158 research outputs found

    A parallel algorithm for computing the group inverse via Perron complementation

    Full text link

    Spectral degeneracy and escape dynamics for intermittent maps with a hole

    Full text link
    We study intermittent maps from the point of view of metastability. Small neighbourhoods of an intermittent fixed point and their complements form pairs of almost-invariant sets. Treating the small neighbourhood as a hole, we first show that the absolutely continuous conditional invariant measures (ACCIMs) converge to the ACIM as the length of the small neighbourhood shrinks to zero. We then quantify how the escape dynamics from these almost-invariant sets are connected with the second eigenfunctions of Perron-Frobenius (transfer) operators when a small perturbation is applied near the intermittent fixed point. In particular, we describe precisely the scaling of the second eigenvalue with the perturbation size, provide upper and lower bounds, and demonstrate L1L^1 convergence of the positive part of the second eigenfunction to the ACIM as the perturbation goes to zero. This perturbation and associated eigenvalue scalings and convergence results are all compatible with Ulam's method and provide a formal explanation for the numerical behaviour of Ulam's method in this nonuniformly hyperbolic setting. The main results of the paper are illustrated with numerical computations.Comment: 34 page

    Convergence Analysis for Discrete-Time Quantum Semigroup

    Get PDF
    In this work the asymptotic behavior of completely-positive trace-precerving maps is analyzed. First, the probabilities of converging to invariant subspaces, in the limit of infinite iteration, are studied. Next, two different decompositions of the quantum system's Hilbert space are introduced, both aimed to analyze the convergence behavior and speed. Finally the possibilities that the dynamics converges to a subspace, after a finite amount of time, is investigate

    Modeling Conformational Ensembles of Slow Functional Motions in Pin1-WW

    Get PDF
    Protein-protein interactions are often mediated by flexible loops that experience conformational dynamics on the microsecond to millisecond time scales. NMR relaxation studies can map these dynamics. However, defining the network of inter-converting conformers that underlie the relaxation data remains generally challenging. Here, we combine NMR relaxation experiments with simulation to visualize networks of inter-converting conformers. We demonstrate our approach with the apo Pin1-WW domain, for which NMR has revealed conformational dynamics of a flexible loop in the millisecond range. We sample and cluster the free energy landscape using Markov State Models (MSM) with major and minor exchange states with high correlation with the NMR relaxation data and low NOE violations. These MSM are hierarchical ensembles of slowly interconverting, metastable macrostates and rapidly interconverting microstates. We found a low population state that consists primarily of holo-like conformations and is a “hub” visited by most pathways between macrostates. These results suggest that conformational equilibria between holo-like and alternative conformers pre-exist in the intrinsic dynamics of apo Pin1-WW. Analysis using MutInf, a mutual information method for quantifying correlated motions, reveals that WW dynamics not only play a role in substrate recognition, but also may help couple the substrate binding site on the WW domain to the one on the catalytic domain. Our work represents an important step towards building networks of inter-converting conformational states and is generally applicable

    Essays on the economics of networks

    Get PDF
    Networks (collections of nodes or vertices and graphs capturing their linkages) are a common object of study across a range of fields includ- ing economics, statistics and computer science. Network analysis is often based around capturing the overall structure of the network by some reduced set of parameters. Canonically, this has focused on the notion of centrality. There are many measures of centrality, mostly based around statistical analysis of the linkages between nodes on the network. However, another common approach has been through the use of eigenfunction analysis of the centrality matrix. My the- sis focuses on eigencentrality as a property, paying particular focus to equilibrium behaviour when the network structure is fixed. This occurs when nodes are either passive, such as for web-searches or queueing models or when they represent active optimizing agents in network games. The major contribution of my thesis is in the applica- tion of relatively recent innovations in matrix derivatives to centrality measurements and equilibria within games that are function of those measurements. I present a series of new results on the stability of eigencentrality measures and provide some examples of applications to a number of real world examples
    • …
    corecore