52 research outputs found

    A Collision Avoidance Based Energy Efficient Medium Access Control Protocol for Clustered Underwater Wireless Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) are typically deployed in energy constrained environments where recharging energy sources and replacing batteries are not viable. This makes energy efficiency in UWSNs a crucial directive to be followed during Medium Access Control (MAC) design. Multiplexing and scheduling based protocols are not ideal for UWSNs because of their strict synchronization requirements, longer latencies and constrained bandwidth.This paper presents the development and simulation analysis of a novel cross-layer communication based MAC protocol called Energy Efficient Collision Avoidance (EECA) MAC protocol. EECA-MAC protocol works on the principle of adaptive power control, controlling the transmission power based on the signal strength at the receiver. EECA-MAC enhances the conventional 4-way handshake to reduce carrier sensing by implementing an enhanced Request to Send (RTS) and Clear to Send (CTS) handshake and an improved back-off algorithm.Simulation analysis shows that the measures taken to achieve energy efficiency have a direct effect on the number of packet retransmissions. Compared to the Medium Access with Collision Avoidance (MACA) protocol, EECA-MAC shows a 40% reduction in the number of packets that are delivered after retransmissions. This reduction, coupled with the reduced signal interference, results in a 16% drop in the energy utilized by the nodes for data transmission

    Underwater Sensor Networks: Applications, Advances, and Challenges

    Get PDF
    This paper examines the main approaches and challenges in the design and implementation of underwater wireless sensor networks. We summarize key applications and the main phenomena related to acoustic propagation, and discuss how they affect the design and operation of communication systems and networking protocols at various layers. We also provide an overview of communications hardware, testbeds, and simulation tools available to the research community

    Network protocols and time synchronization for underwater acoustic networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Medium access control, error control and routing in underwater acoustic networks: a discussion on protocol design and implementation

    Get PDF
    The journey of underwater communication which began from Leonardo’s era took four and a half centuries to ïŹnd practical applications for military purposes during World War II. However, over the last three decades, underwater acoustic communications witnessed a massive development due to the advancements in the design of underwater communicating peripherals and their supporting protocols. Successively, doors are opened for a wide range of applications to employ in the underwater environment, such as oceanography, pollution monitoring, offshore exploration, disaster prevention, navigation assistance, monitoring, coastal patrol and surveillance. Different applications may have different characteristics and hence, may require different network architectures. For instance, routing protocols designed for unpartitioned multi-hop networks are not suitable for Delay-Tolerant Networks. Furthermore, single-hop networks do not need routing protocols at all. Therefore, before developing a protocol one must study the network architecture properly and design it accordingly. There are several other factors which should also be considered with the network architecture while designing an efïŹcient protocol for underwater networks, such as long propagation delay, limited bandwidth, limited battery power, high bit error rate of the channel and several other adverse properties of the channel, such as, multi-path, fading and refractive behaviors. Moreover, the environment also has an impact on the performance of the protocols designed for underwater networks. Even temperature changes in a single day have an impact on the performance of the protocols. A good protocol designed for any network should consider some or all of these characteristics to achieve better performance. In this thesis, we ïŹrst discuss the impact of the environment on the performance of MAC and routing protocols. From our investigation, we discover that even temperature changes within a day may affect the sound speed proïŹle and hence, the channel changes and the protocol performance vary. After that we discuss several protocols which are speciïŹcally designed for underwater acoustic networks to serve different purposes and for different network architectures. Underwater Selective Repeat (USR) is an error control protocol designed to assure reliable data transmission in the MAC layer. One may suspect that employing an error control technique over a channel which already suffers from long propagation delays is a burden. However, USR utilizes long propagation by transmitting multiple packets in a single RTT using an interlacing technique. After USR, a routing protocol for surveillance networks is discussed where some sensors are laid down at the bottom of the sea and some sinks are placed outside the area. If a sensor detects an asset within its detection range, it announces the presence of intruders by transmitting packets to the sinks. It may happen that the discovered asset is an enemy ship or an enemy submarine which creates noise to jam the network. Therefore, in surveillance networks, it is necessary that the protocols have jamming resistance capabilities. Moreover, since the network supports multiple sinks with similar anycast address, we propose a Jamming Resistance multi-path Multi-Sink Routing Protocol (MSRP) using a source routing technique. However, the problem of source routing is that it suffers from large overhead (every packet includes the whole path information) with respect to other routing techniques, and also suffers from the unidirectional link problem. Therefore, another routing protocol based on a distance vector technique, called Multi-path Routing with Limited Cross-Path Interference (L-CROP) protocol is proposed, which employs a neighbor-aware multi-path discovery algorithm to support low interference multiple paths between each source-destination pair. Following that, another routing protocol is discussed for next generation coastal patrol and surveillance network, called Underwater Delay-Tolerant Network (UDTN) routing where some AUVs carry out the patrolling work of a given area and report to a shore based control-center. Since the area to be patrolled is large, AUVs experience intermittent connectivity. In our proposed protocol, two nodes that understand to be in contact with each other calculate and divide their contact duration equally so that every node gets a fair share of the contact duration to exchange data. Moreover, a probabilistic spray technique is employed to restrict the number of packet transmissions and for error correction a modiïŹed version of USR is employed. In the appendix, we discuss a framework which was designed by our research group to realize underwater communication through simulation which is used in most of the simulations in this thesis, called DESERT Underwater (short for DEsign, Simulate, Emulate and Realize Test-beds for Underwater network protocols). It is an underwater extension of the NS-Miracle simulator to support the design and implementation of underwater network protocols. Its creation assists the researchers in to utilizing the same codes designed for the simulator to employ in actual hardware devices and test in the real underwater scenario

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Cooperative Localization in Mobile Underwater Acoustic Sensor Networks

    Get PDF
    Die großflĂ€chige Erkundung und Überwachung von Tiefseegebieten gewinnt mehr und mehr an Bedeutung fĂŒr Industrie und Wissenschaft. Diese schwer zugĂ€nglichen Areale in der Tiefsee können nur mittels Teams unbemannter Tauchbote effizient erkundet werden. Aufgrund der hohen Kosten, war bisher ein Einsatz von mehreren autonomen Unterwasserfahrzeugen (AUV) wirtschaftlich undenkbar, wodurch AUV-Teams nur in Simulationen erforscht werden konnten. In den letzten Jahren konnte jedoch eine Entwicklung hin zu gĂŒnstigeren und robusteren AUVs beobachtet werden. Somit wird der Einsatz von AUV-Teams in Zukunft zu einer realen Option. Die wachsende Nachfrage nach Technologien zur UnterwasseraufklĂ€rung und Überwachung konnte diese Entwicklung noch zusĂ€tzlich beschleunigen. Eine der grĂ¶ĂŸten technischen HĂŒrden fĂŒr tief tauchende AUVs ist die Unterwasserlokalisierug. SatelitengestĂŒtzte Navigation ist in der Tiefe nicht möglich, da Radiowellen bereits nach wenigen Metern im Wasser stark an IntensitĂ€t verlieren. Daher mĂŒssen neue AnsĂ€tze fĂŒr die Unterwasserlokalisierung entwickelt werden die sich auch fĂŒr FahrzeugenverbĂ€nde skalieren lassen. Der Einsatz von AUV-Teams ermöglicht nicht nur völlig neue Möglichkeiten der Kooperation, sondern erlaubt auch jedem einzelnen AUV von den Navigationsdaten der anderen Fahrzeuge im Verband zu profitieren, um die eigene Lokalisierung zu verbessern. In dieser Arbeit wird ein kooperativer Lokalisierungsansatz vorgestellt, welcher auf dem Nachrichtenaustausch durch akustische Ultra-Short Base-Line (USBL) Modems basiert. Ein akustisches Modem ermöglicht die Übertragung von Datenpaketen im Wasser, wĂ€rend ein USBL-Sensor die Richtung einer akustischen Quelle bestimmen kann. Durch die Kombination von Modem und Sensor entsteht ein wichtiges Messinstrument fĂŒr die Unterwasserlokalisierung. Wenn ein Fahrzeug ein Datenpaket mit seiner eignen Position aussendet, können andere Fahrzeuge mit einem USBL-Modem diese Nachricht empfangen. In Verbindung mit der Richtungsmessung zur Quelle, können diese Daten von einem Empfangenden AUV verwendet werden, um seine eigene Positionsschatzung zu verbessern. Diese Arbeit schlĂ€gt einen Ansatz zur Fusionierung der empfangenen Nachricht mit der Richtungsmessung vor, welcher auch die jeweiligen Messungenauigkeiten berĂŒcksichtigt. Um die Messungenauigkeit des komplexen USBL-Sensors bestimmen zu können, wurde zudem ein detailliertes Sensormodell entwickelt. ZunĂ€chst wurden existierende AnsĂ€tze zur kooperativen Lokalisierung (CL) untersucht, um daraus eine Liste von erwĂŒnschten Eigenschaften fĂŒr eine CL abzuleiten. Darauf aufbauend wurde der Deep-Sea Network Lokalisation (DNL) Ansatz entwickelt. Bei DNL handelt es sich um eine CL Methode, bei der die Skalierbarkeit sowie die praktische Anwendbarkeit im Fokus stehen. DNL ist als eine Zwischenschicht konzipiert, welche USBL-Modem und Navigationssystem miteinander verbindet. Es werden dabei Messwerte und Kommunikationsdaten des USBL zu einer Standortbestimmung inklusive RichtungsschĂ€tzung fusioniert und an das Navigationssystem weiter geleitet, Ă€hnlich einem GPS-Sensor. Die FunktionalitĂ€t von USBL-Modell und DNL konnten evaluiert werden anhand von Messdaten aus Seeerprobungen in der Ostsee sowie im Mittelatlantik. Die QualitĂ€t einer CL hangt hĂ€ufig von vielen unterschiedlichen Faktoren ab. Die Netzwerktopologie muss genauso berĂŒcksichtig werden wie die LokalisierungsfĂ€higkeiten jedes einzelnen Teilnehmers. Auch das Kommunikationsverhalten der einzelnen Teilnehmer bestimmt, welche Informationen im Netzwerk vorhanden sind und hat somit einen starken Einfluss auf die CL. Um diese Einflussfaktoren zu untersuchen, wurden eine Reihe von Szenarien simuliert, in denen Kommunikationsverhalten und Netzwerktopologie fĂŒr eine Gruppe von AUVs variiert wurden. In diesen Experimenten wurden die AUVs durch ein OberflĂ€chenfahrzeug unterstĂŒtzt, welches seine geo-referenzierte Position ĂŒber DNL an die getauchten Fahrzeuge weiter leitete. Anhand der untersuchten Topologie können die Experimente eingeteilt werden in Single-Hop und Multi-Hop. Single-Hop bedeutet, dass jedes AUV sich in der Sendereichweite des OberflĂ€chenfahrzeugs befindet und dessen Positionsdaten auf direktem Wege erhĂ€lt. Wie die Ergebnisse der Single-Hop Experimente zeigen, kann der Lokalisierungsfehler der AUVs eingegrenzt werden, wenn man DNL verwendet. Dabei korreliert der Lokalisierungsfehler mit der kombinierten Ungenauigkeit von USBL-Messung und OberflĂ€chenfahrzeugposition. Bei den Multi-Hop Experimenten wurde die Topologie so geĂ€ndert, dass sich nur eines der AUVs in direkter Sendereichweite des OberflĂ€chenfahrzeugs befindet. Dieses AUV verbessert seine Position mit den empfangen Daten des OberflĂ€chenfahrzeugs und sendet wiederum seine verbesserte Position an die anderen AUVs. Auch hier konnte gezeigt werden, dass sich der Lokalisierungfehler der Gruppe mit DNL einschrĂ€nken lĂ€sst. Ändert man nun das Schema der Kommunikation so, dass alle AUVs zyklisch ihre Position senden, zeigte sich eine Verschlechterung der LokalisierungsqualitĂ€t der Gruppe. Dieses unerwartet Ergebnis konnte auf einen Teil des DNL-Algorithmus zurĂŒck gefĂŒhrt werden. Da die verwendete USBL-Klasse nur die Richtung eines Signals misst, nicht jedoch die Entfernung zum Sender, wird in der DNL-Schicht eine Entfernungsschatzung vorgenommen. Wenn die Kommunikation nicht streng unidirektional ist, entsteht eine Ruckkopplungsschleife, was zu fehlerhaften Entfernungsschatzungen fĂŒhrt. Im letzten Experiment wird gezeigt wie sich dieses Problem vermeiden lasst, mithilfe einer relativ neue USBL-Klasse, die sowohl Richtung als auch Entfernung zum Sender misst. Die zwei wesentlichen BeitrĂ€ge dieser Arbeit sind das USBL-Model zum einen und zum Anderen, der neue kooperative Lokalisierungsansatz DNL. Mithilfe des Sensormodels lassen sich nicht nur Messabweichungen einer USBL-Messung bestimmen, es kann auch dazu genutzt werden, einige FehlereinflĂŒsse zu korrigieren. Mit DNL wurde eine skalierbare CL-Methode entwickelt, die sich gut fĂŒr den den Einsatz bei mobilen Unterwassersensornetzwerken eignet. Durch das Konzept als Zwischenschicht, lasst sich DNL einfach in bestehende Navigationslösungen integrieren, um die LangzeitstabilitĂ€t der Navigation fĂŒr große VerbĂ€nde von tiefgetauchten Fahrzeugen zu gewĂ€hrleisten. Sowohl USBL-Model als auch DNL sind dabei so ressourcenschonend, dass sie auf dem Computer eines Standard USBL laufen können, ohne die ursprĂŒngliche FunktionalitĂ€t einzuschrĂ€nken, was den praktischen Einsatz zusĂ€tzlich vereinfacht

    Low-power epidemic communication in wireless ad hoc networks

    Get PDF
    Steen, M.R. van [Promotor]Voulgaris, S. [Copromotor
    • 

    corecore