
Low-power epidemic communication
in wireless ad hoc networks

Matthew Carlson Dobson

VRIJE UNIVERSITEIT

Low-power epidemic communication
in wireless ad hoc networks

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. F.A. van der Duyn Schouten,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen
op dinsdag 8 oktober 2013 om 11.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Matthew Carlson Dobson

geboren te Massachusetts, Verenigde Staten

promotor: prof.dr.ir. M.R. van Steen
copromotor: dr. S. Voulgaris

members of the
thesis committee: prof.dr. Koen Langendoen, TU Delft

prof.dr. Konrad Iwanicki, University of Warsaw
prof.dr.ing. Paul Havinga, University of Twente
prof.dr. Wan Fokkink, VU Amsterdam

ISBN 123-45-6789-0123-4

Cover
by Sophia Langeraar

Inside Layout
by Nick Palmer

Printed by Ipskamp Drukkers BV.
http://www.ipskampdrukkers.nl

Copyright © 2013 by Matthew Dobson

To my loving wife,
Thank you for always being,
Mi sol y mi amor

Acknowledgments

There is one person I have to thank for this amazing journey more than anyone else,
and that is my promotor, Prof.dr.ir. Maarten van Steen. Without his confidence to
take me on as a student to begin with, without the countless hours of advice, without
the invaluable insights into what I was doing right (and wrong), I would never have
completed this project. Maarten has a seemingly endless supply of energy and only
minuscule sleep requirements. His tireless enthusiasm for his work rubs off on ev-
eryone around him. Though our schedules were rarely in sync (hence this research),
it often worked to our advantage. I would code or write all night long, and send an
update before I went to bed at 5 in the morning. A few minutes later, he would be
awake and already reviewing what I had sent. Much like hot-bunking in the Navy,
this can be extremely effective. Maarten, thank you for everything you have done for
me in the past 7 years.

Thank you also to my co-promotor, Dr. Spyros Voulgaris. We’ve had endless enter-
taining debates and discussions onmore topics than I can count. As a fellow deadline-
worker, we put in some crazy hours, but (almost) always managed to pull it off. Your
advice over the years has been consistently helpful, particularly your treatise on how
to properly close your car door. Without your assistance I certainly could not have
completed my research, and for that I am incredibly grateful. Thank you for being a
great scientist, adviser and friend.

Thank you to my thesis committee members: Prof.dr. Wan Fokkink, Prof.dr.ing. Paul
Havinga, Prof.dr. Konrad Iwanicki, and Prof.dr. Koen Langendoen. Your feedback
on my thesis was critical, but constructive, and led to a much better final product.
Thank you for the time and effort you have invested in my research.

To everyone, past and present, from the gossiping/wireless/sensor network group,
thank you. Jan-Mark, you tricked me into starting this journey with fodder for an
interesting Masters project. I always enjoyed our (rambling) chats and hope we get
to work together in the future. Daniela, thank you for easing me into my project and
helping me learn the ropes as a PhD student. Albana and Suhail, it was great to be
able to talk through problems, work on the simulator, and perform experiments to-
gether. Best of luck finishing up your theses, and success in your next projects! Rena,
your more theoretical approach to problems is a great counterpoint to my engineer’s
mindset, and I hope academia continues to treat you well. And Claudio, the latest
addition to our group. Your first week on the job was helping to prepare and execute
the largest experiment we performed thus far, but you took it all in stride. Always
quick with a joke, and usually the last one to leave the office, thank you for your help
over the last two years.

Caroline, you are a super-star. How you manage to keep our department running
smoothly is beyond me. No matter how bizarre the request or problem you always
have a smile and solution. Thank you for everything!

ix

Thanks to all my other colleagues at the VU. You all made the VU an interesting and
lively place to work. It is rare to enter the coffee room for a break and not fall into
a discussion on the plot holes in the latest Star Trek movie, the merits of ACLs over
Unix file permissions, or just a classic vim vs. emacs debate. You have made my time
at the university entertaining and educational, and I will always appreciate that.

Thank you to all the good people at Chess. Frits, you’ve been a great source of ideas
and inspiration, and more than a little bit of assistance. Siebren, Roland, Michiel,
Kevin and Bob, you’ve all helped me along my way, and I wouldn’t have made it
through without you.

Thanks to Lex and everyone in the DevLab community. You have provided a forum
for presenting and sharing new ideas, and have been invaluable in providing hard-
ware for our larger experiments. Most of Chapter 3 would not have been possible
without your help.

To all the friends I’ve made since coming to Amsterdam.

Marco, my first friend here in Amsterdam. We started off pursuing Masters degrees
together as classmates, but quickly became friends. We told everyone from Day 1 we
were doing Masters and PhDs, and in the end we both did. Thank you for everything,
but especially for convincing me to stay in Amsterdam. Also, make an honest woman
out of Angela. She’s amazing, and everyone is doing it! (Hi Angela)

Nick, what a crazy ride, my good friend. At first I thought youwere just the weird guy
with the crazy mustache, but after 7 years I am 100% sure of it. We’ve been through
it all in Amsterdam: births, deaths, weddings and everything in between. I’m so glad
that you’re off reaping the rewards of all your hard work back in the Golden State,
and I wish you the best. Though you already have that, with your lovely wife Viola.
Ciao ciao! Mille baci!! Viola, you always keep things interesting, even when you’re
napping. Thanks for all the parties and the “Yeahs!” The crazy part is, with your
work ethic, I’m sure you’ll have this cancer thing solved in no time!

Jeff, my other American Amigo. It wasn’t for long enough, but we were three peas
in a pod. It’s always a blast spending time with you, making crazy plans for future
companies or discussing the mechanics of wormholes. I sincerely wish all your plans
work out, if for no other reason than youmight let me hang out on your private island
in 10 years. The main house will, of course, be architected by your soon-to-be-wife,
Sophia. Soph, your energy is amazing and you love taking on new things. Thanks for
being a friend, and especially for the KICK-ASS cover you made for me.

Eric & Pina, the first of this group to tie the knot. Eric, you’re at the beginning your
own PhD and are in for an interesting few years. Luckily you’ve found a wonderful
girl to help you through it, Pina. Thank you both for all the game nights, whether it
was Settlers of Catan, poker, or some other game I’d just acquired, you were always
in. You two always look so happy together, I hope that never changes.

Alex & Kate, you crazy crime-causing duo! You’re both fantastic and 1000% made
for each other. Your recent wedding was “Da bomb,” as the kids say. Alex, thanks for

0

x

fun times at high altitude and general debauchery at all altitudes. Kate, thanks for
being the best hair-stylist a homeless lumberjack could ask for, and for never having
the word “no” in your vocabulary.

To all the “Dutchies” that are always ready to prove all the stereotypes about Dutch
people wrong: Hend andAnnemarie, Tim, Livia, Tara, Jiska. You guys rawk! Whether
snowboarding or crowdsurfing, making crazy hats or just playing Cowboys and Indi-
ans, you’re always ready to have fun. I’ll never forget some of the crazy times we’ve
had, none of which should be explained here. And a special shout-out to Tim, for
helping me with the translations of various summaries of my thesis. You’re the man!

To my amazing parents and family, who always supported me no matter what.

Mom, you are the most amazing woman in the world. You taught me a love of knowl-
edge, music and traveling. You kept us all together, showed us how to love one an-
other unconditionally, and put up with a lot of crap. I love the fact that no matter
how old you get, you’re always an Xtra Zany Girl, ready to sing a song or dance a
dance that you just made up. There aren’t enough pages to say it fully: thank you.

Dad, I miss you every day. It breaks my heart that you won’t get to see me finish this
journey that I started while you were still here. You taught me acceptance, generosity,
and a sense of spirituality that I treasure daily. I could always talk to you about
anything, and knew you wouldn’t be (too) upset if I called you at 3AM to talk about
jazz. Who ever said life was fair?

Kevin, you were a father for us from day 1. Even though I didn’t make it easy on you
at the beginning, you always loved me as your son. It is an amazing stroke of luck
that we found each other. Thank you for being with me for all of life’s ups and downs,
and I can’t imagine a better man to head our family.

Jeremy, my little brother. Oh, how I abused you growing up. It seems like a lifetime
ago that we were still under the same roof, arguing about anything we could find. It
has been amazing to grow up with you, then to watch you scramble ahead of me in
this race we call life. I cherish the time I have with you, and my glimpses into what
you call “family life.” You are an unbelievably good husband and father, so much so
that I would consider it a victory if I can be half as good.

And last, but certainly not least, MariCarmen. You are the love of my life. Your smile
lights up a room and blinds unsuspecting bystanders. Which can be a problem be-
cause you’re always smiling. Your love of life and enthusiasm is infectious, especially
when you aren’t sleeping. You are brilliant and you are brave, though you would
deny both. I am so proud to call you my wife. Thank you for being with me along
every. single. step. on this crazy trip. TQMQPI!

The future’s so bright, I gotta wear shades...

xi

0

Contents

Contents xii

List of Figures xix

List of Tables xxi

I Introduction 1

1. Introduction 3

1.1. Research problem: enable social ad hoc networking 4

1.2. Ad hoc networking . 5

1.2.1. Mobile ad hoc networks . 5

1.2.2. Wireless mesh networks . 6

1.2.3. Wireless sensor networks . 6

1.2.4. Social ad hoc networks . 6

1.3. Low-power communication . 7

1.3.1. Sensor networks . 8

1.3.2. Other examples . 8

1.4. Epidemic communication . 9

1.4.1. Flooding . 10

1.4.2. Gossiping . 10

1.5. Research goals . 11

1.6. Contributions . 12

1.7. Related work . 13

1.7.1. MAC protocols for sensor networks 13

1.7.2. Synchronization . 17

1.8. Rest of the thesis . 18

xiii

Contents

II Hardware and Software 21

2. GMAC: Gossiping MAC 23

2.1. Motivation . 23

2.2. MyriaNed nodes . 24

2.2.1. Version 2 . 25

2.2.2. Version 3 . 25

2.2.3. Chalcedony . 26

2.3. Comparison with OSI model . 26

2.3.1. Data link layer . 26

2.3.2. Network layer . 29

2.4. Synchronization . 31

2.4.1. Establishing and maintaining synchronized groups 32

2.4.2. Merging synchronized groups . 36

2.5. Other GMAC details . 40

2.5.1. Application layer API . 40

2.5.2. Sync module . 40

2.5.3. Strategy module . 41

3. Real-world experiments 43

3.1. Practical considerations . 43

3.1.1. Manual labor . 44

3.1.2. Timing for measurements . 44

3.1.3. Global frame number . 45

3.1.4. Data integrity . 45

3.1.5. Storage for logs . 46

3.2. Measurements . 46

3.2.1. Active node logs . 46

3.2.2. Sniffer node logs . 47

3.3. Experiments . 49

3.3.1. DevLab cafe . 49

3.3.2. 30 years of computer science in Amsterdam 53

3.3.3. The big game experiment . 59

3.3.4. ICT open . 61

0

xiv

Contents

III Simulating Wireless Ad Hoc Networks 67

4. Synchronization in static network topologies 69

4.1. Simulation environment . 70

4.1.1. Simulator . 70

4.1.2. Network topology . 71

4.1.3. Evaluation . 72

4.2. Synchronization improvements . 75

4.2.1. Maintenance . 75

4.2.2. Detection . 75

4.2.3. Decision . 76

4.2.4. Notification . 77

4.3. Experimental setup . 77

4.3.1. Simulator parameters . 78

4.3.2. GMAC configurations . 79

4.3.3. Scenarios . 79

4.4. Simulation results . 81

4.4.1. Maintenance . 81

4.4.2. Merging . 82

4.5. Conclusions . 92

xv

0

Contents

5. Mobile networks 95

5.1. Synchronization improvements . 95

5.1.1. Maintenance . 96

5.1.2. Detection . 96

5.1.3. Decision . 97

5.1.4. Notification . 98

5.2. Experimental setup . 98

5.2.1. Simulator parameters . 98

5.2.2. GMAC configurations . 99

5.3. Evaluation . 101

5.3.1. Maintenance . 102

5.3.2. Detection . 105

5.3.3. Decision . 107

5.3.4. Notification . 109

5.3.5. Detection revisited . 110

5.3.6. Larger networks . 111

5.4. Conclusions . 114

5.5. History algorithms . 116

0

xvi

Contents

6. Scalable epidemic applications 119

6.1. Context . 120

6.1.1. Estimation of set cardinality . 121

6.1.2. Follow ups . 121

6.1.3. Wireless sensor networks . 122

6.2. Examined techniques . 123

6.2.1. Network size estimation . 123

6.2.2. Multiple bitvectors algorithm . 125

6.2.3. Static bucket algorithm . 125

6.2.4. Dynamic bucket algorithm . 127

6.3. Experimental setup . 128

6.3.1. Simulator parameters . 128

6.3.2. Application variants . 130

6.3.3. Scenarios . 130

6.4. Evaluation . 131

6.4.1. Measurements . 131

6.4.2. Comparison of estimators . 132

6.4.3. K-hop estimation . 135

6.5. Conclusions . 140

IV Discussion 143

7. Discussion 145

7.1. Summary . 145

7.2. Conclusions . 146

7.3. Future work . 147

7.3.1. Scale . 147

7.3.2. Slot allocation . 148

7.3.3. Adaptivity . 148

7.3.4. Improved hardware . 148

7.3.5. Synchronization maintenance . 149

7.4. Final thoughts . 149

xvii

0

Contents

References 151

Summary 155

Samenvatting 157

0

xviii

List of Figures

2.1. An example of GMAC’s scheduling. We depict an abbreviated ten slot
frame (SF = 10) consisting of a four slot active period (SA = 4) and six
slot inactive period (SI = 6, τ = 4

4+6 = 40%) for illustrative purposes. . . 28

2.2. The edges between the nodes represent wireless links. Nodes that are
connected via (a chain of) wireless links are known as a subnet. The
coloring of a node represents the group of nodes with which its active
period overlaps, that is, its syncgroup. The axis at the bottom repre-
sents time, and is divided into individual slots. The numbered dividers
demarcate frames of length Tf rame. Finally, the shaded bars atop the
time-axis represent the duration of the active periods of the similarly-
shaded syncgroups. 32

2.3. The finite state machine describing the operation of GMAC when a
node starts up. INITIAL_LISTEN is the normal starting state, while
SYNCHRONIZED is the goal state. A node will follow the dashed arrows
if it receives no messages in a frame, and the solid arrows if it does
receive a message. 34

2.4. A graphical representation of the cycle problem in GMAC’s decision
mechanism. The axis at the bottom represents time in the same fashion
as Fig 2.2. The additional shaded lines above the axis show the span
of time where the joinmessages from the associated syncgroup will be
respected. 39

3.1. Sniffer timing comparisons . 58

3.2. Timing results from the ICT Open experiment 65

4.1. Graphical representation of the four simulated transmit ranges for
nodes arranged in an 80m grid . 79

4.2. Variation in frame start times, synchronous start 82

4.3. Percentage of unsynchronized nodes, asynchronous start 83

4.4. Group merging using the active detection 85

4.5. The problem with <Active>’s merge mechanism and a proposed solu-
tion, <Active+Ids> . 86

xix

List of Figures

4.6. Comparison of configurations using cluster IDs 87

4.7. Passive detection compared to active detection using our two Singleton
scenarios . 89

4.8. Merging three separate clusters in the ClusterMerge scenario 90

4.9. The effects of density and frame length using the AsynchronousStart
scenario . 91

4.10.Our largest topology, a 64×64 grid of 4096 nodes 92

5.1. The performance of GMAC’s synchronization maintenance on a static
100-node Random Walk network . 103

5.2. The performance of GMAC’s synchronization maintenance on a static
1000-node Random Walk network . 104

5.3. The performance of GMAC’s synchronization maintenance on a mo-
bile 1000-node RandomWalk network 105

5.4. Evaluating GMAC’s detection mechanisms in static networks 107

5.5. Evaluating GMAC’s detection mechanisms in mobile networks 108

5.6. Evaluating GMAC’s decision mechanisms in mobile networks 109

5.7. Evaluating notification mechanisms in mobile networks 110

5.8. A look at the performance of further proposed improvements to GMAC’s
detection behavior, 1000-node mobile networks 112

5.9. GMAC at very large scale: 4000-node mobile networks 113

6.1. Graphical representation of the transmit range using simulated 0.5mW 129

6.2. Graphical representation of three of the node activity scenarios 130

6.3. The performance of our three algorithms for the active scenario, 32×32
grid . 133

6.4. The performance of our three algorithms for the random failure sce-
nario, 32× 32 grid . 134

6.5. Graphical representation of k-hop neighborhoods 136

6.6. The performance of StaticBucket for the active scenario, 1024 nodes . . . 138

6.7. The performance of StaticBucket with network failure 139

0

xx

List of Tables

3.1. Logged data . 47

3.2. Packet data . 48

3.3. Experiment characteristics . 50

3.4. DevLab Cafe experiment details . 50

3.5. 30 Years of Computer Science Celebration experiment details 54

3.6. The Big Game experiment details . 59

3.7. ICT Open experiment details . 62

4.1. Static network topologies investigated in this chapter 78

5.1. Mobile topologies investigated in this chapter 99

5.2. BonnMotion Parameters . 100

5.3. Transmission power settings and associated transmission densities . . . 100

5.4. New GMAC Behaviors . 101

6.1. Network topologies investigated in this chapter 129

xxi

List of Tables

0

xxii

Part I Introduction

1

1. Introduction

Recent advances in electronics and embedded systems have made wireless devices
become smaller, lighter, less intrusive, and significantly cheaper: a commodity. This
enables the deployment of increasingly larger collections of such devices for a mul-
titude of applications, mainly for the collection of observed data (sensor networks).
There is no indication of a slow down in this trend. Quite on the contrary, we expect
wireless networks consisting of tens of thousands of nodes to be common in the near
future. As these devices continue to decline in size and cost, we anticipate a pro-
liferance of wearable wireless devices. Whether physically worn on or as an item of
clothing, such a device can spontaneously form networks with similar devices worn
by people in the vicinity of the device. These networks will therefore consist of many
mobile devices, or nodes, and possibly a number of fixed routers or gateways.

The potential uses of an ad hoc network composed of wearable wireless devices
are vast. Consider, for instance, a (large) group of people at a conference or similar
social event, each wearing a small unobtrusive electronic badge with a limited radio
range. By simply measuring how often and for how long two badges are within range
of each other, we can register social interaction and study the structure of the social
network. Furthermore, by aggregating and disseminating data we can even stimulate
social interaction, for instance by a social gamewhere groups of people (e.g., students
of the same department) increase their score by talking to members of other groups,
and lose points when sticking among themselves. Finally, a family or group of friends
attending a large social event may be informed when they come in close proximity to
each other, helping them to stay in contact. Other applications easily come to mind,
including group-based messaging, finding people with specific profiles, and crowd
management, to name a few. Furthermore, these devices need not be worn by people
at all, but at the right price-point could be attached and used to identify physical
objects. The topology of the resulting network could be used to establish groups of
items that “belong” together, later notifying the user when the node attached to one
of the items leaves the neighborhood of the others.

In general we distinguish two operational modes of wireless devices: externally
powered and battery powered. In an externally powered mode a wireless device re-
ceives its operational power from an external source (e.g., power outlet, generator),
while in a battery powered mode a device relies solely on its battery for supplying
energy. While some devices can operate in both modes (e.g., laptops, smartphones),
we focus exclusively on battery powered operation in this thesis. When operating
with an external power source concerns about energy savings are generally removed,
and energy conservation is a primary objective of this work. Furthermore, any pro-
tocol suitable for battery-powered operation will function in an externally powered
setting, but the opposite is not always true. In the networks described above the
wearable nodes are battery powered devices, and the routers and/or gateways will
typically be externally powered.

Of major concern to battery-powered wireless devices is their lifetime duration,
and energy is the main factor determining it. Decreasing the energy footprint of

3

Research problem: enable social ad hoc networking Introduction

a wireless device boosts its lifetime in a reversely proportional way. Lifetime pre-
dictability is an equally important property of a wireless network for certain applica-
tions. Prolonging the network’s life in a best effort manner is not enough for some
applications that additionally require a reasonable estimation of the network’s life-
time. To guarantee lifetime predictability, the use of energy should be constant and
independent of operation-specific conditions, such as coincidentally high traffic or
unexpected topology changes due to node mobility.

The requirements of long and predictable lifetime duration have led to the GMAC1,
or Gossiping MAC, family of protocols developed by Chess, B.V. In GMAC, nodes ac-
tivate their radios to allow for message exchange for only brief synchronized peri-
ods, while during the majority of their operation the radio is powered off. GMAC
functions in a completely decentralized manner, without the need of any coordinator
nodes or infrastructure. GMAC also uses an epidemic-based communication model
with periodic broadcast messages. GMAC forms the foundation for our solution and
its operation will be described in detail in Chapter 2.

It is clear that to enable communication between two or more nodes, their active
periods should be—at least partially—overlapping. In fact, to fully utilize the energy
nodes spend on their radio circuits, their active periods should be synchronized as
accurately as possible, to maximize the shared communication window. Synchroniza-
tion of active periods in ad-hoc wireless networks is a nontrivial problem, notably
due to the lack of a central coordinator and the inherently restrained nature of such
devices. When confronted with the additional requirement of fixed-rate use of en-
ergy, it becomes a far more challenging problem, as solutions that asymmetrically
put more burden either on the sender or the receiver, are ruled out.

The chief focus of our research is to develop a wireless network protocol for use
by low-powered, energy-constrained devices inmobile ad hoc networks of potentially
massive scale. In the next section, we will give a more detailed description of our re-
search problem. In Sections 1.2 through 1.4, we provide a brief introduction to three
important areas relevant to social ad hoc networks: ad hoc networking, low-power
wireless protocols, and epidemic-based communication. We will then discuss our re-
search goals in the context of these three topics in Section 1.5. Finally, in Section 1.7
we will present a survey of previous research relevant to our own work.

1.1 Research problem: enable social ad hoc networking

At the intersection of wearable computing, wireless ad hoc networks, and social net-
works, lies an area we have dubbed social ad hoc networks. Such networks are com-
posed of nodes carried or worn by people, use wireless communication, do not rely on
existing communication infrastructures, and are battery powered. The aim of these
networks is to capture network dynamics at regular intervals. Social ad hoc networks
can be composed of a large number of tiny nodes and will exhibit arbitrary mobility.
We aim to enable the execution of distributed applications across large-scale social
ad hoc networks. Potential applications for social ad hoc networks include:

1GMAC is protected by US Patent Application 12/215,040 and is available free of charge for academic
use.

1

4

Introduction Ad hoc networking

• Registering social interaction: By simply measuring how often and for how long
two nodes are within range of one another, we can get an impression of the
extent that two people are always in each other’s company. This, in turn, will
allow for analysis of the social structure of the network as a whole by simply
letting each node report its observed neighborhood to a few monitoring nodes.

• Stimulating social interaction: Imagine that conference participants come from a
limited number of non-overlapping groups (e.g., an inter-university event). By
registering interaction between members of different groups, and subsequently
disseminating and displaying information, we can stimulate social interaction
between people who would normally tend to only interact with their own group
members.

• Monitoring group membership: Consider a family or similar group of people at-
tending a large social event. To keep track of each other’s presence, each group
member regularly broadcasts presence information. To prevent maliciously in-
tended traffic analysis for tracking of a lost or isolated member, presence infor-
mation is encrypted and flooded through the network to be recognized only by
members of the same group, as in [1].

Our research problem is to design a wireless network protocol that will enable
the deployment and utilization of large scale social ad hoc networks, as well as the
execution of interesting applications on top of this network protocol. In order to
implement a social ad hoc network, there are many challenges that must be overcome.
We continue by looking at three different research areas that overlap in the setting of
social ad hoc networks and that provide the context and inspiration for the solutions
presented in the rest of this thesis.

1.2 Ad hoc networking

An ad hoc network is formed by a group of devices (nodes) that operate without
the need of existing infrastructure in the form of routers or access points. Nodes
in ad hoc networks communicate wirelessly. Typically networks are formed using
radio communication, though other types of wireless communication (e.g., infra-red,
acoustic) are possible. The first ad hoc networks were built in the 1970’s, inspired by
ALOHAnet [2]. Ad hoc networks are often peer-to-peer networks, but many exceptions
exist. One example is the ad hoc mode offered by the 802.11 family of protocols,
in which one node must act as a central coordinator for its neighborhood. Ad hoc
networks can be grouped into three categories: mobile ad hoc networks, wireless
mesh networks, and wireless sensor networks. To this trio, we add a fourth: social ad
hoc networks.

1.2.1 Mobile ad hoc networks

A mobile ad hoc network is a self-configuring infrastructureless network of mobile
devices connected by wireless. Because it is infrastructureless, all routing must be ac-
complished by the nodes participating in the network. Individual nodes are allowed
to move, so the topology of these networks can change at any time.

example: Vehicular networks

5

1

Ad hoc networking Introduction

1.2.2 Wireless mesh networks

A wireless mesh network is a communications network made up of radio nodes, char-
acterized by organization in a mesh topology. Mesh topologies provide for many re-
dundant paths, and reduce the likelihood of a node failure partitioning the network.
Wireless mesh networks generally feature hierarchical routing via infrastructure de-
vices such as routers and gateways. Typically, most of the nodes in such a network
are stationary, though mobile nodes are often supported.

examples: 802.11s, 802.15.5

1.2.3 Wireless sensor networks

A wireless sensor network is composed of a number of wireless sensor nodes. These
nodes are generally battery-powered, resource constrained devices, and are spatially
distributed to cooperatively monitor physical or environmental conditions (e.g., tem-
perature, humidity, ambient light level) in a given region. Typically these nodes
coordinate in order to relay data through the network to a central server or gateway
where the data can be further processed and/or acted upon.

Network protocols are often tightly coupled with the application or deployment
involved. Constrained resources require simplicity and energy efficiency.

examples: Great Duck Island [3], Potato farming [4]

1.2.4 Social ad hoc networks

A social ad hoc network is an infrastructureless network of battery-powered wearable
devices connected by wireless. This type of network exhibits aspects of the three
previous categories.

First and foremost, the active nodes are mobile and we expect completely arbi-
trary mobility patterns. Because the nodes are worn by people, the network’s topol-
ogy will be dictated by the whims of the participants. This means that links between
individual nodes are likely to be unstable, as a node may change its location at any
time.

Second, even though the transmission range of these low-power wireless devices
is generally short (in our experiments, on the order of 1-5m), we expect that node
density will generally be high enough to create a mesh topology. That is, a node will
often have multiple redundant multi-hop paths to other nodes in the network. These
multiple paths increase the redundancy and reliability of the network’s topology, but
they also make the problem of scheduling collision-free access to the medium diffi-
cult.

Finally, the devices tend to be resource-limited due to their size. Because these
devices are designed to be easily worn or carried, they must be small and lightweight.
This rules out heavy large-capacity batteries, and heat-producing components like
high-performance multi-core CPUs. As such, we focus on simple but efficient and
scalable algorithms in this work.

examples: GMAC [5], Sociometer [6]

1

6

Introduction Low-power communication

1.3 Low-power communication

The subject of power-consumption is an important one in the context of battery-
powered devices. The lifetime duration of a battery-powered node is determined
by its average power use over time. Simply put, a battery has a certain capacity and a
device consumes energy at some rate until the battery’s capacity is exhausted. A wire-
less device’s energy consumption is attributable to a small number of factors. These
are, in order of magnitude:

1. Communication
2. Computation
3. Non-communication I/O (e.g., sensor use, logging to flash)
4. Other (e.g., leakage current, battery wear)

The energy costs of the first two dominate the others, and hence the device’s life-
time is determined by communication and, to a lesser extent, computation needs
of the operating system and applications. An exception to this is the case of smart-
phones and laptops, where the use of the devices screen (i.e., non-communication
I/O) often dominates total energy consumption. Though there has been some re-
search into energy-efficient networking protocols for such devices (discussed below),
the primary focus tends to be on bandwidth, latency and reliability. The majority
of low-power networking research comes from the area of sensor networks, due
to their composition of unattended (and sometimes inaccessible) battery-powered
nodes. Thus, it comes as no surprise that most research aiming at prolonging the
lifetime of wireless networks focuses on limiting the radio operation of the battery
powered devices. Indeed, the radio circuit of some sensor devices are measured to
consume three orders of magnitude more power than the rest of the hardware (CPU,
memory, etc.), either when the radio is in transmitting or receiving mode.

Any time devices communicate via a shared medium, a Media Access Control
(or MAC) protocol must be used. The MAC protocol regulates access to the shared
medium, allowing communication to proceed with minimal interference. Many pop-
ular energy-aware MAC protocols use carrier-sensing or ready-to-send/clear-to-send
handshakes (generally called CSMA, short for carrier sense multiple access), which nec-
essarily use more energy than a properly synchronized TDMA (short for time division
multiple access) protocol that avoids collisions without these mechanisms. Though we
describe both types of protocols in this chapter, our research focuses on synchronized
probabilistic TDMA algorithms.

Regardless of the media access method, the main way to limit the energy spent
on communication is to limit the time for which the radio circuitry is switched on.
This implies intermittently switching the radio on and off. The periods during which
a node’s radio is on or off are known as its active period and inactive period, respec-
tively. The ratio of the time that a node’s radio is on (Tactive) versus the node’s total
operational time (T) is known as the duty cycle. That is,

duty cycle =
Tactive
T

=
Tactive

Tactive +Tinactive

7

1

Low-power communication Introduction

For example, a node that is active for 100ms every second has a duty cycle of 100ms
1000ms =

10% and will remain active about ten times longer than the same device operating
without duty cycling.

1.3.1 Sensor networks

The sensor network community has contributed a wealth of networking protocols,
all with a focus on energy-efficiency. For example, [7] describes 74 different MAC
protocols designed for wireless sensor networks. Many of these protocols are tailored
to specific use-cases, whether that be a particular application or communication class
or even custom-made for a single deployment.

As is typical, a number of different trade-offs exist. Saving energy on communica-
tion often has costs in other areas. For example, the use of the duty cycling technique
described above reduces energy consumption but adds latency to message exchanges
when compared to an always-on protocol. Optimizing for power use generally forces
concessions in the area of bandwidth and latency. As mentioned earlier, this is why
energy-efficiency is not a primary focus of the 802.11 family of WiFi protocols.

Nevertheless, significant energy savings can be achieved by choosing (or design-
ing) a MAC protocol appropriate for the deployment’s use-case. Further savings can
often be realized by also taking into account the communication pattern exhibited
by the application. An example is the extended preamble technique used by some pro-
tocols where message broadcasts are infrequent. By requiring the sender to send a
long preamble before its actual message, receivers can save energy by waking up pe-
riodically and listening to determine whether any neighbor has data to send. This
technique imposes asymmetric costs on the sender and receiver, leveraging the fact
that transmissions are rare.

1.3.2 Other examples

The the majority of research into low energy communication protocols is focused on
the domain of wireless sensor networks, there are several exceptions. Among these
are PAMAS, EC-MAC, and the low energy variant of the popular Bluetooth protocol,
BLE.

In [8], the authors present the Power Aware Multi-Access protocol with Signaling,
or PAMAS protocol. In this protocol, nodes utilize separate data and control chan-
nels. The control channel is reserved for RTS/CTS messages and a “busy tone” that
is broadcast when a node has requested transmission. Using the control channel,
the protocol is able to determine occasions when the node cannot receive packets
(because a neighbor is sending a packet to a third node) or when the node cannot
broadcast a packet (because a neighbor is receiving a message from a third node). In
these cases the node’s radio will consume energy for no utility, so PAMAS deactivates
a node’s radio in such situations. Their simulations indicate power savings of 50%

1

8

Introduction Epidemic communication

or more over an always-on version of PAMAS. However, the use of multiple channel
frequencies is impractical on the nodes we use (see Chapter 3).

The authors of [9] and [10] describe the the Energy Conserving Medium Access
Control protocol, or EC-MAC for short. EC-MAC avoids collisions by using an ex-
plicit reservation system, governed by a central base station. Nodes executing the
EC-MAC protocol try to disable their radio during unused slots, and the base station
attempts to schedule contiguous slots whenever possible in order to avoid unnec-
essary radio transitions. Their results indicate the power consumed by a 20 node
network can be reduced by as much as a factor of 1000, compared to the more stan-
dard 802.11 MAC protocol. EC-MAC is also unique as it is a TDMA-based protocol.
Nevertheless, the reliance on infrastructure (in this case, the base stations) makes it
unsuitable for our purposes.

The Bluetooth low energy (BLE) protocol extends the well-established Bluetooth
protocol to include optimizations for low-power use. BLE offers a data rate of 1 Mbps
(equivalent to our hardware) and also utilizes low duty-cycle operation as the pri-
mary means of reducing energy usage. However, BLE is not ideal for our scenarios
as it also uses a master/slave relationship between network nodes. This creates an
asymmetric burden on the master nodes, which need to do more work than the slave
nodes, and precludes our goal of a predictable device lifetime.

1.4 Epidemic communication

Epidemic communication is a term we use to describe a communication paradigm
where information (messages) spread through a network similarly to the way that
a virus infects a biological population [11]. The term gossip protocol is often used
interchangeably with the term epidemic protocol, but here we use epidemic to rep-
resent the general class of algorithms and gossip to represent a specific sub-class of
epidemic protocols.

In epidemic protocols it is typical to classify nodes into one of two states with re-
spect to a data item, di : susceptible or infected. Infected nodes have a copy of di , while
susceptible nodes do not. When a susceptible node receives a message, M , contain-
ing di , it becomes infected. An infected node that removes its local copy of di (e.g.,
its cache slot gets overwritten) returns to the susceptible state. Some models include
a third state, removed, for nodes that cannot be reinfected after leaving the infected
state. Finally, still other models include an exposed state, to represent susceptible
nodes who have a temporary copy of di and can thus potentially infect other nodes
but are not infected themselves.

The epidemic communication paradigm has seen use in a wide variety of areas.
One of early use was in replication of databases [12]. Epidemic communication is
popular in distributed systems research because of its fault tolerance (e.g., resilience
to node failure), robustness (e.g., unaffected by topology changes) and scalability (i.e.,

9

1

Epidemic communication Introduction

with respect to network size). It is precisely for these reasons that GMAC utilizes this
paradigm.

Epidemic protocols, and in particular gossiping protocols, were first investigated
in the context of mathematical models of communication [13], but applications in
sociology and real-life social networks soon followed [14]. In fact, gossiping protocols
are modeled after people spreading a “juicy” rumor. This is yet another reason why
we expect GMAC to be adaptable to our setting of social ad hoc networks.

We classify epidemic protocols into two broad categories, based on whether a
node becomes infected by all data items in a received message, or by only a subset of
them.

1.4.1 Flooding

In a flooding protocol, a node R rebroadcasts messages received from a neighboring
node S in order that it might be received by other neighbors not within the trans-
mission range of S. In these protocols, a message, MS , is composed of a header, HS ,
and a set of data items, DS . Upon receiving MS , node R will store the items in DS

in its local cache, CR. Node R will subsequently broadcast a message, MR, composed
of HR (an updated header) and DS (the original set of data items). Hence, flooding
protocols get their name from the fact that data flows through the network like water
in a flood, eventually infecting all reachable nodes. As above, a node n is considered
infected by item d if d ∈ Cn.

There also exist variants, such as local flooding protocols or probabilistic flooding
protocols. In a local flooding protocol, messages are rebroadcast until a particular hop
count is reached (limiting the propagation of data to only a local neighborhood of the
original sender). In probabilistic flooding protocols, a message is rebroadcast with
a certain probability, generally in an attempt to avoid overloading the underlying
network with too much traffic.

1.4.2 Gossiping

A gossiping protocol is distinguished from a flooding protocol by the fact that nodes
participating in a gossiping protocol only store and rebroadcast part of each received
message. As above, an incoming message, MS , contains a set of data items, DS . In
a gossip-based protocol, a node R receiving message MS will select a subset D′S ⊆ DS

of the data items from the message to add to its local cache, CR. Later on, node R
will select a set of items DR ⊆ CR to include in its own message, MR. The manner
in which a node selects these subsets is known as selection criteria, and determines
how data items will propagate through the network. Examples of selection criteria
include choosing to keep only the most recently generated items (to rapidly prop-
agate new items and discard old ones), or only the least popular items (to prevent
an underrepresented item dying out). Other important parameters are the size of a
node’s local cache, the number of items broadcast in each outgoing message and the
number of items cached from each incoming message.

1

10

Introduction Research goals

1.5 Research goals

The first, and primary concern for almost any mobile device, is energy consumption.
As these mobile nodes are battery powered, careful and judicious use of a node’s fixed
energy budget is essential. The second problem we face is scalability. We require that
our platform operates efficiently on a wide variety of network sizes, from a few tens
of nodes (e.g., a birthday party or small restaurant) to thousands of nodes (e.g., a large
sporting event or stadium rock concert). Our third major challenge is node mobility.
In the social settings where our applications will be executing people are free to
join and leave the network, and to move anywhere they please (i.e., make arbitrary
changes in the network topology). These dynamic changes to network topology can
wreak havoc on many algorithms (e.g., routing and leader election) which assume
stable and symmetric connections between nodes. Another challenge is adaptability.
In any network of such a large scale there will be variations in node density, radio
interference and other environmental factors across the geographical region in which
the network operates. Such factors must be compensated for in a local manner, that
is, nodes must be made aware of their current environmental conditions and adapt
to them. This leads to our final problem, lifetime predictability. Though different
nodes in the same social ad hoc network may experience dramatically different local
conditions, we require that they spend their limited energy budget at a constant rate.
Without this feature, nodes in “interesting” areas (e.g., high density or mobility) will
be more likely to exhaust their batteries and stop operating. Given these problems
and challenges, our research goals are as follows:

Research goal 1: Low and fixed energy consumption Duty cycling is the primary
mechanism for saving energy. One question is, what is the minimal duty cycle that
a node can use? A node must periodically exchange messages with its neighbors in
order to stay synchronized with them and compensate for its clock drift relative to
those neighbors. This synchronization is a primary focus of our work and leads to
another question: to what degree must nodes be synchronized in order to commu-
nicate? Low duty cycles also lead to high messaging latency, but this is mainly a
potential issue for applications above the network layer that may have large band-
width requirements.

Research goal 2: Highly scalable operation We target scenarios with at least one
thousand nodes, but our goal is to scale to the order of ten thousand nodes. Net-
works of this size are much larger than typically seen in existing research, and the
resource-constrained nature of the nodes we use make this level of scalability even
more challenging. Computationally intensive or memory hungry algorithms must
be ruled out. An important question is: for what network sizes are our solutions
effective?

11

1

Contributions Introduction

Research goal 3: Insensitivity to node mobility An interesting challenge of our
research is that of node mobility. Much of the existing work in the field of sensor net-
works assumes that the participating nodes do not move. Many of the protocols that
do allow mobile nodes do so by requiring coordinator nodes to control access within
their local neighborhood. As we focus exclusively on decentralized operation and
predictable network lifetime, such solutions are not appropriate as they place asym-
metric costs on the coordinator nodes. This, in turn, increases the energy consump-
tion of the coordinators, making them a potential point of failure for the network
as a whole. We investigate questions such as how does mobility affect our network
protocols? and which types of mobility present the most difficulty?

Research goal 4: Adaptability to changing network conditions Due primarily to
the scale of the networks we investigate, we cannot assume that all nodes will have
similar degree (number of neighbors) or reliability of their wireless links. Because
such fundamental network parameters change based on the physical location within
the network, nodes must be adaptable to variable network conditions. This is even
more important when we factor in node mobility, as a node may begin in an area
of low density and quickly move into a region of high density. We must ask, can
our solution quantify environmental conditions? And, further, how should our
solutions react to changing environmental conditions?

1.6 Contributions

As part of an overall solution, we promote the use of GMAC. GMAC is designed
to run on highly constrained sensor nodes and it therefore has very low processing
requirements and a small memory footprint. This serves to reduce energy consump-
tion, but GMAC’s chief mechanism for energy conservation is duty cycling. GMAC’s
use of periodic gossiping via broadcast combines naturally with the periodic nature
of duty cycling.

The primary contribution of this thesis is an in-depth analysis of a variety ofmeth-
ods of synchronization, primarily for the purpose of efficient TDMA-based commu-
nication. In order that a participating node is always able to communicate with other
nearby nodes, regardless of how or where they move, we must ensure all nodes share
a common active period. Because we are interested in highly scalable solutions that
do not suffer from central points of failure, algorithms involving coordinator nodes
are rejected. In this work, we break down the problem of decentralized global syn-
chronization into a number of smaller subproblems, and analyze each of them.

In Chapter 4, we evaluate different synchronization techniques in the context of
static network topologies. In Chapter 5 we continue our evaluation, but focus on mo-
bile network topologies. We look at a wide variety of network sizes and topologies in
both instances. We examine a number of potential improvements to GMAC’s existing
synchronization policies, finding some that are quite effective and some that are less
so.

1

12

Introduction Related work

In addition to evaluating new ideas in our simulator, we present a critical anal-
ysis of several real-world social ad hoc network deployments in Chapter 3. These
deployments serve to validate our simulation results, although mainly in a qualita-
tive manner. Despite difficulties encountered in our experiments, our results show
that the techniques developed in our simulation environment are applicable to real
networks.

Then, we present a simple but effective distributed application for estimating the
number of nodes participating in a social ad hoc network in Chapter 6. Applications
like this one are the foundation that adaptive protocols are built upon. Without a
method of determining or estimating fundamental network parameters there can be
no way for nodes to react to changes in those same parameters.

Our final contribution is an improved GMAC. With the additional functionality
developed in the course of our investigation, GMAC does indeed enable the type
of social ad hoc networks we envisioned at the beginning of this project. We have
run, and continue to run, experiments involving hundreds of participants, each with
a wearable sensor node. These nodes allow us to monitor a real-life social event,
discover groupmembership among participants, and even offer feedback in real time.

1.7 Related work

Here we present discussion of and references to existing research in several areas
that are relevant to the investigation described in this thesis. We address this work in
two categories: wireless sensor networks and synchronization. As alreadymentioned,
there is a large body of research on network-level communications protocols in the
context of sensor networks. However, although a multitude of MAC layer protocols
have been designed for a plethora of different target scenarios, to the best of our
knowledge no work exists that exhaustively addresses all of the problems outlined in
Section 1.5.

1.7.1 MAC protocols for sensor networks

In [15], the authors discuss why traditional synchronization mechanisms, like NTP,
are unsuitable for ad hoc sensor networks. The cited reasons include lack of energy
awareness, requirements of infrastructure (canonical time sources), and assumptions
regarding connected operation and static network topology. The authors also present
several principles for synchronization in ad hoc sensor networks, given different ap-
plication requirements.

In [16] the authors give an overview of the problem of time synchronization in sen-
sor networks and analyze several important protocols. They describe eight require-
ments of synchronization methods appropriate for sensor networks, and explain the

13

1

Related work Introduction

trade-offs involved in optimizing for one over another. Finally, they find that Ref-
erence Broadcast Synchronization (RBS) and Timing-Sync Protocol for Sensor Net-
works (TPSN) offer tight synchronization bounds, but TPSN is more energy efficient.
Both protocols are discussed below.

The authors of [17] provide a more recent survey of time synchronization proto-
cols designed for sensor networks. One of the focuses of their survey is the scalability
of the examined protocols, however none of the protocols were evaluated on a net-
work larger than 300 nodes. While this is reasonable for many application domains,
it is much smaller than the social ad hoc networks we target.

In [18], Langendoen classifies WSN MACs into four categories of organization:
random access, slotted access, frame-based access and hybrid access. Of these cate-
gories, only the slotted and frame-based inherently adopt the notion of duty cycles,
with nodes alternating between active and sleeping states. In the following sections,
we describe each of these categories.

Random access

The first category is that of random access. This is a class of protocols where nodes
are free to access the medium any time. When a node has data to send, it simply
sends it. These protocols trade energy efficiency for protocol simplicity, flexibility to
topology changes, and robustness.

By and large, nodes periodically poll themedium, while senders use a long pream-
ble to signal polling nodes to stay awake for the reception of a packet. These polling
periods and preambles are designed to avoid collisions and reduce idle listening, and
the length of the polling period determines the duty cycle. There are many refine-
ments of the general ‘long’ preamble (‘short’ long preambles, ‘strobed’ preambles,
even secondary ‘wake-up’ radios), but all assume pairwise (i.e., not broadcast) com-
munication to reduce the preamble length. Although this kind of solution is apt for
generally scarce, unpredictable traffic, it does not apply to our application domain,
where all nodes are senders and they send at fixed intervals.

Examples in this category include Low-Power Listening/B-MAC [19] andWiseMAC [20].

Slotted access

By contrast, in slotted access protocols nodes agree on sleep/active pattern, wake
up at the beginning of a slot, communicate, then return to sleep until the next slot.
Also CSMA, but contention resolution is a big problem, generally results in using
CTS/RTS which adds significant protocol overhead. Examples are S-MAC, T-MAC,
SCP-MAC.

1

14

Introduction Related work

There are two MAC-level protocols of this class that are particularly relevant for
our discussion. S-MAC [21], one of the main representatives of slotted access proto-
cols, divides time in fixed-length slots of 1-3s and uses a 300ms active period, during
which nodes compete for the channel using carrier-sensing to avoid collisions. T-
MAC [22] improves upon S-MAC by adding adaptivity to traffic. Active nodes time
out if they hear no traffic for 15ms, drastically reducing energy use in idle networks.
A similar improvement, called ’adaptive listening’ was also added to S-MAC.

In S-MAC, when a new node joins it listens for at least the duration of a whole
slot to detect the presence of other nodes. If other nodes are present, it follows their
schedule. Otherwise it picks an arbitrary schedule of its own. When multiple sched-
ules are detected, a node follows them all, acting as a bridge between independently
synchronized clusters (called “virtual clusters”). This, however, imposes on bridge
nodes an energy cost that is a multiple of the cost for nodes following a single sched-
ule, which is against our goal of fixed energy consumption and predictable lifetime.

Most importantly, both protocols ignore the fact that in the course of time, no-
tably in large networks where maintaining synchronization across a long diameter
is nontrivial, such a policy will eventually lead to the coexistence of a number of
diverse schedules, multiplying the amount of energy used, while at the same time
hindering the operation of broadcast-based communication protocols. Although this
issue does not arise in small-diameter and short-lived networks, in networks of the
size, longevity, and mobility we target at it constitutes a major shortcoming.

SCP-MAC [23] is a further optimization of the aforementioned protocols, lowering
duty-cycles to as low as 0.3% by allowing channel polling at very short, scheduled
intervals using a novel collision-avoidance mechanism during the active period. The
reader should note that in SCP-MAC only one node may broadcast per duty cycle.
This means that epidemic protocols will progress at much slower pace due to limited
transmission bandwidth. Although SCP-MAC is significantly more sensitive to a tight
synchronization than S-MAC and T-MAC, the issue of merging virtual clusters to a
common schedule is overlooked in SCP-MAC, implicitly assuming a set of nodes that
is and remains tightly synchronized.

Frame-based access

Frame-based access protocols combine a number of consecutive slots to form a frame,
with each slot assigned to a node or pair of nodes. These schedule-based protocols
operate in a way that is closer to TDMA. Keeping nodes synchronized with each other
is even more crucial than in the case of slotted access protocols. GMAC belongs to
this category. Other examples include TRAMA/FLAMA (Traffic Aware/Flow Aware
MAC) and LMAC

In [24], the authors present two protocols: TRAMAand FLAMA. TRAMA/FLAMA
has nodes regularly broadcast long-term information about data that flows through
them and their neighbors. Using this and a distributed hash function, nodes create
a collision-free transmit schedule. Packets include a bitmask representing the next

15

1

Related work Introduction

100 slots, and each bit represents whether or not the node intends to broadcast in
that slot. FLAMA ’improves’ upon TRAMA by using a pull mechanism to determine
traffic flows. FLAMA includes special slots used for bootstrapping and node joins.

LMAC nodes broadcast a bitmask of their one-hop neighbors, allowing all nodes
to compute (by ORing all masks) which slots are free. Nodes always broadcast at
least a MAC header (possibly followed by data) in their slot, so other nodes know
the slot is claimed. LMAC does not use ACKs, minimizing radio transitions between
TX/RX. An improvement (Adaptive Information LMAC) allows nodes to claimmulti-
ple slots, reducing problems with slot-provisioning. However, LMAC assumes that a
centralized gateway node will bootstrap synchronization, avoiding multiple clusters.

TDMA Time division multiple access, or TDMA, protocols form a sub-set of the
frame based protocols. The chief distinction between TDMA protocols and general
frame-based protocols is that TDMA protocols aim for a collision-free slot assignment.
That is, an assignment of transmission slots to nodes that ensures two nodes whose
transmission ranges overlap will not broadcast in the same slot. GMAC’s basic slot
assignment mechanism is probabilistic, so it does not technically fit in this category.

In [25], Cidon and Sidi propose an algorithm that allows a multi-hop network
of N nodes to dynamically agree on a conflict-free TDMA schedule. However, it
requires O(N) slots per frame, which renders it inappropriate for scenarios involving
thousands of nodes.

In [26], Arumugam and Kulkarni present an algorithm that deterministically es-
tablishes a TDMA schedule by a gateway node circulating a token. However, no atten-
tion is paid to joining clusters and keeping them synchronized, as nodes are assumed
to be de facto synchronized. Additionally, the algorithm uses token circulation to
establish an initial coloring for all nodes, limiting the scalability of the algorithm and
rendering it unsuitable for mobile networks.

The same authors propose SS-TDMA [27], a self-stabilizing MAC protocol for sen-
sor networks. It assigns slots deterministically based on (known) locations in a grid
topology and is bootstrapped from a gateway node that also acts as a sink. The pro-
tocol is tailored to TDMA schedules for gossiping, however no duty-cycling or other
energy-awareness is discussed. In addition, the requirement of infrastructure restricts
the operational region to within the range of gateway nodes and makes the protocol
impractical for ad hoc networks.

Hybrid access

Hybrid access protocols are defined as protocols that represent a combination of the
above categories. They attempt to strike a middle-ground between highly organized
frame-based protocols that require tight synchronization and random or slotted ac-
cess protocols that are less organized and flexible.

1

16

Introduction Related work

The authors of [28] present ZebraMAC (Z-MAC), a protocol that attempts to com-
bine the strengths of TDMA and CSMA in a single MAC protocol. Z-MAC essentially
uses a TDMA-overlay on top of a CSMAMAC layer (namely, B-MAC) to improve effi-
ciency. Z-MAC adapts its behavior depending on the congestion level in the network,
and requires only loose synchronization between nodes. Z-MAC exhibits a better
throughput per unit energy ratio than B-MAC under load, but performs slightly less
efficiently than B-MAC in lightly loaded networks.

In [29], the authors present DESYNC, a biologically-inspired algorithm designed
to interleave the active periods of nodes in a round-robin fashion. The authors also
describe DESYNC-TDMA, a version of their algorithm designed for TDMA networks.
An interesting approach, and although the authors suggest that DESYNC may work
well in multi-hop topologies ([30]), it is unclear how the algorithm will work in mo-
bile networks. The convergence time for single-hop networks isO(N2) rounds, where
N is the number of nodes, so scenarios with high mobility may prevent the network
from ever converging.

Crankshaft [31] and PMAC [32] schedule RX slots rather than TX slots, allowing
nodes to wake up in only their scheduled receive slot rather than all receive slots. In
both protocols, neighbors must share the same slot, and thus must contend within
their slots for airtime. Crankshaft determines slots by the node’s ID modulus the
frame length. In PMAC, nodes announce their next n-sleep/1-awake schedule at the
end of each frame. Between the two protocols, Crankshaft demonstrates superior
energy efficiency, while PMAC exhibits better adaptation to network conditions.

1.7.2 Synchronization

There has been a significant amount of research in the area of synchronization be-
tween independent nodes participating in a common network. In this section, we
will describe some of the most relevant research to our own work.

Clock synchronization

The issue of clock synchronization in the face of clock drifts is addressed by Tjoa et al.
in SMART [33]. Although this paper is an inspiration for the clock synchronization
algorithm adopted in GMAC, it does not deal with the orthogonal problem of joining
clusters with non-overlapping schedules, neither does it consider duty cycling.

A number of papers address clock synchronization on sensor networks at the ap-
plication layer, that is, the capability of nodes to communicate is orthogonal to their
synchronization state. Consequently, duty cycling as well as detection and merging
of different clusters are not applicable to such papers. Timing-sync Protocol for Sen-
sor Networks (TPSN [34]) and Flooding Time Synchronization Protocol (FTSP [35])
rely on creating a spanning tree over the whole network, stemming from a globally
elected root node. The cost of leader election and tree building make such solutions

17

1

Rest of the thesis Introduction

unsuitable for high diameter and/or mobile networks. The cost of synchronization is
confined in [36] by piggybacking synchronization information on existing application
traffic and by proposing a completely distributed solution, free from the expenses of
centralized coordination. Nevertheless, this solution assumes a reliable communica-
tion channel, which is unrealistic in general and particularly when duty cycling is
in place. Reference Broadcast Synchronization (RBS [37]) provides reliable and ac-
curate synchronization for low-power wireless devices. Furthermore, RBS has been
implemented on a number of different hardware and radio platforms. An interest-
ing question is how RBS would perform in the large-scale mobile networks we target.
Participating nodes must maintain state (timing data) on broadcasting nodes, which
is later exchanged with other nodes in the network.

Merging clusters (syncgroups)

In [38], Liu et al. describe a method for merging clusters in multi-hop 802.11 ad hoc
networks, in contrast to the more common solution of bridging the clusters. Their
method is based exclusively on the passive listening method (extensively described
in Section 2.4.2). There are no details on the merge process itself, presumably nodes
simply “jump” to their new schedule during the merge.

Mank et al. present Mobile LMAC in [39] and [40], removing assumptions about
static topologies and using gateway nodes to bootstrap synchronization. The pro-
posed merge protocol comes close to ours with respect to the part making a decision
on which cluster to prevail. However, their evaluation is limited to networks of up to
nine sensors, which is too limited to draw any conclusion with respect to scalability.
Additionally, the Mobile LMAC protocol focuses on enabling nodes to achieve a high
throughput channel even in the case of high network load, in contrast to to GMAC,
which is designed for constant-rate gossiping between nodes.

1.8 Rest of the thesis

Though there are a multitude of MAC protocols for sensor networks and many dif-
ferent synchronization methods, we have found none that address all the challenges
inherent in the social ad hoc networks that we propose. As such, the rest of this the-
sis describes our research towards enabling social ad hoc networking and the goals
presented earlier. To conclude our introductory remarks, we now present a brief
road-map for the rest of this thesis.

In part two, we discuss the software and hardware used throughout this thesis. In
Chapter 2 we discuss the MyriaNed hardware platform that is the basis for all nodes
we use in our experiments, describe the basic GMAC protocol, compare it with the
standard OSI model, explain its methods of frame synchronization and slot alloca-
tion, and detail the API it presents to the application layer. In Chapter 3 we critically
examine four of the many real-world experiments we have performed during the
course of this research.

1

18

Introduction Rest of the thesis

In part three, we evaluate the behavior of GMAC via simulation, with a focus on
network synchronization and application performance. In Chapter 4 we explain the
details of our simulation environment and present the results of our initial simula-
tions investigating network-level synchronization in static (non-mobile) topologies.
In Chapter 5 we extend this evaluation to include a diverse set of node mobility pat-
terns, and present analysis of the performance of GMAC’s synchronization mecha-
nisms. In Chapter 6 we investigate the performance of a simple epidemic application
in the face of network topology changes resulting from node failure.

Finally, in Chapter 7 we present our conclusions and some discussion about po-
tential avenues for future research.

19

1

Rest of the thesis Introduction

1

20

Part II Hardware and Software

21

2. GMAC: Gossiping MAC

In this chapter we will give a complete description of the operation of the GMAC
(Gossiping MAC) protocol. An understanding of the way GMAC works is central to
other concepts presented later in this thesis. We will begin by explaining the context
and motivation that drove GMAC’s development. We then present GMAC from the
viewpoint of a traditional OSI network model, starting at the bottom. Finally, we
present a few aspects that distinguish GMAC from other WSN MAC protocols.

Note that though it is certainly possible to adapt GMAC to other devices, much
of its design was influenced by the hardware used by the nodes of the MyriaNed
platform. As such, it is difficult to discuss the software and protocol (known as the
MyriaCore and GMAC, respectively) without also taking into account the associated
hardware. We will begin this chapter with a section describing MyriaNed hardware
platform and the nodes that we use in our experiments.

2.1 Motivation

GMAC was created by Chess B.V. (http://wsn.chess.nl) for use in wireless sensor
networks. Some of the initial goals for the GMAC protocol were a low and fixed rate
of power consumption, decentralized operation, robustness to node failure (soft fail-
ure), scalability and adaptivity. As with virtually all sensor network software, mini-
mizing resource usage (e.g., CPU, memory) is a crucial requirement. It is important
to note that GMAC’s original design is neither a contribution of this work, nor did it
consider the presence of mobile nodes. One of our research goals is to add support
of node mobility to GMAC’s set of features.

GMAC was designed with the use of epidemic protocols (see [12]) in mind. Such
protocols are generally resilient to the failure of individual nodes, enhancing the ro-
bustness of networks using GMAC. In addition, the broadcast-based nature of wire-
less communication is a good fit for gossiping or flooding protocols since every mes-
sage sent can (potentially) be received by all other nodes within the transmission
range. This is one important difference from similar protocols applied in wired net-
works: neighbor selection. In wired networks, a node can generally select neighbors
with which to communicate uniformly at random from the set of all participating
nodes. By contrast, in wireless networks a node cannot select its neighbors at all.
A wireless node’s neighborhood is determined by physical proximity, i.e., the set of
nodes within the sender’s transmission range.

23

MyriaNed nodes GMAC: Gossiping MAC

2.2 MyriaNed nodes

Though we used three different models of MyriaNed nodes in two different capacities
during the experiments described later in this thesis, there are many commonalities
between these devices. We will begin this section with a discussion of the uses and
similarities of these nodes, before moving on to discuss their individual deviations
from the common platform.

In the course of our experiments, we use MyriaNed nodes for two distinct pur-
poses. The primary use for these devices is as active nodes (sometimes called badge
nodes) in the network. An active node is a full participant in the network, and
broadcasts an application message each frame. An active node will regularly receive
messages from other active nodes, and will use these message exchanges in order
to maintain synchronization with the other active nodes and to spread application
data throughout the network. The secondary use of the MyriaNed nodes is as passive
nodes, or sniffer nodes. A passive node does not fully participate in the network and
never broadcasts any messages. The passive nodes are used to observe, in real-time,
the message traffic generated by the active nodes. Furthermore, a passive node does
not operate independently, but rather as a USB device attached to a host, such as a
personal computer or laptop. Thus, the passive nodes need not be concerned with
power usage or storage constraints, merely timestamping each received message and
sending the timestamp and message over the USB connection to the host PC. Further-
more, in the case that we want to give real-time feedback on the state of the network,
the PC can simply forward the sniffed messages to a central visualizer machine. This
machine can synthesize the incoming data from many sniffers and display it in a
meaningful way.

Our experiments utilize three different types ofMyriaNed nodes, sometimes called
MyriaNodes for brevity. First and foremost, all three node types use the same Nordic
nRF23L01+ radio chipset. This radio communicates at either 1 or 2 megabit per sec-
ond (Mbps) in the unregulated 2.4GHz spectrum, sharing the same frequencies used
by WiFi and Bluetooth devices. The Nordic chipset provides for a fixed-size 32-byte
MAC packet, with additional physical-layer headers (including a 16-bit CRC) being
added automatically by the radio itself. The nRF24L01+ does not have the ability
to perform channel sensing or collision detection, nor does it provide any received
signal-strength indicator (RSSI). This chip was chosen in spite of these limitations
because it has extremely low idle power usage. Active nodes generally operate with
the radio disabled for more than 95% of the time, so a high leakage current (the
power consumed by the chip even when it is disabled) can significantly increase the
overall power consumption by the device. In addition, all nodes use the same 32kHz
real-time clock, or RTC. An external clock is required to wake the CPU up from deep
sleep states, as its own internal clock is disabled while it is asleep. The ability to
completely shut down the CPU during long idle periods is also essential to the low-
power operation of the MyriaNed nodes. These clocks (actually, oscillators), like any
clocks, have limited precision and will tend to drift in relation to another such clock
over time. These devices carry a specification of ±20ppm (parts per million) from the
factory. What this means is that in the time it takes clock X to count one million ticks

2

24

GMAC: Gossiping MAC MyriaNed nodes

(about 30 seconds), clock Y could count as many as one million and forty ticks (if Y
is as fast as allowed and X as slow as allowed) or as few as 999,960 ticks (vice versa).
This variability in individual clocks is exactly what GMAC tries to compensate for
with its synchronization mechanisms, described in Chapter 2.

2.2.1 Version 2

The MyriaNode Version 2 represents the previous generation of MyriaNed hardware.
It is the simplest and least expensive node type of the three used in our experiments,
and is no longer in production. The node uses an ATMega645 processor and has 4
kB SRAM. Though they have the same RTC as the other MyriaNed nodes, their CPU
has only an 8-bit RTC register. This means that a V2 node must wake up the CPU
every 256 clock ticks in order to increment a higher-level counter. If this wake-up is
not performed on time, the counter register will roll over and ticks will be lost. These
limitations reduce the potential power-savings from putting the CPU to sleep during
long idle periods, and can also adversely affect a node’s synchronization with other
nodes. This makes the V2 nodes less than ideal candidates for our active, wearable
nodes. Nevertheless, these nodes should perform adequately as passive sniffer nodes,
whose function is described in Section 2.2.

The V2 nodes that we purchased came in weather-proof packaging with an at-
tached USB cable for power and serial access. The included packaging increases the
durability of the nodes and, together with the long USB cord, mean that we can freely
place the V2 nodes around the experimental venue without worrying about spilled
drinks, nearby power outlets, etc. The serial controller on the MyriaNed V2 provides
for a maximum baudrate of 38400 bps (or 4800 bytes per second), so data could be
lost if the incoming data exceeds the node’s outgoing bandwidth and buffering capac-
ity.

2.2.2 Version 3

The MyriaNode Version 3 is the most versatile MyriaNed node. Nodes of this type
feature an Atmel ATMega128 processor with 8 kB of SRAM. This more modern pro-
cessor offers a 16-bit RTC register versus the ATMega 645’s 8-bit register. This means
the V3 nodes can operate in deep-sleep mode longer and should be able to more ac-
curately maintain their timing. The V3 nodes also include four colored LEDs, a Reed
switch, an optional accelerometer, and an edge connector for attaching additional
hardware devices (e.g., sensors, flash memory, or battery).

In our experiments, the V3 nodes are almost always used in conjunction with
SED (Storage of Energy andData) modules. The SED module can operate only when
attached to a host V3 node via its edge connector, since the module has no micro-
controller of its own. An SED module is composed of a 1

2 AA battery, two 2 MiB flash
memory chips, and an on-off switch. The addition of the SED module makes the V3
node functional as an active node, giving it self-contained power and stable storage
for logging.

25

2

Comparison with OSI model GMAC: Gossiping MAC

2.2.3 Chalcedony

The Chalcedony nodes are the latest addition to the MyriaNed family of nodes. This
node type was designed specifically for use in our social ad hoc networking experi-
ments. They were created with wearability in mind, and are meant to be completely
self-contained. The main hardware used is identical to the V3 nodes described above,
with the only differences being the physical layout of the components on the (much
larger) PCB and the addition of several I/O devices. Specifically, the Chalcedony
nodes include a black-and-white liquid-crystal display (LCD), a 4-way directional
control with click input (similar to those found on first generationmobile phones), an
on/off button, two 2 MiB flash memory chips, an ambient light sensor, an accelerom-
eter, and a microphone. The nodes also include a connector for a large rechargeable
battery pack, similar to those found inmobile phones. The LCD and input controls al-
low for significantly improved user interaction, by giving feedback to the wearer via
the display as well as receiving instructions from the user via the 4-way input. The
on-board flash memory provides space for the node to log important details during
the execution of the experiment. Finally, the additional sensors (light, acceleration,
sound) can potentially be used to distinguish exactly what the wearer is doing.

In light of their intended use as a wearable device, a protective case was designed
simultaneously with the Chalcedony nodes themselves. This hard plastic case has
cutouts to allow access to the attachment points for the neck lanyard, the 4-way di-
rectional input, the power button, the microphone, and the mini-USB connector. By
leaving access to these crucial parts of the node open, the case must be removed only
to program the node. Turning the node on and off, interacting with the node, and
recharging the node can all be done with the case in place.

2.3 Comparison with OSI model

Though called aMAC protocol, GMAC actually incorporates aspects of the two layers
of the traditional OSI model: the data link and network layers. This kind of cross-
layer architecture is commonplace in sensor networks where resources are extremely
constrained. By eliminating layers of abstraction, internal data structures can be re-
used and function call paths can be shortened resulting in reduced CPU and memory
usage. In this section, we describe GMAC from bottom of the OSI model up. That is,
we start with a discussion of the data link layer aspects and move up to the network
layer functionality.

2.3.1 Data link layer

In the OSI model the MAC (or Medium Access Control) layer is a sub-layer of the
data link layer. The MAC layer is responsible for allowing nodes to cooperatively
access a shared medium, which in this case means the node’s wireless radio. For two
nodes to communicate, at minimum the following two conditions must hold:

2

26

GMAC: Gossiping MAC Comparison with OSI model

1. The nodes must be within each other’s transmission range
2. One node must have its radio in transmit mode, while the other must have its

radio in receivemode.

In fulfilling the role of an OSI data link layer, GMAC tries to establish a common
notion of time in order for nodes to share access to the wireless medium. Limiting
the number of nodes that can transmit at the same time will reduce the likelihood of
interference by overlapping signals and increase the chance that some nearby node
(or nodes) will receive a message broadcast.

The other traditional functions of the data link layer are error detection and flow
control. These features provide an essential foundation for the upper layers of the
network stack to build upon. Specifically, without proper error detection an applica-
tion cannot be confident of data integrity, and must either add such functionality at
the application layer or risk unpredictable behavior resulting from corrupt messages.
Without proper flow control, nodes that have data to send will be unable to access
the medium in a timely manner.

Timing

At its most basic, GMAC is similar to a duty-cycled version of the slotted Aloha pro-
tocol [2][41]. As such, time is treated as a series of transmit/receive slots of a fixed
duration. Unlike slotted Aloha, GMAC groups together a fixed number of slots into
a frame. The purpose of these frames is two-fold: 1) to create a periodic opportunity
for synchronization (a heartbeat) and 2) to create a structure for the application-level
epidemic dissemination protocol, which generally proceeds in consecutive rounds.
At the finest granularity, any hardware timer has a minimum atomic unit of measur-
able time, known as a clock tick. Each GMAC slot comprises a fixed number of clock
ticks, dependent on the time it takes to send a packet and any guard time used.

Frames The largest practical unit of time that GMAC deals with is a frame. The
length of a frame is a parameter chosen by the creator of the network. A frame is di-
vided into an active period and an inactive period. Application-level communication
(gossiping) happens during the active period, while MAC-level synchronization mes-
sages (known as join messages, described below) are exchanged during the inactive
period. The ratio of the duration of the active period and the duration of the whole
frame is known as the duty cycle and is represented by the symbol τ. We will refer to
the number of active slots in a frame as SA, the number of inactive slots as SI , and the
total number of slots in a frame as SF = SA + SI . As an example, a frame with a duty
cycle of 40% is depicted in Figure 2.1. Typical frame times used in our simulations
and experiments are from 0.5s to 2s, and typical duty cycles are from 0.5% to 10%.

27

2

Comparison with OSI model GMAC: Gossiping MAC

RX RX RX Idle IdleIdle Idle Idle

1 round

Guard

RX Time

1 tick

1 slot

offset between nodes

Node A

time

Node B

Join

TX Time

Appl

Guard

Figure 2.1: An example of GMAC’s scheduling. We depict an abbreviated ten slot frame (SF = 10) consist-

ing of a four slot active period (SA = 4) and six slot inactive period (SI = 6, τ = 4
4+6 = 40%) for illustrative

purposes.

Slots A frame is divided into a fixed number of slots. In each slot, a node executing
GMAC can either broadcast a packet, listen for/receive a packet, or do neither (i.e.,
stay idle). Exactly which action the node takes in a given slot is determined by the
node’s slot allocation strategy, described in Section 2.5.3. The length of a slot is the sum
of the transmit time and the guard time. In Figure 2.1, the guard time is depicted as
a white region in Node A’s slot diagram, while the transmit time is shown as the dark
gray block in between. The transmit time is fixed and determined by the underlying
radio hardware. The guard time, however, is a parameter that is determined at the
time of compilation. A longer guard time should reduce the number of collisions in
the network, but at the cost of increased energy usage due to the additional radio
active time. This increased energy cost is incurred by all receivers, which must keep
their radio active for the whole duration of each slot, indicated as the light gray block
in the figure.

Ticks At a fundamental level the smallest unit of time that GMAC can use is a sin-
gle clock tick. The duration of a clock tick, t, is the inverse of the frequency (f) of a
node’s timer, t = 1/f . If, for example, a node A determines that it is slightly desyn-
chronized with its neighbor B, the measurement of the offset between the nodes will
be accurate to at best t and will always be an integer multiple of t. The duration t also
represents the smallest adjustment that a node can make to its timing. Continuing
the example above, if node A calculates that it is 5 clock ticks ahead of B, it can add
5 clock ticks to the duration of its current frame. Thus, both nodes A and B should
start the next frame at the same time, modulo a single clock tick. Both the transmit
time (Ttx) and guard time (Tguard) are measured in clock ticks.

2

28

GMAC: Gossiping MAC Comparison with OSI model

Error detection

GMAC provides for error detection by means of a simple 16-bit cyclic redundancy
check, or CRC, performed over the full MAC payload. This CRC is executed by the
radio hardware itself, as mentioned in Section 2.2. Generally an n-bit CRC applied
to a data block of arbitrary length will detect any single error burst not longer than n
bits and will detect a fraction 1− 2−n of all longer error bursts.

Ensuring data integrity typically involves sending redundant data in addition to
the data that needs to be communicated. This redundant data can be used to check
the validity of the message. For example, the CRC used by GMAC does not add
any information, but contains only the remainder of the message data divided by a
known polynomial. The problem is that this redundant data takes up precious space
in GMAC’s limited 40-byte physical packet. Nevertheless, data integrity must be
provided with high probability to allow for proper functioning of the application.

Flow control

GMAC handles flow control very simply: any node that has data to send chooses a
transmit slot during the active period at random. Though not always the case, it is
assumed that a node’s application will generate a message in each frame. In this way,
GMAC establishes a maximum message send rate of one per frame. The maximum
receive message rate is generally SA − 1, the number of active slots in a frame minus
one slot during which the node is in transmit mode.

GMAC thus has deterministic maximum send and receive rates, based on the
number of nodes within transmit range of each other and the number of active slots,
respectively. In neighborhoods where the number of nodes is much greater than the
number of active slots, message collisions will be frequent. In areas of extremely
high node density, communication may even break down entirely, due to all transmit
slots being used by more than one sender. GMAC provides for limited adaptability
to changing node density through the strategy module, as described in Section 2.5.3.

2.3.2 Network layer

The network layer of an OSI protocol stack is responsible for connecting networks
and routing. In general, such functionality is an essential component in hierarchi-
cal network topologies in order for devices in different administrative domains to be
able to exchange data. Because sensor networks tend to focus on measuring physi-
cal phenomena in a specific area, such functionality is less important in this domain.
Nevertheless, sensor nodes generally need a way of getting data out of the local net-
work and into the Internet or other networks. In addition, GMAC must establish a
common packet format, so that a node knows how to interpret received messages.

29

2

Comparison with OSI model GMAC: Gossiping MAC

Packets

The most important thing GMAC does is send and receive packets. A node executing
the GMAC protocol is always in one of three radio states: transmit (TX), receive (RX),
or idle. This is depicted in the middle row of Figure 2.1, showing an example slot
allocation for a single ten-slot frame. As mentioned at the beginning of this section,
ensuring there are neighboring nodes in the receive state when a node transmits a
packet is GMAC’s prime objective.

With the Nordic radio used by the nodes (see Section 2.2), only a fixed-size packet
of 40 bytes can be sent. Eight bytes of the forty are used by the radio: a one-byte
preamble, a five-byte address (used as a domain), and a two-byte cyclic redundancy
check for data integrity. The remaining 32 bytes are free to be used by GMAC itself.
GMAC’s own header is two bytes, and contains only the slot (from the sender’s per-
spective) in which the packet was broadcast. A sending node always broadcasts its
message exactly Tguard ticks after the beginning of its transmit slot. Thus, using this
recorded transmit slot, a receiving node can compute the timing offset between itself
and the sending node.

The GMAC protocol distinguishes two types of messages: application messages
and join messages.

Applicationmessages GMACnodes send at most one applicationmessage per frame,
during the active period. The purpose of the application messages is twofold. The
most obvious use of GMAC’s application message is to communicate application data
between nodes participating in a GMAC network. The second use is to maintain syn-
chronization between these same nodes. The exchange of application messages offers
a node the chance to compare timing information with its neighbors, and adjust ac-
cordingly. Throughout this thesis, we ensure that there is an application message for
each node in every frame. That is, a node in the SYNCHRONIZED state (see Figure 2.3
below) will always broadcast a packet during its active period. This creates a steady
flow of applicationmessages and allows for proper synchronization. The rate of clock
drift between a node and its neighbors determines how long it can stay synchronized
in the absence of application messages.

Join messages Because of the low duty-cycles typically employed, GMAC networks
can splinter into separately synchronized groups that are unaware of the existence
of other nodes. We refer to these temporal isolated groups as syncgroups (discussed
further below). GMAC nodes broadcast join messages during the inactive period.
The purpose of these messages is to be received by a node from a different syncgroup
during its active period. Since these messages are only broadcast during a node’s
inactive period, the reception of a join message during the active period indicates
there are nodes nearby that are not synchronized with the receiver. The receiver can
then adjust its own synchronization based on the timing data included in the join
message.

2

30

GMAC: Gossiping MAC Synchronization

Connecting networks

A primary objective of the GMAC protocol is to synchronize all physically connected
(proximate) nodes into a single cohesive network, and thus does not have any func-
tionality specifically related to bridging separate networks. The physical layer does
support addressing, through the use of the domain field of the physical packet. This
domain addressing allows multiple sensor networks to operate in the same physical
area and using the same RF frequencies without experiencing cross-talk, or commu-
nication between the separate domains. In principle, a GMAC node could act as a
bridge between multiple domains, but this has thus far been unnecessary. This is be-
cause typically networks separated into different domains serve different purposes
(hence the separation), so routing messages between them is not needed.

Routing

GMACdoes not directly provide for one-to-one routing, but rather all-to-all via flood-
ing or gossiping. This model, while not as powerful, is extremely resilient to node
failure and allows for operation with far fewer resources (e.g., no routing tables) and
a simpler API. Were routing to be required, it could be implemented at the applica-
tion level as in [42].

In the event data needs to be routed from within the sensor network to external
computers (e.g., for additional processing of data), this can be accomplished by using
several passive nodes that simply receive any application messages from the nodes
and forward them to a connected host computer. An example of this kind of opera-
tion is described in Chapter 3.

2.4 Synchronization

The duty cycle-based operation of the nodes makes synchronization of the active pe-
riods of their frames essential. If a node’s frame is not synchronized with those of
its neighbors, it is likely that its broadcasts will go unheard. Nodes whose active
periods do not overlap cannot communicate with each other, effectively partition-
ing the whole network into disconnected clusters, called syncgroups (see Figure 2.2a).
When considering mobile networks, the movement of the nodes may leave some of
them temporarily isolated, or partitioned into physically separated groups called sub-
networks, or subnets. Subnet disconnections are out of our control. Nevertheless,
GMAC aims at a single syncgroup, so that when two subnets meet the nodes are read-
ily able to communicate, as depicted in Figure 2.2b. Regardless of the type ofmessage
routing used, a node can receive a message from another node only if they are in the
same subnet (they are direct or indirect neighbors) and in the same syncgroup (their
active periods overlap).

31

2

Synchronization GMAC: Gossiping MAC

r r+1
(a) One subnet with three syncgroups

r r+1
(b) Two subnets with one syncgroup

Figure 2.2: The edges between the nodes represent wireless links. Nodes that are connected via (a chain
of) wireless links are known as a subnet. The coloring of a node represents the group of nodes with which
its active period overlaps, that is, its syncgroup. The axis at the bottom represents time, and is divided into
individual slots. The numbered dividers demarcate frames of length Tf rame. Finally, the shaded bars atop
the time-axis represent the duration of the active periods of the similarly-shaded syncgroups.

The overall goal of GMAC’s synchronization is to minimize the offset (see Fig-
ure 2.1), ∆Ti,j = Ti −Tj between all pairs i, j of communicating nodes. GMAC divides
this offset into two parts: slot offset and phase offset. We define slot offset as the num-
ber of whole slots by which the two nodes differ, i.e. ⌊∆Ti,j /Tslot⌋. We define phase
offset as the number of clock ticks (intervals of t) the two nodes are set off within one
slot. So, the total offset between the nodes is the sum of the slot offset and phase
offset between them.

As implied above, groups of nodes whose active periods overlap are said to form
a syncgroup. Synchronization of all nodes participating in the network then takes
two forms: maintaining existing synchronized groups andmerging separate synchronized
groups. Because no two clocks are exactly identical, GMAC’s synchronization module
must maintain existing synchronized groups by compensating for the inherent clock
drift between any two nodes. GMAC operates in a completely decentralized manner,
so there is a chance that nodes will form independently synchronized groups or sim-
ply remain isolated. GMAC’s join messages are responsible for joining these isolated
nodes and subnetworks together.

2.4.1 Establishing and maintaining synchronized groups

For the purposes of this chapter, we have configured GMAC to use an active period of
Nactive = 8 slots, followed by an inactive period lasting until the end of a Tf rame = 1s
frame. The reference hardware has a 32 kHz clock, so one timer tick is t = 1s/32768 ≈
30µs. The reference radio (see Section 2.2) takes about 300µs (10 ticks) to send a
packet, and GMAC inserts a 9-tick guard time both before and after a transmission
(see Figure 2.1). This gives a total slot time of 9 + 10 + 9 = 28 ticks, or about 850µs.

Thus, on the reference platform, a frame has Nf rame = ⌊Tf rame × 32768
tick
s /28 tick

slot ⌋

slots. Using a 1s frame time we have Nf rame = 1170 slots. With 8 active slots, we

are left with Ninactive = 1162 slots in a frame, and a duty cycle of τ = 8
1170 = 0.68%.

Since a node will have its radio active for only ≈ 7ms per second, it is crucial that

2

32

GMAC: Gossiping MAC Synchronization

this active window is tightly synchronized with other nodes in order to maximize
potential communication.

In this section we discuss how nodes first establish synchronized groups from a
completely unsynchronized initial state, describing GMAC’s operation in this start-
up phase. We then explain howGMACmaintains synchronization between groups of
nodes that have discovered each other and are operating in a synchronized state. Fi-
nally, we propose several improvements to GMAC’s current maintenance algorithm.

Establishing synchronized groups

Nodes executing the GMAC protocol follow a simple finite state machine when ini-
tialized, shown in Figure 2.3. Nodes normally begin in the INITIAL_LISTEN state.
In this state, a node will keep its radio active and continuously listen for a long ini-
tial frame with a random number of slots, Nf rame < Nf rame,0 ≤ 2 × Nf rame . If the
node hears a message while in INITIAL_LISTEN, it will immediately deactivate its
radio, calculate a timer adjustment to align the start of its next frame with that of the
sender, move to the SYNCHRONIZED state, and then sleep until the computed start of
its next frame. If, however, a node in INITIAL_LISTEN reaches the end of its frame
without hearing a message, it will move to the SAY_HELLO state. In this state, a node
will broadcast a specially tagged hello message in the first slot of the frame. After
broadcasting the message, the node will switch its radio back to receive mode and
enter the KEEP_LISTENING state. A node’s behavior in KEEP_LISTENING is similar to
that of a node in INITIAL_LISTEN. The differences are that a node in KEEP_LISTENING

will maintain the standard number of slots in each frame, Nf rame,i =Nf rame, and will
remain in that state indefinitely in the absence of receiving a message. A node in the
KEEP_LISTENING state reacts to received messages in the same manner as described
for INITIAL_LISTEN, aligning its next frame with the sender and transitioning to
SYNCHRONIZED.

The astute reader will notice that in the above initialization behavior a node can
spend a significant amount of energy in the INITIAL_LISTEN and KEEP_LISTENING

states, as its radio will be active 100% of the time. This design decision runs contrary
to GMAC’s general philosophy of minimizing power use (i.e., radio active time), and
was made for a number of reasons. Keeping the radio active eliminates the depen-
dency of synchronization on internode communication, leaving only a dependency
on physical proximity. That is, always listening allows the initializing node to (po-
tentially) receive any message from an active node in its vicinity, regardless of when
that message is sent. Furthermore, deploying a completely isolated node should be a
rare occurrence. A wireless sensor node with no neighbors with which to communi-
cate is almost completely useless. Thus, a fundamental assumption is that nodes will
not start up in isolation. For these reasons, GMAC was designed to form an initial
syncgroup with any neighboring nodes as quickly as possible.

Upon reaching the SYNCHRONIZED state, a node executes the normal active/inac-
tive duty cycle behavior, as shown in Figure 2.1. A node selects a random slot in the
active period as a transmission slot for an application message (“Appl”) and treats

33

2

Synchronization GMAC: Gossiping MAC

INITIAL_LISTEN

KEEP_LISTENINGSAY_HELLO

SYNCHRONIZED

Figure 2.3: The finite state machine describing the operation of GMAC when a node starts up. INI-

TIAL_LISTEN is the normal starting state, while SYNCHRONIZED is the goal state. A node will follow the
dashed arrows if it receives no messages in a frame, and the solid arrows if it does receive a message.

the other active slots as receive (RX) slots. Each node will also select a random slot
in the inactive period (“Join”) in which to send a join message. A join message serves
two purposes. The first is to aid in the merging of distinct synchronized groups, dis-
cussed at length in Section 2.4.2. The second use, since only the header is necessary
for merging, is to carry debugging information about the status of the individual
nodes. This provides a way of easily inspecting the internal state of nodes after they
have been deployed. Each slot is composed of a number of clock ticks, and a single tick
is the smallest adjustment a node can make to the length of its frame. By including
the sender’s slot number in every message, a receiving node can always determine
the offset between its own notion of time and that of the sending node.

Because we evaluate network synchronization using a simulator, it is also possible
to instruct the nodes to initialize directly into the SYNCHRONIZED state. By initializ-
ing some or all nodes at the same simulated time in the SYNCHRONIZED state, we can
manually create syncgroups to evaluate network synchronization in a variety of sce-
narios.

Maintaining synchronized groups

Groups of nodes with overlapping active periods, that is, syncgroups, must con-
stantly strive to maintain their synchronization. In the absence of any local correc-
tions by the nodes, the tiny differences between their individual clock rates will even-
tually cause them to desynchronize. Nodes with faster clocks will continually start
each frame a little earlier than the last, while nodes with slower clocks will start each

2

34

GMAC: Gossiping MAC Synchronization

consecutive frame a bit later. Eventually the syncgroup will “drift” apart, the nodes’
active periods will no longer overlap, and communication between them will cease
to be possible.

We showed in [43] that GMAC’s algorithm is capable ofmaintaining tight synchro-
nization within connected networks of static grids of nodes. The method by which
GMAC does this is called the median algorithm (see Algorithm 2.1), because it bases
each timing adjustment on the median timing offset of all received messages during
a frame.

Algorithm 2.1: TheMedian Algorithm

Median(numRxEntries > 0, array rxEntries, gain > 0)
// sort received messages by offset (in ticks) from local time

SortByOffset(rxEntries);
// select the median entry

medianEntry = rxEntries[numRxEntries/2];
// scale the correction by gain = 0.5
phaseError =medianEntry.tickOffset× gain;
// adjust the length of the current frame based on phaseError
AdjustFrameLength(phaseError);

This algorithm is admittedly quite simple, but in general performs well. It is
important for scalability that the algorithm is based completely on local decisions.
In each frame, a node will synchronize to the set of neighboring nodes from which it
successfully received amessage. By always selecting the median timing offset, GMAC
ignores outlying data points and focuses on those in the center. The algorithm tries
to force the fastest and slowest nodes in the network to match those closer to the
median. Note that GMAC uses a gain of 0.5 to dampen adjustments and to prevent
oscillations in the synchronization maintenance behavior.

It is worth noting here that GMAC was designed for static deployments on the
scale of dozens to hundreds of nodes. As mentioned earlier, we are interested in
networks at least an order of magnitude larger, so the sheer size of the networks we
investigate may pose problems. Furthermore, although GMAC is designed to oper-
ate in a purely decentralized manner without any dependencies on specific peers, it
remains to be seen howmobility will affect its operation. With the introduction of dy-
namic topologies, good network-wide synchronization becomes even more important.
In a static network, a node will always have the same neighbors, so tight local syn-
chronization with much looser global synchronization (that is, between nodes that
are many hops apart) is perfectly acceptable. However, if a node can suddenly move
away from its local synchronized group and position itself anywhere else, stronger
network-wide synchronization will be required.

35

2

Synchronization GMAC: Gossiping MAC

2.4.2 Merging synchronized groups

While generally GMAC has little difficulty maintaining synchronization within sync-
groups where the active periods of nodes already overlap, we also must ensure that
GMAC can merge together separate syncgroups to form a single, cohesive network.
The situation illustrated in Fig. 2.2a, multiple syncgroups within a single subnet, sig-
nificantly hinders the utility of the network as a whole. This is because internode
communication is limited not only to the direct neighbors of a node, but also only
to those neighbors with which it is synchronized. In order to achieve the possibil-
ity of, for example, multi-hop messaging, each node must discover other (groups of)
nodes that are using a different active period, decide whether to merge with those
nodes, and, if so, synchronize its own active period with theirs. When all syncgroups
have been merged together and all nodes share a common active period, we say that
the network has converged. Note that we reject solutions that attempt to “bridge”
these separate active periods by requiring nodes in the overlap between groups to
execute multiple active periods. Such behavior creates an asymmetric energy burden
for those nodes that must run more than one active period per frame, jeopardizing
our goal of a predictable network lifetime.

In our previous work, [44], we demonstrated that the default group merging be-
havior of GMAC was sufficient to achieve convergence for small networks, but that
GMAC struggled to consistently converge larger networks. This problem of conver-
gence can be broken down into three subproblems: detection, decision and notification,
which we discuss in the following sections. At the end of each section, we also pro-
pose improvements to GMAC’s current group merging mechanisms.

Detection

Before separately synchronized groups can be merged, they must first become aware
of each other. We distinguish two methods of detection. In an active method, nodes
broadcast a join message during the inactive portion of their frame, allowing other
nodes using a different active period to detect the sending node’s group. Note that
join messages are always transmitted during the sender’s inactive period, but can be
received only during another node’s active period. In a passive method, nodes listen
during the inactive portion of their duty cycle to detect application messages from
nodes in other syncgroups.

The effectiveness of active detection is mainly determined by the duty cycle of
the network, τ. If Tactive > Tinactive, then τ > 50%, so nodes are active for more than
half of each frame. This implies that the active periods of all nodes must overlap
to some degree, so separately synchronized groups cannot form. For this reason, we
do not consider duty cycles greater than 50%. For duty cycles less than 50%, we
can compute that the probability pd of a detection event, that is, the probability that
a message transmitted during one group’s inactive period will be received during
another group’s active period (ignoring collisions), is equal to:

pd =
Tactive
Tinactive

2

36

GMAC: Gossiping MAC Synchronization

Based on the definition of the duty cycle, τ, we have:

τ =
Tactive

Tactive +Tinactive
⇒ Tactive +Tinactive =

Tactive
τ
⇒ Tinactive =

(1− τ)×Tactive
τ

so that,

pd =
τ

1− τ

It is thus seen that the detection probability quickly becomes very low when τ is very
small, which is exactly the case for the type of networks we are interested in. Nodes
using a duty cycle of τ = 1% can expect a detection probability of pd = 1.01%. As
stated earlier, we use a duty cycle of 8 active slots out of 1170 slots in a frame, for
a duty cycle of τ = 8

1170 = 0.684%. In this configuration, we can expect a detection

probability of pd =
Tactive
Tinactive

= 8
1162 = 0.688% using active detection.

Passive detection offers a trade-off of increased energy consumption for faster
detection. For example, a node could virtually guarantee detection of any other node
in its range if it listened to the entire frame (e.g., a node in the KEEP_LISTENING state).
However, this obviously defeats the original purpose of duty cycling the radio, and
would rapidly deplete the node’s battery. We could apply the duty cycling method
to the passive listening by instructing nodes to listen to some percentage, pl , of the
inactive period, reducing energy consumption but also effectiveness. Note that this
can be implemented as listening for an additional pl ×Ninactive slots every frame or
by listening to the entire frame (an additional Ninactive slots) with probability pl . We
chose to implement the latter method because listening to the entire inactive period
eliminates the possibility that a node will fail to detect an unsynchronized neighbor
due to listening to the wrong portion of its inactive period. Still, we will want to keep
pl as low as is practical, because the higher pl is, the more energy is spent listening.

Active detection does have a decided advantage over passive detection. A whole
set of neighboring nodes may detect the existence of another syncgroup at once, by a
single message broadcast by one node of that group, provided the join message hits
the active period of the neighbors. In the case of passive detection, each node would
have to individually detect the presence of the foreign syncgroup, by paying the price
of keeping its radio in receive mode during its inactive period. The disadvantage,
however, of active detection is an increased chance of collisions, as the join messages
sent from one group may collide with each other, or with application messages be-
longing to other groups. Both active and passive detection schemes will be heavily
affected by the density of the network, in particular, the number of neighbors, or de-
gree, of participating nodes. In addition, mobility will influence the effectiveness of
both detection techniques as well. When a node n from one syncgroup detects a node
m from another, there is a chance that, due to mobility, node m will no longer be in
node n’s range during the next frame, leaving n trying to merge into a syncgroup that
has no members in its vicinity.

GMAC was designed to use active detection, with each node sending one join
message during a random slot in its inactive period, as mentioned above.

37

2

Synchronization GMAC: Gossiping MAC

Decision

Regardless of how detection happens, once a node from group B is aware of another
groupA, it must decide whether it should merge intoA or if it should stay in B. Nodes
cannot merge unconditionally, because otherwise the whole network may never con-
verge as nodes merge back and forth between multiple groups. Our goal is to ensure
that all the nodes converge into a single (possibly multi-hop) syncgroup, so that we
should try to minimize the amount of time and energy spent on reaching a converged
state.

The decision algorithm should implement a relation ≻ that provides a total order-
ing of the set of existing synchronized groups of nodes. That is, the decision relation
A ≻ B determines whether group A is superior to group B. Thus, when a node in B
receives a join message from a node in A, it should merge into group A if and only if
A ≻ B. The relation ≻ should provide the following three properties:

1. antisymmetric: if A ≻ B and B ≻ A then A ≡ B
2. total: A ≻ B or B ≻ A
3. transitive: if A ≻ B and B ≻ C then A ≻ C

In order to prevent cycles in the merging behavior, we propose enforcing a determin-
istic ordering of syncgroups. In static networks, nodes should eventually detect all
other nodes/groups within their radio range. Provided that the network is connected,
all nodes will eventually become aware of all other synchronized groups in the net-
work. Because of the total ordering of these groups, nodes can always deterministi-
cally select the best group when making a merge decision. In theory, this should lead
to network convergence as all nodes eventually merge into the best group.

GMAC was designed to use a heuristic mechanism to decide when a node should
merge into a newly discovered group: if a received join message was sent during the
first half of the sender’s frame, then it is accepted as valid, otherwise it is discarded.
Note that while sending join messages in the second half of a node’s frame that will
only be discarded seems wasteful, the messages contain debugging information so
they are sent regardless of whether or not they will be considered valid. This timing-
based relation, ≻t , is meant to ensure antisymmetry (Property 1) for the decision
relation. This is because, for any two groups, only one of them can send a join mes-
sage in the first half of its inactive period that the other can receive during its active
period. Furthermore, ≻t provides totality (Property 2), because the two groups can-
not be desynchronized by more than half a frame, implying the active period of one
group overlaps with the first half of the other’s frame. However, ≻t does not provide
transitivity (Property 3). If more than two groups exist in each other’s range, there
can be ‘cycles’, i.e., where nodes can merge from A to B to C and then back to A. In
the best case, one (or more) of the groups in the cycle can be eliminated if the others
can get all of their nodes to merge.

For example, if groups B and C could get all of the nodes in A to merge into their
respective groups before A can get any nodes from C to merge into it, then the cycle
would have been removed. In the worst case, these cycles can persist forever, leading

2

38

GMAC: Gossiping MAC Synchronization

r r+1

A

B

C

Figure 2.4: A graphical representation of the cycle problem in GMAC’s decision mechanism. The axis at
the bottom represents time in the same fashion as Fig 2.2. The additional shaded lines above the axis show
the span of time where the joinmessages from the associated syncgroup will be respected.

to a network that never converges. A visual example of this effect is seen in Figure 2.4.
Nodes in group A will accept join messages from group B, because the first half of
the group B’s frame overlaps with the active period of group A (i.e., B ≻t A). Similarly,
nodes in group B will react to join messages from group C. Finally, due to the timing
of their active periods, nodes in group C will react to join messages only from nodes
in A. It is thus seen that the three groups form a cycle, allowing for a node to merge
fromA to B in one frame, from B to C in a subsequent frame, only to later merge back
into group A, ad infinitum. We will provide a solution to this problem below.

Note that taking mobility into account does not directly affect the logic of decid-
ing whether or not to merge. Nevertheless, there are effects that we need to consider,
specifically on the design of the decision relation.

Notification

Once a node has decided that it must merge into a new group, it should notify its own
group of the merge. Though not strictly necessary, notification of the node’s decision
to switch from group B to group A can be rapidly propagated through group B (lever-
aging the group’s existing synchronization), saving the need for repeated detections
of group A. Because the probability of detection is proportional to the duty cycle,
the networks we investigate will have very low detection probabilities. Propagating
a notification of detections will reduce the number of detection events necessary to
synchronize the entire network.

By default GMAC does not use any notification of discovered groups. Nodes that
decide to change groups just silently merge. That is, they leave their old group by
adjusting the length of their current frame to align their next frame with their new
group. In situations with many groups, this can lead to isolated nodes as neighbors
discover better groups and leave them behind.

Again, when takingmobility into account, we expect that themain effect onmerge
notification will be the same as for detection. Namely, that a node may receive a no-
tification of a merge decision and adjust its next frame to synchronize with the new

39

2

Other GMAC details GMAC: Gossiping MAC

group, only to find that the member(s) of that group are no longer within communi-
cation range. How drastic this effect is will depend on the density of the particular
scenario as well as the speed of the nodes in question. When considering node den-
sity, the positive effect from themergemessages should be proportional to the density
of the network. That is, the denser the network, the greater the number of nodes that
can be notified of a merge detection/decision. We will examine both of these issues
experimentally later in the thesis.

2.5 Other GMAC details

In this section we describe several unique aspects of GMAC that do not fit cleanly
into the standard OSI networking model. GMAC provides for a somewhat modular
structure of its source code, particularly with respect to the synchronization and strat-
egy modules. We also discuss join messages, a method of allowing unsynchronized
nodes to discover each other. Finally, we give a brief discussion of the API GMAC
presents to upper layers.

2.5.1 Application layer API

GMAC’s simplistic model lends itself to a simplistic API. The bulk of the interface
consists of three function callbacks that must be implemented by the application:

1. appInit - called to initialize the application at boot-up
2. appEvalRxMessage - called upon reception of an application message, only

minimal processing time permitted
3. appPrepareTxMessage - called at the end of an active period, allows deferred

processing and generation of the next frame’s outgoing message

Implementing these three functions is all that is required to implement an applica-
tion on top of GMAC. Access to other devices (e.g., on-board sensors, LCD) is pro-
vided by the MyriaIoLib, and the details are specific to each individual node type
(discussed in Section 2.2). In addition to the above functions, GMAC provides sev-
eral optional callback functions. One example is appLogFrameData, which gives an
application the opportunity to log relevant data on a per-frame basis.

2.5.2 Sync module

The sync module determines what synchronization adjustments to make based on
the messages received during the current frame.

The standard synchronization algorithm used in GMAC is the median algorithm.
This algorithm sorts all messages received during the active portion of the frame
according to the relative difference between the sender’s timestamp and the local
node’s own receiver timestamp. The median algorithm simply selects the median
timing difference to synchronize with for this frame. The goal of this algorithm is to
provide stability by ignoring outlier data.

2

40

GMAC: Gossiping MAC Other GMAC details

2.5.3 Strategy module

The strategy module is responsible for dividing the frame into active and inactive
periods, as well as determining which active slots will be TX, RX, or IDLE for each
node.

Though GMAC provides several different strategy algorithms, the one that we use
throughout this thesis is called SimpleSlot. This strategy uses a fixed number of ac-
tive slots and random transmit slot selection. The default number of active slots is
SA = 8, but in principle any number 1 < SA < SF can be used. Random slot selection
should work well in relatively sparse neighborhoods, where the probability of colli-
sion will be low. But in dense neighborhoods collisions will be commonplace and, if
the density is high enough, communication may become nearly impossible.

The DistributedSlot strategy attempts to remedy this problem by adapting the
number of active slots based on the perceived number of neighbors. We leave the
investigation of this and other strategies to our future work.

41

2

Other GMAC details GMAC: Gossiping MAC

2

42

3. Real-world experiments

In the course of our research, we have performed a number of real-world experiments.
As our primary research goal is to design a set of networking protocols suitable for
large-scale mobile wireless sensor networks, real-world testing and experimentation
are essential. Here we will describe several of these experiments, demonstrating the
correct operation of our network layer on actual hardware.

Because our research interest is in highly scalable protocols, we must necessar-
ily test our algorithms with hundreds of nodes. Ideally we would be able to per-
form experiments with thousands of nodes, but the expense involved in purchasing
such a large number of devices is prohibitive. As such, we have performed much
of our investigation via simulation. Part of the challenge of performing real-world
experiments in the domain of sensor networks lies in the effort involved in plan-
ning, preparing and executing experiments involving many individual wireless sen-
sor nodes. Each device needs to be independently charged, programmed and tested.
After the experiment, we must re-collect all the nodes, properly shut them down, and
fetch the recorded log from each node individually. This process is extremely time
consuming, and it cannot be automated.

This chapter will explain our methodologies, our hardware and software setups,
and the outcomes of several of our experiments. We begin by describing some of the
practical considerations that must be taken into account, we detail the types of mea-
surements we take and how we capture them, and finally we discuss four important
experiments in detail.

3.1 Practical considerations

While simulation allows us to almost effortlessly scale from 10 to 10,000 node de-
ployments, the real world is much less forgiving. Practical constraints generally limit
experiments to a few tens to maybe a few hundred nodes. For example, our largest de-
ployment to-date involved approximately 220 nodes. Other difficulties encountered
tend to be unforeseen and non-technical (see [45]), rather than bugs or algorithmic
errors.

In this section we give details about some of the challenges encountered while
performing, measuring, and analyzing social ad hoc networking experiments.

43

Practical considerations Real-world experiments

3.1.1 Manual labor

Even a small-scale wireless sensor network can require quite a lot of work. From pro-
gramming and testing nodes to charging and transporting them, much of this work is
manual labor and decidedly non-technical. It is often this type of manual labor that
dominates the time spent preparing for, executing, and analyzing an experiment.

Many sensor nodes require a special device (e.g., a USB dongle) to program them,
as is the case with the MyriaNed nodes. These programmer devices can quickly be-
come a bottleneck when preparing nodes for a deployment. For example, our group
has three MyriaNed USB programmers, limiting the amount of parallelization that
can be achieved when programming nodes with a new software image. This USB pro-
grammer must also be manually connected to each device in series, eliminating any
possibility of automating the process via scripts, etc.

Other time-sinks include charging and/or preparing the nodes’ batteries. The
SED modules (described above) used with the V3 nodes include a battery, but that
battery is soldered onto the module. In order to change an exhausted battery, the old
battery must be desoldered from the PCB (being careful not to damage any of the
other tiny electric traces in the process), then a replacement battery must be soldered
in its place. This procedure can easily take five to ten minutes per SED module,
meaning that changing 100 batteries is easily a full day’s labor.

3.1.2 Timing for measurements

Many synchronization algorithms aim to synchronize all network clocks with a single
master clock, giving a clear point-of-reference. Our solution, however, is completely
decentralized. This makes analyzing the network synchronization difficult, due to
the lack of any central authoritative time source. In order to perform a quantitative
analysis of a sensor network’s synchronization, we will need timestamps that are
accurate to within 10µs or so. This is because an individual clock tick on a 32 KHz
clock is approximately 30µs, and we need our measurements to be at least as fine-
grained as a node’s clock tick.

In a sensor network, each node has an independent clock and starts up at a unique
time. As such, local timestamps from different nodes (i.e., a count of the number
of clock ticks since boot-up) cannot be compared directly. Passive observation and
recording of messages from active nodes adds yet another independent time source,
that of the receiving sniffer node. Matching timing data between various sniffer nodes
and active nodes can prove to be a headache, and is further complicated by the global
time issues described immediately below.

3

44

Real-world experiments Practical considerations

3.1.3 Global frame number

Nodes executing the GMAC protocol attempt to maintain a consistent coarse-grained
notion of time via a global frame number, as described in Chapter 2. Nodes will
“jump forward” to match a higher frame number received from a neighbor’s message.
Corrupted packets or a misbehaving (byzantine or malicious) nodes can cause havoc
with timekeeping by broadcasting high frame numbers. Since the frame number
field is a fixed-width integer, upon reaching the maximal frame number a node’s
frame counter will “roll over” back to 0. These rollovers in the global frame number
make matching packets received by the sniffer nodes with the proper entry from the
sending node’s log difficult, because there are often several entries with a given global
frame number.

In order to resolve this issue, we have two main options which we call roll down
and roll up. Using the roll down method, we assume the frame number in the logged
message is valid, leading to sometimes having multiple logged messages from the
same node during the “same” frame (which is not possible). The roll up method is
more complicated, but should be more accurate as well. In this case, we look for the
frame number, which is included in every message, to drop. That is, a message Mv,r

sent by node v during frame r followed by a message Mv,r′ where r ′ < r. A properly
functioning node will never decrease its frame number, only add one to it or adopt a
higher frame number from a neighbor’s message. Thus, we can assume that node v’s
frame number rolled over between the time the sniffer received messages Mv,r and
Mv,r′ and we can add 216 = 65536 to the message’s reported frame number.

3.1.4 Data integrity

In any networking scenario data integrity is important, but in the context of wireless
networks it is even more so. What wemean by this is that the messageM sent by node
S should be received by another node, R, intact and unchanged. If instead R receives
an altered, or corrupted, message M ′, the results can be unpredictable. Depending
upon which part of the original message M was changed, the effects could range
from the node crashing due to bad input to nothing at all.

Modern wireless networking protocols generally ensure data integrity by employ-
ing sophisticated data encoding schemes that add redundancy and, most importantly,
error correction. These techniques are collectively known as forward error correction
and work by encoding outgoing data into a format that uses more bits than the origi-
nal. Hence, the decoding process on the receiving side can check for any errors in the
data and even repair many errors without requiring retransmission. Such techniques
are difficult to implement on the MyriaNed hardware. This is because the Nordic
radios used utilize a fixed-size packet of only 32 bytes. Using forward error correc-
tion techniques would further reduce the useful size of an already small packet. Ex-
tremely efficient encoding techniques exist (like turbo codes and low-density parity-
check codes), but require more resources than our nodes can provide. Even an effi-
cient (3,2) code (that is, one that encodes 2 data bits into 3 output bits) would leave
only 21 bytes usable of the entire 32-byte payload.

45

3

Measurements Real-world experiments

The Nordic radio used in the nodes provides for a 2-byte CRC on all outgoingmes-
sages. Nevertheless, CRCs are not perfect and in practice it is not uncommon for a
corrupted packet to pass the hardware CRC check. This can occur more frequently in
regions of high node density, due to the constructive/destructive interference from
other nodes’ messages. Because we did encounter problems with corrupted pack-
ets, we implemented an additional MAC-level 16-bit CRC check as well as a 20-bit
“magic number”, in order to better filter out incorrectly received messages. Because
many of the fields in the packet header have no “wrong” value, we cannot generally
distinguish correct packets from corrupt ones that happen to pass the CRC check.
Thus, adding a magic number to the message header provides a simple verification
that a known series of bits arrived completely intact and allows us to filter some
additional corrupt messages.

3.1.5 Storage for logs

Both the Chalcedony nodes and the SED modules have only 4 MB of non-volatile
flash memory for logging, so space usage is an important consideration. The full
details of the active nodes’ logging are described in the following section but, with
one log entry written per frame, care must be paid that the minimum amount of
data possible is logged. We typically use a frame length of 500ms, meaning that
one hour of experimentation will result in the creation of 7200 log entries. Thus,
logging more than 582 bytes per frame would fill the log in one hour. Since many of
our experiments last for 6 hours or more, logging more than one hundred bytes per
frame would be impossible.

3.2 Measurements

We take measurements from two different sources in our experiments. Active nodes
log data about their operation and the messages they send and receive. Sniffer nodes
observe messages sent by the active nodes, then timestamp and forward the messages
to a controlling PC. The distinction between active and sniffer (passive) nodes was
explained in Section 2.2.

3.2.1 Active node logs

At the beginning of a new frame, a node stores both its version of the current global
frame number and the number of clock ticks that have elapsed since it began operat-
ing.

During the active period of a frame a node keeps a count of both application
and join messages that it receives, as well as any invalid or ignored messages. As
discussed in Chapter 2, a message is considered invalid if it fails either the MAC-level

3

46

Real-world experiments Measurements

Table 3.1: Logged data

Name Type/Size Description

timestamp 8-byte int number of elapsed clock ticks (uptime)

frame number 2-byte int local version of the global frame number

frame slots 2-byte int final number of slots for this frame

frame events 2-byte int bitmask of flags for important events

cluster tag ID 2-byte int is portion of node’s cluster tag

cluster tag epoch 1-byte int epoch portion of node’s cluster tag

received app msgs 1-byte int count of application messages received

received join msgs 1-byte int count of join messages received

invalid app msgs 1-byte int count of invalid applicationmessages received

invalid join msgs 1-byte int count of invalid join messages received

ignored join msgs 1-byte int count of ignored join messages

app data length 1-byte int number of bytes application wishes to log

app data VARIABLE application data (unknown)

TOTAL 23+ bytes

CRC check or the magic number check, and it will be ignored if it contains inferior
synchronization information.

At the end of the active period the node records the total number of slots sched-
uled for this frame. After this GMAC calls the application’s appLogFrameData func-
tion (see Section 2.5.1), in order to give the application a chance to make GMAC
aware of any application data that should be logged alongside the MAC data for this
frame. This will be discussed in detail in each relevant experiment section.

As can be seen in Table 3.1, the MAC data occupies 22 bytes of space while the
application data requires N +1 bytes, whereN is the number of bytes the application
wants to log (N < 256). With a total of 4 MiB of flash memory for logging, a node can
log a maximum of 182,361 frames (with N = 0). Any application-level logging will
reduce this figure substantially.

3.2.2 Sniffer node logs

The passive sniffer nodes execute an always-on listening protocol, and simply record
any and all messages they receive. The sniffer nodes will not capture every message
broadcast within their range because collisions and other types of interference affect
the sniffer nodes as well as the active nodes. As mentioned previously, the Nordic

47

3

Measurements Real-world experiments

Table 3.2: Packet data

Name Type/Size Description

transmit slot 12-bit int slot index selected for transmission

magic number 20-bit int constant magic number for error detection

mac-level CRC 2-byte int cyclic redundancy check for error detection

cluster tag ID 2-byte int sending node’s cluster tag id

cluster tag epoch 1-byte int sending node’s cluster tag id

frame number 2-byte int local version of the global frame number

merge tag ID 2-byte int

merge tag epoch 1-byte int iff non-zero: notification of superior cluster (id,
epoch) with specified slot offset

merge offset 2-byte int

app data 16 bytes application data

TOTAL 32 bytes

radios employed in these nodes do not support collision detection, so message colli-
sions often appear the same as silence to a sniffer node. The sniffer nodes also do not
check the MAC-level CRC or magic number discussed in Section 3.1.4. This has the
fortunate side-effect that we can get some insight into how many corrupted packets
exist in the network by checking the CRC and magic number logged by the sniffer.

In addition to the V2 nodes that we use as sniffers, we also employ a raw radio-
frequency sniffer device, or RF sniffer for short. These devices use an FPGA and
high-speed processor to monitor a specified frequency range. All radio-frequency
data in this band is captured, and the device attempts to parse packets from the
incoming stream of data. This is accomplished by matching the known header in
GMAC packets, as well as checking each message’s packet-level CRC to make sure
the message is correct. The most important aspect of this device is its high-precision
clock, which allows the device to timestamp received packets with a granularity of
1µs (about 30 times finer grained than the resolution of the clocks on the V2 & V3
nodes).

The basic packet format used by the active nodes is shown in Table 3.2. Each re-
ceived packet is timestamped by the sniffer node before being inserted into a queue
of packets to send to the host. Particularly for the V2 nodes (due to their slower
CPU and lower serial bandwidth), a high rate of incoming messages could overflow
the node’s internal queue and lead to lost data or other problems. The sniffer node
makes no attempt to validate or interpret the message itself, though it does verify
the physical, or packet-level, CRC inserted by the Nordic radio itself. A sniffer node
associates an 8-byte local timestamp with each received 32-byte packet. The inter-
pretation of this timestamp differs depending on what type of node is acting as the
sniffer.

3

48

Real-world experiments Experiments

In the case of an RF sniffer node, the local timestamp represents the number of 1µs
clock ticks that have elapsed since start-up. The sniffer host runs software designed
to timestamp, interpret and parse the raw radio frequency data and log the parsed
packets and timestamp to disk. Much of this processing will eventually happen on
the RF sniffer node’s internal FPGA, as the software for this device matures.

If the sniffer node is a V2 or V3 device, the local timestamp is interpreted as the
number of 1

32768 s clock ticks that have elapsed since the node began operation. In this
case, the sniffer host adds a real-time timestamp to the log, due to the relatively coarse-
grained timestamping on the V2/V3 nodes. The host runs a simple program that
simply continuously tries to read 40-byte records (8 bytes timing, 32 bytes packet)
from the serial device, timestamps the reception of these records, and writes them
together to disk. The sniffer hosts should all execute the network time protocol, or
NTP, in order to keep their clocks as tightly synchronized as possible. Using the NTP-
based real-time timestamps should allow us to match data received from different
V2 sniffers, whether attached to the same controlling laptop or not. Note that there
are variable-length delays associated with USB buses/devices, so the accuracy of the
laptop’s real-time timestamps may be limited by the timing jitter in the USB serial
protocol.

3.3 Experiments

In the course of this research, our group has performedmore than a dozen real-world
experiments. The first experiments were of an exploratory nature: what could we do
with a wearable network of wireless sensor nodes? We had grand aspirations, but
our first experiment was marked by almost complete failure and we were forced to
adjust our focus from the level of application development to that of (debugging at)
the network level. In fact, it was not until our most recent experiments that we began
to get most everything right and were again able to focus on application-level issues.
Failure is often a far better teacher than success, and we learned from each of our
mistakes. In this section, we will describe in detail four of the more interesting and
significant experiments that we performed.

3.3.1 DevLab cafe

Our first social ad hoc networking experiment was designed around a simple premise:
people (particularly researchers) tend to socialize with individuals they already know.
We wanted to create an application that would take advantage of our Chalcedony
nodes’ ability to give users real-time feedback via the LCD display, and utilize this

49

3

Experiments Real-world experiments

Table 3.3: Experiment characteristics

Experiment DevLab café 30-year celebra-
tion

The Big Game ICT Open

Participants 50 220 36 110 (of 220)

Venue DevLab, Eind-
hoven

Rode Hoed, Ams-
terdam

Intertain Lab,
VU

WTC, Rotterdam

Event Monthly mixer Celebration Pub-quiz game Conference

Duration 2-3 hours 6 hours 3 hours 6 hours

Active Nodes Chalcedony V3 & Chalcedony Chalcedony V3 & Chalcedony

Sniffers None V2 V2 & RF V2 & RF

Visualization No Yes No Yes

Video No Yes Yes No

Location Tracking No No Yes No

Application InCrowd NeighborReport NeighborReport NeighborReport

Table 3.4: DevLab Cafe experiment details

Purpose
Familiarize ourselves with GMAC API
and MyriaNed nodes
Test giving feedback to participants in
a social environment

Active nodes:
+Number/Type 60 Chalcedony
+Number of Active slots 8
+Transmit slot selection Random
+Application InCrowd
+Application data logging None
+Frame number rollovers Many
Sniffer nodes:
+Number/Type None
+Positioning/Coverage N/A
Major issues Synchronization, lack of experience

Observations
Nodes communicated with a seemingly
random set of neighbors
Nearby nodes were often unable to ex-
change messages
Frame numbers were not always syn-
chronized between nodes

Lessons learned
Start the nodes carefully to ensure ini-
tial synchronization
GMAC’s default merge behavior is in-
sufficient for mobile nodes
On node logging is necessary for data
analysis

3

50

Real-world experiments Experiments

feedback to change the behavior of the individual participants. To that end we de-
signed a simple game that we called InCrowd. In this game participants are assigned
to a number of teams, and they gain points by interacting socially with people from
a different team. Note that how participants are assigned to teams is up to the exper-
imenter, but we generally used demographic information (i.e., university/company
affiliation, research focus, academic status, etc). The details of InCrowd are elabo-
rated below.

An interesting challenge is that it is difficult to determine what exactly consti-
tutes a social interaction. Do we require participants to actually talk to each other,
and if so, for how long? Is eye-contact or a wave from across the room enough to
constitute a social interaction? What sensors could we use to measure such varied
forms of interaction, and with what level of accuracy? Though not directly related
to our research on network protocols, many such questions have been addressed in
the literature (e.g., [46]) In the end, we elected to use prolonged proximity as a proxy
for social interaction. That is, if node A receives messages from node B over N con-
secutive gossip rounds with no gaps of more than M rounds, then node A will be
said to be socially interacting with node B. Though a very simplistic model of dis-
tinguishing social interactions, it is still non-trivial. For example, what values of N
and M are appropriate? If M is chosen too small, many interactions may be missed
due to random packet collisions or other transient errors. If N is too small, the al-
gorithm will detect many false-positives, e.g., participants merely walking past each
other or having separate interactions with their backs towards each other. Luckily,
early small-scale experiments with the nodes revealed that the human body’s absorp-
tion of 2.4GHz radio waves meant that a MyriaNed node worn on a person’s chest
could rarely communicate with a node directly behind it. This implies that a node is
much more likely to receive messages from another node if their respective wearers
are in close proximity and facing each other. If true, the node’s wireless radio may be
sufficient to detect social interactions without the assistance of other sensors.

This experiment would also serve as our first deployment with more than a small
handful of nodes, and would thus teach us how much time-consuming work is in-
volved in programming, testing, charging, transporting and deploying a social ad
hoc network.

Active nodes

In this experiment, we used GMAC’s default of 8 active slots and the SimpleSlot strat-
egy with random transmit slot selection (described in Chapter 2). All messages were
broadcast at the highest possible transmission power, in an attempt to ensure net-
work connectivity.

The InCrowd application we designed works by having nodes keep track of which
neighboring nodes they have received a message from for the last N = 15 frames. If a
receiving node, R, receives a message from a particular sending node, S, for N = 15
consecutive frames with no gaps (consecutive frames without messages from S) of
more than M = 3 frames, it records an interaction between itself and S and scores a
point. A detailed description of InCrowd follows:

51

3

Experiments Real-world experiments

• All nodes maintain an array with one entry for each participating node. An
array entry consists of three items: the frame numbers of the first and last time
that node was heard from, and the most recent known score for that node.

• In every MAC frame, each node broadcasts a message containing its own MAC
ID, its score, and up to 3 <MAC ID, score> pairs from its cache.

• For each application message received, the receiving node (R) will update its
cached score for the sending node (S) and any additional nodes (A...C) included
in the message. R will also check whether it can score any points from its mes-
sage exchange with S. Note that because node scores are monotonically increas-
ing, a higher score is always more recent.

• If it has been more thanM = 3 frames since the last received message from S, R
considers any previous interaction with S terminated and records the current
frame number as the start time of a new potential interaction with S. Else, if
R’s start time for S was at least N = 15 frames ago, R scores a point and adds N
to the start time for its interaction with S. Finally, the current frame number is
recorded as the end time (last communication) for S.

Because the nodes maintain a cache of the best known score for every participat-
ing node, they can also make an estimate of each team’s score by summing the entries
for each node on the team. If the gossiping algorithm works well, all nodes will be
able to maintain an accurate estimate of the total score for each team. By displaying
the top 3 team IDs and their respective scores, we aim to motivate participants to
socialize and improve their own team’s score.

Setup

The event took place in the office of DevLab in Eindhoven, The Netherlands in May
of 2009. The people attending this monthly meeting would be there to present their
own projects using MyriaNed devices, as well as seeing demonstrations of what other
groups were doing and, of course, socializing. The attendees came from a relatively
small number of Dutch research institutes and companies, so we elected to use this
information to divide participants into groups for the InCrowd application. We as-
signed each node a unique MAC ID in the range 1..64, and mapped node IDs to
group IDs in the range 1..8 by IDgroup = ((IDnode − 1) mod 8) + 1. At the beginning
of the experiment, we distributed nodes to participants based on a mapping of home
organization to group ID. In this manner, participants would score points for social-
izing with people from other organizations, but not for interacting with people from
their own organization.

While handing the nodes out to participants, we simply took a node from the
correct group (modulus), turned it on, and helped them hang it around their neck.
We did not give the nodes a chance to synchronize as a single connected network
before distributing them amongst the attendees.

3

52

Real-world experiments Experiments

Results/Considerations

While we were very optimistic going into our first experiment, we quickly learned
how much we did not know about how these networks operate in the real world. As
discussed previously in Section 2.4.1, a node will initially synchronize to the sender
of the first message it receives. Because we were incautious about activating and dis-
tributing the nodes and they were handed out simultaneously in different parts of the
room, several syncgroups formed in the network. The default GMAC merge behav-
ior (described in detail in Chapter 2) does not perform well in the presence of many
syncgroups. The mechanism to make merge decisions does not guarantee a single
syncgroup will be formed, and the result was complete chaos. Nodes would occa-
sionally hear join messages from another syncgroup, and often ended up jumping
from one syncgroup to the next as a result. The high transmission power used (mean-
ing the entire network had a physical diameter of only 2-3 hops) and node mobility
ensured that the network would never converge to a single active schedule.

The problems encountered with this experiment led us to reconsider our focus on
application-level exploration to network-level fundamentals. The synchronization
mechanisms used in GMAC would need to be improved to cope with large, dense
mobile networks. Additionally, we would need to implement both MAC and applica-
tion data logging in order to debug and analyze future experiments.

3.3.2 30 years of computer science in Amsterdam

Our primary goal for the experiment at the 30 Years of Computer Science in Amster-
dam celebration on December 2, 2011 was to perform a very large-scale deployment.
We had executed a number of experiments since the DevLab Cafe event, and felt
prepared to tackle a bigger set of mobile devices. We prepared almost 300 nodes
for the event, and approximately 220 of the total participants agreed to wear one of
our badges. This occasion also marked the first time that we used any of the node’s
sensors, namely the accelerometer.

As a result of the previous failings of GMAC’s network synchronization, we had
spent a significant amount of effort investigating potential improvements within the
OMNeT++ simulation environment (see Chapters 4 & 5. This experiment would
serve as a test of whether the techniques we developed would prove effective in the
real world as well.

Active nodes

As in previous experiments, we continued to use 8 active slots per frame and random
transmit slot selection via the SimpleSlot strategy. In contrast to the DevLab exper-
iment, here we used only the lowest available transmission power in an attempt to
limit communication to only those nodes that were in close physical proximity. Ad-
ditionally, the node software was updated to log important MAC and application

53

3

Experiments Real-world experiments

Table 3.5: 30 Years of Computer Science Celebration experiment details

Purpose
Larger scale than any previous experi-
ments
Verify efficacy of merge improvements
from simulation
Test capture/analysis of accelerometer
data

Active nodes:
+Number/Type 100 Chalcedony, 200 V3
+Number of Active slots 8
+Transmit slot selection Random
+Application NeighborReport
+Application data logging Neighborhood, Accelerometer
+Frame number rollovers Many
Sniffer nodes:
+Number/Type 6 V2
+Positioning/Coverage Entrance & back of hall, approx 35%
Major issues Very high node density, logging space

usage, handing out nodes

Observations

Fewer received messages than expected
due to collisions
Some logged messages appear cor-
rupted
Sniffer timestamps exhibit significant
jitter
Very long queue to initially hand out
nodes & record IDs
Many nodes completely filled their logs

Lessons learned

More active slots required for dense
topologies
Additional data integrity checks
needed (e.g. CRC)
V2 sniffer timestamps too variable for
analysis
Need more efficient way of distributing
nodes to participants
Restrict user logging to increase dura-
tion of logs
Difficulty of synchronizing measure-
ments (logs) across devices

3

54

Real-world experiments Experiments

data to non-volatile flash memory. These logs are essential in attempting to analyze
a completed experiment.

For this experiment, we designed a new application, called NeighborReport:

• The application takes advantage of GMAC’s gossiping protocol to share neigh-
borhood data items throughout the network.

• Each neighborhood data item includes the creator’s node ID (C), the frame num-
ber in which the neighbor nodes were observed (f), and up to three node IDs
that were neighbors of C in frame f . Node IDs and frame numbers are both
stored as 2-byte integers, so one neighborhood data item requires ten bytes.

• A node will include both a data item representing a sample of its own neighbor-
hood for the previous frame and a recent data item from its cache.

The inclusion of a second data item serves to increase the speed at which data items
spread through the network. It also allows the sniffers to gain insight into what is
happening in parts of the network that aren’t directly within their range. Data items
created by nodes far away can be carried into the range of a sniffer either by node
mobility or multi-hop routing.

This application was also designed to include the capture of accelerometer data
from the sensor on Chalcedony nodes. This event marked our first use of any of the
Chalcedony node’s on-board sensors, and the aim was to use this data in identifying
physical movements in the participants that are indicative of specific social behaviors.
By comparing one node’s accelerometer readings to those of its neighbors during the
same frame, we hoped to identify social groups as well as distinguish group leaders
and followers.

Setup

In this experiment, we mapped each participant’s identity to a badge ID, and demo-
graphic data (e.g., university affiliation, role) were associated with the badge ID only
(in an attempt to alleviate privacy concerns). The purpose of this was to see if we
could later analyze the data to find any patterns in the recorded social interactions
related to the chosen demographic data. The event would consist of a series of pre-
sentations in a large hall, interspersed with several short coffee breaks. Finally, the
event was scheduled to end with a social mixer. We hoped that the socially enforced
patterns of being seated quietly in rows during presentations followed by high mobil-
ity and mingling during the breaks and final portion of the event, would be evident
in the logged data.

In preparation for the event, we placed V2 sniffer nodes (described above in 2.2)
around the most high-traffic areas of the venue. The sniffers were located in the
entrance/bar area and the back of the main hall. Because of the layout of the pre-
sentation hall in which the event took place, getting good coverage of the area was
nearly impossible. The main hall had a 3-story ceiling, preventing us from hanging
any sniffers above the seating area. Furthermore, there was an open balcony which

55

3

Experiments Real-world experiments

formed a second seating area. Being one floor higher and separated by columns and
railings, those seated in this area would almost certainly be out of range of the nodes
on the ground floor. If separated for long enough, these groups of nodes should drift
apart, forming separate syncgroups. This would provide a demanding test for our
protocols.

Our collaborators from the University of Amsterdam set up video cameras in
one corner of the venue to be used for two purposes. First, they wished to use the
video recordings in order to have ground truth for analyzing their detection of vari-
ous social behaviors via accelerometer readings. The Chalcedony nodes (which were
the only ones with the required sensor) sampled their 3-axis accelerometers at a fre-
quency of 80Hz. They computed the mean of four consecutive 16-bit readings, and
logged 20 of these averages per one second frame. This added an additional 120 bytes
of log data (20 samples of three 16-bit integers) for each frame, making exhausting a
node’s data flash a realistic danger.

Results/Considerations

Overall, the experiment went quite well. One problem that we encountered was
again a logistical one: distributing the nodes to participants. Because we wanted
to capture demographic information about individual participants, we recorded the
name and other details of each participant alongside the ID of the node they wore.
Recording these details by hand took longer than expected, and caused a long queue
at the registration table. In the future, we would need to improve the way we dis-
tribute the nodes to avoid such bottlenecks.

The nodes suffered from the rollover issue (described earlier) that plagued all of
our experiments. Nevertheless, the timestamps from the sniffer logs allowed us to re-
construct much of the data set. Many nodes reported fewer neighbors than expected,
which we attributed to the high node density and low number of active slots. This
combination can easily lead to a large number of packet collisions, which (due to
the lack of collision detection) appears to the active nodes as indistinguishable from
not receiving a message. Another possible result of the high node density was an
increased number of corrupted packets, which were identified in the sniffer logs.

Another problem was that the application logged too much data for each frame,
which resulted in many of the nodes filling all of their available flash memory and
therefore being unable to log any more data from that point forward. The limited
space available necessitates a delicate balance between recording too much and risk-
ing data loss versus recording too little and not having enough data for proper anal-
ysis.

Additionally, this experiment revealed that we had problems resulting from a lack
of data integrity. We found that, despite the CRC implemented by the radio hardware,
corrupt packets still occasionally got through. After discussing this with other wire-
less researchers, it was brought to our attention that very high node densities can

3

56

Real-world experiments Experiments

more easily lead to subtly corrupted packets that can still pass a CRC check (see Sec-
tion 3.1.4). In order to combat this, we added a second MAC-level CRC check as well
as a magic number into the message header. These two fields should greatly reduce
the chances of corrupt messages being treated as correct messages.

One of the most important outcomes of this experiment was that we discovered
that the V2 sniffers were not capable of timestamping data with sufficient precision
to analyze the network’s synchronization. In order to analyze the synchronization
between the active nodes we need to be confident in the timing data returned by
the sniffer nodes. This is because the active nodes are generally distributed over a
large area, and hence beyond the range of a single sniffer node. In this case, we must
be able to combine the logs from multiple sniffers in order to analyze the message
timings across the whole network. Without stable and accurate timestamps from our
sniffer nodes, merging sniffer logs together will be impossible.

One way of analyzing the stability and accuracy of the logged sniffer timestamps
is to compare the timestamps between two logs. That is, we search the logs of sniffer
nodes Si and Sj for a common message, Mv,r , sent by active node v during frame r.
For every common message M received by both sniffer nodes, we compare the local
timestamps from each sniffer, tM (i) and tM(j). While we expect there to be a differ-
ence between the local timestamps, ∆(M,i, j) = tM (i)−tM (j), we expect that difference
to be constant. For example, if there is another commonmessageM ′ received by both
Si and Sj , we would like ∆(M ′ , i, j) to be very close to ∆(M,i, j). In Figures 3.1a and
3.1bwe present the results of such comparisons. Each data point showsDelta(M,0,1),
that is, the time difference between the local time at S0 and S1 upon the reception of
message M . We plot the local time at S0 along the x-axis, the local time at S1 along
the left y-axis, and ∆(M,0,1) along the right y-axis. Local times (x and left y-axis) are
shown in seconds, while the ∆ is shown in microseconds.

In Figure 3.1a we show a “clean” data set, recorded using two sniffer nodes and
two active nodes placed on a desk in an office at the university. While there were cer-
tainly potential sources of interference (e.g., WiFi access points, Bluetooth devices),
this is a very clean data set. The active nodes and sniffers ran for about 150 min-
utes and the sniffers logged 13947 packets in common. In the figure, we can see that
while the timing difference became more stable as the experiment progressed, it is
certainly quite variable. This graph shows us that while generally the sniffers report
consistent times for mutually received packets, there is significant variability in the
timestamping. This is partially due to buffering issues on the sniffer nodes as well as
latency in the USB serial protocol.

In Figure 3.1b shows a sample of the data recorded during the experiment. Here
we again plot the timing of one sniffer node against another. The variability in the
timing offset between the two sniffer nodes is even more pronounced here, because
of the significantly higher network load (i.e., many more active messages) and con-
tention for the USB bus from other sniffer nodes sharing the same host. Regardless
of the cause, this level of timing jitter renders the V2 nodes an impractical tool with
which to qualitatively measure the synchronization in the network.

57

3

Experiments Real-world experiments

T₀ (s)

T
₁

(s
)

Δ
 (

μ
s)

(a) Clean desktop environment

T₀ (s)

T
₁

(s
)

Δ
 (

μ
s)

(b) 30 Years of CS experiment environment

Figure 3.1: Sniffer timing comparisons

3

58

Real-world experiments Experiments

Table 3.6: The Big Game experiment details

Purpose
Distinguish types of social behavior via
multi-modal sensing
Control/record physical as much as
possible for ground truth
Capture accurate timestamps for analy-
sis of synchronization

Active nodes:
+Number/Type 36 Chalcedony
+Number of Active slots 64
+Transmit slot selection Fixed
+Application NeighborReport
+Application data logging Neighborhood, Accelerometer
+Frame number rollovers One
Sniffer nodes:
+Number/Type 6 V2, 1 RF
+Positioning/Coverage Uniform, nearly 100%
Major issues Bug in timestamping packets received

by RF sniffer

Observations
Nodes appeared synchronized and com-
municated with neighbors
Incidence of frame number rollovers
greatly reduced
RF Sniffer log contained only packets,
no timestamps

Lessons learned
Extra active slots improve neighbor de-
tection in dense networks
Additional message integrity checks
mitigated packet corruption
We did not perform adequate testing
prior to deployment

3.3.3 The big game experiment

In this experiment, we again collaborated with faculty members from the UvA. To
have greater control over the interactions of the participants, we designed a pub
quiz-style game involving nine 4-person teams. By comparing the data from different
parts of the experiment, we hoped to have an easier time establishing baselines for ac-
curately discriminating social interactions from “casual” interactions caused only by
proximity (e.g., someone simply standing near a group of people, but not interacting
with them). The game was divided in a number of phases, some where we allowed
the participants to freely mingle, some where we encouraged them to mingle with
a specific purpose, and others where we forced them to remain in small groups. In
addition, we used a number of other sensing devices (i.e., multi-modal sensing) to
aid in distinguishing real social interactions from false/accidental ones. Just as in the
30 Years of CS experiment, we logged accelerometer data on the active Chalcedony

59

3

Experiments Real-world experiments

nodes. We also recorded video of the whole experiment, as well as audio using a
separate system of wireless microphones.

The experiment is also notable because we affixed UbiSense nodes to each Chal-
cedony node. The UbiSense system uses a set of fixed anchor nodes to accurately
determine the location (within centimeters) of the mobile “client” devices in a fixed
area. The tiny client devices broadcast a message, and the anchor nodes compare the
timing and angle of incoming messages in order to determine a precise location of
the client node. This system should prove extremely useful in our data analysis, as
it gives us an exact location for each node throughout the experiment. This would
allow us to compare the detected social groups versus the actual position of each
participant.

In addition to the UbiSense nodes for detailed localization, we also used several
V2 sniffer nodes and our RF sniffer module to log application messages and timing
details. The RF module, described in Section 3.2.2 should provide very fine-grained
timing measurements, suitable for detailed analysis of the network synchronization.

Setup

This experiment took place in the Intertain Lab (http://www.cs.vu.nl/intertain/) at
the VU. Participants arrived, were provided with drinks and encouraged to socialize
with the other participants. Next, the players mingled in order to find compatible
partners for the quiz later in the event. People were encouraged to seek out team-
mates that had strengths in quiz categories other than their own. After that, the
attendees formed four-person teams for the remainder of the event. The quiz itself
followed, and lasted approximately one hour. Finally, the event ended with a mixer
where the participants were encouraged to further socialize and give us any feedback
about the event.

The active nodes were running a modified version of the NeighborReport applica-
tion described previously. The only difference is that due to the smaller number of
participants, we replaced the list of up to 3 neighbor IDs in the data item with an 8-
byte bitmask, with each set bit representing the reception of an application message
from the corresponding node in that frame. This change made it possible for the snif-
fers to observe the network topology in even greater detail than previous experiments
because nodes could now report all of their neighbors rather than just a sample. How-
ever, due to the additional space required for the extra MAC-level CRC and magic
number, we no longer had enough space to send a cached data item as well as the
node’s own data item. Because we anticipated much better sniffer coverage (approxi-
mately 100%), we felt the trade-off of more detailed neighborhood reports versus the
increased visibility offered by gossiping/flooding data times was justified.

3

60

Real-world experiments Experiments

Results/Considerations

From a social standpoint, the Big Game was a big success. All of the participants
said they enjoyed themselves, and the top 3 teams won prizes for their efforts. We
used significant prizes (iPods for first place) in order to motivate players to fully par-
ticipate in the experiment. During the experiment, our observations indicated that
network synchronization was performing adequately and nodes were able to com-
municate with their physical neighbors. Additionally, the nodes only experienced a
single frame number rollover during this experiment. Whether this was due to im-
proved message integrity because of the additional CRC and magic number headers,
lower node density, increased number of active slots, an unknown factor or some
combination of these, we cannot be sure. The sniffer logs include corrupted packets
as before, but only because the sniffer nodes do not check the MAC-level CRC/magic
number fields and simply record all received messages.

One of the biggest disappointments of this experiment was a bug in the RF sniffer
program that resulted in the observed packets being logged, but without timestamp
data. This, again, meant we were unable to make any quantitative analysis of the
network synchronization. However, as in previous experiments, visual inspection of
the nodes (via their on-board LEDs) in operation indicated that they were correctly
synchronized and functioning normally. As we had determined the V2 sniffers were
inadequate for measuring network synchronization, no attempt at analysis was made
after the bug in the RF sniffer logging was discovered. This bug was a painful re-
minder that we must test every conceivable aspect of a deployment thoroughly before
the experiment itself.

Despite this setback, the remaining data (accelerometer logs, node position, au-
dio and video recordings) has proven useful for other researchers looking for differ-
ent results. One example is a fellow researcher at the VU, who is developing metrics
for distinguishing social interactions from a series of binary (yes/no) proximity data.
That is, given a vector vS,R of Boolean values representing messages sent by S and re-
ceived by R in consecutive frames (e.g., T ,F,F,F,T ,T ,T ,F,T ,T ...), can we accurately
determine the beginning and duration of social interactions between the wearers of
nodes S and R?

3.3.4 ICT open

In our last experiment, we pushed ourselves to try to improve upon our largest de-
ployment yet. We again prepared almost three hundred nodes in hope of finding
a large number of willing participants. However, turn out for the event was not as
high as anticipated, and many of the participants were unwilling to wear one of our
wireless badges. In spite of this, this experiment provided our best data set yet, due
in no small part to the proper functioning of the RF sniffer logging. Attendees who
did wear a badge were very interested to see and interact with our live visualization.

61

3

Experiments Real-world experiments

Table 3.7: ICT Open experiment details

Purpose
Perform large-scale experiment success-
fully and visibly
Demonstrate our work to Dutch re-
search community
Capture accurate timestamps for analy-
sis of synchronization

Active nodes:
+Number/Type 100 Chalcedony, 200 V3
+Number of Active slots 64
+Transmit slot selection Random
+Application NeighborReport
+Application data logging Neighborhood
+Frame number rollovers Three or four
Sniffer nodes:
+Number/Type 3 V2, 1 RF
+Positioning/Coverage Located semi-centrally, approx 30% of

main hall
Major issues Lack of participation/volunteers

Observations
Attendees concerned about privacy im-
plications of wearing node
RF sniffer indicates network synchro-
nization works correctly
Frame number rollover problem still
persists

Lessons learned
Full sniffer coverage essential to recon-
structing experiment
Improve message integrity & resistance
to Byzantine failures
Continue to address users’ privacy con-
cerns

Active nodes

The application run during this experiment was once again the NeighborReport ap-
plication. The application was also modified for this experiment, this time to map
16-bit node IDs to 9-bit values. The purpose of this was to accommodate additional
MAC header information necessitated by earlier problems with data integrity, as well
as the need to use 16-bit node IDs with more than 256 potential active nodes. Using
these “compressed” 9-bit node IDs, we were able to fit 14 node IDs (one for the sender
and up to 13 neighbors) into 16 bytes.

Setup

In this experiment, the layout of the venue one again prohibited us from achieving
full coverage with our sniffer nodes. The lobby of the World Trade Center is a wide,

3

62

Real-world experiments Experiments

open-air area with extremely high ceilings and very few locations to setup the sniffer
nodes and laptops to run them. As such, we decided to focus our effort on the area
immediately surrounding our demonstration. With some luck, our demo location
was just to the side of the lunchtime eating area, affording us great sniffer data during
the break periods.

As with most conferences, the day was broken up into presentation sessions in-
terrupted by short break periods. This scenario provides a difficult test-case for any
synchronization mechanism, since groups of nodes will be physically separated and
unable to communicate for large portions of the day. During these periods of separa-
tion, groups of nodes in the same roomwill tend to stay synchronized with each other,
but may drift apart from the other nodes in different rooms. When the participants
(and the nodes) come together again during the break periods, the synchronization
protocols must allow a node detect other unsynchronized nodes in its vicinity, decide
whether to merge with them or to wait for them to merge with it, and finally to notify
its own neighbors of any decision.

The most important difference to our previous experiments was the use (and
proper function) of the RF sniffer device. This device allows us to take measurements
of the timing of individual messages with an accuracy of about one microsecond.
This is absolutely essential for any qualitative statements about the synchronization
of nodes within the network. As discussed earlier, our other tools (namely the V2
sniffers and the node logs themselves) are incapable of the fine-grained timestamps
required.

Results/Considerations

While disappointed that we were not able to convince a majority of the conference’s
attendees to wear one of our electronic badges, we still considered the experiment to
be a success. We had about one hundred and twenty active nodes participating in
the social ad hoc network, which was our second largest experiment to-date. In the
future, wemust try to find additional ways of ensuring the privacy of our participants
and make it clear to them that we are doing everything we can to maintain their
privacy.

With a correctly functioning RF sniffer, we were finally able to take high-precision
measurements of the network synchronization. Each message contains the sending
node’s transmission slot number. Because a node broadcasts its message a fixed num-
ber of clock ticks from the start of its fixed-duration transmission slot, we can com-
pute the exact time the sending node started that frame. We call this calculated
time the node’s slot-0 time. By comparing the slot-0 times of all nodes from which
the sniffer logged a message on a per-frame basis, we can evaluate how the network
synchronization proceeds throughout the experiment.

We present an example of the timing data recorded during the ICT Open exper-
iment in Figure 3.2. Along the x-axis we show the “flattened” frame number using
the roll up technique described in Section 3.1.3. That is, we group received messages

63

3

Experiments Real-world experiments

based on the (corrected) frame number in which they were sent. For each frame num-
ber, we compute statistics about the set of messages received during that frame. In
the bottom plot of the four, we show the number of logged messages for each frame
number. In the top three plots, we show the mean, median and standard deviation
of the slot-0 times of the senders, with the y-axis representing time in seconds in all
three plots. The lowest of these plots shows the mean slot-0 time, the middle plot
shows the median slot-0 time, and the top plot shows the standard deviation of the
slot-0 times for each frame.

These results are extremely positive and encouraging, demonstrating that syn-
chronization is working properly. This confirmation of the accuracy of our many sim-
ulated experiments was sorely lacking from the project until this point. The results
from this experiment indicate that nodes are generally synchronized to within a stan-
dard deviation of < 10ms, or about 12 GMAC slots. Since we used an active period
of 64 slots for this experiment, this strongly indicates that the active periods of all
nodes overlap to at least some degree, which in turn means communication amongst
all participating nodes should be possible. This was one of the primary goals of our
research, and it is extremely rewarding to have confirmation of its efficacy.

While these techniques have been shown effective on the GMAC protocol, they
should apply to any low duty-cycle MAC protocol. For example, any algorithm that
maintains multiple “virtual clusters” as described in Section 1.7 could instead use the
cluster merging methods that we present in the next chapter. Our synchronization
algorithms do not require specialized hardware or unrealistically accurate clocks. If
anything, our solutions could be considered minimalistic, as they do not require a
radio with support for collision detection or received signal strength indicators.

In future experiments we must strive to have 100% V2 sniffer coverage, as well
as investing in additional RF sniffer modules. The fine-grained timestamps recorded
by this device are essential for confirming or disconfirming the verisimilitude of our
simulations.

Finally, we must continue to investigate new and existing methods of ensuring
the integrity of messages sent by the active nodes. As it stands, a single malfunction-
ing node could cause havoc to an otherwise properly synchronized network, while a
malicious node could easily impair its function altogether.

3

64

Real-world experiments Experiments

Frame Number

σ
ᵣ

(μ
s)

co
u

n
t

Figure 3.2: Timing results from the ICT Open experiment

65

3

Experiments Real-world experiments

3

66

Part III Simulating Wireless

Ad Hoc Networks

67

4. Synchronization in static

network topologies

Although this work is intended to be deployed for very large networks, we can only
expect adoption if we have first explored the design space of our solutions. Simula-
tion is an excellent tool to do this. Furthermore, we need to deal with the fact that
the cost and effort of hardware development for real-world deployment is consider-
able. For example, solutions will most likely have to be embedded in an attractive
way, such as bracelets or watches. Only now, as we are wrapping up this research,
are we witnessing platforms that could be used for this purpose, including advance
smartphones and programmable watches. We have therefore deliberately concen-
trated on large-scale simulations in combination with experiments involving up to
several hundreds of (unattractive) sensor nodes. The remainder of this thesis focuses
on experimentation through simulation.

As explained in Chapters 2 and 3, the conservation of energy is of paramount im-
portance in such resource constrained environments, and this is generally achieved
by limiting the time for which the radio circuitry is switched on. The implied in-
termittent radio on and radio off periods lead to the notion of a duty cycle. This
duty-cycled operation of GMAC leads to the requirement of node synchronization.
It is clear that to enable communication between two or more nodes, their active pe-
riods should be—at least partially—overlapping. In fact, to fully utilize the energy
nodes spend on their radio circuits, their active periods should be synchronized as
accurately as possible, to maximize the shared communication window.

The synchronization of active periods in ad-hoc wireless networks is a nontriv-
ial problem, notably due to the lack of a central coordinator and the inherently re-
strained nature of such devices, as discussed in Section 2.4. In addition, we are re-
stricted by GMAC’s design goal of a predictable node lifetime (i.e., fixed-rate use of
energy). This makes it a far more challenging problem, as solutions that asymmetri-
cally put more burden either on the sender or the receiver are ruled out.

It is precisely this network-level synchronization that we investigate in the course
of this chapter. Here focus on static network topologies, and evaluate of mobile sce-
narios in the next chapter. Note that although our discussion is presented in the
context of GMAC, the methodologies, principles, and algorithms we propose can be
generalized to virtually any MAC protocol with a very low duty cycle.

In this chapter we will begin by giving a detailed description of our simulation
environment. This environment is used throughout the rest of this thesis to evalu-
ate different aspects of GMAC’s network-level synchronization and application-level
behavior. The contributions of this chapter, improvements to the default GMAC syn-
chronization behavior described in Section 2.4, are discussed in Section 4.2. Then in
Section 4.3, we describe the specific simulation setup and parameters used to gen-
erate the results in this chapter. We present the simulation results of a number of
different network topologies and activity scenarios in Section 4.4, before finally pre-
senting our conclusions in Section 4.5.

69

Simulation environment Synchronization in static network topologies

4.1 Simulation environment

In this and the following two chapters, we will evaluate various aspects of network
synchronization and application behavior through the use of simulation. In this sec-
tion, we will give an overview of the setup and operation of the simulation environ-
ment used to generate the results presented throughout this thesis.

4.1.1 Simulator

OMNeT++1 ([47], [48]) is an open-source discrete event simulator, and the MiXiM
extensions provide a framework for wireless and mobile networking simulations. We
conduct our simulations using the MiXiM extensions2 ([49]). The OMNET++ plat-
form is expressive, efficient, modular, and increasingly the de facto simulation envi-
ronment for mobile ad-hoc and sensor networks, while MiXiM provides support for
mobility and wireless network protocols.

Nodes

We have used OMNeT++ to extend the base MiXiM framework to add support for
the MyriaNed platform (Chapter 3) and the GMAC (Chapter 2) family of protocols.
The modules representing the MyriaNed platform use parameters based on the real
MyriaNed hardware. For example, the simulated radio state changeover times are
identical to the specifications of the nRF24L01+ radios used on the actual V3 and
Chalcedony nodes.

Clocks Clearly, since we are interested in examining the synchronization behavior
of GMAC, our simulated clocks are of great importance. As such, we designed OM-
NeT++ modules to represent the clocks found in our sensor nodes. We model each
individual clock as having a constant offset from the desired clock frequency, f . That
is, each node’s clock will independently count ticks at a slightly faster or slower rate
than f . Many real clocks behave similarly, exhibiting a relatively constant frequency
given a constant ambient temperature. Hence, our simulations assume the nodes op-
erate at constant temperature. There are more complicated and more accurate clock
models that, for example, take individual temperature variations into account, but
we leave such models to future research.

OMNeT++ keeps track of the global simulation time, t, while the clock module
for an individual node i computes the local time, ti . A node’s local time is based
on its own clock’s frequency offset (fi) and phase offset (pi), provided as OMNeT++
simulation parameters. Thus, node i can compute ti = (t × fi) + pi . A node’s phase

1http://www.omnetpp.org
2http://mixim.sourceforge.net

4

70

Synchronization in static network topologies Simulation environment

offset determines the length of time between the global start of the simulation and
the start of that particular node. The frequency offset determines how much faster or
slower than simulation time a node’s clock runs. Unless otherwise specified, the clock
at each node, i, will use a random frequency multiplier 0.99998 < fi < 1.00002, i.e.,
±20 parts per million (ppm). This threshold was chosen to match the specifications
of the real clocks used in the MyriaNed platform (Chapter 3). We call this parameter
MaxClockDrift, because it is the differences in clock frequency offset that cause the
nodes to “drift” apart and desynchronize.

Transmission power In the simulator, a node’s transmission range is determined
by its transmission power. By increasing a simulated node’s transmission power the
simulator increases the node’s transmission range, and vice versa. OMNeT++ mod-
els radio transmission using a unit disc representing a node’smaximum transmission
range. The size of this disc is determined at the start of the simulation, based on the
maximum transmission power parameter. During the simulation, nodes can (dynam-
ically) set their transmission power to any value less than or equal to this maximum
value. OMNeT++ uses this disc as an optimization: nodes outside this area can never
receive the message. However, all nodes within the transmission range are poten-
tial receivers. Each potential receiver uses a sophisticated and modular analogue
radio model to determine whether they can receive the message broadcast, given the
sender’s instantaneous transmission power and relative distance.

In all experiments presented in this thesis we set the transmission power for all
nodes in the network on a per-run basis. That is, the nodes are given a maximum
transmission power, and always use this as their instantaneous transmission power.
We do not investigate varying transmission power during the execution of an experi-
ment. Due to this, we can discuss the transmission density of a simulated run. What
we mean by transmission density is the average number of nodes per transmission
range, i.e., node density (nodes

m2) × transmission area (m2). The maximum potential

transmission area (Atx = πr2tx) is determined by the maximum transmission range
(rtx), which is in turn determined by the simulation parameter MaxTxPower. The
node density is determined by the network topology.

4.1.2 Network topology

In order to investigate the performance of GMAC in simulation, we assess the effect of
network topology on network synchronization. The network topology is determined
by two primary factors. First is the distribution of the nodes, i.e., where the nodes are
deployed throughout the simulated area. Second is the dimension of the simulated
area. We use a rectangular area (L×W) in all simulations presented in this thesis.

In this thesis, we investigate three different node distributions: static grid topolo-
gies, where nodes are arranged in regularly spaced rows and columns; static random
topologies, where nodes are distributed randomly throughout the simulation area;
and mobile topologies, where nodes are initially deployed and later move according
to specified mobility patterns.

71

4

Simulation environment Synchronization in static network topologies

4.1.3 Evaluation

It is important to be able to quantitatively evaluate both the default GMAC protocol
described in Chapter 2, as well as our suggested improvements to it. In this section
we will explain what measurements we take during our network simulations, and
what metrics we derive from those measurements.

Measurements

A node, i, logs a number of statistics at the beginning of each new frame, r. Two of the
most important, in regards to synchronization, are the global simulation time (tr,i) it
began the frame, and its current cluster tag (cr,i , discussed in Sec. 4.2.3). Using the
logged timing data, we can see not only which nodes are synchronized to which other
nodes (i.e., whether their active periods overlap), but how tightly they are synchro-
nized (i.e., how much their active periods overlap). Through the recorded cluster
tags, we can determine which nodes think they are synchronized with which other
nodes. In addition to time and cluster tag, each node records its absolute position at
the start of the frame, xr,i and yr,i . Nodes also log a number of packet-level statistics,
like the number of sent and received packets (both application and join packets),
number of collided packets, and the number of attenuated packets (those lost due to
weak/distant transmission signals). Finally, nodes will also log application data, if
the application implements the logging callbacks described in Sec. 3.2.1.

Metrics

In order to evaluate how tightly synchronized the entire network is, we compute
the standard deviation, σr , of reported start times for frame n across all nodes. By
looking at how the standard deviation changes as the simulated run progresses, we
can see whether the synchronization mechanism is able to reach or maintain tight
temporal coupling of the nodes. Because we simulate clocks with a frequency of
32,768Hz, one timer tick is 1s

32768 ≈ 30µs, while one 28-tick slot is approximately
850µs, and one 8-slot active period is about 7ms. We consider an entire network to be
loosely synchronized when σr drops below 2000µs, signifying that the vast majority
of nodes in the network will have overlapping active periods. If σr is below 300µs,
equivalent to a single packet transmission time, we consider the network to be tightly
synchronized.

In order to get a better measurement of local synchronization, we can also com-
pute the standard deviation of start times amongst the direct (1-hop) neighbors of
each node, then average this deviation across all nodes. We call this the local σr , and
we denote it as λr . This measurement is more meaningful in static scenarios, where
a node will have persistent neighbors, than in the mobile scenarios presented in the
next chapter, where a node’s neighborhood will be constantly changing. Thus, the
more mobile the nodes, the more we need to focus on tight global synchronization.

4

72

Synchronization in static network topologies Simulation environment

Finally, it is often useful to be able to condense an entire simulated run down
to just a single number in order to easily compare the effect of different parameters
on the execution. We consider one such metric to be the number of nodes that have
mutually synchronized. As we study networks of different sizes, it makes sense to
compute the percentage of synchronized nodes. For the purposes of this metric, we
consider a set of nodes to be synchronized when the difference between the largest
and smallest reported times for frame r is less than δ = 12ms. Note that this differs
from our calculation of syncgroups discussed below. In large networks, a syncgroup
could span more than δ, as long as individual nodes are separated by no more than
ǫ. Here we take δ to be a hard limit on the span of a group of synchronized nodes.
We have chosen this particular value for δ because, particularly in a network with
a large diameter, it is not necessary for all nodes to share the exact same active pe-
riod (i.e., δ = 7ms). Rather, it is important that nodes that are physically close are
tightly synchronized, while nodes separated by larger distances can be more loosely
synchronized. GMAC is designed to operate in such a globally asynchronous/locally
synchronous mode, so we have chosen δ to be about one and a half active periods.
For each frame r, we find the largest percentage of nodes whose reported start times
fit within this window.

Groupings

Based on each node’s reported time, position, and cluster tag, we can group the nodes
together along these three dimensions. For example, two nodes, a and b, that report
positions separated by a distance da,b less than the transmission range, rtx, are said
to be in the same subnet (i.e., they are physically connected/proximal). Likewise,
nodes that report start times for frame n within some ǫ of each other are in the same
syncgroup (i.e., they are temporally connected). Finally, in cases where nodes use
our optimization based on cluster tags, two nodes reporting the same cluster tag in
the same frame are said to be in the same cluster (i.e., they are logically connected).
The size and membership of each of these three types of node groupings can give
us insight into what is happening in the network on a frame-by-frame basis. We
use an algorithm called DBSCAN [50], described in Algorithm 4.1, in order to form
clusters from the recorded simulation data. DBSCAN takes as input a dataset, an
ǫ value which constitutes the maximum distance at which two data points can be
considered neighbors, and a minimum number of ǫ-neighbors, Nbrmin, required to
be considered part of a cluster. The DBSCAN algorithm uses this Nbrmin parameter
in order to avoid clusters composed of long “chains” of data points x1,x2...,xk whose
consecutive values differ by less than ǫ but allow for a large value of xk−xi . Requiring
a minimum number of neighbors to be considered part of a cluster allows the user to
vary the density of the returned clusters of data points.

We use DBSCAN to group nodes into syncgroups based on the time they started
frame n. We define the absolute difference between node i and node j ’s reported start
times for frame r as the distance metric, i.e., disti,j = abs(tr,i − tr,j). We would like to
establish tight bounds and to find strongly coupled groups of nodes in order to con-
sider them syncgroup. To that end, we determine syncgroup membership by using
DBSCAN with ǫ = 2ms (about 65 clock ticks, or almost three slots) and Nbrmin = 5.

73

4

Simulation environment Synchronization in static network topologies

Algorithm 4.1: The DBSCAN Algorithm

DBSCAN(D, ǫ, MinNbr)
C = 0;
foreach Unvisited point P in dataset D do

mark P as Visited;
N = getNeighbors(P, ǫ);
if sizeof(N) < MinNbr then

mark P as NOISE;
else

C = C + 1;
expandCluster(P, N, C, ǫ, MinNbr);

expandCluster(P, N, C, ǫ, MinNbr)

add P to cluster C;
foreach point P’ in N do

if P’ is not Visited then
mark P’ as Visited;
N’ = getNeighbors(P’, ǫ);
if sizeof(N’) ≥ MinNbr then

N = N joined with N’;

if P’ is not yet member of any cluster then
add P’ to cluster C;

These settings ensure that the temporal groupings returned by DBSCAN are com-
posed of nodes with overlapping active periods (neighbors may differ by at most 2ms)
and are dense (i.e., not two strongly connected groups with a few nodes “bridging”
them together into a single group). The number and size of syncgroups that exist in
a given frame is an important measurement. The size of the largest group gives us
insight into how close the network is to complete synchronization. Ideally, we would
like to see our synchronization algorithms converge all nodes into a single syncgroup,
regardless of their location and connectivity to other nodes. Realistically, this cannot
be expected since the frame start times of isolated (groups) nodes will likely drift at a
different rate than their connected counterparts. The ability to converge the network
to a single syncgroup will, at least partially, depend on the number and stability of
subnets and the connectivity within those subnets.

We also use DBSCAN to group nodes into physical subnets based on their re-

ported location. Weuse the simple Euclidean distance, disti,j =
√

(xr,i − xr,j)2 + (yr,i − yr,j)2,

as our distance metric, while we set ǫ = dTX (the transmission range), andNbrmin = 1.
Thus, DBSCAN will return the number and size of physically connected components
that exist during frame n in the network. The ideal synchronization mechanism
would ensure that all nodes in a physically connected component will be synchro-

4

74

Synchronization in static network topologies Synchronization improvements

nized. That is, all nodes that could potentially communicate due to physical proxim-
ity should be synchronized so that they can communicate. Therefore, we consider it
to be a subnet failure when a node that is part of a subnet S is not also in the largest
syncgroup existing in S.

The cluster grouping tells us which groups of nodes believe they are synchronized
to which other nodes. We do not need to use DBSCAN to group the data, since the
logs provide us a mapping from node identifier to cluster tag. Ideally, our synchro-
nization mechanism will ensure that all nodes that report the same cluster tag are
indeed synchronized to each other. Note that this concept of a synchronized clus-
ter of nodes exists regardless of their physical proximity/connectedness (i.e., their
subnet). Similar to the subnet discussion in the previous paragraph, we consider a
cluster failure to exist when a node in some cluster is not in the largest syncgroup that
exists in that cluster. That is, each node that reports a particular cluster tag but is not
actually synchronized with the other nodes reporting that cluster tag is considered a
failure.

4.2 Synchronization improvements

In Section 4.4.1, we will demonstrate that the group merging behavior of GMAC is
sufficient to ensure convergence for small networks, but struggles to consistently con-
verge larger networks. The focus of this chapter is an analysis of various methods of
merging large networks composed of multiple groups of nodes synchronized to non-
overlapping active periods. In this section we discuss some proposed improvements
to GMAC’s default merging mechanisms, which were described in Section 2.4. We
will analyze several distinct combinations of the improvements described below.

4.2.1 Maintenance

In this chapter we do not evaluate any new maintenance functionality, and look only
at GMAC’s default synchronization maintenance behavior.

4.2.2 Detection

In addition to GMAC’s default method of active detection, we implemented the pre-
viously described passive detection functionality in order to allow for a comparison
of the effectiveness of the two methods. In our implementation of passive detection a
node listens to the whole inactive portion of its frame with probability pl . In order to
have a fair comparison between active and passive detection, we would like to spend
approximately the same amount of energy in both cases. Sending a join message
costs an amount of energy equal to the sum of the energy required to wake up the
node, turn on the node’s radio, broadcast a message, and turn off the node’s radio

75

4

Synchronization improvements Synchronization in static network topologies

again. On the reference radio, this costs about the same as two active receive slots,
so we would like to listen to two inactive slots per frame. Based on Ninactive = 1162
slots, we set pl =

2
1162 ≈ 0.17%.

We also implemented a modified version of passive detection designed to aug-
ment both detection methods. This technique is based upon the notion of superior
and inferior syncgroups, which is explained in the next section, 4.2.3. Normally a
node will merge immediately upon discovering (either via normal active or passive
detection) a superior syncgroup. However, in very large networks where many sync-
groups exist before finally converging, it may prove effective to skip merging into a
newly discovered “second-best” syncgroup, if there are better ones within range. In
order to achieve this behavior we added a new technique called listen before merge.
After discovering a superior syncgroup, a node executing this behavior in conjunc-
tion with active detection will listen during the entire inactive period of the frame
in which the detection event occurred. With the same goal, a node using passive de-
tection will listen during the remainder of the inactive period in which it detected a
superior group. In either case, at the end of the frame, the node will merge into the
best syncgroup it has discovered. This technique will need to significantly improve
performance in order to justify the cost of an additional Tinactive time spent with the
node’s radio active for each detection event.

4.2.3 Decision

Ideally, we would like the group with fewer nodes to always merge into a group
with more nodes, to minimize disruption to the network. However, computing such
network metrics in a decentralized fashion is a difficult problem. Even if our nodes
all knew the exact size of their group, we would still need a method of breaking
ties between groups of equal size. Such a tie-breaker method can also serve as the
primary criterion for the group-merge decision. This may lead to suboptimal merge
operations, i.e., forcing many nodes to resynchronize to match a few. Deterministic
convergence, however, is more important than optimality, particularly because in a
stable network the occurrence of merge operations can be assumed to be infrequent.

We propose to solve the convergence problem using a relation, ≻c, based on cluster
tags. A cluster tag is simply an identifier used by a group of nodes that share a
common active period, i.e., a syncgroup. Nodes that have the same cluster tag are
said to be in the same cluster. Note, however, that two nodes in the same syncgroup
need not be in the same cluster, e.g., because the best cluster tag has not propagated
throughout the entire syncgroup yet. Similarly, two nodes in the same cluster need
not be in the same syncgroup, e.g., because they were synchronized but have drifted
apart.

In our solution, a cluster tag C is composed of two integers, an ID and an epoch,
and written C = {C.id,C.epoch}. We assume that all nodes have a unique identifier
and, upon starting, nodes initially use their own unique identifier and an epoch of
0 for their cluster tag. We will defer discussion of the use and function of epochs
to the next chapter. Nodes in the INITIAL_LISTEN, SAY_HELLO, or KEEP_LISTENING

4

76

Synchronization in static network topologies Experimental setup

states (described in Section 2.4.1) do not respect the ordering of cluster tags, and will
respond to any received message by synchronizing with its sender. Once in the state
SYNCHRONIZED, a node will strictly respect the ordering of cluster tags by following
the protocol described here.

As discussed earlier in this section, nodes use a relation, ≻, to determine whether
they should join a newly discovered syncgroup. Here we define a new relation, ≻c,
that allows a node to make a deterministic decision. A node can compare its own
cluster tag, A, with a received tag, B, using this relation: B ≻c A if B.id > A.id (again,
ignoring epochs for now). A synchronized node will always adopt a superior cluster
tag received from other nodes in the same syncgroup. That is, if a node with cluster
tag A receives an application message with cluster tag B during its active period
(signifying that the sender’s active period overlaps with its own) and B ≻c A, it should
discard its old tag and adopt the tag B. Similarly, if this node in A detects a node with
cluster tag C from a different syncgroup (either by hearing a join message during
its active period, or by overhearing any message while listening during its inactive
period), it can simply compare its own cluster tag to that of the other node. If A ≻c
C, its own ID is higher and it is already in the superior cluster and can ignore the
message. However, if C ≻c A, the other group’s cluster ID is higher and the node can
deterministically decide that it should merge its inferior cluster into the other and
react accordingly. By assuring that the nodes in a syncgroup with a superior cluster
tag never merge into a syncgroup with an inferior cluster tag, we can eliminate the
cycling problem in GMAC’s decision mechanism. The relation ≻c provides for all
three properties, including the transitivity missing from GMAC’s default relation, ≻t .
Without cycles, all other syncgroups should eventually merge into the group with
the best cluster tag.

4.2.4 Notification

In order to add notification functionality to GMAC, we have added a merge field to
the header of application messages. This allows a node to notify its neighbors when
it detects a superior group. After discovering a group with a better cluster tag, a
node can record the time difference, or offset, between its own group and the one
with the superior cluster tag. Then, rather than immediately merging into the new
group, it can stay synchronized to its current group for one more frame, in order to
communicate with its neighbors and inform them about the new superior group. By
sending this merge offset along with its message in the following frame, its current
neighbors can be made aware of both the existence and the offset of this superior
group without the need to detect it on their own. This notification should greatly
reduce the time and energy spent on detection, particularly at low duty cycles which
reduce the probability of detecting other clusters.

4.3 Experimental setup

We conduct our simulations using the the OMNET++ simulation environment, as de-
scribed in Section 4.1. Here we will briefly describe the specific setup and parameters

77

4

Experimental setup Synchronization in static network topologies

Table 4.1: Static network topologies investigated in this chapter

N Nodes (N2) Dimensions Distribution

4 16 320m× 320m 80m Grid & Random

8 64 640m× 640m 80m Grid & Random

16 256 1280m× 1280m 80m Grid & Random

32 1024 2560m× 2560m 80m Grid & Random

64 4096 5120m× 5120m 80m Grid

used for the experiments presented in the chapter. As we are primarily interested in
GMAC’s network synchronization behavior, we focus on the following simulator pa-
rameters: clock drift, network topology, and transmission density. In addition, we
investigate a number of GMAC configurations, or modes of operation. Finally, we
look at several different simulation scenarios, or general activity patterns the nodes
will follow.

4.3.1 Simulator parameters

Clocks In this chapter, we are interested in investigating GMAC’s synchronization
maintenance, so we also look at a variety of settings for MaxClockDrift. We simulate
clocks with accuracies from ±1 ppm to ±100 ppm, as well as a number of experiments
with the default setting of ±20 ppm.

Network topology In this chapter, we investigate the effect of topology on network
synchronization. In all of our experiments in this chapter the nodes are distributed
in one of two patterns: an N ×N grid or uniformly at random. In the grid topologies,
N2 nodes are deployed in N rows of N columns placed 80m apart (see Table 4.1).
For some experiments it is very important that the networks we examine are con-
nected, because otherwise complete synchronization would be impossible. Though
not the most representative of real-world deployments, grid topologies allow us to
directly observe the effects of various transmission densities with a uniformly con-
nected network topology. In the random topologies, N2 nodes are deployed at ran-
dom locations within an area of the same dimensions as an equivalent grid topology
(i.e., with the same number of nodes). Random topologies present more difficulty
in synchronization as there will generally be some very highly connected areas and
some less connected areas, and potentially even physically isolated nodes. These ran-
dom topologies, however, are more representative of the type of topologies that will
be encountered in the real world, and hence of more interest to our investigation.

Transmission density We have chosen the transmit power values of 10mW , 20mW ,
40mW and 80mW based on our grid spacing of 80 meters, and unless otherwise spec-
ified, use 20mW as our default setting. In Fig. 4.1 we show a group of nodes spaced

4

78

Synchronization in static network topologies Experimental setup

(a) 10mW (b) 20mW (c) 40mW (d) 80mW

Figure 4.1: Graphical representation of the four simulated transmit ranges for nodes arranged in an 80m
grid

80m apart, depicting the four transmit power level ranges from the perspective of the
sender (black) and the potential receivers (gray). This parameter strongly influences
the connectedness of a given topology.

4.3.2 GMAC configurations

In order to facilitate discussion of GMAC’s behavior with various improvements (dis-
cussed in Section 4.2) switched on or off, we will analyze several specific combina-
tions, called configurations.

• <Active> This is the default GMAC behavior, as described in Section 2.4.
• <Active+Ids> The same as <Active>, but using cluster ids (Sec. 4.2.3) in order
to make consistent merge decisions.

• <Passive+Ids> Purely passive detection with pl = 0.17%, using cluster ids. As
explained in Section 4.2.2, the value 0.17% is chosen to match the power usage
of active detection.

• <Active+Ids+MergeMsgs> The same as <Active+Ids>, but nodes do not imme-
diately join newly discovered clusters, rather they wait one frame in order to
send merge messages (Section 4.2.4).

• <Active+Ids+Listen> The same as <Active+Ids>, but nodes do not immediately
join newly discovered clusters, rather they listen for a whole frame in order to
discover the best cluster in range (which we also refer to as listen-before-merge,
Section 4.2.4).

• <Active+Ids+MergeMsgs+Listen> This configuration uses active detection, clus-
ter ids, and uses both listen-before-merge and merge messages.

4.3.3 Scenarios

We utilize four different scenarios in order to evaluate different aspects of the synchro-
nization behavior:

79

4

Experimental setup Synchronization in static network topologies

Synchronous start The synchronous start scenario is the most straight-forward that
we investigate here. All nodes start up at the exact same time, Tstart = 0.0s in the
SYNCHRONIZED state. In this state, nodes act as though they are already synchronized
with their neighbors, and immediately begin performing the GMAC protocol and
exchanging application messages. Nodes will execute the GMAC duty cycle of eight
active slots followed by a long inactive period, dependent upon the length of the
frame.

Asynchronous start In the asynchronous start scenario, ll nodes start up at a ran-
dom time 1s ≤ Tstart ≤ 15s in the INITIAL_LISTEN state. In this state, nodes know
they are unsynchronized and search for a synchronized group of nodes to join. Ini-
tially they will continuously listen for a message for a random initial period Tcatch,
lasting between one and two frames. If they do not “catch” (by hearing a message)
before the end of this extended frame, they then broadcast a single HELLO message.
After sending their message, they switch back to continuous listening mode and re-
main in that mode. When a INITIAL_LISTEN node hears a message, it will enter the
CAUGHT state, and try to synchronize its next frame with the node (and cluster) that
it heard. Here, nodes that use the listen-before-merge option will continue listening
until the end of their frame, rather than going to sleep. Once the node has performed
its frame-length adjustment, it will enter the SYNCHRONIZED state, and will assume
that it is synchronized. When in a normal, synchronized state, nodes will execute
the GMAC duty cycle of eight active slots followed by the long inactive period. Note
that nodes that use cluster ids will ignore them while INITIAL_LISTEN, because oth-
erwise a node with a high id may stay isolated and silent, ignoring all its neighbors
that happen to have lower ids. Once a singleton node has found an initial cluster and
synchronized with it, it will respect the ordering of cluster ids from then on.

Singleton We simulate two different variations of a singleton scenario: a singleton
cluster with an inferior id detecting and merging into the established superior cluster,
and an existing cluster detecting and merging into a singleton cluster with a superior
id. We call these scenarios SingletonWorst and SingletonBest, respectively. These are
by far the simplest set of merge scenarios that we investigate. That is particularly so
in the SingletonWorst case, where the desynchronized node has an inferior cluster id.
In this case, the network will converge after that single node detects the other cluster,
and merges into it. In the best case, the single desynchronized node has a superior
id, and must get all other nodes to merge into its cluster. In both variations of this
scenario, the isolated node is located in the top-left corner of the grid. We have cho-
sen this location because it maximizes the distance (hops) that the synchronization
information must travel to reach all nodes in the network.

Cluster merge The cluster merge scenario is designed to give us insight into the be-
havior of cluster merging in the case of multiple synchronized clusters. Here we only
look at the 32×32 (1024-node) topology. The sixteen columns of nodes on the right-
hand side of the grid begin as one synchronized cluster, and the fourteen columns of

4

80

Synchronization in static network topologies Simulation results

nodes on the left-hand side begin as another. For the first five seconds of the simula-
tion, the rightmost two columns of the left-half of the grid are inactive. At Tsim = 5s,
these 64 nodes start up as a third synchronized cluster. The left cluster has id 1, the
middle cluster has id 2, and the right cluster has id 3. This final scenario is more
complex than the singleton one, but more straight-forward than the asynchronous
start.

4.4 Simulation results

In this section, we present the results of our experiments simulating the GMAC layer
in the OMNET++ environment.

4.4.1 Maintenance

For this series of experiments, our primary metric for measuring the level of synchro-
nization in the network is the standard deviation of the node start times. This is the
σr metric described in Section 4.1.3. Note that the best synchronization level we can
realistically hope for is t

2 ≃ 15µs, or half the smallest adjustment that the GMAC can
make in its effort to compensate for the drifting clocks. Consistent and stable syn-
chronization to the level of a single clock-tick is quite good, though, and indicates
that we could reduce Tguard significantly below its current value of 300µs in order to
save energy.

We begin by looking at Fig. 4.2a, depicting a set of individual simulated runs.
Each line is the result of a single run on a 256-node grid topology, with the standard
deviation plotted per frame. These simulations used the default transmission power
of 20mW and MaxClockDrift=25ppm. Here we can see much similarity between in-
dividual runs. The median algorithm maintains a steady-state where it compensates
for the clock drift between the nodes.

In Fig. 4.2b, each line shows the average standard deviation for each simulated
frame across the 10 experimental runs for each MaxClockDrift setting. We explore
the effects of different clock drifts on the median algorithm, using the same topology
and transmit power settings as the previous set of results. Thus, the 10 lines from
Fig. 4.2a comprise the single line in Fig. 4.2b at 25ppm. Here we can see how the
median algorithm copes with various clock settings. More clock drift (higher values
ofMaxClockDrift) between nodes leads to progressively looser synchronization. That
is, as clocks drift apart faster and faster, themedian cannotmaintain the same level of
synchronization between nodes. This can be seen by the increased standard deviation
at higher drift settings.

Finally, in Fig. 4.2c we see the aggregation of a large amount of experimental data.
Each data point represents the average standard deviation for the last half of the 10

81

4

Simulation results Synchronization in static network topologies

Frame Number

σ
ᵣ

(μ
s)

(a) 10 individual runs of same settings
Topology: 256-node Grid, MaxClockDrift: 25ppm

Frame Number

σ
ᵣ

(μ
s)

MaxClockDri!

(b) Average over 10 runs for each MaxClockDrift
Topology: 256-node Grid.

MaxClockDri�

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p

(c) Converged offset standard deviations for combina-
tions ofMaxClockDrift and Topology.
1024 (hexagon), 256 (pentagon), 64 (square) & 16 (tri-
angle) nodes; Random (dashed) & Grid (solid) topolo-
gies.

Figure 4.2: Variation in frame start times, synchronous start

runs of a particular parameter setting. We plot the clock drift settings along the x-
axis and average converged standard deviation for the 10 runs of eachMaxClockDrift
value. Thus, the single points along the line {Grid, 256} show the average value over
the last 30 minutes of the 10 runs represented by the individual lines from Fig. 4.2b.
The solid lines show grid topologies, while the dashed lines show random topologies
and, as expected, the random topologies show much more variability.

4.4.2 Merging

We look at three different scenarios in order to evaluate the three different aspects
of merge behavior. First, to examine the decision aspect of merging, we use Asyn-
chronousStart. In the Singleton scenarios, we explore the detection aspect of group
merging. Finally, using the ClusterMerge scenario, we look more generally at two es-
tablished clusters merging. For this scenario, we can investigate how the size, topol-
ogy and distribution of the clusters affects the merge behavior, as well as examine the
effects of our notification improvements.

4

82

Synchronization in static network topologies Simulation results

Frame Number

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p

(a) 10 individual runs of same settings
Topology: 256-node Grid, MaxClockDrift: 25ppm.

Frame Number

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p MaxClockDri�

(b) Average over 10 runs for each MaxClockDrift
Topology: 256-node Grid.

MaxClockDri�

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p

(c) Per-Parameter Per-Topology Average. Note that we
use the same lines and markers as Fig. 4.2c

Figure 4.3: Percentage of unsynchronized nodes, asynchronous start

Default GMACmerge behavior

Here, our metric for analysis is the fraction of nodes not belonging to the largest syn-
chronized group. If the percentage of synchronized nodes (as discussed in Sec. 4.1.3)
is denoted Psync, then our metric here is Punsync = 100%−Psync. Not that we choose to
plot the results in this manner so it is clear to the reader when 100% of the network
has converged. By plotting the percentage of unsynchronized nodes, the lines clearly
go to zero. However, plotting the percentage of synchronized nodes, it is sometimes
unclear whether all or only 99% of the nodes have converged. At each frame, we cal-
culate the percentage of all simulated nodes that are outside (i.e., not synchronized
with) the largest syncgroup. As such, we should expect this metric to begin at or near
100% and fall towards 0%. In Fig. 4.3, we show the results of our asynchronous start
experiments. In general, most runs behave as expected and rapidly converge to a sin-
gle network. However, in some runs, we find that separate syncgroups can exist for
a long time, to the point where they never form a single network during the entire
simulated hour. We can see just such behavior in Fig. 4.3a, which depicts the results
of a set of twenty-five 256-node grid runs with a maximum clock drift of ±25ppm.
In Fig. 4.3b, we show the average of 25 such runs for each MaxClockDrift setting. As

83

4

Simulation results Synchronization in static network topologies

previously explained, the behavior of the join mechanism is probabilistic, and this
can be clearly seen in the variability of the simulated results.

Finally, in Fig. 4.3c we plot (analogously to Fig. 4.2c) the average fraction of nodes
outside the largest syncgroup over 25 runs for each setting, considering only the last
half of the frames of each run. The settings correspond to all combinations of clock
drifts and topologies we experimented with. Clearly, in all of our simulations GMAC
eventually achieved synchronization of at least 99% of the participating nodes, irre-
spectively of the topology and maximum clock drift.

Decision

We begin with the AsynchronousStart scenario for two reasons. First, this is the sce-
nario that initially pointed at failings in GMAC’s synchronization mechanisms, so it
makes sense to reproduce those results here. Second, by demonstrating the perfor-
mance of all our test configurations in the most demanding circumstances, we can
focus our analysis on the best few.

In Figure 4.4 we see the performance of the <Active> GMAC configuration. Fig-
ure 4.4a shows a plot of the standard deviation of start times as a function of the
frame number, averaged across 32 runs. We see that GMAC’s <Active> configura-
tion works acceptably in the small 64-node topology, converging all nodes to a single
syncgroup in an average of about 1000 frames (about 8 minutes). However, it does
not consistently synchronize the 256-node and 1024-node test cases. In the 256-node
networks, the majority of all nodes synchronize to the largest group, but not all runs
synchronize. In Figure 4.4b, we see a composite plot showing that only six of the
thirty-two 1024-node runs converged to a completely synchronized network, and in
those cases it often took almost a full simulated hour.

To examine the cause of the <Active> configuration’s difficulties, we look at the
results of some individual runs that clearly show the problem. The three graphs on
the left side of Figure 4.5 show the difference in µs between each node’s start time
and the average start time for the frame on the x-axis. Those on the right show the
percentage of nodes outside the largest group, calculated as described earlier. Fig-
ure 4.5a shows a 256-node run that properly converges to a single syncgroup around
frame 2500. The individual syncgroups can be seen previous to that time as clusters
of points, converging to bounds of about ±100µs. Figure 4.5b is another view of the
same data, showing the nodes outside the largest syncgroup dropping to zero. The re-
sults of 1024-node runs show similar initial behavior, but generally fail to converge.
For an example of a non-converging run, see Figures 4.5c and 4.5d. These results
demonstrate the problem of cyclic ordering of syncgroups described in Section 2.4.2.
The <Active> merge protocol can only deterministically synchronize two groups. If
there are more than two groups a cycle may exist, preventing convergence for an arbi-
trarily long time. The severity of the problem is dependent on the size of the network,
and will make it unsuitable for very large networks.

In order to solve this decision problem, we have proposed using cluster ids, de-
scribed in Section 4.2.3. In Figures 4.5e and 4.5f, we show the performance of the

4

84

Synchronization in static network topologies Simulation results

Frame Number

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p Topology (# Nodes)

(a) Performance of <Active> for increasing network
sizes

Frame Number

σ
ᵣ

(μ
s)

(b) Per-frame standard deviation of start times for 32
runs of <Active>, 1024-node grid

Figure 4.4: Group merging using the active detection

<Active+Ids> configuration for a representative 1024-node run. The general merge
mechanism is the same as <Active>, but nodes use the cluster ids to reliably decide
whether to join a discovered group, rather than arbitrary timing heuristics. When
compared to the results for the <Active> configuration, the ids clearly provide for su-
perior performance. In Figure 4.6a we show the average performance of the <Active+Ids>
configuration, and we can see that it is able to consistently synchronize a 1024-node
network in a little over 1000 frames. This is the same number of frames it takes the
<Active> configuration to synchronize a 64-node network. Based on these findings
we can eliminate the <Active> configuration from further study.

Detection

GMAC currently uses an active detection mechanism, as described earlier. Here we
will examine the performance of the new passive detection configurations we have
designed, i.e. <Passive+Ids>, in order to see whether they are superior to the existing
active mechanism. We begin with more results from the AsynchronousStart scenario,
then proceed to evaluate the SingletonBest and SingletonWorst scenarios.

In Figure 4.6c we show the average behavior of <Passive+Ids> over 32 simulated
runs. The performance is clearly superior to that of <Active> (Fig. 4.4a) on larger
topologies, though it does take longer to converge for small networks, as seen from
the 64-node topology results. At larger network sizes, the consistent ordering of clus-
ters turns out to be an essential element that overcomes passive detection’s inherent
performance disadvantage. However, when compared to the <Active+Ids> configu-
ration (Fig. 4.6a), there is really no competition. Active detection is several times
faster than passive detection, because of active detection’s ability to recruit multiple
inferior nodes with a single broadcast.

We evaluate our other proposed improvement to detection, listen-before-merge, us-
ing the same chaotic start scenario in Figure 4.6b. Though hard to see in the graphs,

85

4

Simulation results Synchronization in static network topologies

Frame Number

N
o

d
e

 o
ff

se
t

fr
o

m
 A

v
e

rg
a

re
 (
μ
s)

(a) A 256-node run, showing proper synchronization

Frame Number

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p

(b) The same simulated run as Fig. 4.5a, showing nodes
outside of the largest syncgroup

N
o

d
e

 o
ff

se
t

fr
o

m
 A

v
e

rg
a

re
 (
μ
s)

Frame Number

(c) Example 1024-node simulation that fails
to reach complete synchrony

Frame Number

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p

(d) Nodes outside the largest syncgroup in the
same 1024-node run as Fig. 4.5c

N
o

d
e

 o
ff

se
t

fr
o

m
 A

v
e

rg
a

re
 (
μ
s)

Frame Number

(e) A 1024-node <Active+Ids> run demonstrating
correct synchronization

Frame Number

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p

(f) Nodes outside the largest Syncgroup in the
same 1024-node run as Fig. 4.5e

Figure 4.5: The problem with <Active>’s merge mechanism and a proposed solution, <Active+Ids>

4

86

Synchronization in static network topologies Simulation results

Frame Number

σ
ᵣ

(μ
s)

Topology (# Nodes)

(a) <Active+Ids>

Frame Number

σ
ᵣ

(μ
s)

Topology (# Nodes)

(b) <Active+Ids+Listen>

Frame Number

σ
ᵣ

(μ
s)

Topology (# Nodes)

(c) <Passive+Ids>

Figure 4.6: Comparison of configurations using cluster IDs

87

4

Simulation results Synchronization in static network topologies

the listen-before-merge behavior does give a performance improvement on the largest
test-case, but it is quite minimal. This scenario should be the one in which this be-
havior provides the most benefit, as there may be many different groups in a node’s
transmit range. However, this additional listening can only help if there are more
than one superior cluster in range, and even then, it will only help if the node detects
a second-best group to begin with.

We continue our evaluation by looking at our singleton cluster scenarios. In Fig-
ure 4.7 we can compare the performance of <Passive+Ids>, labeled ‘P+I’, to that of
two of our active configurations: <Active+Ids> and <Active+Ids+Listen> (labeled ‘A+I’
and ‘A+I+L’, respectively). Please note that the lines labeled ‘A+I+M’ and ‘A+I+ML’
are not discussed until Section 4.4.2. We simulate these configurations using both ver-
sions of the singleton merge scenario and a 1024-node topology. Each graph shows
the percentage of nodes that are not synchronized to the largest cluster as a function
of the simulated frame. First, in Figure 4.7a, we examine <SingletonWorst>, where
the single node has an inferior cluster id and should therefore join the other cluster
(containing all other nodes). All active detection configurations handle this simple
scenario identically, and manage to synchronize the isolated node in an average of
about 100 frames. Passive detection, on the other hand, requires five times as long to
synchronize.

Finally, we look at the <SingletonBest> scenario. In this scenario, the isolated node
has a superior cluster id, so all other nodes must leave their cluster and join the sin-
gleton cluster. In Figure 4.7b, we see that all the configurations using active detection
eventually synchronize the network, but passive detection again performs poorly and
consistently fails to synchronize the network. Unsurprisingly, the listen-before-merge
optimization has not helped in this scenario, as there are no other clusters for it to
detect. In fact, it performs slightly worse than the simple <Active+Ids> configuration.
The additional listening often causes delays in synchronization as nodes listen for
better groups that do not exist. Additionally, the listen-before-merge behavior costs a
significant amount of energy. Using a duty cycle of 1%, a full frame of listening costs
about the same energy as 100 ‘normal’ frames. Given the high cost and low success
rate of listen-before-merge, we can discontinue investigating the <Active+Ids+Listen>
configuration.

Notification

In this part, we delve into our final performance enhancement: notification. When
one node detects another cluster and decides to join it, notifying his already synchro-
nized neighbors can save a lot of energy. Each neighbor alerted by a merge message
can be spared many frames of operating in a dying subset, with few or no neighbors.

We begin by referring again to Figure 4.7b. The reduction in the time required to
reach complete synchrony for the <Active+Ids+MergeMessages> and <Active+Ids+MergeMsgs+Listen>,
labeled ‘A+I+M’ and ‘A+I+ML’, is clearly significant. These two configurations per-
form almost identically and can synchronize all nodes in the simulated 32 × 32 grid
almost five times faster than the configurations without merge messages. The best

4

88

Synchronization in static network topologies Simulation results

Frame Number

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p Configura�on

(a) SingletonWorst

Frame Number

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p

Configura�on

(b) SingletonBest

Figure 4.7: Passive detection compared to active detection using our two Singleton scenarios

part about the merge messages is that they are essentially free. The only cost is the
overhead of a two-byte merge offset with each application message.

In order to further evaluate the performance of the merge message optimization,
we turn to our final scenario, ClusterMerge. In this scenario we simulate the merging
of three separate clusters in a 1024-node grid. Figure 4.8 shows the results of our
three remaining configurations. The basic <Active+Ids> configuration performs quite
well, taking only 500 frames on average to converge to a single cluster. However, the
configurations with merge messages perform even better and reach synchrony in less
than 100 frames.

We evaluate the effects of density and duty-cycle on synchronization, by return-
ing again to our original scenario of an asynchronous network start. In Fig. 4.9a
we examine the role of density on group merging by simulating each of the four

89

4

Simulation results Synchronization in static network topologies

Frame Number

%
 o

f
N

o
d

e
s

 O
U

T
S

ID
E

 L
a

rg
e

st
 S

y
n

cg
ro

u
p Configura�on

Figure 4.8: Merging three separate clusters in the ClusterMerge scenario

transmit power settings described in Section 4.3. The density of the network is de-
termined by the nodes’ transmit power, so we can directly investigate the effects of
network density on synchronization. Here we evaluate only the two most promising
configurations: <Active+Ids+MergeMsgs> and <Active+Ids+MergeMsgs+Listen>. The
question we would like to answer is: does listen-before-merge offer any significant
benefit in this scenario? The potentially large number of syncgroups present in the
asynchronous start-up scenario provides the best opportunity for this modification to
demonstrate its value. Unfortunately, at least in the case of varying network density,
there is no clear advantage to performing a long listen before merging. Both configu-
rations perform quite similarly, and as mentioned previously, the cost of performing
these listening periods is prohibitively high without strong evidence of better perfor-
mance. From the results of these simulations, it seems that network density has only
a minor effect on the performance of the synchronization mechanism.

The results of our set of experiments extending GMAC’s frame time are shown
in Figure 4.9b, and show how the nodes’ duty-cycle affects synchronization. Our de-
fault frame time to this point has been 1

2 s, giving a duty cycle of about 1.5%. We now
simulate longer frame times with the same 8 slot active period yielding progressively
lower duty cycles, with the lowest being about 0.15% at a frame length of 5s. Lower-
ing the duty cycle reduces the probability of detection, as discussed earlier, and that
effect is clearly visible in our results. As the total frame time increases, the effects
of clock drift are magnified as well, since nodes have less frequent opportunities to
synchronize their clock with those of their neighbors. This behavior is clearly evident
in our results, particularly at the highest frame length setting of 5s. Using such a low
duty cycle drastically lowers the probability of detecting other synchronized groups,
though GMAC copes with this using frame lengths up to 2s. Furthermore, we again
find no evidence that the listen-before-merge optimization is providing any noticeable
performance benefit on top of that provided by the merge messages alone.

Finally, we have one last set of simulations using an even larger topology to
test the scalability of our best configuration, <Active+Ids+MergeMsgs>, as well as

4

90

Synchronization in static network topologies Simulation results

Frame Number

σ
ᵣ

(μ
s)

TxPower, Configura"on

(a) Experiments using 4 different transmit power settings
(higher is more dense)

Frame Number

σ
ᵣ

(μ
s)

Configura"on, TimeFrame

(b) Experiments using 4 different frame length settings
(higher is lower duty-cycle)

Figure 4.9: The effects of density and frame length using the AsynchronousStart scenario

91

4

Conclusions Synchronization in static network topologies

Frame Number

σ
ᵣ

(μ
s)

Configura"on

Figure 4.10: Our largest topology, a 64×64 grid of 4096 nodes

<Active+Ids> and <Active+Ids+MergeMsgs+Listen>. As shown in Figure 4.10, all these
configurations can adequately handle the simulated 64×64 node grid. The perfor-
mance advantage granted by the merge messages is again evident. Both configu-
rations that include merge messages synchronize the entire network in an average
of about 250 frames, while the configuration without these messages takes approxi-
mately 2000.

4.5 Conclusions

The main contribution of this chapter is a detailed evaluation of GMAC’s method of
synchronization maintenance and several proposed methods of merging separately
synchronized groups of nodes. The results of our simulations show that the problem
is solvable, and our solution can be used to achieve remarkably low duty-cycles, even
with relatively inaccurate clocks. Our simulations have shown that GMAC is capable
of synchronizing all nodes in a network so that they share a common active period,
and doing so in a decentralized manner.

Furthermore, simulations not presented indicate that duty-cycles as low as 7ms
5s =

0.14% are possible using these mechanisms. These simulations are not presented
in this chapter because the results, while good, are not particularly interesting. In-
creasing the frame length (and thus decreasing the duty cycle) does not appreciably
affect the network synchronization. We simulated frame lengths up to five seconds,
but found no changes in the synchronization behavior. Certainly there is an upper
bound on the frame length, mostly determined by the relative offset between the

4

92

Synchronization in static network topologies Conclusions

nodes’ clocks. Increasing the frame length does affect the behavior of passive de-
tection, since the detection probability is determined by the duty cycle used. The
results shown in this chapter represent a best case scenario for passive detection, with
a comparatively high duty cycle of 0.7%.

The results presented here indicate that the simple median synchronizationmech-
anism provided by GMAC is capable of adaptively maintaining good clock synchro-
nization, even at very large network sizes. Simulations show that the median al-
gorithm can compensate for clock frequency offsets commensurate with what can
expected from real clock components. Furthermore, simulations show the median
algorithm can maintain synchronization in networks as large as 4096 nodes, and pos-
sibly beyond. This level of scalability is an absolute necessity in the setting of large
social ad-hoc networks. It also seems that for smaller networks, GMAC keeps nodes
tightly coupled. This indicates that there may be much energy to be saved by reduc-
ing the transmission guard time.

All configurations using cluster IDs eventually synchronize the entire network,
with the only difference being the time each configuration takes to do so. We demon-
strated that while passive detection does consistently converge the network, it can
take far longer than using active detection. Additionally, we demonstrated that the
combination of active and passive detection can offer small performance benefit, but
will generally not outweigh the additional energy cost. We have further shown that a
simple notification message can drastically reduce the time for a network to reach a
synchronized state, by as much as a factor of eight on our 4096-node topology. These
two small modifications to GMAC’s current behavior radically increase its suitabil-
ity for large scale networks. The key insight is that as synchronized groups build
up, merge messages allow GMAC to leverage the inferior cluster’s existing synchro-
nization to rapidly merge whole clusters, not just individual nodes. Combined with
a total ordering of clusters to solve the problem of which group to join, large and
complicated networks can be synchronized in just a few minutes.

93

4

Conclusions Synchronization in static network topologies

4

94

5. Mobile networks

In this chapter, we will continue the thread from the previous chapter. We again
evaluate several aspects of GMAC’s network synchronization through the use of the
simulation environment described in Section 4.1. The main difference from the pre-
vious chapter’s evaluation is that we now look at GMAC’s performance in mobile
network topologies.

In addition to the inclusion of node mobility, we also look at several new potential
synchronization improvements, based on our evaluation of GMAC’s behavior and per-
formance in the previous chapter. Something we learned from our initial investiga-
tions was that the synchronization maintenance aspect generally works well enough,
and in a wide variety of different network conditions. One of the important insights
from the previous chapter is that with very low duty cycles, the probability of one
group detecting a different, separately synchronized group of nodes is proportionally
low as well. Thus, we should take advantage of messages that are “lucky” enough to
travel from one syncgroup to another. Hence, this chapter will focus mainly on the
group merging aspect of network synchronization, as discussed in Section 2.4.

In this chapter we will evaluate the maintenance and merging behavior of GMAC
in a wide variety of settings. We look at both static and mobile topologies, gener-
ated to resemble several realistic mobility patterns. We also investigate a range of
different density settings on these same topologies. By adjusting the nodes’ trans-
mission power, we can affect the overall connectivity of the network. Additionally,
as the sensor nodes use broadcast-based communication, they need to be careful not
to overload the medium. Too many nodes broadcasting using too few transmission
slots means many messages will share the same slot and the number of collisions can
be high. This will decrease the utility of the network and the reliability of message
exchange. It is important to evaluate GMAC’s behavior in both high and low density
scenarios.

The contents of the rest of the chapter are as follows: We begin by proposing a
number of potential improvements to the synchronization mechanisms provided by
GMAC in Section 5.1. We then explain the environment, measurements and met-
rics we use to evaluate our algorithms in Section 5.2. Following that, we present
our experimental results and evaluation in Section 5.3, before finally concluding in
Section 5.4.

5.1 Synchronization improvements

In this chapter, we will evaluate GMAC’s synchronization in the face of various mo-
bile network topologies. After encountering initial problems with GMAC’s default
synchronization behavior (described in Sec. 2.4), we came up with a number of poten-
tial improvements in the previous chapter. In addition to analyzing the performance
of those synchronization behaviors in the context of node mobility, we add several
new behaviors which we will describe in this section.

95

Synchronization improvements Mobile Networks

5.1.1 Maintenance

Though GMAC’s median algorithm maintains synchronization well when there are
neighbors for a node to communicate with, it will obviously fail to make any correc-
tions in the absence of neighbors. In this situation, GMAC will fall back to simply
letting each frame’s duration be determined solely by the rate of its local clock. If the
node is isolated (i.e., without neighbors) for only a few frames, this will not present
a problem. However, if the node remains isolated for a long period of time, the in-
herent difference in clock frequency will cause the node’s active period to become
unaligned with those of the other nodes in its syncgroup.

For this reason, we have introduced a history mechanism in which a GMAC node
can record its past history of frame length adjustments. In frames where a node ad-
justs the length of its frame in response to messages from at least two neighbors, the
node can record this adjustment in order to develop an approximation of its own
clock’s offset from an ideal, or true, clock. Over time, this approximation should
approach the actual clock frequency offset experienced by that node. We choose to
discard adjustments based on the timing of a single neighbor in order to avoid a
dependency on a particular neighbor node. In a subsequent frame where the node
hears no messages, it can adjust its local frame length based on the computed ap-
proximation of its local drift, rather than not making any adjustment at all. Using
this mechanism, we anticipate that GMAC nodes will be able to remain aligned with
their syncgroup, even when out of contact with other group members for long pe-
riods of time. The nodes implement this behavior by computing a running average
of their frame length adjustments. When a node computes an adjustment based on
the timing data from at least two received messages, it will add this adjustment to
the running total of all recorded adjustments, and increment the adjustment counter.
Whenever a node receives no messages, it will divide the total sum of recorded ad-
justments by the number of adjustments in order to compute a historical average.

We have also implemented an oracle version of our history improvement. This
version assumes that a node can determine its drift rate with great precision, allowing
the node to use its exact clock frequency offset to make adjustments when isolated,
rather than relying on an approximation. This version of history, called histOracle,
will show us how effective the history optimization could be, if we had a very accurate
method of estimating drift. A node implements this behavior by computing δticks,
the difference in ticks counted by a perfect clock in Tf rame and ticks counted by its
clock in Tf rame . In each frame that a node receives no messages, it will add δticks to
a cumulative offset, Σticks. If Σticks > 1, the node will adjust its local frame length by
⌊Σticks⌋ and subtract this adjustment from the accumulated total.

Pseudo-code listings for these two algorithms are provided in Section 5.5.

5.1.2 Detection

We have devised a new improvement for active detection, called targeted join mes-
sages. Normally, if a node in a superior syncgroup, A, detects (hears a join message

5

96

Mobile Networks Synchronization improvements

from) a node in an inferior syncgroup, B, it will simply ignore this message, assum-
ing that the sender will eventually detect the existence of syncgroup A. Since, as
discussed above, the detection probability is quite low and detection events are rela-
tively rare, we should try to take advantage of A’s detection of syncgroup B even if A
is superior to B and therefore the node will not decide to merge. We can do this by
allowing the detecting node in A to try to target syncgroup B’s active period with its
next join message. Using the timing details from the sender’s message, the receiver
can determine an offset between the two syncgroups and thus can estimate when B’s
next active period will begin. By sending the next join message in a slot that has a
strong possibility of overlapping with B’s active period instead of in a random slot,
the node from syncgroup A greatly increases the chance of a neighboring node from
syncgroup B to detect it.

5.1.3 Decision

In Section 4.2.3, we discussed the addition of cluster tags as a way of solving the
decision problem. In that section we explained that a cluster tag C is composed of
two integers, an ID and an epoch, and written C = {C.id,C.epoch}. The reason for
the epoch is because node mobility will complicate matters. One can imagine that
the unsynchronized network presented in Figure 2.2a has converged and all nodes
have merged into the same syncgroup, sharing a common cluster tag as well. After
some time, due to mobility, the nodes may have changed their locations and are now
physically separated into two different subnets as shown in Figure 2.2b. It is likely
that the median clock frequencies in the two subnets are different. Thus over time,
the physically separated nodes, though once synchronized, will slowly drift apart.
The nodes in each subnet should continue to maintain synchronization within their
subnet, however, a problem can later arise because both of these groups have the
same cluster tag but will no longer be in the same syncgroup. If later in the scenario
mobility brings the two subnets into contact again, nodes in each syncgroup will
ignore join messages from the other syncgroup, since neither possesses a superior
cluster tag. This scenario is what we call a cluster split.

Our solution to this problem is to introduce epochs. Epochs are given precedence
over IDs in implementing the ≻ relationship, so a tag with a higher epoch is always su-
perior to a tag with a lower epoch. This essentially invalidates tags with lower (older)
epochs when a higher (newer) epoch is created. We call this modified relation ≻e:
A ≻e B if and only if ((A.id > B.id) AND (A.epoch == B.epoch)) OR (A.epoch > B.epoch).
Using the epoch counter in its cluster tag, a node can increase the weight of its cluster
tag by incrementing its epoch when detecting a cluster split. That is, when a node X
with cluster tag A = {a,e} detects another node Y also claiming cluster tag A but with
a different active period, node X generates a new cluster tag A′ = {a′ , e +1}. This new
tag will contain a randomly generated ID, a′, and an epoch counter one higher than
that of the old tag, e + 1. The higher epoch makes this new cluster tag superior and
ensures that the node’s synchronized neighbors will adopt and disseminate this new
tag. Nodes generate a new random ID in order to prevent the epoch counter running
up to infinity without resolving the split in the case that nodes from two syncgroups
experiencing a split of cluster tag B = {b,e} independently and simultaneously detect

97

5

Experimental setup Mobile Networks

each other. If they did not generate a new ID, each node would increment the epoch
of its cluster tag but keep the same cluster ID, resulting in both nodes having the
same tag, B′ = {b,e + 1}. This process could repeat indefinitely, causing the epoch
counter to count upwards to infinity without resolving the cluster split. Note that
because epochs are implemented as a simple 8-bit integer, the epoch counter will roll
over to zero after 256 epochs have been created. This roll over can be handled grace-
fully by using a modified comparison operation that treats epochs in the first quarter
of the range (i.e., 0..63) as greater than epochs in the last quarter of the range (i.e.,
192..255). Because we try to avoid creating unnecessary epochs by using randomly
generated IDs, 8 bits should provide enough values for our simulations. There could
be scenarios where more epoch values would be required, but this does not affect the
general concept of our solution.

5.1.4 Notification

In this chapter we do not evaluate any new notification functionality, but rather re-
evaluate the notification behavior described in Section 4.2.4.

5.2 Experimental setup

The primary goal of this research is to evaluate the performance of the standard
GMAC synchronization, as well as a number of behavioral modifications that we have
previously explained. We will perform our evaluation by simulating networks of var-
ious sizes, densities, and mobility patterns.

The novel contribution of this work is an evaluation of how the protocols handle
various types of mobility. As discussed throughout the chapter, GMAC relies on
local decision making, and thus the performance will depend greatly on the number
of neighbors that nodes have (i.e., their degree), as well the quality of the wireless
links between those neighbors. We use two methods of varying the network topology
and connectivity. First, we run simulations using several different static and mobile
scenarios. Second, we vary the simulated transmission power of all nodes in order to
alter the degree of the nodes for a given topology. Finally, we vary the total number
of nodes and size of the network while keeping the nodes per square meter ratio, or
node density, constant. This is important, because it allows us to directly vary the
average number of neighbors per node (the average node degree) and overall network
connectivity without changing the physical topology of the nodes.

5.2.1 Simulator parameters

Clocks Here we investigate GMAC’s synchronizationmaintenance and groupmerg-
ing in the face of mobile nodes. As demonstrated in Chapter 4, GMAC’s synchroniza-
tion maintenance performs adequately across a wide variety of clock drift settings.
As such, in this chapter we keep theMaxClockDrift fixed at the default setting of ±20
ppm and focus our experiments on other parameters.

5

98

Mobile Networks Experimental setup

Table 5.1: Mobile topologies investigated in this chapter

Nodes Dimension (Dm x Dm) Area (m2) Node Density (nodes
m2)

100 316 99,856 ≈ 0.001

500 707 499,849 ≈ 0.001

1000 1000 1,000,000 0.001

4000 2000 4,000,000 0.001

Network topology To better assess the strengths and weaknesses of the various con-
figurations, we investigate the effect of topology on group merging. In particular, we
look at network size and node mobility. We investigate a number of mobile scenar-
ios, created using the BonnMotion1 framework. We selected three (Gauss-Markov,
Random Walk, and Reference-Point Group Mobility) of the fourteen mobility models
provided by BonnMotion and generated traces of several sizes (shown in Table 5.1,
with detailed parameters provided in Table 5.2). Notice that in all cases we ensure
that the scenarios have an average node density of one node per thousand square me-
ters, in order to increase comparability between results from various models. With
the same motivation, we ensure that all mobility traces are generated with the same
parameters (e.g., node speed 0 < s ≤ 5) whenever possible. For each type of mobility
trace that we investigate, we extract the starting position of all nodes in that trace
in order to create a static topology to compare against. That is, for a given mobility
type (e.g., random walk) and size, we will look at two versions of the topology. The
first is the mobile version, where each node’s starting position and subsequent posi-
tions is determined by the specified BonnMotion mobility trace (e.g., called mobile
random walk). The second is a static topology where nodes do not move from their
starting position in the specified BonnMotion mobility trace (e.g., called static ran-
dom walk). Though it may sound strange to discuss a “static” random walk topology,
this naming allows us to appropriately describe the distribution of nodes in a given
static topology. Furthermore, this allows us to isolate the effects of mobility by sim-
ulating networks with identical initial conditions, with the only difference being the
movement of nodes in the mobile version.

Transmission density As discussed previously, the transmission density is the node

density (nodes
m2) × transmission area (m2). All topologies studied in this chapter have

the same node density, 1
1000

nodes
m2 . Thus, the transmission density will in all cases be

equal to the transmission area divided by one thousand. In Table 5.3, we present the
simulated transmission powers we use, along with the associated transmission range,
transmission area and transmission density for each.

5.2.2 GMAC configurations

As in Chapter 4, we will analyze several distinct combinations of GMAC behaviors,
called configurations. We have included a comprehensive list of our proposed behav-

1http://net.cs.uni-bonn.de/wg/cs/applications/bonnmotion/

99

5

Experimental setup Mobile Networks

Table 5.2: BonnMotion Parameters
model GaussMarkov RandomWalk RPGM
randomSeed 1299022770517 1299023102669 1299023208481
x (m) 1000.0 1000.0 1000.0
y (m) 1000.0 1000.0 1000.0
duration (s) 10800.0 10800.0 10800.0
nn (nodes) 1000 1000 1000
circular false false false
maxspeed (m/s) 5.0 5.0 5.0
minspeed (m/s) N/A 0.1 0.1
maxpause (s) N/A 60.0 60.0
updateFrequency (s) 2.5 N/A N/A
angleStdDev (rad) 0.39269908169 N/A N/A
speedStdDev (m/s) 0.5 N/A N/A
bounce true N/A N/A
initGauss false N/A N/A
uniformSpeed true N/A N/A
mode N/A t N/A
modeDelta N/A 60.0 N/A
groupsize_E N/A N/A 12.0
groupsize_S N/A N/A 2.0
pGroupChange N/A N/A 0.1
maxdist N/A N/A 25.0

Table 5.3: Transmission power settings and associated transmission densities

TX Power (mW) TX Range (m) TX Area (m2) TX Density (nodes)

0.005764 8.920 249.965 ≈ 0.25

0.016303 12.615 499.947 ≈ 0.50

0.046111 17.841 999.973 ≈ 1.00

0.084712 21.850 1499.867 ≈ 1.50

0.130423 25.231 1999.948 ≈ 2.00

0.182271 28.209 2499.915 ≈ 2.50

0.239602 30.901 2999.818 ≈ 3.00

0.368891 35.682 3999.892 ≈ 4.00

1.043381 50.462 7999.794 ≈ 8.00

1.916814 61.803 11999.661 ≈ 12.00

5.421568 87.403 23999.520 ≈ 24.00

15.334513 123.607 47999.422 ≈ 48.00

ioral modifications in Table 5.4

• <Active> The default GMAC behavior, as described in Section 2.4.

5

100

Mobile Networks Evaluation

Table 5.4: New GMAC Behaviors

Name Abbreviation Synchronization Aspect Section

Active Detection A Detection 5.1.2

Passive Detection P Detection 5.1.2

Listen before Merge L Detection 5.1.2

Target join messages T Detection 5.1.2

Cluster tags C Decision 5.1.3

Notify on Merge N Notification 5.1.4

History H Maintenance 5.1.1

HistOracle O Maintenance 5.1.1

• <Active+History> This configuration uses both active detection and our history
optimization described in 5.1.1.

• <Active+histOracle> This configuration uses active detection combined with
our oracle history method described in 5.1.1.

• <Passive> The default GMAC behavior, using passive detection in place of ac-
tive detection with pl =0.17%, as described in Section 4.2.2.

• <Active+Cluster> Same as <Active>, but using cluster tags (Section 4.2.3 and
Section 5.1.3in order to make consistent merge decisions.

• <Active+Cluster+Notify> The same as <Active+Cluster>, but nodes do not im-
mediately merge into a newly discovered group, rather they wait one frame in
order to send merge messages (Section 5.1.4).

• <Active+Cluster+Listen> The same as <Active+Cluster>, but nodes do not im-
mediately merge into a newly discovered group, rather they listen for a whole
frame in order to discover the best cluster tag in range (Section 5.1.2).

• <Active+Cluster+Notify+Target>This configuration combines active detection,
cluster tags, merge messages, and targeted joinmessages. The idea of targeting
join messages was introduced in Section 5.1.2.

• <Active+Cluster+Notify+Target+histOracle> This configuration makes use of
active detection and combines all of our modifications that have shown im-
provement in synchronization behavior: cluster tags, merge messages, targeted
join messages, and our oracle history method.

5.3 Evaluation

We evaluate the performance of GMAC and our various modifications in the same
way that we have described synchronization throughout the thesis. We begin by
looking at the maintenance of synchronization by simulating networks composed
of nodes that start in the SYNCHRONIZED state. We will then evaluate the performance
of three aspects of merging through a number of different scenarios including asyn-
chronous initializations of mobile topologies. As mentioned earlier, all results in this

101

5

Evaluation Mobile Networks

section are generated by simulating each combination of transmission density GMAC
configuration eight times, each iteration with a different random seed. The lines rep-
resenting each density setting for a particular GMAC configuration represent an aver-
age across these eight repetitions of the same simulation. Unless otherwise noted, all
results are present in logarithmic scale on the y-axis. We do this because the timing
differences between mostly synchronized nodes are on the order of tens to hundreds
of microseconds, while the differences between unsynchronized nodes will range up
to half the frame time (i.e., five hundred thousand microseconds). Plotting the results
on a logarithmic scale allows us to see the behavior of the network more clearly.

5.3.1 Maintenance

Maintenance of a common active period amongst synchronized groups of nodes is the
foundation of complete network synchronization. It would be pointless for all nodes
to converge on a shared active period if they would drift apart a few frames later. Syn-
chronization maintenance depends upon periodic communication with other nodes
(from the same syncgroup). A node may go many frames without communication
and remain sufficiently synchronized, but eventually nodes must exchange messages
with timing information in order to compensate for their drift. How long a node can
be isolated and still remain synchronized depends on the magnitude of the frequency
offset in its internal clock. In static topologies, it would be unlikely that a node is not
able to communicate with one of its neighbors for an extended period of time. Even
a wireless link with a failure rate of 90% would provide sufficient message exchange
for nodes to stay synchronized with their neighbors. Mobile topologies, on the other
hand, could easily expose nodes to extended periods of isolation.

We evaluate how well GMAC maintains synchronization between nodes by sim-
ulating a network that is initially synchronized. That is, all nodes begin execution
at the same time in the SYNCHRONIZED state. We start our simulations with static
topologies, then we look at what happens when nodes are allowed to move. In order
to evaluate synchronization maintenance, we look at the standard deviation of frame
start times, σr . The simulations begin with all nodes perfectly synchronized, so σ0
will be 0. The various random frequency offsets assigned to each node cause σr to
gradually increase as the simulation progresses. The median algorithm should pre-
vent the nodes from drifting too far apart, and the standard deviation of the reported
times shows us to what extent it is successful.

The three GMAC configurations wewill examine here are: <Active> (A), <Active+History>
(AH), and <Active+histOracle> (AO). We evaluate the performance of each of these
configurations by looking at the difference (standard deviation) in the per-frame start
times reported by all simulated nodes, σr , as described in Section 4.1.3. In each graph,
we plot the frame number on the x-axis and the standard deviation on the y-axis. We
have included a dashed horizontal line at σr = 2ms, or about three TDMA slots. Note
that this is the same bound we use for ǫ when calculating syncgroups. This line rep-
resents a rough approximation of the permissible amount of timing variability that
can still be considered synchronized. That is, per-frame standard deviations below
that line indicate that the entire network is loosely synchronized and the majority

5

102

Mobile Networks Evaluation

Frame Number Frame Number

σ
ᵣ

(μ
s)

Ac!ve Ac!ve+History

Transmission Density
Frame Number

Ac!ve+histOracle

(a) Global standard deviation of start times, σr

Frame Number Frame Number

λ
ᵣ

(μ
s)

Ac!ve Ac!ve+History

Transmission Density
Frame Number

Ac!ve+histOracle

(b) Local (1-hop) standard deviation of start times, λr

Figure 5.1: The performance of GMAC’s synchronization maintenance on a static 100-node Random Walk
network

of nodes will be in the same syncgroup. Per-frame standard deviations significantly
higher than this line, however, indicate that the entire network is not in a synchro-
nized state and it is likely that several distinct syncgroups exist. Network wide syn-
chronization with σr < 300µs (about 10 ticks, or one third of a slot) indicates very
tight global synchronization and a fully converged state. We draw a solid horizontal
line on the graphs to represent this.

In Figure 5.1, we see the performance of our three test configurations on one of
our small static topologies. The upper set of graphs shows the global standard devia-
tion of start times (σr), while the lower set shows the average local standard deviation
(λr). In this case, we look at a static random walk deployment of one hundred nodes.
We can immediately see that at the lower densities the initially perfect synchroniza-
tion is not maintained. In fact, only the two highest transmission densities, 24 and
48 nodes, provide for high-quality synchronization. At a density of 12 nodes the net-
work is very tenuously connected, and the sparse topology results in synchronization
right on the borderline of what we consider acceptable. At the three lowest densities,
we see that the overall connectivity is too low to provide sufficient message exchanges
to maintain complete network synchronization. At such low densities the network is
split into several disjoint subnets, forcing the network to gradually devolve into dis-
joint syncgroups as nodes drift apart. Notice in the results for low densities that the
initially perfect synchronization is lost within at most three to four hundred frames.
The most clear result is that neither the <Active+History> nor the <Active+histOracle>
configurations perform significantly better than the standard <Active> configuration
in this scenario.

In Figure 5.2, we test our protocols on a much larger static random walk topology,
this time with one thousand nodes. Increasing the scale of the network by an order of

103

5

Evaluation Mobile Networks

Frame Number Frame Number

σ
ᵣ

(μ
s)

Ac!ve Ac!ve+History

Transmission Density
Frame Number

Ac!ve+histOracle

(a) Global standard deviation of start times, σr

Frame Number Frame Number

λ
ᵣ

(μ
s)

Ac!ve Ac!ve+History

Transmission Density
Frame Number

Ac!ve+histOracle

(b) Local standard deviation of start times, λr

Figure 5.2: The performance of GMAC’s synchronizationmaintenance on a static 1000-node RandomWalk
network

magnitude does not change the results by much. In fact, they look remarkably similar.
In the larger network, however, a density of 12 is no longer sufficient for GMAC to
maintain synchronization, regardless of any attempts to compensate for drift while
isolated (seen in the two plots on the right). The larger network size means that
there can be more and larger sparse regions in the topology, balanced by regions of
higher density elsewhere. We can also see from the results that, even at a transmission
density of 24 nodes, GMAC struggles to keep all one thousand nodes synchronized.
It seems that, at least for static topologies, the two variations on history maintenance
offer little benefit. In these experiments, it is only changing the transmission density
that has any significant effect on the results.

Finally we look at GMAC’s behavior in a network of mobile nodes in Figure 5.3.
The difference in the performance between static and mobile topologies is striking.
It is clear that GMAC achieves far superior results on a dynamic network topology
compared to static topologies. With the addition of mobility, we also see a signifi-
cant change in performance based on the selected GMAC configuration. The basic
<Active> configuration on the left maintains the initial synchronization for all tested
transmission densities, with the exception of the lowest setting of 0.25.

We can see that <Active+History> actually hurts synchronization maintenance. In
sparse networks nodes will be isolated more often, and thus they will rely on the
history-based approximation of their clocks’ frequency offset in order to try to stay
synchronized. However, in such networks nodes will also receive far fewer messages
upon which to base that approximation. One can imagine that a few frame length ad-
justments that run contrary to the node’s actual clock frequency offset will “pollute”
the node’s history. This will, in turn, lead the node to make a drift approximation

5

104

Mobile Networks Evaluation

Frame Number Frame Number

σ
ᵣ

(μ
s)

Ac!ve Ac!ve+History

Transmission Density
Frame Number

Ac!ve+histOracle

(a) Global standard deviation of start times, σr

Frame Number Frame Number

λ
ᵣ

(μ
s)

Ac!ve Ac!ve+History

Transmission Density
Frame Number

Ac!ve+histOracle

(b) Local standard deviation of start times, λr

Figure 5.3: The performance of GMAC’s synchronization maintenance on a mobile 1000-node Random
Walk network

that is not representative of the node’s true drift. Later timing adjustments based on
this erroneous approximation will cause the node to desynchronize with its group
faster than it would without making any adjustments at all. It is clear, however, that
the fault lies with our approximation algorithm, since neither the <Active> nor the
<Active+histOracle> configurations suffer from this behavior.

Finally, the results for the <Active+histOracle> configuration, show a clear benefit
over <Active>. The three lowest density settings maintain good synchronization, and
perform almost identically with this enhancement. We can see that this benefit is
limited to the lower density experiments, and the higher density experiments (where
nodes are very rarely isolated) show almost identical performance with <Active>.
What this tells us is that making timing adjustments in isolation based on an ap-
proximation of local clock frequency offset could be a strong addition to the protocol,
if we can find a cheap and easy method of approximating a node’s drift.

As seen in Figures 5.1, 5.2, and 5.3, the differences between σr and λr are the
magnitude of the deviation, not the behavior over time. From the above results, we
can clearly see that the global standard deviation follows the same pattern as the
local standard deviation. This is expected, and for this reason, we present only the
global standard deviation (that is, σr) from now on.

5.3.2 Detection

As we have chosen complete network convergence as our goal, we should ensure that
detection of other synchronized groups happens quickly, but also with as little energy

105

5

Evaluation Mobile Networks

expenditure as possible. Here we evaluate both the active and passive methods of
detection by artificially creating two synchronized groups. We are interested in only
two syncgroups because we want to eliminate the possibility of cycles in GMAC’s
timing-based decision relation, ≻t (Section 5.1.3), obscuring our evaluation of the
detection mechanism. The first syncgroup is composed of a single node, node 0,
while the second syncgroup is composed of the rest of the nodes in the simulated
network. Both groups start, independently, in the SYNCHRONIZED state. The large
group begins executing at t = 0.5s, while node 0 begins at a random time 0s < t ≤ 1s.
We choose a random start time for the singleton group in order to vary which group
is superior according to ≻t . In runs where node 0 starts up before the synchronized
group, the large group will be forced to merge with node 0. In contrast, runs were
node 0 starts after the other nodes, node 0 must detect the other group and merge
with them. As above, we perform our experiments using the same variety of static
and mobile topologies, and at several different transmission power settings. Our
main metric to evaluate detection will again be σr .

The two GMAC configurationswewill examine here are: <Active> (A) and <Passive>
(P). Both configurations succeed in synchronizing the 100-node topologies, both
static and mobile, so we do not present those results here. We instead look at the
500-node and 1000-node networks. In Figure 5.4, we present the results of the static
topologies. We see in the left sides of Figures 5.4a and 5.4b that using active detection
quickly leads to tight synchronization at the three highest density settings, but can
achieve only loose synchronization at the lowest investigated density. Clearly density
is a determining factor in not only whether or not synchronization will succeed, but
also in what bounds can be achieved. However, we do see some conflicting results re-
garding density for the case of passive detection. In the right side of Figure 5.4a the
results of transmission density 48 are inferior to the results of lower density settings
24 and 32. Similarly, in the right side of Figure 5.4b, a density setting of 32 nodes
leads to worse performance than at a density of 24. In very dense networks with
most nodes mutually synchronized, the common active period will be heavily loaded
with messages. In such situations message collisions will be common, so there is a
chance that a node performing passive detection will not receive any messages dur-
ing its inactive period. Because listening during the inactive period is probabilistic
and has a low probability of success (< 1

600), missing an opportunity to detect another
syncgroup can be quite costly and delay synchronization for hundreds or thousands
of frames. The active detection method is significantly more effective at the same
energy cost, synchronizing the network within two thousand frames. Passive detec-
tion’s best performance is over 4000 frames, seen in the static 500-node network at
transmission density 32.

As in our evaluation of synchronization maintenance, active detection also per-
forms significantly better in the case of mobile topologies, seen in Figure 5.5. As
nodes move around the simulated area, they directly exchange messages with a much
larger number of nodes than in a static scenario. This allows synchronization infor-
mation to propagate via physical movement as well as by radio communication, and
lends a strong performance benefit. Furthermore, the effects of transmission den-
sity are less pronounced in the mobile scenarios. Using active detection (left side
of Figures 5.5a and 5.5b), GMAC synchronizes both the 500- and 1000-node net-
works within about 1000 frames. Passive detection (right side of Figures 5.5a and

5

106

Mobile Networks Evaluation

Frame Number Frame Number

σ
ᵣ

(μ
s)

Ac!ve Passive

Transmission Density

(a) Static Random Walk network, 500 nodes

Frame Number Frame Number

σ
ᵣ

(μ
s)

Ac!ve Passive

Transmission Density

(b) Static Random Walk network, 1000 nodes

Figure 5.4: Evaluating GMAC’s detection mechanisms in static networks

5.5b), while also successful, takes four to six times as long to synchronize the same
network. Finally, mobility has also remedied the strange passive detection behavior
where higher density topologies can take longer to synchronize than lower density
ones.

5.3.3 Decision

To examine the decision aspect of merging, we study networks under an asynchronous
initialization. In these simulations, we create the conditions for a chaotic network
start. All nodes start unsynchronized and must initially detect their neighbors in or-
der to form local syncgroups. The better syncgroups, determined by the relation ≻,
will continue to grow in size as nodes discover neighbors in superior syncgroups and
decide to merge with them. By measuring what percentage of the nodes have synchro-
nized (to a common active period) as the simulation progresses, we can see the effects
of deterministic decisions made by the nodes. For each frame, we count the percent-
age of synchronized nodes as described in Section 4.1.3. The GMAC configurations
we will examine here are <Active> (A) and <Active+Cluster> (AC).

As we are interested in networks of large scale, we focus our evaluation of deci-
sion mechanisms on mobile 1000-node topologies. We present, on the left side of

107

5

Evaluation Mobile Networks

Frame Number Frame Number

σ
ᵣ

(μ
s)

Ac!ve Passive

Transmission Density

(a) Mobile Random Walk network, 500 nodes

Frame Number Frame Number

σ
ᵣ

(μ
s)

Ac!ve Passive

Transmission Density

(b) Mobile Random Walk network, 1000 nodes

Figure 5.5: Evaluating GMAC’s detection mechanisms in mobile networks

Figure 5.6, the performance of GMAC’s default decision relation, ≻t . On the right
side of Figure 5.6 are the results using the improved relation ≻c, based around clus-
ter tags. Without cluster tags, the number of syncgroups that form during an asyn-
chronous initialization virtually guarantee that there will exist cycles in the network.
This is evidenced by the fact that the <Active> configuration fails to consistently syn-
chronize 100% of the nodes at any transmission density in the case of Gauss-Markov
mobility, and barely manages to achieve 100% synchronization at the highest trans-
mission density with reference-point group mobility. <Active+Cluster>, however,
quickly converges the entire network to a single active period at all but the lowest
transmission densities in Gauss-Markov topologies. It does not perform quite so well
on the reference-point group mobility trace, but this pattern lends itself to physically
isolated groups of nodes. Still, the addition of cluster tags does allow GMAC to per-
form far better than without. It is also worth noting that the cluster tags provide for
extremely consistent performance as well, as seen by the sharp slope in the first thou-
sand frames. This indicates that the eight runs performed very similarly, whereas the
results without cluster tags show shallower (or even horizontal) lines.

5

108

Mobile Networks Evaluation

Frame Number Frame Number

S
y
n

ch
ro

n
iz

e
d

 N
o

d
e

s

Ac�ve Ac�ve+Cluster

Transmission Density

(a) Mobile Gauss-Markov network, 1000 nodes

Frame Number Frame Number

S
y
n

ch
ro

n
iz

e
d

 N
o

d
e

s

Ac�ve Ac�ve+Cluster

Transmission Density

(b) Mobile Reference Point Group network, 1000 nodes

Figure 5.6: Evaluating GMAC’s decision mechanisms in mobile networks

5.3.4 Notification

To examine the notification aspect of merging, wewill againmake use of asynchronous
initialization scenarios. We look at simulations similar to those as above, but this time
with an eye to the performance of the merge messages optimization. In keeping with
our goal of complete network convergence, we will focus on the percentage of syn-
chronized nodes, as before. The two GMAC configurations we will examine here are:
<Active+Cluster> (AC) and <Active+Cluster+Notify> (ACM).

In Figure 5.7, we see the performance of GMAC’s default behavior without merge
messages on the left side, and the behavior with merge messages on the right side.
The top two graphs depict the random walk mobility pattern we have seen through-
out this section. The addition of merge messages allows the network to converge in
an average of just over 100 frames, while the configuration without messages takes
more than three times as long. It is interesting to note that, with merge messages, the
percentage of synchronized nodes becomes almost vertical line at high densities. This
is because the merge messages greatly reduce the chance of nodes being “left behind”
as the other nodes in their group detect a better group and merge into it. This effect is
seen in the much more gradual slope of the results without any notification method
on the left. The effect is also strongly tied to a node’s transmission range, as the results

109

5

Evaluation Mobile Networks

Frame Number Frame Number

S
y
n

ch
ro

n
iz

e
d

 N
o

d
e

s

Ac�ve+Cluster Ac�ve+Cluster+No�fy

Transmission Density

(a) Mobile Random Walk network, 1000 nodes

Frame Number Frame Number

S
y
n

ch
ro

n
iz

e
d

 N
o

d
e

s

Ac�ve+Cluster Ac�ve+Cluster+No�fy

Transmission Density

(b) Mobile Reference Point Group network, 1000 nodes

Figure 5.7: Evaluating notification mechanisms in mobile networks

for lower densities reflect little improvement. The bottom graphs show the behavior
on nodes following the reference-point group mobility pattern. This mobility trace
keeps nodes in tight physical groups that move in reference to a common point. The
effect on the synchronization behavior is clear, as this pattern restricts interactions
between nodes to mainly those in the same reference point group. Only when these
groups cross paths are there opportunities for synchronization information to pass
between them. The results for this mobility model also show a strong correlation
with the network density, as the effect of the merge messages is more pronounced at
high density.

5.3.5 Detection revisited

Two of our detection optimizations, listen-before-merge and targeted join messages,
should be far more effective if combined with cluster tags. For that reason, we re-
visit the issue of detection here, shown in Figure 5.8. This time, however, we instead
use an asynchronous start, in order to allow for more syncgroups to be established.
We also investigate lower transmission densities than in the previous detection study,
with the same aim. The larger number of syncgroups will provide more opportunity
for the configurations we examine here to demonstrate their utility. Both optimiza-
tions require that there be other syncgroups in a node’s vicinity in order to see any

5

110

Mobile Networks Evaluation

benefit. We study the behavior of <Active+Cluster> (AC), <Active+Cluster+Listen>
(ACL), <Active+Cluster+Target> (ACT) to see whether we can improve syncgroup de-
tection even further. We have simulated the performance of these three GMAC con-
figurations under each of our three mobility patterns, though we leave out the results
for Gauss-Markov as they are very similar to those from the random walk trace. In
the leftmost plot of the figures we again see the performance of the <Active+Cluster>
configuration. For comparison, we present the results of the <Active+Cluster+Listen>
configuration in the center plot, and the results of <Active+Cluster+Target> on the
right.

We can see that the targeted join messages offer an observable performance ben-
efit, particularly at high transmission density. The benefit is most pronounced in
the Gauss Markov mobility model. The reason for this is that this optimization
balances out the asymmetric decision behavior. That is, nodes would normally ig-
nore messages from inferior clusters. This means that effectively only an inferior
group can detect a superior group, since a superior group will always ignore its mes-
sages. Targeting join messages allows us to effectively double the detection proba-
bility by making the process symmetrical. As we have seen throughout this section,
the effect of the optimizations is limited by the density of the network. The bet-
ter connected the network topology, the less benefit afforded by the targeting. At
the highest transmission density, 48, we do see an approximate doubling of perfor-
mance, from two hundred frames with <Active+Cluster> to one hundred frames with
<Active+Cluster+Notify+Target>. The results for the reference point group mobility
(Fig. 5.8b) also show a stronger performance increase at high density when using the
targeting behavior. However, the performance benefit quickly diminishes or disap-
pears entirely at lower densities.

We find the results of the listen before merge optimization to be disappointing,
especially considering the energy cost of this behavior. Listening for an entire frame
costs about the same as sending 600 join messages, quite expensive indeed. The
performance is comparable, but inferior, to that provided by targeted join messages.
However, the targeting does not imply any additional radio time and thus little to no
additional energy cost, making it the superior choice.

5.3.6 Larger networks

As we have emphasized several times, our chief interest is scalability. As sensor nodes
continue to fall in price, very large-scale networks will become economically feasible.
Thus, we end the discussion of our simulated results focusing in that direction. The
only significant difference between these experiments and those described earlier are
the number of simulated nodes. We still look at the same mobility patterns, but
here we observe the behavior of 4000 nodes. We will again look at an asynchronous
initialization, since this type of scenario presents a worst-case for network-level syn-
chronization. Because running and processing these simulations are quite demand-
ing, we look at only three transmission density settings (2, 8 and 32) and two GMAC
configurations (<Active+Cluster> and <Active+Cluster+Notify+Target>).

111

5

Evaluation Mobile Networks

Frame Number Frame Number

S
y
n

ch
ro

n
iz

e
d

 N
o

d
e

s

Ac�ve+Cluster Ac�ve+Cluster+Listen

Transmission Density
Frame Number

Ac�ve+Cluster+Target

(a) Mobile Gauss-Markov network, 1000 nodes

Frame Number Frame Number

S
y
n

ch
ro

n
iz

e
d

 N
o

d
e

s

Ac�ve+Cluster Ac�ve+Cluster+Listen

Transmission Density
Frame Number

Ac�ve+Cluster+Target

(b) Mobile Reference Point Group network, 1000 nodes

Figure 5.8: A look at the performance of further proposed improvements to GMAC’s detection behavior,
1000-node mobile networks

In Figure 5.9, we present results for all three mobile topologies. We can see that
the results for the Gauss-Markov mobility pattern (Fig. 5.9a) and those for random
walk (Fig. 5.9b) are very similar. Both of these mobility patterns lead to network
topologies with relatively uniform node density. This can be seen in the results,
as the percentage of synchronized nodes trances a smooth line. The results of the
reference point group mobility pattern (Fig. 5.9c) present a more bumpy and ir-
regular pattern. As mentioned previously, this type of mobility manifests a much
less uniform node density as groups of nodes move together around their common
reference points. Nevertheless, both tested configurations manage to converge all
three simulated deployments at transmission densities 8 and 32. The uniformity
of the Gauss-Markov and random walk topologies provide the best setting for the
<Active+Cluster+Notify+Target> configuration to outperform the simpler <Active+Cluster>
configuration. The left-hand graphs show the behavior of <Active+Cluster>, which
reaches 100% synchronization in about five hundred frames at density 32 and one
thousand frames at density 8, on both topologies. The right-hand side shows that the
addition of merge messages and join message targeting reduces the time required
to about 80 and 400 frames, respectively. Similar, though less dramatic, improve-
ment is seen with the reference point group mobility pattern as well, but GMAC’s
performance is limited by the lower connectivity of the network. Finally, we can see
that our proposed improvements make little if any difference at the lowest examined
transmission density, regardless of the topology.

5

112

Mobile Networks Evaluation

Frame Number Frame Number

S
y
n

ch
ro

n
iz

e
d

 N
o

d
e

s

Ac�ve+Cluster Ac�ve+Cluster+No�fy+Target

Transmission Density

(a) Mobile Gauss-Markov network, 4000 nodes

Frame Number Frame Number

S
y
n

ch
ro

n
iz

e
d

 N
o

d
e

s

Ac�ve+Cluster Ac�ve+Cluster+No�fy+Target

Transmission Density

(b) Mobile Random Walk network, 4000 nodes

Frame Number Frame Number

S
y
n

ch
ro

n
iz

e
d

 N
o

d
e

s

Ac�ve+Cluster Ac�ve+Cluster+No�fy+Target

Transmission Density

(c) Mobile Reference Point Group network, 4000 nodes

Figure 5.9: GMAC at very large scale: 4000-node mobile networks

113

5

Conclusions Mobile Networks

5.4 Conclusions

Themain contribution of this chapter is a thorough evaluation of MAC-level synchro-
nization in ultra-low duty cycle, large scale, mobile (and static) networks. In order to
perform this evaluation, we examined the two distinct subproblems of network-level
synchronization through numerous simulations. The results of these simulations
show that both problems are solvable, and GMAC can be used to achieve remarkably
low duty-cycles, even with relatively inaccurate clocks. In addition, our solution uses
energy at a fixed rate, which allows for very accurate predictions of network lifetime.
And, perhaps most importantly, we have demonstrated that GMAC is not only capa-
ble of synchronizing all nodes in a network so that they share a common active period,
but also doing so in a completely decentralized manner. Removing the need for spe-
cial “cluster-head” nodes makes planning and deploying a sensor network simpler
and less costly.

We investigated the maintenance of existing synchronization between groups of
nodes, the first aspect of synchronization, by simulating networks of 100, 500, and
1000 initially-synchronized nodes. We varied the transmission range of all nodes in
order to see the effects of overall network density on synchronization maintenance.
We found that GMAC’s simple median algorithm was able to maintain synchroniza-
tion in a mobile 1000-node network with average densities as low as one node per
transmission area. Using an oracle to estimate a node’s drift allows GMAC to main-
tain synchronization in even sparser networks, demonstrated at a density of 0.25
nodes per transmission area. The results for the static versions of the same topolo-
gies were not as good. Static networks require a much higher transmission area
(about 16 nodes per transmission area) in order to maintain synchronization, due
to the network being partitioned into multiple subnets at lower levels. Furthermore,
the results for the <Active+histOracle> configuration, show a strong benefit. Using
this mechanism, nodes can maintain good synchronization at very low transmission
density. At higher density (where nodes are very rarely isolated), the need to make
timing adjustments in isolation disappears and adds no performance benefit. This
tells us that making timing adjustments in isolation based on an approximation of
local clock frequency offset could be a strong addition to the protocol, assuming we
can find a cheap and easy method of approximating a node’s drift over time.

The second part of synchronization, merging separately synchronized groups of
nodes, has been split into three orthogonal subproblems. We investigate each of
the three subproblems (detection, decision and notification) using different mobil-
ity patterns and starting conditions. We looked at two methods of detection, active
and passive. In all investigated topologies and densities, active detection always out-
performed passive detection by a significant margin. We attribute this to active de-
tection’s ability to detect multiple neighbors with a single broadcast, as described
in 5.1.2. Additionally, we demonstrated that the combination of active and passive
detection can offer small performance benefit, but will generally not outweigh the
additional energy cost. Performance is even further increased by using our pro-
posed technique of targeted join messages, effectively doubling the detection rate.
Regarding merge decisions, our proposed cluster tags strongly improve the chances

5

114

Mobile Networks Conclusions

of eventual synchronization. We have demonstrated their efficacy in mobile networks
ranging from 100 to 4000 nodes, showing the importance of deterministic merging
decisions. Finally, our proposal of using a header field for notifying neighbors of
local merge decisions can drastically reduce the time for a network to reach a syn-
chronized state, by as much as a factor of eight on our 4000-node topology. These
small modifications to GMAC’s current behavior radically increase its suitability for
large scale mobile networks. The key insight is that as synchronized groups build up,
the merge messages allow GMAC to leverage an inferior group’s existing synchroniza-
tion to rapidly mergewhole syncgroups, not just individual nodes. Combined with the
total ordering provided by cluster tags to solve the problem of which group to merge
with, large and complicated networks can be synchronized in just a few minutes.

In the end, the most clear result of our investigations is that the achievable level
of synchronization is dictated by two things. The first is transmission density, or the
number of neighbors an average node will have. The second is whether or not the
topology is dynamic. In both cases, the underlying issue is: how easily can the syn-
chronization information be propagated throughout the entire network? With very
low transmission densities, a node will have infrequent communication with other
nodes which will greatly limit the opportunities for disseminating synchronization
data. Conversely, high transmission density means that this data can move a great
distance during each frame. Similarly, mobile scenarios generally facilitate network
synchronization because the required information can be propagated faster. This oc-
curs because nodes physically move around, carrying their data with them. Both of
these factors, density and mobility, are aspects of the overall network topology. In
the end, it is the network’s topology that will determine whether synchronization
will succeed.

Our next step will be to verify the performance of these modifications by imple-
menting them to run on our existing hardware. We have executed a number of real-
world experiments with the default GMAC protocol, though at a much smaller scale
than we investigate here. It is difficult to directly compare these real-world experi-
ments with our simulated results, because there is no authoritative time source with
which to compare nodes’ local timing data. Furthermore, the scale at which the basic
GMAC protocol begins to show serious problems achieving synchronization (i.e., one
thousand nodes and more) makes it expensive and very time-consuming to replicate
some of our simulations. Nevertheless, we have a high degree of confidence that our
simulated results on smaller networks qualitatively reflect the behavior of GMAC on
the reference hardware. We will actively seek opportunities to further confirm the
veracity of our simulations with real-world results.

115

5

History algorithms Mobile Networks

5.5 History algorithms

In this section we present the details of the history and histOracle algorithms dis-
cussed in Section 5.1.1. In both cases, we show the algorithm’s behavior across three
functions: Init(), PhaseCorrect(), and ComputeBlindCorrection(). A node calls
Init() when it starts up in order to properly initialize the history state. PhaseCor-
rect() is called each frame by a node to adjust the length of its local frame based on
the computed phase error and number of neighbors (i.e., message receptions). Finally,
ComputeBlindCorrection() is called by PhaseCorrect() if the node received no
messages that frame. This function will try to determine a reasonable frame-length
adjustment to make in the absence of any new timing information. We provide list-
ings for the history algorithm in Algorithm 5.1, and for the histOracle algorithm in
Algorithm 5.2 below.

Algorithm 5.1: The History Algorithm

Init()

// Initialize the cumulative correction to zero

cumCorrection = 0;
// Initialize the correction count to zero

numCorrections = 0;

PhaseCorrect(phaseError, numNeighbors)
if numNeighbors == 0 then

// If we have no neighbors, we must make a ‘blind’

correction

phaseError = ComputeBlindCorrection();

else if numNeighbors > 1 then
// If we have more than one neighbor, we will remember this

correction

cumCorrection = cumCorrection + phaseError;
numCorrections = numCorrections + 1;

// Finally, adjust our frame length based on our computed phase

error

AdjustFrameLength(phaseError);

ComputeBlindCorrection()

correction = 0;
// We should only make adjustments if we have enough history

if numCorrections > MinCorrections then
// Simply compute the running average of our past

corrections

correction = cumCorrection ÷ numCorrections;

return correction;

5

116

Mobile Networks History algorithms

Algorithm 5.2: The HistOracle Algorithm

Init()

// Initialize the cumulative correction to zero

cumCorrection = 0.0;
// An ‘oracle’ determines how many clock ticks are lost (or

gained) per frame

driftTicks = (1.0 - offset()) * frequency * FrameLength;

PhaseCorrect(phaseError, numNeighbors)
if numNeighbors == 0 then

// If we have no neighbors, we must make a ‘blind’

correction

phaseError = ComputeBlindCorrection();

// Finally, adjust our frame length based on our computed phase

error

AdjustFrameLength(phaseError);

ComputeBlindCorrection()

// By default, we make no correction

correction = 0;
// Increment our cumulative phase error by the number of ticks

lost/gained per frame

cumCorrection = cumCorrection + driftTicks;
if cumCorrection ≥ 1.0 then

// If we have drifted at least one tick ahead, correct it

correction = ⌊cumCorrection⌋;

else if cumCorrection ≤ −1.0 then
// If we have drifted at least one tick behind, correct it

correction = ⌈cumCorrection⌉;

if correction , 0 then
// Remove any correction we make from the cumulative error

cumCorrection = cumCorrection- correction;

return correction;

117

5

History algorithms Mobile Networks

5

118

6. Scalable epidemic applications

This thesis thus far has been concerned almost exclusively with the operation of
GMAC at the MAC/network layer. Here we will focus instead on the application
layer. An interesting application area is measuring activities in social communi-
ties [6] [46] [51], and utilizing social structures to understand and stop the spreading
of infectious diseases [52] [53]. In research related to this thesis we are using wearable
wireless sensor nodes to detect proximity among thousands of people, in an attempt
to discover the overall dynamic structure (topology) of a crowd. In this chapter we
will discuss a specific application that represents a class of applications that can be
easily implemented atop GMAC’s API, namely applications utilizing epidemic com-
munication. This application, called NetSize, attempts to estimate the size of the
network of which it is a member.

The social ad hoc networks we investigate will have a high diameter, tens or even
hundreds of hops across. In such a situation, the local network conditions (e.g., node
density, neighborhood size, RF interference) may vary significantly between different
locations within the same network. This, in turn, implies that one MAC protocol or
one set of MAC parameters will not be optimal for all nodes in the network. In this
case, we must allow nodes to self-adapt to local conditions. As previously discussed,
adaptivity is an important research goal in this work. In this chapter we explore the
NetSize application, which could provide the input to such a self-adaptation mech-
anism. By combining an accurate estimation of the network size with a knowledge
of the (approximate) transmission range, nodes can estimate the density of the net-
work. Given this information, nodes could, for example, increase their duty cycle to
avoid excessive message collisions in very dense regions. To be even more concrete,
a reasonably accurate estimate of a node’s 3-hop neighborhood size combined with
a knowledge of the maximum transmission range would allow a node to compute a
lower-bound on the local node density.

For the purposes of this chapter, we consider a network to be comprised of those
nodes reachable by (multi-hop) messaging from a starting node. As discussed in
Section 2.4, nodes that are physically separated (outside of each other’s transmission
range) cannot communicate. Thus, we can only hope to estimate the number of nodes
in a connected topology and we (for now) ignore the problem of physically separate
networks. We look at variants of this application designed to estimate both the num-
ber of nodes in the connected network and the number of neighbor nodes within the
k-hop radius of a given node.

With this application we explore in-network data aggregation and processing, in
particular the capability of the network to provide an estimate of its own size. We
chose this functionality for several reasons, not in the least because it is an important
metric when dealing with very large networks. When using distributed sensor net-
works for crowdmanagement as explained above, an estimate of network size tells us
how many people are in a (part of a) crowd, which may be essential to prevent dan-
gerous situations. Network size estimations will also allow us to efficiently merge a

119

Context Scalable epidemic applications

smaller network with a larger one when networks have become desynchronized, in-
stead of the other way around, as explained in Section 2.4.2. Finally, network size
estimations can be used for many network statistics, such as computing average sen-
sor values, node densities and network diameters, allowing one to build an overall
picture of a network.

As stated earlier, GMAC was designed with epidemic protocols in mind. In the
NetSize application discussed in this chapter, a type of epidemic dissemination known
as flooding is used. In a typical flooding protocol, each node in the network tries to re-
broadcast every message it hears to ensure that the message is “flooded” throughout
the network such that each participating node is aware of it. NetSize represents a par-
ticular type of flooding algorithm that shares aspects with gossiping algorithms. In
this case, the semantics of the data shared by the NetSize application allow multiple
messages to be merged together in constant space. This means a node can effectively
combine and rebroadcast all messages it has previously heard in a single message.

The goal of NetSize is that every participating node should maintain a local esti-
mate of the size of (number of nodes in) its network. A simple use of the estimates
generated by the application would be to adjust the application’s message generation
rate based on the estimated network size. For example, in very dense neighborhoods
the overall network throughput can be increased by limiting the number of broad-
casts. As discussed in Section 2.3.1, a local neighborhood containing more nodes
than active slots will suffer increased message loss due to collisions. The larger the
ratio of neighborhood size to active slots, the more pronounced this problem will be-
come. However, if the application knows that it is in a particularly dense region, it
can choose not to broadcast in some gossip rounds in order to reduce traffic on the
overloaded medium.

In this chapter, we will begin by explaining the context of our work. We then
describe the three algorithms that we will investigate here. In Section 6.3 we discuss
the setup of our simulation environment and the particular parameters we will be
evaluating. After that, we present our experimental results in Section 6.4. Finally, we
conclude and give some indications of potential future research.

6.1 Context

In this section we will give an introduction to the subject of set cardinalities and sev-
eral techniques that can be used to estimate the cardinalities of very large sets. In this
case, our motivation is to estimate the size (i.e., number of nodes) of a wireless ad hoc
network. We assume that every node has a unique identifier, and thus we are trying
to determine the cardinality of the set of all node ids. This problem is impractical to
solve by exact counting for large data sets. This problem is even more pronounced
on resource-constrained sensor nodes, where a typical node may have only four kilo-
bytes of RAM for storing an explicit list of identifiers. Thus, we resort to estimators
that require far less memory.

6

120

Scalable epidemic applications Context

6.1.1 Estimation of set cardinality

The cardinality of multiset M is denoted card (M), and represents the number of
unique data items contained in M . If the number of unique items in M is small
compared to the total number of items in M , a simple iterative count will work well.
That is, a node can simply maintain an explicit list of items that it has already seen,
checking each new item against the entire list for uniqueness. However, if M is large
and many of the items are unique, the list a node would need to maintain would be
very long and the memory requirements would make such an algorithm prohibitively
expensive to execute.

In [54], the authors propose an efficient algorithm to estimate the cardinalities of
multisets. The Flajolet-Martin (FM) sketch they introduce is a simple, but as we will
see later a powerful, way to aggregate long datastreams using only a small number
of bits. The key feature of this aggregate is that it is unaffected by duplicates and the
order in which the data stream is processed. The technique works as follows: Each
incoming data item is hashed using a geometric hash function, h (item) = value, such
that the distribution of values is geometric with parameter 1

2 . Let Dn denote the nth
data item in the stream.

P (h(Dn) =m) = 2−m

for m,n ≥ 1. Let D be the set of all processed data items. The FM sketch of D is

FM (D) [i] =

1 if ∃Dn ∈D such that h (Dn) = i

0 else.
(6.1)

The aforementioned properties of the sketch (insensitivity to the order and repetition
of the entries) can be summarized by the identity

FM (D)∨FM (D′) = FM (D ∪D′) ,

where D,D′ are sets of data items. Here, and in the rest of the chapter, ∨ denotes the
coordinate-wise max operation. For an FM sketch FM (D), let R (D) denote the lowest
index of FM (D) which contains a 0 value. That is, R (D) = min{i : FM (D)[i] = 0}.
The authors show that with R (D) we can approximate the logarithm of the number
of elements of D. Indeed R (D) is close to log2 (ϕ |D|) where ϕ ≈ 0.775351. It has
standard deviation close to 1.12127. See Theorem 3.A and 3.B of [54] for more details.
Hence 1

ϕ2
R(D) approximates the number of elements of D, and its error is within one

binary order of magnitude.

6.1.2 Follow ups

The FM sketch as described above has since found use in a wide array of applications.
As such, there have been modifications to and improvements upon the original algo-
rithm. In [55], the authors present a survey of different techniques that can be used
for set-cardinality estimation. They analyze the algorithms by looking at both the

121

6

Context Scalable epidemic applications

processing and storage requirements versus the relative error (i.e.,
card(M)−est(M)

card(M)
) of

each algorithm.

In [56], the authors consider methods of computing statistics about the data items
in a data stream over a sliding window of time. They discuss a method of adapting
the traditional FM sketch to operate over a finite time window, with old data items
eventually being removed from the sketch. That is, estimating the number of unique
data items out of the last N total data items seen from D. This is achieved by main-
taining a timestamp, TS (D) [i], for each index in an FM sketch, FM (D) [i]. Whenever
the value of a particular index is set to 1, the corresponding timestamp is set to be the
current time. That is, if Dt is a data item from D that arrives at time t and h (Dt) = i,
then we set FM (D) [i] = 1 and TS (D) [i] = t. At every time-step T , we can simply iter-
ate over each index in the FM sketch, and compare the timestamp of that index to the
current time. If T − TS (D) [i] > N , we set FM (D) [i] = 0. In this manner, data items
from the stream will “expire” from the FM sketch after N time steps. Computing an
estimate of the cardinality of the set can be done in the same manner described for
the basic FM sketches in Section 6.1.1. This windowed FM sketch will have a higher
standard deviation than a basic FM sketch that has been running for more than N
time steps. In the context of sensor networks, this is not an issue if N ≥ d, where
d is the network diameter. During any period of N rounds, a node should see all
data items in the network. Furthermore, the rate of node arrival and departure will
impact the standard deviation of the estimate generated by a windowed FM sketch.

6.1.3 Wireless sensor networks

The authors of [57] apply the FM sketch techniques to the problem of aggregating
query results in wireless sensor networks. The use of FM sketches in sensor networks
fits well because of the combination of a broadcast-based medium and messages that
can be easily aggregated (via a simple Boolean OR operation) without increasing in
size. In the paper they demonstrate the effectiveness of their technique through simu-
lations in the Tiny Aggregation (TAG) framework used in TinyDB, described in detail
in [58]. As we do here, they also test their solution by using it to count the number
of nodes in the network. Our approach of using multiple bitvectors is similar to the
technique they present. One important difference is that they assume a single sink
node and measure the accuracy of their algorithm from there. In contrast, we ensure
that all nodes maintain an estimate of the network size.

A recent take on the problem of estimating the size of wireless sensor networks
is Extrema Propagation. The authors present the algorithm in [59], demonstrating
very accurate results in simulation. They look at several different network topolo-
gies and sizes. The main difference with this work is that their technique involves
using smaller and less accurate sketches than ours, only 5 bits each. In order to in-
crease the overall accuracy of the algorithm, they bundle 2400 of these sketches in a
single message for a message size of 1500 bytes. By averaging the results of all the
sketches, the algorithm arrives at an accurate estimate of the network size. By con-
trast, our algorithm uses much less space, only 24 bytes per message. In addition,

6

122

Scalable epidemic applications Examined techniques

their technique is not easily adapted to the problem of generating arbitrary k-hop
neighborhood estimates.

In [60], the authors present a number of different size estimators for sensor net-
works. Like this chapter, they evaluate their algorithms using grids of simulated
nodes. The same authors introduce an improved technique in [61], and evaluate it on
even larger simulated networks of up to 10,000 nodes. Their final algorithm demon-
strates greater accuracy than both HyperLogLog and Extrema Propagation. However,
while their methods achieve more accurate estimates than what we present in this
thesis, their algorithms do not take node failure or mobility into account. In addi-
tion, the presented algorithms provide whole network estimates, but do not include
k-hop neighborhoods.

6.2 Examined techniques

In this section, we explain three different techniques that we will use to estimate the
size of a mobile ad hoc network. We begin by describing the mathematical justifica-
tion for the methods we use. We then move on to elaborate the techniques that we
will study in our simulations.

6.2.1 Network size estimation

In the sensor network, we use the FM sketch for random variables which are gener-
ated by the nodes: Let Wv,t ∈N denote the random value chosen by node v at time t.
These random variables are hashed using the same type of geometric hash function
discussed in Section 6.1.1, so that h

(

Wv,t
)

= Xv,t . Let A be a set of node-time indices,
that is a set of pairs (u,s) where u is a node, and s is a time. The FM sketch of A is:

FM (A) [i] =

1 if ∃ (v,t) ∈ A such that Xv,t = i

0 else.

In sensor networks, the wireless connections between nodes are unreliable. More-
over, the network is mobile - nodes can move in space as well as enter and leave the
network at will. Hence the neighborhood of a node can change over a short period of
time. In such a complex situation we need a clean notation for the k-hop neighbor-
hood, which we provide below.

Let V denote the set of nodes, and n = |V | the size of the network. For t ∈N and
u,v ∈ V we introduce the notation u →t v. It means that the message broadcast at
time t by u was received by v. We use the convention v →t v, that is, every vertex
always receives its own messages. For k ∈ N, we denote the k-hop neighborhood
of v at time t by Nv,t,k . It is the set of vertices u such that there is a sequence v =

123

6

Examined techniques Scalable epidemic applications

v0,v1, . . . ,vk = u such that vi+1 →
t−i vi for i = 0,1, . . . , (k − 1). For k = 0, we define

Nv,t,0 = {v}. It is easy to check that

Nv,t,k =
⋃

w∈Nv,t,1

Nw,t−1,k−1 (6.2)

for k ≥ 1. Note that when k is larger than the diameter of the network, the k-hop
neighborhood of each node is the whole network, that is Nv,t,k = V for all v ∈ V . For
later use we also define the sets

Av,t,k = {(w,t − k) |w ∈Nv,t,k} (6.3)

for v ∈ V and t,k ∈N.

The key idea of [57] is that one can adapt distinct counting algorithms to a sensor
network in order to estimate the size of the network. Let us briefly explain their
algorithm. At time 0 each node v, independently from each other, chooses a random
value Wv,0.

• Initialization at time 0 : set Bv,0 to be a vector of 0-s, except for the h
(

Wv,0
)

=
Xv,0th bit, which is set to 1.

• At each round t ≥ 1.
– Broadcast: send Bv,t−1, and set Bv,t = Bv,t−1.
– Receive messages: node v gets the message Bw,t−1 from w. Then v updates

Bv,t by

Bv,t = Bv,t ∨Bw,t−1.

– Estimate: Let Rv,t be the lowest index of Bv,t which contains a 0 value. That

is, Rv,t =min{i : Bv,t [i] = 0}. The estimate is 1
ϕ2

Rv,t .

The definition of Bv,0 and Av,0,0 gives that Bv,0 = FM
(

Av,0,0
)

. Then a simple induction
on k gives that at the end of round t, Bv,t = FM

(

Av,t,t
)

.

When we look at the k-hop neighborhood of a node v with k bigger than the
diameter of the network, then Nv,t,k = V . Hence when k is larger than the diameter,
we have Av,k,k = V × {0}. Since

Bv,t = FM
(

Av,t,t
)

= FM (V × {0}) ,

we get that

Rv,t = R
(

Av,t,t
)

= R (V × {0}) .

Hence all the nodes arrive to the same network size estimate 1
ϕ2

Rv,t . Recall that the

error is big, at least in the order of one binary order of magnitude as mentioned
in Section 6.1.1. Environmental factors in the network can increase the error of our
estimator. For example, the sudden arrival or departure of a large group of nodes, or
a region of the network being subjected to increased interference (radio noise). We
show how to reduce the error in the next section.

6

124

Scalable epidemic applications Examined techniques

6.2.2 Multiple bitvectors algorithm

To this point we considered algorithms that estimate the size of the network with only
one set of random variables, which were sampled when we initialized the algorithm.
However, in a mobile network where the topology and composition of the network
changes over time, such an algorithm is not efficient, since after it has converged it
provides the same estimate forever.

There are a couple of ways to resolve this problem. The simplest solution is to
restart the algorithm after a number of rounds. Even better, we can execute multi-
ple instances of our algorithm in an asynchronous way. For example, we can run
5 instances of the same algorithm, but we start them with 12 rounds of delay, and
when an algorithm has run for 60 rounds, we restart it. We call this solution multiple
bitvectors, or MultiBitvector for short. This solution should also provide more accu-
rate estimates, as the large inherent error will be reduced by averaging the estimates
produced by multiple bitvectors.

Unfortunately, none of these solutions provides continuous estimates for the size
of the k-hop neighborhood for all k. We give a solution in the next section.

6.2.3 Static bucket algorithm

In order to estimate the size of a node’s neighborhood at a (variable) distance of k
hops, we need to introduce timestamps, as in [56]. Let L be a parameter. In the
FM sketch we replace the bitvectors with vectors of buckets, each of which stores an
integer between 0 and L − 1. The bigger the value of a bucket, the fresher the data it
corresponds to. When a fresh piece of information arrives, we allow it to overwrite
(update) the old one. Moreover, each round the timestamps age, that is they decrease
by 1. When a timestamp value reaches 0, then we do not decrease it any more. This
way we keep information from only the last L rounds - the older information gets
discarded. We denote the vector of timestamps of node v at time t as TFMv,t . Given
this vector of timestamps TFM , for a ∈N let TFM [a] be the bitvector corresponding
to the information which is at most a old:

TFM [k] [i] :=

1 if TFM [i] ≥ L− k

0 otherwise.

The precise algorithm, which we call StaticBucket, is the following:

• Initialization at time 0: set TFMv,0 to be a vector of 0-s, except for the Xv,0th
coordinate, which is set to L− 1.

• At each round t ≥ 1.
– Broadcast: Each vertex v ∈ V has a vector of timestamps TFMv,t−1 from

the previous round. It ages the current vector of timestamps:

Mv,t :=
(

TFMv,t−1 − 1
)

∨ 0.

(Here ∨ is coordinate-wise max.) The node asserts its index, Xv,0, in the
message. That is, it sets Mv,t

(

Xv,0
)

:= L − 1. The node v broadcasts Mv,t ,
and sets TFMv,t :=Mv,t .

125

6

Examined techniques Scalable epidemic applications

– Receiving messages: node v gets the messageMw,t fromw. Node v updates
TFMv,t by

TFMv,t = TFMv,t ∨Mw,t .

– Estimate: Let Rv,t [k] denote the lowest index of TFMv,t [k] which contains

a 0 value. Then 1
ϕ2

Rv,t [k] estimates the k-hop neighborhood of v at time t.

As above, TFMv,t denotes v’s vector of timestamps at the end of round t. That is, after
having received all the messages in round t and after all the updates in this round
have been done. Let el denote the vector whose coordinates are all 0, except for the
lth one, which is 1. Then we have

Mv,t =
(

TFMv,t−1 − 1
)

∨
(

(L− 1)eXv,0

)

TFMv,t =Mv,t ∨
∨

w→tv,v,w

Mw,t

=
∨

w→tv

Mw,t

=
∨

w→tv

(

(

TFMw,t−1 − 1
)

∨
(

(L− 1)eXw,0

))

=
∨

w→tv

(

TFMw,t−1 − 1
)

∨ (L− 1)
∨

w→tv

eXw,0

=

∨

w→tv

TFMw,t−1 − 1

∨ (L− 1)FM
({

Xw,0

∣

∣

∣w→t v
})

=

∨

w→tv

TFMw,t−1 − 1

∨ (L− 1)FM
(

Av,t,1
)

. (6.4)

Now let us take k ≥ 1, and look at all the timestamps which are at most k old in
(6.4). For k = 1 we get TFMv,t [1] = FM

(

Av,t,1
)

, that is TFMv,t [1] is the FM sketch
corresponding to the 1-hop neighborhood of v at time t. For k ≥ 2 we get

TFMv,t [k] =
∨

w→tv

TFMw,t−1 [k − 1]∨FM
(

Av,t,1
)

.

Simple induction on k leads to

TFMv,t [k] = FM

k
⋃

l=1

Av,t,l

for all 1 ≤ k ≤ L − 1. Let Rv,t [k] denote the lowest index of TFMv,t [k] that contains

a 0 value. Then 1
ϕ2

Rv,t [k] estimates the number of elements of
⋃k

l=1Av,t,l . Recall the

definition of Av,t,k from (6.3). We see that the sets Av,t,k for k ≥ 1 are disjoint. Thus

Av,t,k =

k
⋃

l=1

Av,t,l .

6

126

Scalable epidemic applications Examined techniques

We get that
1

ϕ
2Rv,t [k] (6.5)

estimates the number of elements of Av,t,k , which is equal to the size of the k-hop
neighborhood of v at time t. Hence we see that using vectors of buckets rather than
bits provides estimates for the k-hop neighborhood for all k simultaneously, every
round. Notice that when we take k larger than or equal to the diameter of the network,
then the formula (6.5) provides an estimate for the size of the whole network. The
main problem with the estimate in (6.5) is that it can have a large error. To resolve
this problem, we can runmultiple instances of this algorithm and combine the results
as it was shown in [54], similar to the MultiBitvector approach described earlier.

6.2.4 Dynamic bucket algorithm

We propose an algorithm where each node at each round samples a new random vari-
able Wv,t , and inserts Xv,t = h

(

Wv,t
)

into its FM sketch. Clearly, such an algorithm
is bound to fail if we do not discard the old values. This is achieved using times-
tamps, as above. The algorithm proceeds similarly to the StaticBucket case. The only
difference is that in each round, a node v samples a new random number, denoted by
Wv,t , and inserts it in the message: Mv,t

(

Xv,t
)

:= L − 1. Because a node dynamically
chooses a new bucket to refresh in each round, we call this variant theDynamicBucket
algorithm.

As with the StaticBucket algorithm discussed above, we have:

Mv,t =
(

TFMv,t − 1
)

∨
(

(L− 1)eXv,t

)

and:

TFMv,t =Mv,t ∨
∨

w→tv,v,w

Mw,t

=
∨

w→tv

(

TFMw,t−1 − 1
)

∨ (L− 1)
∨

w→tv

eXw,t

=

∨

w→tv

TFMw,t−1 − 1

∨ (L− 1)FM
(

Av,t,1
)

. (6.6)

Now we again take k ≥ 1, and look at all the timestamps which are at most k old in
(6.6). For k = 1 we get TFMv,t [1] = FM

(

Av,t,1
)

, that is TFMv,t [1] is the FM sketch
corresponding to the 1-hop neighborhood of v at time t. For k ≥ 2 we get

TFMv,t [k] =
∨

w→tv

TFMw,t−1 [k − 1]∨FM
(

Av,t,1
)

.

Simple induction on k we get that

TFMv,t [k] = FM

k
⋃

l=1

Av,t,l

127

6

Experimental setup Scalable epidemic applications

for all 1 ≤ k ≤ L − 1. That is, in the FM sketch TFMv,t [k], a node w is counted k −
h + 1 times when w is exactly h hops away from v. We again let Rv,t [k] denote the

lowest index in TFMv,t [k] that does not contain a 0 value. Then 1
ϕ2

Rv,t [k] estimates

the number of elements of
⋃k

l=1Av,t,l . Recall the definition of Av,t,k from (6.3). We
see that the sets Av,t,k for k ≥ 1 are disjoint. Thus

Av,t,k =
k
⋃

l=1

Av,t,l \

k−1
⋃

l=1

Av,t,l .

We get that
1

ϕ
2Rv,t [k] −

1

ϕ
2Rv,t [k−1] (6.7)

estimates the number of elements of Av,t,k , which is equal to the size of the k-hop
neighborhood of v at time t. Hence we see that the dynamic bucket algorithm also
provides estimates for the k-hop neighborhood for all k simultaneously, every round.

Notice that when we take k larger that the diameter of the network, then the
formula (6.7) provides an estimate for the size of the network. The main problem
with the estimate in (6.7) for large k is that the values of Rv,t [k] and Rv,t [k − 1] are
close to each other, and they can even coincide. Again, we can run multiple instances
of this algorithm and combine the results to resolve this problem. However, if we
want a better estimate for the network size, we can still use only one instance of this
algorithm, but average the estimates in (6.7). It provides the estimate

2Rv,t [k+q] − 2Rv,t [k]

ϕq
(6.8)

It estimates the average number of nodes present in the network in between round
t −k−q+1 and t−k. In order to decrease the chance that Rv,t [k + q] = Rv,t [k] we have
to set q such that it is comparable to k.

Remark 1. Most of the sketches listed in [55] can be adapted for the dynamic setting,
with a similar use of timestamps.

6.3 Experimental setup

In this section, we explain the setup, execution and analysis of our simulations. Once
again, the costs (both in time and money) of performing real experiments with thou-
sands of nodes are prohibitively high, so we resort to experimentation via simulation.
The details of our simulation environment were covered in Section 4.1, and here we
describe only the specific parameters used in this chapter.

6.3.1 Simulator parameters

Clocks Here we investigate GMAC’s application-level behavior, and we are not in-
terested in synchronization directly. As such, we choose to use the default MaxClock-
Drift value of ±20 ppm.

6

128

Scalable epidemic applications Experimental setup

Table 6.1: Network topologies investigated in this chapter

Nodes Layout Diameter Dimensions Spacing

1024 32× 32 32 640m× 640m

20m Grid1024 64× 16 64 1280m× 320m

1024 128× 8 128 2560m× 160m

Figure 6.1: Graphical representation of the transmit range using simulated 0.5mW

Network topology One of the chief parameters to investigate is the diameter of
network. The more hops required for a piece of data to traverse from one end of
the network to the other, the longer it will take our estimators to react to changes
happening in other parts of the network. In order to better assess the strengths and
weaknesses of our estimation algorithms, we investigate the effect of changing the
diameter of our simulated networks. In particular, we look at a fixed network size
and vary the layout of the nodes. In all of our experiments the nodes are deployed
in a regular grid pattern. Nodes are deployed in an N ×M grid, with rows (and
columns) placed 20m apart (see Table 6.1). It is important that the networks we
examine are connected, because otherwise complete dissemination of information
would be impossible. Note that this is in contrast to our synchronization topologies,
wheremobility patterns that (temporarily) split the network into separate subnets are
an important aspect of our investigation. Note that we simulate some of the effects of
node mobility by including scenarios with node failure, discussed in detail later in
this section. In many aspects, a node joining or leaving a network is indistinguishable
from a node simply moving into or out of range of the other nodes in the network.

Transmission density The transmission power of the simulated radios, along with
the network topology, determines the connectedness of the entire network. By in-
creasing a simulated node’s transmission power, the simulator increases the node’s
transmit range. This effectively decreases the diameter of the network. Conversely,
the diameter of the network can be increased by decreasing the nodes’ transmis-
sion power. Based upon the default grid spacing of 20m, we have chosen to use
MaxTxPower = 0.5mW as our default setting. In Figure 6.1 we show a group of
nodes spaced 20m apart, depicting the transmission range from the perspective of
the sender (black) and the potential receivers (gray).

129

6

Experimental setup Scalable epidemic applications

(a) No failures (b) Symmetric failures (c) Random failures

Figure 6.2: Graphical representation of three of the node activity scenarios

6.3.2 Application variants

We look at three different application-level algorithms to estimate network size, and
two different kinds of application messages.

• <StaticBucket>This is the timestamped extension to the basic FM sketch which
includes using buckets rather than bits. The application data in a message con-
sists of 24 1-byte buckets, for a total of 24 bytes.

• <DynamicBucket> This is the timestamped extension using buckets and ran-
domly generated bucket ids in each round. The application data in a message
consists of 24 1-byte buckets, for a total of 24 bytes.

• <MultiBitvector> This is themethod of utilizing multiple bitvectors to smoothen
estimates. The application data in a message consists of M = 8 sketches of
N = 24 bits each, for a total of M×N

8 = 24 bytes.

6.3.3 Scenarios

We utilize different activity scenarios in order to evaluate different aspects of the size
estimation.

Active

All nodes are active for the entire duration of the simulation

Symmetric failure

Half of the nodes fail (turn off) 25% of the way through the simulation, and are reac-
tivated 75% of the way through the simulation. Nodes are failed in a “checkerboard”
fashion, where all of a node’s direct north/south/east/west neighbors will be in the
opposite state and its diagonal neighbors will be in the same state.

6

130

Scalable epidemic applications Evaluation

Random failure

Half of the nodes fail (turn off) 25% of the way through the simulation, and are
reactivated 75% of the way through the simulation. In contrast to the symmetric
failure scenario, in this case the nodes to fail are selected at random with the caveat
that the remaining active nodes will continue as a connected network. That is, a node
that would break the remaining active nodes into multiple unconnected networks
cannot be selected to fail.

Churn

In these scenarios, a particular percentage of nodes will fail 25% of the way through
the simulation. Each of these nodes will be offline for a random amount of time,
30s <= t <= 120s. Whenever a failed node reactivates, another node will be randomly
selected to fail for a random duration. The same rule regarding network partitions
as above applies, and we introduce an additional constraint: a node that has just
recovered from failure cannot be selected to fail for at least 30s.

6.4 Evaluation

Here we evaluate the performance and accuracy of the three estimation techniques
described in Section 6.2. We begin by explaining the measurements we use to eval-
uate the three algorithms. We then present the results of a series of experiments de-
signed to compare the different algorithms with respect to the estimation of the size
of the entire network. Finally, we evaluate the accuracy of the most promising tech-
nique of the three when estimating a node’s k-hop neighborhood. We look at a range
of values for k, but we are most interested in the low values (k = 1,2,3, representing
a node’s local neighborhood) and the high values (k ≈ diameter).

6.4.1 Measurements

As we are chiefly interested in accurate estimation of the network size, our main
observable measurement is the per-round state of each node’s estimator. Every sim-
ulated node records the entire contents of its bitvector at the end of each simulated
round. A node’s network size estimate for a given round is deterministically based on
the state of its bitvector (or bucket vector) in that round. Thus, after the simulation
has completed, we can evaluate different estimation parameters or algorithms on the
logged data to see which performs most accurately. For example, we can experimen-
tally determine an appropriate value for q in Equation (6.8).

We primarily use the percentage error in estimated network size in the plots in
the following section. This is computed as Errv,r = (Estv,r − |Vr |)×

100
|Vr |

, where Estv,r is

131

6

Evaluation Scalable epidemic applications

the estimate computed by node v in round r and Vr is the set of active nodes during
round r. Since we are presenting the results of networks of 1024 nodes, plotting each
node’s estimate is impractical. As such, we can compute the mean error across all
nodes for a given round:

Errr =
1

|Vr |

∑

v∈Vr

Errv,r

Instead of a simple arithmetic mean, we can compute the RootMean Square Error:

RMSEr =
1

|Vr |

√

1

|Vr |

∑

v∈Vr

(

Estv,r − |Vr |
)2

These metrics are mainly interesting in order to compare different estimation al-
gorithms.

6.4.2 Comparison of estimators

Here we look at the accuracy of our three techniques. We can compare the three
algorithms fairly by ensuring that all three have the same message complexity. That
is, we use a message size of 24 bytes in each case as explained in Section 6.3.2. We
begin our evaluation with fully active networks, where the multiple bitvectors should
have an advantage. Then we look at three scenarios involving node failure, where the
timestamped bucket techniques should outperform the flat bitvectors.

We start by looking at the performance of our three estimation algorithms in the
active scenario. Figure 6.3 shows the results of each estimator on the 32 × 32 grid
topology. This topology has a diameter of 32, so we choose k ≥ 32 (for StaticBucket
and DynamicBucket algorithms) in order to estimate the size of the whole network.
Specifically, we choose k = 32 for the StaticBucket algorithm, and k = 64, q = 32
for the DynamicBucket algorithm. Recall that the q parameter was introduced in Sec-
tion 6.2.4 in order to compensate for over-counting by the DynamicBucket technique.

In Figure 6.3a, we see that the StaticBucket algorithm quickly reaches a stable
estimate of the network size, with an estimation error of about +20%. Because there
is no mobility or failure in the simulated network, once the algorithm converges, the
result does not change for the remainder of the runs. The results of the Dynam-
icBucket method are significantly more variable. As can be seen in Figure 6.3b, this
estimator never converges because nodes continually select new bucket IDs through-
out the runs. Our attempts at compensating for this (expected) overestimation are
only partially effective. The estimation error varies from about −10% to +110% dur-
ing the simulated runs. This variability will make it difficult for nodes to be confident
in size estimates generated by the DynamicBucket algorithm. Finally, in Figure 6.3c,

6

132

Scalable epidemic applications Evaluation

0 100 200 300 400 500
Round Number

-100%

-10%

0%

10%

100%

1000%

si
ze

 e
st

im
a
te

 e
rr

o
r

(a) StaticBucket, active

0 100 200 300 400 500
Round Number

-100%

-10%

0%

10%

100%

1000%

si
ze

 e
st

im
a
te

 e
rr

o
r

(b) DynamicBucket, active

0 100 200 300 400 500
Round Number

-100%

-10%

0%

10%

100%

1000%

si
ze

 e
st

im
a
te

 e
rr

o
r

(c) MultiBitvector, active

Figure 6.3: The performance of our three algorithms for the active scenario, 32× 32 grid

133

6

Evaluation Scalable epidemic applications

0 100 200 300 400 500
Round Number

-100%

-10%

0%

10%

100%

1000%

si
ze

 e
st

im
a
te

 e
rr

o
r

(a) StaticBucket, 50% random failure

0 100 200 300 400 500
Round Number

-100%

-10%

0%

10%

100%

1000%

si
ze

 e
st

im
a
te

 e
rr

o
r

(b) DynamicBucket, 50% random failure

0 100 200 300 400 500
Round Number

-100%

-10%

0%

10%

100%

1000%

si
ze

 e
st

im
a
te

 e
rr

o
r

(c) MultiBitvector, 50% random failure

Figure 6.4: The performance of our three algorithms for the random failure scenario, 32× 32 grid

6

134

Scalable epidemic applications Evaluation

we present the results for the MultiBitvector estimator. This estimator offers some-
thing of a compromise between the quick to converge behavior of StaticBucket and
the continuous variability of DynamicBucket. The accuracy of MultiBitvector also
falls between that of StaticBucket and DynamicBucket, ranging from −10% to +30%.

Though both StaticBucket and MultiBitvector perform adequately in fully active
networks, we are far more interested in the results for scenarios involving node fail-
ure. As discussed previously, an estimator that performs well in variety of network
topologies and failure scenarios is essential for our domain. Social ad hoc networks
will necessarily involve a high degree of node mobility and node failure must be han-
dled gracefully. As such, we now proceed to evaluate the three estimators in our
random failure scenario.

In the three sub-figures of Figure 6.4, the vertical dotted lines at round number
150 and 450 represent the beginning and end of the period of node failure, respec-
tively. Between the two vertical lines, the network experiences node failure, while
to the left or right of this region all nodes are active. The reader should note that
all algorithms show an upward spike in round 150 and a corresponding downward
spike in round 450. This is due to the sudden disappearance (or reappearance) of
512 nodes. As the simulations proceed, the estimators adapt to the new network size
relatively quickly.

We begin with Figure 6.4a, where we present the results for the StaticBucket al-
gorithm in the random failure scenario. The far right and far left of the graph appear
identical to the results from the active scenario in Figure 6.3a. During the period of
node failures, the StaticBucket algorithm produces a fairly stable estimate, with an
error of approximately −10%. Next we return to the DynamicBucket algorithm, in
Figure 6.4b. We again see that this algorithm generates extremely variable results,
though they continue to be bounded between approximately −10% to +110% during
the simulated runs. Note that the DynamicBucket algorithm exhibits a delay of ap-
proximately 64 rounds in responding to network changes. This is a result of using
a higher k value (k = 64) than in the StaticBucket case, signifying data items do not
expire for 64 rounds. Lastly, we examine the MultiBitvector method in Figure 6.4c.
We can see that the results from the beginning of the simulation runs are comparable
to those from the active scenario. When node failures begin in in round 150, we see
the expected jump in estimated network size, which then gradually decreases during
the period of failure as old data are eventually evicted from the bitvectors. Somewhat
surprising is the continually growing estimate evident after the period of node fail-
ure ends. This behavior is because when the failed nodes restart operation in round
450, they are not initially synchronized with the nodes that were continuously active.
Though these restarted nodes quickly resynchronize, first they end up “polluting”
the distributed bitvector array by setting bits in the wrong bitvector. These addi-
tional bits get distributed throughout the network and cause the nodes that didn’t
fail to overestimate the network size.

6.4.3 K-hop estimation

Here we evaluate the accuracy of estimating k-hop neighborhoods, for various values
of k. Our interest here is whether we can effectively use one algorithm for nodes to

135

6

Evaluation Scalable epidemic applications

9 9

9 9

6

6

4 6 6

6

6

664 4

4

(a) k=1

12

9

9 9

9

12

12 12

12

12

1212

16 16

16 16

(b) k=2

16 16

16 16

16

16

16

16 16 16 16

16

16

161616

(c) k=3

Figure 6.5: Graphical representation of k-hop neighborhoods

both estimate the size of the whole network and any of their k-hop neighborhoods. In
this section, we will only look at the StaticBucket algorithm, as the DynamicBucket
was shown to be far too variable for accurate size estimation.

Our method of evaluation is to compute the mean k-hop estimate for each neigh-
borhood class. We can group nodes into neighborhood classes based on the number
of neighbors a node has at a maximum distance of k hops, for k = 1..32 and k = 128.
Each node v has exactly Nbrv,k neighbors within k hops. For all nodes, Nbrv,k = |V |
for k larger than or equal to the network diameter. We generate a single data point
for each unique combination of (k,Nbrv,k). Note that a particular neighborhood class
size may exist at a variety of different k values. For example, in Figure 6.5 we see that
neighborhood classes of size 9 exist at k = 1 and k = 2, while neighborhood classes
of size 16 exist at k = 2 and k = 3. By computing the mean estimate of all nodes in a
particular neighborhood class, we can get an idea of howwell our estimator performs
at various neighborhood sizes. In order to reduce our data to just a single point repre-
senting each class, we take the mean estimate at round 300, exactly half-way through
the simulation. This round was chosen because it gives the estimator a chance to
converge in scenarios with or without node failure, and gives us insight into how the
estimator handles failure scenarios since round 300 occurs during the failure part of
the simulated runs.

In Figure 6.6 we present such an analysis. This figure depicts the results of 50
simulated runs of each topology that we study. Figure 6.6a shows the 32 × 32 grid
with diameter 32, Figure 6.6b shows the 64 × 16 grid with diameter 64, and Fig-
ure 6.6c shows the 128× 8 grid with diameter 128. We can see that regardless of the
diameter of the network or the neighborhood class size, the error in the StaticBucket
algorithm’s estimate is strongly bound, 0% ≤ Err ≤ 50%. The actual error varies quite
a bit within that range, meaning that nodes certainly cannot assume their estimate
is perfectly accurate, but the accuracy does improve as the size of the network being
estimated grows.

Finally, in Figure 6.7 we look at the performance of our estimator on the 64-hop
diameter network in the face of node failures. Figure 6.7a shows the results of the
random failure scenario, and Figure 6.7b shows the churn scenario. In both cases we
can see that the estimates are even more variable than in the no failure scenario, as
can be expected. However, even here the estimation error is (with few exceptions)
bound between −50% ≤ Err ≤ 50%. The outlying data point in the results of the

6

136

Scalable epidemic applications Evaluation

churn scenario is from the value k = 128. Since the diameter of the network is less
than 128, such an estimate should include the entire network. The problem lies in
the fact that it takes 128 rounds for a “filled” bucket to “empty” with k = 128. That is,
after the node filling a particular bucket fails, there is a 128 round delay before the
estimator will see that bucket as empty again (assuming no other node also fills that
same bucket). Thus, as nodes constantly fail and recover during the churn scenario,
the high-order buckets stay filled. This issue is much less pronounced at lower k
values, and these estimators respond to changes in the neighborhood size with lower
latency.

137

6

Evaluation Scalable epidemic applications

0 200 400 600 800 1000 1200
Neighborhood-size class

5

10

15

20

25

30

35

40

45

50

si
ze

 e
st

im
a
te

 e
rr

o
r

(a) 32× 32

0 200 400 600 800 1000 1200
Neighborhood-size class

5

10

15

20

25

30

35

40

45

50

si
ze

 e
st

im
a
te

 e
rr

o
r

(b) 64× 16

0 200 400 600 800 1000 1200
Neighborhood-size class

0

10

20

30

40

50

60

si
ze

 e
st

im
a
te

 e
rr

o
r

(c) 128× 8

Figure 6.6: The performance of StaticBucket for the active scenario, 1024 nodes

6

138

Scalable epidemic applications Evaluation

0 200 400 600 800 1000 1200
Neighborhood-size class

�150

�100

�50

0

50

100

si
ze

 e
st

im
a
te

 e
rr

o
r

(a) Random failure

0 200 400 600 800 1000 1200
Neighborhood-size class

�100

�50

0

50

100

150

200

si
ze

 e
st

im
a
te

 e
rr

o
r

(b) Network churn

Figure 6.7: The performance of StaticBucket with network failure

139

6

Conclusions Scalable epidemic applications

6.5 Conclusions

In this chapter we presented a simple and scalable epidemic application designed to
generate continuous estimates of the current network size. We discussed the history
and theory of estimating set cardinalities, as well as how such techniques can be used
to estimate the number of wireless sensor nodes actively participating in a completely
decentralized network. We described and evaluated three different algorithms, each
offering unique advantages and disadvantages. We compared these algorithms using
identical message complexity in each case, since this is a crucial factor in the energy
cost of running an application. In addition to looking at the effects of the network
diameter on the accuracy of our estimators, we also investigated the effects of node
failures. We simulated scenarios with no failure, persistent failure, and transient
failure (churn).

Our simulations demonstrate that both the MultiBitvector and StaticBucket es-
timators work well in networks without node failure. In such scenarios, the Stat-
icBucket algorithm quickly converges to a final estimate, while the MultiBitvector
algorithm varies continually throughout the simulated duration. Nevertheless, both
offer adequate accuracy (±50%) for many purposes. In particular, we propose that
such an estimate could be a useful metric for making cluster merge decisions. That
is, if each node maintains an estimate of its network’s size, this estimate can be sent
with join messages. Then, nodes can decide to always merge a smaller cluster into a
larger one, minimizing the number of nodes that must re-synchronize.

We additionally demonstrated that the StaticBucket estimator was capable of gen-
erating continuous k-hop neighborhood estimates, a powerful advantage over the
MultiBitvector algorithm. Such estimates of only the node’s local neighborhood can
allow the nodes to react to significant changes in network topology or other environ-
mental conditions. We showed that this k-hop neighborhood estimation generates
larger errors in very small neighborhood sizes, but performs acceptably across a large
range of values for k.

Although this chapter has shown the StaticBucket to be a potentially valuable
tool for enabling social ad hoc networks, there are many opportunities for extend-
ing this work. An important one is using these estimates in order to adapt a node’s
duty cycle to the local node density. That is, if there are many neighbors in a node’s
neighborhood, it should broadcast less often or extend its active period in order to
relieve congestion. Conversely, a node can shorten its active period if there are few
other nodes in its neighborhood, as the extra slots will only be wasted. In addition
to improving the cluster merge behavior mentioned above, providing self-adaptation
with regard to density was a motivating factor in this investigation.

Another important follow up is to investigate the performance of these algorithms
in the presence of node mobility. As explained earlier, our activity scenarios provide
an easier to analyze proxy for mobility, but are not the same. In Chapter 5, we demon-
strated that GMAC can function properly in extremely large scale mobile networks,
but it remains to be seen how this application would perform.

6

140

Scalable epidemic applications Conclusions

Finally, it is crucial to test these algorithms in real-world networks. Simulation
is an essential part of experimenting with wireless sensor networks, but can never
replace real deployments. Such deployments often reveal unanticipated problems
with algorithms or assumptions that are not seen in the simulator. Unfortunately
this avenue of investigation took place late in our research, and we did not have an
opportunity to evaluate the application in an appropriate social ad hoc network. We
expect to perform experiments of the scale required to validate our simulations in
the future, and look forward to confirming the results presented here.

141

6

Conclusions Scalable epidemic applications

6

142

Part IV Discussion

143

7. Discussion

7.1 Summary

In this thesis we presented a thorough analysis, from hardware details to application-
level simulation, of the operation of a family of low duty-cycle networking protocols
collectively called GMAC. In the course of this work, we investigated a number of
improvements to the basic GMAC protocol, designed to enable our vision of social
ad hoc networks. In particular, we evaluated the scalability of the synchronization
provided by these protocols in networks ranging from a few dozen nodes to over four
thousand mobile nodes. Additionally, we analyzed the behavior of a simple but pow-
erful epidemic application implemented using GMAC’s API. Finally, we presented
detailed descriptions of four of our real deployments with critical analysis of what
went wrong and what went right with our complete solution.

In Chapter 2 we presented the MyriaNed platform, for which the GMAC family of
protocols was originally designed. We explained details regarding the radio and tim-
ing hardware used by the platform, as well as the CPU, memory and other significant
information. We also provided a description of the GMAC family of protocols, includ-
ing a comparison with more traditional network protocols. We presented motivation
underlying GMAC and an analysis of its network synchronizationmodel. In addition,
we detailed the API that GMAC presents to the application layer and explained the
modules GMAC uses for slot allocation and neighbor synchronization. An important
contribution of this chapter is breaking up the problem of frame-based network syn-
chronization into a number of fundamental subproblems. This approach allowed us
to clearly analyze the problems we faced and draw meaningful conclusions from our
simulations and experiments.

In Chapter 3 we presented a critical analysis of our four most interesting real-
world experiments, including an accurate assessment of GMAC’s synchronization be-
havior in an actual social ad hoc network consisting of over one hundred nodes. We
found that GMAC, with the addition of synchronization improvements described in
this thesis, is a viable solution for real-world social ad hoc networks. This validation
of our simulated results shows that the progress made towards our more abstract re-
search goals is realizable in practice. Finally, we learned that successful social ad hoc
networking experiments require careful planning and lots of testing. The experience
gained makes increasing the scale of future real-world deployments more tractable.

In Chapter 4 we evaluated GMAC in a simulated environment using static net-
work topologies. We found that GMAC’s maintenance of existing network synchro-
nization performed well across a wide variety of simulated clock errors and activity
patterns, but the group merge behavior was lacking. We proposed a number of im-
provements to the detection, decision and notification sub-problems pertaining to
merging synchronized groups and analyzed their performance. We found that using

145

Conclusions Discussion

active detection with deterministic decisions via cluster tags and a simple notification
strategy, GMAC was able to quickly synchronize a network of over four thousand
initially completely unsynchronized nodes to a single duty schedule. In addition, we
found that GMAC not only operates correctly at the standard duty cycle of 0.68%,
but potentially far lower. Combined with the potential reduction in guard times due
to better-than-expected synchronization, we estimate GMAC will operate correctly at
a duty cycle of less than 0.1%. Though not presented in this thesis, experiments in
our simulator indicate this estimation should be accurate. This is an important result
towards to our first research goal of low power operation, though further exploration
is required to determine any possible lower bound on the duty cycle.

In Chapter 5 we continued our analysis of GMAC’s synchronization behavior in
the context of mobile networks. We proposed several additional improvements to
the GMAC’s behavior. Using a variety of pre-generated mobility patterns, we showed
that our improvements enable GMAC to rapidly and consistently synchronize net-
works of four thousand simulated nodes. In fact, our most recent MyriaNed deploy-
ments validate, at least on a small scale, that the improvements we added to GMAC’s
synchronization behavior are effective. This result demonstrates significant progress
on our research goals of mobile networks of O (10,000).

Finally, in Chapter 6 we presented an epidemic application designed to estimate
the size of the network in which the executing node participates. We showed that, in
collaboration with its neighbors, a node canmaintain an accurate estimate of not only
the size of the whole network, but also its local k-hop neighborhood for any desired
value of k. Such estimates of basic network parameters are an important foundation
for our final research goal of adaptability.

7.2 Conclusions

To conclude, the work presented in this thesis demonstrates that our solution, an
improved version of GMAC, is able to maintain tight inter-node synchronization
in a completely decentralized manner. This synchronization allows GMAC to op-
erate at extremely low duty cycles while avoiding any dependency on special nodes,
such as gateways or cluster heads. Furthermore, our solution functions effectively
in both static and mobile network topologies, with sizes ranging from 64 to 4096
nodes. These features are an absolute requirement in order to enable the social ad
hoc networks which were the goal of this thesis. Beyond this, we showed that GMAC
provides a viable platform for building epidemic-based applications for social ad
hoc networks, capable of introspectively discovering local network parameters and
allowing for the deployment of novel tools for investigating real-world social behav-
ior. The potential uses of these are vast, and we expect this networking domain to
continue mature in the coming years.

Our successful real-world experiments allow us to conclude that we can build co-
hesive social ad hoc networks out of a massive number of wearable wireless sensor
devices. Our protocols are very energy efficient, and also provide a predictable node

7

146

Discussion Future work

lifetime. By utilizing duty cycles well below 1%, GMAC is able to achieve significant
energy savings when compared to other MAC layers. The final version of GMAC is
able to quickly discover and synchronize nodes new to the network, and also allows
nodes to simply fail or leave the network without significantly affecting its opera-
tion. Furthermore, though we explored the problems of synchronization and group
merging in the context of GMAC, many of our results are applicable to other MAC
layers. For example, our evaluation of active vs. passive detection and methods of
deciding which group should merge into which apply to any MAC layer that utilizes
duty-cycling. These techniques do not depend on any hardware specific to the Myr-
iaNed platform, and assume only that nodes use a short active period followed by
a long inactive period. Such a model is common to many MAC layers that utilize
duty-cycling.

Although this thesis has only scratched the surface of what is possible with social
ad hoc networks, we have achieved many of our original goals for this project. With
regard to our first research goal of low-power operation, we did not determine a lower
bound, but we did explore duty cycles on the order of 0.1%. We also established
bounds for what level of synchronization is required to enable communication in
these mobile networks, and ensured that GMAC maintained those bounds in a wide
variety of experimental settings. We made good progress on our second research
goal of highly scalable operation, demonstrating correct function across networks of
different sizes and topology. Our third goal of insensitivity to node mobility has been
achieved, particularly visible in our results from Chapter 5 which show even better
synchronization bounds in mobile networks than for static ones. Finally, we did not
fully achieve our final goal of adaptivity to local network conditions, but did lay the
foundation of a proper solution with our work in Chapter 6.

7.3 Future work

Though we have made significant progress towards our original goals and look at this
research as a success, there remains much work to be done. In this section we discuss
several lines of research to continue investigating.

7.3.1 Scale

First and foremost, we did not reach our goal of operation in a network of at least ten
thousand nodes. Especially in the context of the real-world experiments, we need to
increase the scale of our networks. One idea would be to distribute a version of our
wearable nodes to the attendees of largemusic festival or sporting event. For example,
the Lowlands music festival (http://lowlands.nl) attracts approximately 55,000
guests and is held each year in the Netherlands during the course of a weekend in
August. Using a number of sniffer nodes distributed throughout the venue, the hosts
could anonymously monitor the concert-goers in real time. This could be used for
things as pedestrian as efficiently distributing staff amongst the various refreshment
stands, or as important as trying to avoid injuries or deaths resulting from trampling
around overcrowded entrance/exit areas.

147

7

Future work Discussion

7.3.2 Slot allocation

Wehave largely ignored an important aspect of GMAC, that of slot allocation. Through-
out this thesis, nodes simply choose their transmit slot at random from the slots in the
active period. No attempt is made at coordinating this slot selection with neighboring
nodes, ensuring the collisions will certainly occur on a probabilistic basis. However,
if a node’s neighborhood is relatively stable and enough active slots are available, it
could be able to negotiate a stable slot allocation that allows all neighbors to commu-
nicate collision-free. There is significant existing research in this area, and evaluation
would simply mean implementing new strategy modules for GMAC.

7.3.3 Adaptivity

We demonstrated that GMAC applications can correctly estimate local network pa-
rameters like density, but we did not show how GMAC can utilize this information to
adapt its operation to the current conditions. For example, in dense neighborhoods,
nodes could decide to use a longer active period than in other parts of the network.
These additional active slots would serve to reduce congestion in the dense region
by providing more transmission slots to nodes in the area. This could potentially be
implemented as an addition to the slot allocation work discussed above. As another
example, potential energy savings could be realized by adaptively changing the rate
which joinmessages are sent. Rather than sending a joinmessage every frame, nodes
could keep track of the last time they heard a join message and adjust the frequency
of their join broadcasts accordingly. If a node has not received a join message in a
long time, it is likely that there are no unsynchronized nodes in its neighborhood.
Thus, the active detection frequency could be reduced (e.g., to one join broadcast
every second frame), lowering energy consumption.

7.3.4 Improved hardware

While we can implement anything we would like in simulation, in the real-world
we are restricted by the current MyriaNed hardware. The existing nodes are sev-
eral years old, and new components are cheaper, lighter and more energy-efficient.
In particular, a more fine-grained timer perhaps on the order of 1 MHz, would al-
low for more precise on-node timing and synchronization adjustments. Additionally,
a faster and more flexible radio would allow GMAC to send larger packets and in-
crease energy efficiency. By including more application data in each broadcast, the
energy cost per bit of application data sent will drop. Furthermore, a radio with
faster transitions between send and receive mode can help save energy by delaying
radio activation even longer.

7

148

Discussion Final thoughts

7.3.5 Synchronization maintenance

Although we demonstrated that GMAC’s median synchronization algorithm works
well, the models created by the authors of [62] showed that in certain situations it
can cause the participating nodes to spontaneously de-synchronize. While we have
not observed this behavior in our simulations or experiments, there are certainly op-
portunities for investigating alternatives. One such alternative popular in the litera-
ture is based on pulse-coupled oscillators [63] [29], known as firefly synchronization
because it is modeled after swarms of fireflies. Any improvement to the network syn-
chronization can generally be translated directly into energy savings by reducing slot
guard times and delaying radio activation.

7.4 Final thoughts

In conclusion, we have shown that it is achievable to develop ultra-low duty cycle
wireless ad hoc networks consisting of thousands of mobile nodes. Our solution pro-
vides a predictable device lifetime by ensuring all devices consume their energy store
at the same constant rate. We have shown that our solution is resilient to node failure
and that it is effective even in networks exhibiting arbitrary node mobility. This is a
unique result, as CSMA protocols are often preferred in such environments. In ad-
dition, we demonstrated that our solution is good candidate for a scalable platform
suitable for developing applications providing in-network data aggregation and self-
assessment of fundamental network parameters. Finally, we provided a number of
examples of interesting research still to be performed in this exciting area.

149

7

Final thoughts Discussion

7

150

References

151

References

References

1. Gaba A, Voulgaris S, Steen M. Group Moni-
toring in Mobile Ad-Hoc Networks. Proceed-
ings of the Third International Conference on E-
Democracy, 2009.

2. Roberts L. G. Aloha packet system with and
without slots and capture. ACM SIGCOMM
Computer Communication Review, 5(2):28–42,
1975.

3. Polastre J, Szewczyk R, Mainwaring A, et al.
Analysis of wireless sensor networks for habi-
tat monitoring. Wireless sensor networks, pages
399–423, 2004.

4. Goense D, Thelen J, Langendoen K. Wireless
sensor networks for precise phytophthora de-
cision support. In 5th European Conference on
Precision Agriculture (5ECPA), Uppsala, Sweden.
Citeseer, 2005.

5. Assegei F. Decentralized frame synchroniza-
tion of a TDMA-based wireless sensor network.
Master’s Thesis, Eindhoven University of Technol-
ogy, Department of Electrical Engineering, 2008.

6. Choudhury T, Pentland A. Sensing and model-
ing human networks using the sociometer. In
Proc. the 7th IEEE International Symposium on
Wearable Computers (ISWC2003), pages 216–
222, 2003.

7. Langendoen K. The mac alphabet soup, 2009.
http://www.st.ewi.tudelft.nl/~koen/

MACsoup/.

8. Singh S, Raghavendra C. S. Pamas - power
aware multi-access protocol with signalling for
ad hoc networks. ACM SIGCOMM Computer
Communication Review, 28(3):5–26, 1998.

9. Chen J.-C, Sivalingam K. M, Agrawal P. Perfor-
mance comparison of battery power consump-
tion in wireless multiple access protocols. Wire-
less Networks, 5(6):445–460, 1999.

10. Sivalingam K. M, Chen J.-C, Agrawal P, et al.
Design and analysis of low-power access pro-
tocols for wireless and mobile atm networks.
Wireless Networks, 6(1):73–87, 2000.

11. Hedetniemi S. M, Hedetniemi S. T, Liest-
man A. L. A survey of gossiping and broadcast-
ing in communication networks. Networks(New
York, NY), 18(4):319–349, 1988.

12. Demers A, Greene D, Hauser C, et al. Epi-
demic algorithms for replicated database main-
tenance. In Proceedings of the sixth annual ACM
Symposium on Principles of distributed comput-
ing, pages 1–12. ACM Press New York, NY,
USA, 1987.

13. Bavelas A. Communication patterns in task-
oriented groups. The Journal of the Acoustical
Society of America, 22(6):725–730, 1950.

14. Hajnal A, Milner E, Szemerédi E. A cure for

the telephone disease. Canad. Math. Bull, 15(3):
447–450, 1972.

15. Elson J, Römer K. Wireless sensor networks:
A new regime for time synchronization. ACM
SIGCOMM Computer Communication Review,
33(1):154, 2003.

16. Sivrikaya F, Yener B. Time synchronization in
sensor networks: A survey. IEEE network, 18
(4):45–50, 2004.

17. Rahamatkar S, Agarwal A, Kumar N. Analy-
sis and Comparative Study of Clock Synchro-
nization Schemes in Wireless Sensor Networks.
Analysis, 2(03):536–541, 2010.

18. Langendoen K. Medium Access Control in
Wireless Sensor Networks. In Wu H, Pan Y,
editors, Medium Access Control in Wireless Net-
works, Volume II: Practice and Standards. Nova
Science Publishers, 2007.

19. Polastre J, Hill J, Culler D. Versatile low power
media access for wireless sensor networks. In
Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 95–
107. ACM, 2004.

20. El-Hoiydi A, Decotignie J.-D. Wisemac: An
ultra low power mac protocol for multi-hop
wireless sensor networks. In Algorithmic As-
pects of Wireless Sensor Networks, pages 18–31.
Springer, 2004.

21. Ye W, Heidemann J, Estrin D. An energy-
efficient MAC protocol for wireless sensor net-
works. In 21st Annual Joint Conference of the
IEEE Computer and Communications Societies
(INFOCOM), pages 1567–1576. IEEE, 2002.

22. Van Dam T, Langendoen K. An adaptive
energy-efficient MAC protocol for wireless sen-
sor networks. In Proceedings of the 1st Interna-
tional Conference on Embedded Networked Sensor
Systems, pages 171–180. ACM, 2003.

23. Ye W, Silva F, Heidemann J. Ultra-low duty cy-
cle MAC with scheduled channel polling. In
Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems, pages
321–334. ACM, 2006.

24. Rajendran V, Obraczka K, Garcia-Luna-
Aceves J. Energy-efficient, collision-free
medium access control for wireless sensor
networks. Wireless Networks, 12(1):78, 2006.

25. Cidon I, Sidi M. Distributed assignment algo-
rithms for multi-hop packet-radio networks. In
Proceedings of the 7th Annual Joint Conference
of the IEEE Computer and Communcations Soci-
eties (INFOCOM) - Networks: Evolution or Revo-
lution?, pages 1110–1118, 1988.

26. Arumugam M, Kulkarni S. Self-stabilizing de-
terministic TDMA for sensor networks. In Pro-
ceedings of the 2nd International Conference on
Distributed Computing and Internet Technology
(ICDCIT), pages 69–81. Springer, 2005.

27. Kulkarni S, Arumugam M. SS-TDMA: A self-

152

References

stabilizing MAC for sensor networks. In Sensor
Network Operations, chapter 4, pages 186–218.
IEEE Press, 2006.

28. Rhee I, Warrier A, Aia M, et al. Z-mac: a hybrid
mac for wireless sensor networks. IEEE/ACM
Transactions on Networking (TON), 16(3):511–
524, 2008.

29. Degesys J, Basu P, Redi J. Synchronization of
strongly pulse-coupled oscillators with refrac-
tory periods and random medium access. In
Proceedings of the 2008 ACM symposium on Ap-
plied computing, pages 1976–1980. ACM New
York, NY, USA, 2008.

30. Degesys J, Nagpal R. Towards desynchroniza-
tion of multi-hop topologies. In Self-Adaptive
and Self-Organizing Systems, 2008. SASO’08.
Second IEEE International Conference on, pages
129–138. IEEE, 2008.

31. Halkes G, Langendoen K. Crankshaft: An
energy-efficient MAC-protocol for dense wire-
less sensor networks. Wireless Sensor Networks,
4373:228–244, 2007.

32. Zheng T, Radhakrishnan S, Sarangan V. Pmac:
an adaptive energy-efficient mac protocol for
wireless sensor networks. In Parallel and Dis-
tributed Processing Symposium, 2005. Proceed-
ings. 19th IEEE International, pages 8–pp. IEEE,
2005.

33. Tjoa R, Chee K, Sivaprasad P, et al. Clock drift
reduction for relative time slot TDMA-based
sensor networks. In 15th IEEE International
Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), volume 2, 2004.

34. Ganeriwal S, Kumar R, Srivastava M. Timing-
sync protocol for sensor networks. In Proceed-
ings of the 1st International Conference on Embed-
ded Networked Sensor Systems, pages 138–149.
ACM New York, NY, USA, 2003.

35. Maróti M, Kusy B, Simon G, et al. The flooding
time synchronization protocol. In Proceedings
of the 2nd International Conference on Embedded
Networked Sensor Systems, pages 39–49. ACM,
2004.

36. Pussente R, Barbosa V. An algorithm for clock
synchronization with the gradient property in
sensor networks. Journal of Parallel and Dis-
tributed Computing, 69(3):261–265, 2009.

37. Elson J, Estrin D. Time synchronization for
wireless sensor networks. In Proceedings of the
15th International Parallel and Distributed Pro-
cessing Symposium, pages 1965–1970, 2001.

38. LiuM, Lai T, LiuM. Is clock synchronization es-
sential for power management in IEEE 802.11-
based mobile ad hoc networks? In Proceedings
from the Second IEEE International Conference on
Mobile Ad Hoc and Sensor Systems, 2005.

39. Mank S, Karnapke R, Nolte J. An adaptive
TDMA based MAC protocol for mobile wire-
less sensor networks. In Proceedings of the 2007
International Conference on Sensor Technologies

and Applications, pages 62–69. IEEE Computer
Society, 2007.

40. Mank S, Karnapke R, Nolte J. MLMAC - An
adaptive TDMAMAC protocol for mobile wire-
less sensor networks. In Ad-Hoc & Sensor Wire-
less Networks: An International Journal, Special
Issue on 1st International Conference on Sensor
Technologies and Applications, 2008.

41. Abramson N. The throughput of packet broad-
casting channels. IEEE Transactions on Commu-
nications, 25(1):117–128, 1977.

42. Iwanicki K, van Steen M. Multi-hop cluster
hierarchy maintenance in wireless sensor net-
works: A case for gossip-based protocols. In
Proceedings of the Sixth European Conference on
Wireless Sensor Networks (EWSN 2009), pages
102–117, Cork, Ireland, 2009. Springer-Verlag
LNCS 5432. URL http://www.few.vu.nl/

~iwanicki/publications/2009-02-EWSN/.

43. Dobson M, Voulgaris S, van Steen M. Network-
level synchronization in decentralized social
ad-hoc networks. In 5th International Confer-
ence on Pervasive Computing and Applications
(ICPCA), pages 206–212. IEEE, 2010.

44. Dobson M, Voulgaris S, van Steen M. Merg-
ing ultra-low duty cycle networks. 41st Inter-
national Conference on Dependable Systems and
Networks (DSN), pages 538–549, 2011.

45. Langendoen K, Baggio A, Visser O. Murphy
Loves Potatoes: Experiences from a Pilot Sen-
sor Network Deployment in Precision Agricul-
ture. In 14th Int. Workshop on Parallel and Dis-
tributed Real-Time Systems (WPDRTS), 2006.

46. Pentland A. S. Automatic mapping and mod-
eling of human networks. Physica A: Statisti-
cal Mechanics and its Applications, 378(1):59–67,
2007.

47. Varga A, Hornig R. An overview of the om-
net++ simulation environment. In Proceed-
ings of the 1st international conference on Sim-
ulation tools and techniques for communications,
networks and systems & workshops, page 60.
ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineer-
ing), 2008.

48. Weingartner E, vom Lehn H, Wehrle K. A per-
formance comparison of recent network simu-
lators. In IEEE International Conference on Com-
munications (ICC), pages 1–5, 2009.

49. Köpke A, Swigulski M, Wessel K, et al. Sim-
ulating wireless and mobile networks in om-
net++ the mixim vision. In Proceedings of the
1st international conference on Simulation tools
and techniques for communications, networks and
systems & workshops, page 71. ICST (Institute
for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008.

50. Ester M, Kriegel H, Sander J, et al. A density-
based algorithm for discovering clusters in
large spatial databases with noise. In Pro-

153

References

ceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, pages
226–231. AAAI Press, 1996.

51. Waber B, Olguin Olguin D, KimT, et al. Produc-
tivity through coffee breaks: Changing social
networks by changing break structure. Avail-
able at SSRN 1586375, 2010.

52. Newman M. E. Spread of epidemic disease
on networks. Physical Review E, 66(1):016128,
2002.

53. Eubank S, Guclu H, Kumar V. A, et al. Mod-
elling disease outbreaks in realistic urban so-
cial networks. Nature, 429(6988):180–184,
2004.

54. Flajolet P, Martin G. N. Probabilistic counting
algorithms for data base applications. Journal
of Computer and System Sciences, 31(2):182–209,
1985.

55. Metwally A, Agrawal D, Abbadi A. E. Why go
logarithmic if we can go linear?: Towards ef-
fective distinct counting of search traffic. In
Proceedings of the 11th international conference
on Extending database technology: Advances in
database technology, EDBT ’08, pages 618–629,
New York, NY, USA, 2008. ACM. URL http:

//doi.acm.org/10.1145/1353343.1353418.

56. Datar M, Gionis A, Indyk P, et al. Maintaining
stream statistics over sliding windows. SIAM
Journal on Computing, 31(6):1794–1813, 2002.

57. Considine J, Li F, Kollios G, et al. Approximate
aggregation techniques for sensor databases. In
Proceedings of the 20th International Conference
on Data Engineering, ICDE ’04, pages 449–,
Washington, DC, USA, 2004. IEEE Computer
Society. URL http://dl.acm.org/citation.

cfm?id=977401.978068.

58. Madden S, Franklin M, Hellerstein J, et al. Tag:
A tiny aggregation service for ad-hoc sensor
networks. ACM SIGOPS Operating Systems Re-
view, 36(SI):131–146, 2002.

59. Baquero C, Almeida P, Menezes R, et al. Ex-
trema propagation: Fast distributed estimation
of sums and network sizes. Parallel and Dis-
tributed Systems, IEEE Transactions on, 23(4):
668–675, 2012.

60. Cichoń J, Lemiesz J, Zawada M. On cardinal-
ity estimation protocols for wireless sensor net-
works. Ad-hoc, mobile, and wireless networks,
6811:322–331, 2011.

61. Cichoń J, Lemiesz J, SzpankowskiW, et al. Two-
phase cardinality estimation protocols for sen-
sor networks with provable precision. In Wire-
less Communications and Networking Conference
(WCNC), 2012 IEEE, pages 2009–2013. IEEE,
2012.

62. Heidarian F, Schmaltz J, Vaandrager F. Analy-
sis of a clock synchronization protocol for wire-
less sensor networks. FM 2009: Formal Methods,
5850:516–531, 2009.

63. Mirollo R, Strogatz S. Synchronization of pulse-
coupled biological oscillators. SIAM Journal on
Applied Mathematics, 50(6):1645–1662, 1990.

Patents

1. GMAC is protected by US Patent Application
12/215,040 and is available free of charge for
academic use.

154

Summary

Recent advances in electronics have made wireless devices become smaller, lighter,
less intrusive, and significantly cheaper: a commodity. This enables the deployment
of increasingly larger collections of such devices for a multitude of applications,
mainly for the collection of observed data (sensor networks). We expect wireless
networks consisting of tens of thousands of nodes to be common in the near future.
As these devices continue to decline in size and cost, we anticipate a proliferance of
wearable wireless devices. Whether worn on or as an item of clothing, such a device
can spontaneously form networks with similar devices worn by people in the vicin-
ity of the device. These networks will therefore consist of many mobile devices, or
nodes, and their topology will be strongly influenced by the social connections of the
wearers. For this reason, we call them social ad hoc networks.

The potential uses of a social ad hoc networks are vast. Consider, for instance, a
(large) group of people at a conference or similar social event, each wearing a small
unobtrusive electronic badge with a limited radio range. By simply measuring how
often and for how long two badges are within range of each other, we can register
social interaction and study the structure of the social network. Furthermore, by
aggregating and disseminating data we can even stimulate social interaction, for in-
stance by a social game where groups of people (e.g., students of the same depart-
ment) increase their score by talking to members of other groups, and lose points
when sticking among themselves. Finally, a family or group of friends attending a
large social event may be informed when they come in close proximity to each other,
helping them to stay in contact. Other applications easily come to mind, including
group-based messaging, finding people with specific profiles, and crowd manage-
ment, to name a few. Furthermore, these devices need not be worn by people at all,
but at the right price-point could be attached and used to identify physical objects.
The topology of the resulting network could be used to establish groups of items that
“belong” together, later notifying the user when the node attached to one of the items
leaves the neighborhood of the others.

The primary focus of our investigation is on wireless communication protocols
suitable for large social ad hoc networks. The domain of social ad hoc networks
presents a number of challenges. First and foremost is the challenge of energy con-
sumption. The wireless nodes that compose the network must be small and light
enough to be comfortably worn, so large heavy batteries are out of the question. Nev-
ertheless, the nodes must be capable of operating for prolonged periods without be-
ing recharged. In the setting of a large music festival, for example, the devices must
operate continuously for several days. As the wireless radio is generally the most
power-hungry component in such devices, the main onus for power savings is on the
communication protocols. Duty cycling, or periodically turning a node’s radio on
and off, is the most effective method of conserving energy, but leads to the problem
of synchronizing the active period’s of the duty cycle. The second major challenge is
node mobility. The fact that nodes exhibit arbitrary movement patterns means that

155

Summary

the network’s topology is constantly changing. Due to this, nodes cannot use tradi-
tional routing algorithms, nor can they rely on symmetrical message exchanges. Fi-
nally, because a node cannot make any assumptions regarding its neighborhood, our
solutions must be adaptable to changing conditions. For example, as a participant
moves around the venue, her node may experience sudden changes in neighborhood
size (and hence available bandwidth) depending upon the number of nearby partici-
pants.

In order to test potential solutions to the above challenges, we implement a sim-
ulator for our nodes using the OMNeT++ framework. Using our simulator, we can
quickly evaluate new techniques without the time and expense of performing exper-
iments with actual people and nodes. In this thesis, we explore a number of different
synchronization techniques in both static and mobile networks. We simulate several
different mobility patterns and a variety of network sizes, ranging from 64 nodes to
over four thousand. In addition to analyzing network-level synchronization via sim-
ulations, we are also able to test out new applications. As an example, we evaluate
a decentralized application designed to estimate the number of nodes participating
in a network. An accurate method of estimating network size is a valuable tool for
allowing our protocols to adapt to varying network conditions.

In addition to testing new protocol variations in simulation, we perform a num-
ber of real-world experiments. In these experiments, we examined the feasibility of
using wearable sensor nodes as both a measurement tool and actuator for social be-
havior. To this end, we develop different applications to run on top of our networking
protocols during actual social events. We deploy our social ad hoc networks in situ-
ations ranging from small, informal gatherings to large academic conferences with
over two hundred attendees. From these experiments we can demonstrate the obser-
vation and measurement of social behavior in an unobtrusive manner. Through the
use of gossip-based communication and a handful of passive nodes designed to ob-
serve and report the messages generated by the active badge nodes, we can visualize
the dynamic topology of the entire social ad hoc network in real time. Furthermore,
using a different application we are able to influence the behavior of the participants.
This game is called InCrowd, and has very simple rules: a participant gains points for
interacting with participants from a group other than their own. We typically group
participants based on the department/company for which they work, or other simi-
lar demographic data. By measuring the inter- and intra-group interactions before
the game is played, during the game, and after the game, we can recognize distinct
changes in social behavior that persist after the game has ended.

The contributions of this thesis includes a thorough evaluation of communication
techniques for social ad hoc networks and an investigation of the practicality of these
techniques in real-world scenarios. The final solution presented in this work offers
energy-efficiency, predictable battery usage regardless of network conditions (e.g.,
changes in mobility or density), and robust operation in the presence of failing nodes.
We demonstrate the effectiveness of our solution in real-world networks consisting
of over two hundred nodes, and provide simulations showing that they will scale to
many thousands of nodes.

156

Samenvatting

Recente ontwikkelingen in elektronica hebben er voor gezorgd dat draadloze appa-
raten kleiner, lichter, minder indringend en aanzienlijk goedkoper zijn geworden.
Dit maakt het uitzetten van een grotere verzameling van zulke apparaten als een
netwerk van met elkaar communicerende knopen, mogelijk en inzetbaar voor ver-
schillende doeleinden. Een typische toepassing is het verzamelen van observatie
gegevens (in de vorm van zogeheten sensor netwerken). We verwachten dat draad-
loze netwerken bestaande uit duizenden knopen in de toekomst normaal zal zijn.
Gezien de vermindering in omvang en kosten, anticiperen we op een groei van draag-
bare draadloze apparaten. Of het nu gaat om een object op een kledingstuk of dat
deel uitmaakt van het kledingstuk, een dergelijk apparaat kan spontaan een netwerk
vormen met vergelijkbare apparaten gedragen door mensen in zijn nabijheid. Deze
netwerken zullen voornamelijk bestaan uit mobiele knopen, en hun topologie zal
sterk beïinvloed worden door de sociale connecties van de dragers. Om deze reden
noemen we ze sociale ad hoc netwerken.

Het potentieel van sociale ad hoc netwerken is groot. Stel je voor dat elke deelne-
mer aan een conferentie of vergelijkbaar evenement, een onopvallende elektronische
badge met beperkt radiobereik draagt. Alleen al door het meten hoe vaak en hoe lang
twee badges binnen elkaars bereik zijn, kunnen we sociale interactie registeren en de
structuur van het sociale netwerk observeren. Bovendien kunnen we door het verza-
melen en verspreiden van data sociale interacties stimuleren. Denk hierbij aan een
sociaal spel waar groepenmensen (zoals studenten van dezelfde opleiding) hun score
kunnen verbeteren door te praten met andere leden van andere groepen en punten
verliezen als ze onder elkaar blijven. Een ander voorbeeld is dat van, een familie of
groep vrienden die een groot sociaal evenement bezoeken. Zij kunnen geïnformeerd
worden wanneer ze in elkaars buurt zijn, om zo in contact met elkaar te kunnen
blijven, maar ook kunnen waarschuwingen verspreid worden zodra er een afdwaalt.
Andere toepassingen zijn, groepsberichten, mensen vinden met specifieke profielen,
en menigte beheer. Daarbij komt dat binnen afzienbare tijd, knopen niet expliciet
als zodanig gedragen hoeven te worden door mensen, maar met een lage kostprijs
ingebed kunnen worden bij andere objecten, zoals sieraden of mobiele telefoons.

De focus van het onderzoek is op de ontwikkeling van draadloze communicatiepro-
tocollen die geschikt zijn voor grote sociale ad hoc netwerken. Het domein van sociale
ad hoc netwerken brengt enige uitdagingen met zich mee. Een belangrijke uitdag-
ing voor het onderhavige onderzoek is energiebeheer. Een draadloze knoop die deel
uitmaakt van het netwerk moet klein en licht genoeg zijn om comfortabel te kunnen
dragen. Het gebruik van batterijen van enige omvang is dan geen optie meer. Desalni-
ettemin moet een knoop langdurig operationeel zijn zonder dat de batterij vervangen
of opgeladen dient te worden. Zo zal voor een groot meerdaags muziekfestival, het
sociale ad hoc netwerk ook meerdere dagen zonder verdere handmatige interventie
moeten kunnen opereren.

Voor een knoop is de draadloze zender de grootste energieverbruiker. Energie kan
dus al snel bespaard worden door een knoop een tijdlang niet te laten communiceren.

157

Samenvatting

Periodiek de radio van een knoop uit te zetten, en telkens voor een relatief korte pe-
riode weer aan, is de meest effectieve manier om energie te besparen. Echter, dit aan-
uit gedrag leidt tot synchronisatieproblemen: twee knopen kunnen tenslotte alleen
maar communiceren als hun respectievelijke radios ook tegelijkertijd aan staan.

Een tweede grote uitdaging is de mobiliteit van knopen. Het feit dat een knoop
ogenschijnlijk willekeurige bewegingspatronen heeft betekent dat de topologie van
het netwerk constant verandert. In combinatie met de omvang van het netwerk, kun-
nen knopen niet traditionele oplossingen voor communicatie gebruiken, en in het bi-
jzonder kan dikwijls niet symmetrisch berichten uitgewisseld worden. Daarbij komt
dat niet alleen de topologie van het netwerk verandert, maar ook kan het aantal bu-
ren van een knoop sterk veranderen. Des te meer buren een knoop heeft, des te groter
is de kans dat communicatie mislukt. Ook hier zal rekening mee gehouden moeten
worden.

Om onze oplossingen te ontwikkelen en te toetsen aan deze uitdagingen, hebben
we een simulator geïmplementeerd die gebruik maakt van het OMNeT++ raamw-
erk. Met onze simulator kunnen we snel nieuwe technieken evalueren zonder de
tijd en kosten die het experimenteren met echte mensen en knopen met zich mee-
brengen. In dit proefschrift onderzoeken we een aantal verschillende synchronisati-
etechnieken in zowel statische als mobiele netwerken. We simuleren verschillende
bewegingspatronen en verschillende netwerkgroottes variërend van 64 tot meer dan
4000 knopen. Naast het analyseren van onze oplossingen voor synchronisatie met
behulp van simulaties hebben we ook nieuwe applicaties kunnen testen. Zo hebben
we een applicatie gemaakt die inschat hoeveel knopen deelnemen in een netwerk.
Een nauwkeurige methode om de grote van het netwerk in te schatten is een waarde-
vol onderdeel om er voor te zorgen dat onze protocollen zich kunnen aanpassen aan
varir̈ende netwerkomstandigheden.

Naast simulaties, hebben we ook een aantal experimenten uitgevoerd om onze
oplossingen te valideren. In deze experimenten hebben we de mogelijkheden onder-
zocht voor het gebruik van draagbare elektronische badges als zowel een meetinstru-
ment als aandrijver voor sociaal gedrag. We hebben oplossingen geïmplementeerd
voor een kleine informele bijeenkomsten tot grote academische conferentiesmet meer
dan 200 bezoekers. Met deze experimenten konden we sociaal gedrag observeren en
meten. Door het gebruik van zogeheten epidemische communicatie en een handvol
louter waarnemende knopen die alleen maar het berichtenverkeer registreren, kun-
nen we de dynamische topologie van het gehele sociale ad hoc netwerk ter plekke
visualiseren. Met een andere applicatie trachten we het gedrag van participanten te
beïnvloeden. Dit spel, inCrowd geheten, gaat ervanuit dat elke deelnemer tot een
specifieke groep behoort, zoals een afdeling, eenzelfde klas, enz. Het spel heeft een
simpele regel: een participant krijgt punten voor interactie met andere participanten
van een andere groep dan zijn eigen groep. Des te meer punten, des te meer er sprake
is van sociale menging. Door de de interacties in en tussen groepen te meten, kunnen
we aldus meten in hoeverre menging heeft plaatsgevonden.

De bijdragen van dit onderzoek bestaat uit de ontwikkeling en evaluatie van com-
municatietechnieken voor sociale ad hoc netwerken. Het omvat de uitvoerbaarheid

158

Samenvatting

van deze technieken in levensechte scenarios. De uiteindelijk oplossingen gepresen-
teerd in dit werk zorgen voor energiezuinig en voorspelbare batterijverbruik ongeacht
veranderende netwerkcondities, en een robuuste werking ook als knopen falen. We
demonstreren de effectiviteit van onze oplossingen door levensechte experimenten
met een paar honderd knopen, alsmede simulaties met netwerken van vele duizen-
den knopen.

159

