tg − GtgΔu + g𝑜tgΔ𝑟̂)

+ 𝜆
1
[2 (s
1
− u𝑜)𝑇 Δu + 2𝑟̂

𝑜

1
Δ𝑟̂
1
] + 𝜆
2
(2u𝑜𝑇Δu) .

(42)
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Setting the partial derivatives of 𝐿(Δu, Δ𝑟̂
1
, 𝜆
1
, 𝜆
2
) with

respect to Δu, Δ𝑟̂
1
, 𝜆
1
, and 𝜆

2
to zeros yields

− G𝑇tgW (𝜀tg − GtgΔu + g𝑜tgΔ𝑟̂
1
) + 𝜆
1
(s
1
− u𝑜)

+ 𝜆
2
u𝑜 = 0,

(43)

g𝑜𝑇tg W (𝜀tg − GtgΔu + g𝑜tgΔ𝑟̂) + 𝜆
1
𝑟̂

𝑜

1
= 0, (44)

Δ𝑟̂
1
= −

1

𝑟̂

𝑜

1

(s
1
− u𝑜)𝑇 Δu, (45)

u𝑜𝑇Δu = 0. (46)

Substitution of (45) into (44) leads to

𝜆
1
= −

1

𝑟̂

𝑜

1

g𝑜𝑇tg W (𝜀tg − G𝑜𝑇s Δu) ,

G𝑜𝑇s = Gtg +

1

𝑟̂

𝑜

1

g𝑜tg (s1 − u𝑜)𝑇 .
(47)

Putting (45) and (47) into (43), we obtain

Δu = (G𝑜𝑇s WG𝑜s)
−1

(G𝑜𝑇s W𝜀tg − 𝜆
2
u𝑜) . (48)

Moreover, from (46) and (48), we have

𝜆
2
=

u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1

G𝑜𝑇s W𝜀tg
u𝑜𝑇 (G𝑜𝑇s WG𝑜s)

−1 u𝑜
.

(49)

By putting (49) into (48), the geolocation error of the ICWLS
solution can be shown to be equal to

Δu =
[

[

I −
(G𝑜𝑇s WG𝑜s)

−1

u𝑜u𝑜𝑇

u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1 u𝑜

]

]

(G𝑜𝑇s WG𝑜s)
−1

⋅ G𝑜𝑇s W𝜀tg.

(50)

With the assumption that the TDOA and GROA mea-
surement errors are zero-meanGaussian distributed, we have
𝐸(𝜀tg) = 0 and

𝐸 (Δu) = 0. (51)

This indicates that, under small measurement and receiver
position errors, the proposed ICWLS geolocation solution is
unbiased.

The covariance matrix of Δu, from (50), is

cov (u) =
[

[

I −
(G𝑜𝑇s WG𝑜s)

−1

u𝑜u𝑜𝑇

u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1 u𝑜

]

]

(G𝑜𝑇s WG𝑜s)
−1

. (52)

It can be expressed in the following equivalent form:

cov (u) = (G𝑜𝑇s WG𝑜s)
−1

− (G𝑜𝑇s WG𝑜s)
−1

⋅ u𝑜 [u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1

u𝑜]
−1

⋅ u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1

.

(53)

Again, under small measurement and receiver position
errors, we can show that

cov (u) ≈ CCRLB (u𝑜) . (54)

This verifies the approximate efficiency of the proposed
ICWLS geolocation solution.

5. Effect of Altitude Error

The development of the ICWLS solution assumes the avail-
ability of the precise knowledge on the target altitude ℎ. In
practice, this is rarely the case.We shall investigate the impact
of the uncertainty in the target altitude information on the
geolocation accuracy. Different from the errors in the TDOA
and GROAmeasurements, which are assumed to be random,
the altitude error, denoted by Δℎ, is generally unknown but
deterministic.

The analysis starts with replacing ℎ in (30) with ℎ + Δℎ

and defining 𝑟
ℎ
= 𝑁 + ℎ. Following the same approach that

finds the ICWLS geolocation error in (50), we obtain that the
geolocation error now becomes

Δu =
[

[

I −
(G𝑜𝑇s WG𝑜s)

−1

u𝑜u𝑜𝑇

u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1 u𝑜

]

]

(G𝑜𝑇s WG𝑜s)
−1

⋅ G𝑜𝑇s W𝜀tg +

(G𝑜𝑇s WG𝑜s)
−1

u𝑜

u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1 u𝑜

𝑟
ℎ
Δℎ.

(55)

Because the altitude error Δℎ is deterministic, we have

𝐸 (Δu) =

(G𝑜𝑇s WG𝑜s)
−1

u𝑜

u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1 u𝑜

𝑟
ℎ
Δℎ ̸= 0.

(56)

This implies that the presence of target altitude error would
make the ICWLS geolocation result biased, as expected.
Moreover, the second moment of Δu is

𝐸 (ΔuΔu𝑇) = (G𝑜𝑇s WG𝑜s)
−1

−

(G𝑜𝑇s WG𝑜s)
−1

u𝑜u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1

u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1 u𝑜

× [1 −

(𝑟
ℎ
Δℎ)

2

u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1 u𝑜

] .

(57)

Comparing with (53), we can notice that if the following
condition is fulfilled:

Δℎ ≤

1

𝑟
ℎ

√u𝑜𝑇 (G𝑜𝑇s WG𝑜s)
−1 u𝑜, (58)

we have

𝐸 (ΔuΔu𝑇) ≤ (G𝑜𝑇s WG𝑜s)
−1

. (59)



8 International Journal of Antennas and Propagation

Table 1: True positions of the receivers.

Receiver
number 𝑖 Longitude (∘) Latitude (∘) Altitude (m)

1 104.0214E 30.6535N 525
2 104.0250E 30.6800N 565
3 104.0486E 30.6796N 575
4 104.0555E 30.6476N 542
5 104.0213E 30.6690N 534
6 104.0350E 30.6807N 557
7 104.0555E 30.6618N 552
8 104.0381E 30.6507N 511

This means that when the target altitude is known
imprecisely but its error satisfies (58), exploring it can still
improve the geolocation performance over the case where
only TDOA and GROAmeasurements are utilized. However,
the altitude error may significantly degrade the geolocation
accuracy, if condition (58) is violated.

6. Simulations

Consider 𝑀 = 8 receivers whose true positions are
summarized in Table 1. The target is located at (104.0381E∘,
30.6650N∘) with an altitude of 500m. The covariance matri-
ces of the TDOA andGROAmeasurement errors are set to be
Qr = 𝑐

2

𝜎

2

𝑡
R and Qg = 𝜎

2

𝑔
R, and that of the receiver position

error is Qs = 𝜎

2

𝑠
I. R is an (𝑀 − 1) × (𝑀 − 1) matrix with

the diagonal elements being equal to 1 and the off-diagonal
elements all equal to 0.5.

The geolocation accuracy of the proposed ICWLS solu-
tion is quantified by the root mean square error (RMSE),

defined as RMSE(u) =
√
∑

𝐿

𝑙=1
‖u
𝑙
− u𝑜‖
2

/𝐿. u
𝑙
is the target

position estimate at the 𝑙th ensemble run, and 𝐿 = 5000 is
the total number of ensemble runs. In each ensemble run, the
TDOA and GROAmeasurements and the erroneous receiver
positions are generated by adding to the true values indepen-
dent zero-mean Gaussian noise with covariance matricesQr,
Qg, andQs.

For the purpose of comparison, we simulate a benchmark
technique, referred to as the improved two-step weighted
least-squares (ITSWLS) algorithm. The improved two-step
method is developed on the basis of the two-step TDOA-
and GROA-based localization algorithm originally proposed
in [11]. We follow the approach in [4] to generalize the
solution from [11] to take into consideration the presence of
receiver position errors. Equation (28) is also included as an
additional solution equation in the first-step processing of
the benchmark technique to account for the target altitude
information.All simulationswere performedusingMATLAB
R2009b on a desktop PC with an Intel i5-3470 3.2GHz CPU
and 2.0GBRAM (the code for implementing the proposed
ICWLS method can be provided upon request).

Figure 2 compares the geolocation accuracies of the
ICWLS and ITSWLS solutions as a function of the standard
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Figure 2: Comparison of target geolocation RMSEs of ITSWLS and
ICWLS as a function of 𝑐𝜎
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Figure 3: Comparison of target geolocation RMSEs of ITSWLS and
ICWLS as a function of 𝜎

𝑔
.

deviation of the TDOA measurement noise 𝜎
𝑡
. The standard

deviations of the GROA measurement and receiver position
errors are 𝜎

𝑔
= 10

−3 and 𝜎
𝑠
= 10

−6m. An altitude error of
10m is assumed.

Figure 3 plots the estimation RMSEs of the two simulated
geolocation algorithms as a function of the standard devia-
tion of the GROA measurement noise 𝜎

𝑔
. In this simulation,

we set 𝜎
𝑡
= 10

−9 s and 𝜎
𝑠
= 10

−6m.The altitude error remains
to be 10m.

Figure 4 shows as a function of the standard deviation of
the receiver position error 𝜎

𝑠
the geolocation RMSE of the

two considered geolocation techniques. We set 𝜎
𝑡
= 10

−9 s
and 𝜎

𝑔
= 10

−3 while keeping the altitude error at 10m.
Also included in Figures 2–4 are the associated target

geolocation CRLBs in (7) (CCRLB(u𝑜)) and the CRLBs of



International Journal of Antennas and Propagation 9

0−80 −60 −40 −20−100−120

20 log(𝜎s) (m)

CRLB
CCRLB

ITSWLS
ICWLS

−10

−5

0

5

10

15

20

25

10
lo

g(
RM

SE
)

(m
)

Figure 4: Comparison of target geolocation RMSEs of ITSWLS and
ICWLS as a function of 𝜎

𝑠
.

RMSE
ITSWLS
ICWLS

−10

−5

0

5

10

15

20

25

30

35

40

−20 20 40 60 80 100 1200
20 log(Δh) (m)

10
lo

g(
RM

SE
)

(m
)

Figure 5: Comparison of target geolocation RMSEs of ITSWLS and
ICWLS as a function of Δℎ.

the target position (CRLB(u𝑜)) when the altitude information
is absent.

In the last experiment, we investigate the effect of target
altitude error.The results are summarized in Figure 5, where,
as a function of the target altitude error Δℎ, the geolocation
RMSEs of the two algorithms under consideration are con-
trasted with respect to the theoretical results given in (57).
We set 𝜎

𝑡
= 10

−9 s, 𝜎
𝑔
= 10

−3, and 𝜎
𝑠
= 10

−6m.
We obtain the following observations from Figures 2–5:

(1) Comparing CCRLB(u𝑜) and CRLB(u𝑜) reveals that
exploring the target altitude information can signif-
icantly improve the target geolocation accuracy.

(2) Both the ICWLS and ITSWLS methods are able to
attain the CRLB accuracy under small noise condi-
tions. But ICWLS appears to be more robust to larger
noise levels. This might be explained by noting that,
within ICWLS, the functional relationship between
the unknown target position u𝑜 and the nuisance
parameter 𝑟̂

𝑜

1
(i.e., 𝑟̂𝑜

1
= ‖u𝑜 − s

1
‖) is explored as an

equality constraint onu𝑜. On the other hand, ITSWLS
first ignores them being dependent and utilizes their
functional relationship in a separate processing stage.

(3) In this simulation, the geolocation RMSE from sim-
ulations matches the theoretical value well. This
justifies the validity of the analysis in Section 5.

7. Conclusion

This work investigated geolocating a target on the Earth
surface fromTDOA andGROAmeasurements.The practical
scenario where the known receiver positions have errors was
also taken into consideration. CRLB analysis showed that
the use of target altitude information can improve the target
geolocation accuracy. An algebraic closed-form geolocation
solution, based on formulating the geolocation task as an
equality-constrained optimization problem, was developed.
It can reach the CRLB accuracy under small Gaussian noise
and it was shown via simulations to be able to outperform a
benchmark technique at relatively large noise levels.

Appendix

This appendix derives the matrix F in (8). By the matrix
derivative lemma [27] and from (2), we have that the Jacobian
F of the constraint 𝑓(u𝑜) is

F =

𝜕 [u𝑜𝑇Pu𝑜 − (𝑁 + ℎ)

2

]

𝜕u𝑜

=

(𝜕u𝑜𝑇)Pu𝑜

𝜕u𝑜
+

u𝑜𝑇 (𝜕P) u𝑜

𝜕u𝑜
+

u𝑜𝑇P (𝜕u𝑜)
𝜕u𝑜

− 2 (𝑁 + ℎ)

𝜕𝑁

𝜕u𝑜

= 2Pu𝑜 + u𝑜Puu
𝑜𝑇

− 2 (𝑁 + ℎ)

𝜕𝑁

𝜕u𝑜
,

(A.1)

where

Pu =

𝜕P
𝜕u𝑜

=

𝜕P
𝜕𝛼

⋅

𝜕𝛼

𝜕u𝑜
. (A.2)

By the chain rule of the partial derivative, we have

𝜕P
𝜕𝛼

=

𝜕P
𝜕𝑁

⋅

𝜕𝑁

𝜕𝛼

, (A.3)
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where

𝜕P
𝜕𝑁

= diag{0, 0,

2𝑒

2

ℎ (𝑁 + ℎ)

[𝑁 (1 − 𝑒

2
) + ℎ]

3
} ,

𝜕𝑁

𝜕𝛼

=

𝑟𝑒

2 sin (𝛼) cos (𝛼)
[1 − 𝑒

2sin2 (𝛼)]3/2
.

(A.4)

We proceed to evaluate 𝜕𝛼/𝜕u𝑜. Let 𝜑 = [𝛼, 𝛽, ℎ]

𝑇 be
the geodetic coordinates of the target. From (1), we have that
𝜕u𝑜/𝜕𝜑 is equal to

T
1
=

[

[

[

[

[

[

[

[

𝜕𝑥

𝑜

𝜕𝛼

𝜕𝑥

𝑜

𝜕𝛽

𝜕𝑥

𝑜

𝜕ℎ

𝜕𝑦

𝑜

𝜕𝛼

𝜕𝑦

𝑜

𝜕𝛽

𝜕𝑦

𝑜

𝜕ℎ

𝜕𝑧

𝑜

𝜕𝛼

𝜕𝑧

𝑜

𝜕𝛽

𝜕𝑧

𝑜

𝜕ℎ

]

]

]

]

]

]

]

]

=

[

[

[

[

− (𝑁 + ℎ) sin𝛼 cos𝛽, − (𝑁 + ℎ) cos𝛼 sin𝛽, cos𝛼 cos𝛽
− (𝑁 + ℎ) sin𝛼 sin𝛽, (𝑁 + ℎ) cos𝛼 cos𝛽, cos𝛼 sin𝛽

(𝑁(1 − 𝑒

2

) + ℎ) cos𝛼, 0, sin𝛼

]

]

]

]

.

(A.5)

Then, it is easy to show that

[

[

[

[

[

[

[

[

𝜕𝛼

𝜕𝑥

𝑜

𝜕𝛼

𝜕𝑦

𝑜

𝜕𝛼

𝜕𝑧

𝑜

𝜕𝛽

𝜕𝑥

𝑜

𝜕𝛽

𝜕𝑦

𝑜

𝜕𝛽

𝜕𝑧

𝑜

𝜕ℎ

𝜕𝑥

𝑜

𝜕ℎ

𝜕𝑦

𝑜

𝜕ℎ

𝜕𝑧

𝑜

]

]

]

]

]

]

]

]

= T−1
1

= T
2
, (A.6)

𝜕𝛼

𝜕u𝑜
= T
2
(1, :) , (A.7)

where T
2
(1, :) denotes the first row of T

2
. Then

𝜕𝑁

𝜕u𝑜
=

𝜕𝑁

𝜕𝛼

𝜕𝛼

𝜕u𝑜
=

𝑟𝑒

2 sin (𝛼) cos (𝛼)
[1 − 𝑒

2sin2 (𝛼)]3/2
T
2
(1, :)𝑇 . (A.8)

Putting (A.3), (A.7), and (A.8) into (A.2) yields the
desired Jacobian F.
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