12 research outputs found

    Locomotion Analysis of Hexapod Robot

    Get PDF

    Fault-Tolerant Gait Planning of Multi-Legged Robots

    Get PDF

    Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields

    Get PDF
    Untethered soft robots have the potential to impact a variety of applications, particularly if they are capable of controllable locomotion and dexterous manipulation. Magnetic fields can provide humansafe, contactless actuation, opening the gates to applications in confined spaces - for example, in minimally invasive surgery. To translate these concepts into reality, soft robots are being developed with different capabilities, such as functional components to achieve motion and object manipulation. This paper investigates the tandem actuation of two separate functions (locomotion and grasping) through multi-legged soft robots with grippers, actuated by magnetic fields. The locomotion and grasping functions are activated separately by exploiting the difference in the response of the soft robots to the magnitude, frequency and direction of the actuating magnetic field. Two robots capable of performing controllable straight and turning motions are demonstrated: a millipede-inspired robot with legs moving in a rhythmic pattern, and a hexapod robot with six magnetic legs following an alternating tripod gait. Two types of grippers are developed: one inspired by prehensile tails and another similar to flowers or jellyfish. The various components are fabricated using a composite of silicone rubber with magnetic powder, and analyzed using quasi-static models and experimental results. Fully untethered locomotion of the robots and independent gripper actuation are illustrated through experiments. The maneuverability of the robots is proven through teleoperated steering experiments where the robots navigate through the workspace while avoiding obstacles. The ability of the robots to manipulate objects by operating in tandem with the grippers is demonstrated through multiple experiments, including pick-and-place tasks where the robots grasp and release cargo at specific locations when triggered using magnetic fields. (C) 2020 The Authors. Published by Elsevier Ltd

    Design Issues for Hexapod Walking Robots

    Get PDF
    Hexapod walking robots have attracted considerable attention for several decades. Many studies have been carried out in research centers, universities and industries. However, only in the recent past have efficient walking machines been conceived, designed and built with performances that can be suitable for practical applications. This paper gives an overview of the state of the art on hexapod walking robots by referring both to the early design solutions and the most recent achievements. Careful attention is given to the main design issues and constraints that influence the technical feasibility and operation performance. A design procedure is outlined in order to systematically design a hexapod walking robot. In particular, the proposed design procedure takes into account the main features, such as mechanical structure and leg configuration, actuating and driving systems, payload, motion conditions, and walking gait. A case study is described in order to show the effectiveness and feasibility of the proposed design procedure

    Intelligent approaches in locomotion - a review

    Get PDF

    Hexapod robot stability research

    Get PDF
    El trabajo consiste en una primera parte en la que se estudia analíticamente la composición del robot hexápodo, descomponiéndolo en sus diferentes componentes físicos así como una introducción a la estabilidad del robot, tipos de estabilidad y métodos para su análisis.Grado en Ingeniería en Electrónica Industrial y Automátic

    Equilibri del robot AIBO utilitzant DMPs

    Get PDF
    El treball presentat s'emmarca en una iniciativa global que te com a objectiu la recuperació del robot AIBO de Sony. Aquest treball s'ha fet per demostrar el bon funcionament de l'arquitectura proposada. L'arquitectura que es proposa es tal que permet la comunicació de l'AIBO amb ROS (Robot Operating System), a través d'un client URBI (Universal Robot Body Interface). En aquest treball, s'exposa com s'es capaç d'implementar l'algorisme de DMP (Dyamic Movement Primitive) a través d'un entorn estat de l'art com es ROS. El robot AIBO es controlat en tot moment, tot i processar-se l'algorisme de DMPs fora del robot, amb un temps de resposta adequat per la tasca de reaccionar davant els moviments no desitjats de la plataforma sobre la que es troba. Aquests moviments són interpretats gràcies a un sensor triaxial d'accelerometria (MPU6050) i un giroscopi de tres eixos (GY-521), col locats sobre el robot. Finalment, es plantegen futurs treballs per millorar la tasca utilitzant l'algorisme PI2 (Path Integral Policy Improvement), una plataforma automatitzada, visi o i la millora d'un model creat a l'inici del treball

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study
    corecore